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A B S T R A C T

Alzheimer’s Disease (AD) is a progressive neurodegenerative condition causing memory, attention, and
language decline. Current AD diagnostic methods lack objectivity and non-invasiveness. While electroen-
cephalography (EEG) holds promise for AD research, conventional EEG analysis methods have proven
unsatisfactory. Non-linear dynamical approaches are considered more effective in assessing the brain’s complex
nature. Starting from these considerations, this study presents an entropy-based algorithm utilizing Multiscale
Fuzzy Entropy (MFE) as a promising, effective AD diagnostic method. Computed across 20 different time scales
for a public dataset, MFE showed a significant discriminative power. Notably, a trend inversion was observed
in the results: AD subjects displayed higher complexity values for slow frequency bands compared to healthy
controls, while the opposite was found in fast frequency bands. These findings underscore the potential of
MFE in effectively distinguishing AD patients from healthy individuals, marking a significant advance towards
more objective and reliable AD diagnosis strategies.
. Introduction

Electroencephalography (EEG) is a non-invasive and low-cost
ethod widely used both in clinical and research environments [1]

or detecting and monitoring the electrical activity of the brain in
rder to diagnose neurological disease [2], to study neural responses to
ifferent types of stimulation [3–5], the execution of motor movements,
nd brain–computer interfaces [6,7]. By applying electrodes to the
calp and properly processing the obtained signals [8], the EEG record-
ng allows the investigation of the temporal dynamics of the brain
t a high temporal resolution. However, conventional EEG analysis
ethods (e.g. event-related potential, time analysis, and frequency

nalysis) assume the stationarity of the system, thus disregarding the
on-stationary nature and temporally intricate behavior of neuronal
rocesses. Indeed, brain processes are not purely regular but neither
otally random [9]; for this reason, complexity measures of EEG signals
ay offer a novel understanding of physiological processes in both
ormal and abnormal conditions. In general, non-linear dynamical
nalysis is expected to be more appropriate for exploring brain activity
nd for a detailed comprehension of neural phenomena, particularly in
eurodegenerative disorders such as Alzheimer’s disease (AD), which
mpairs the connections between neurons [10]. AD is the most common
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age-related form of dementia according to the World Health Organi-
zation [11], and its onset typically occurs after the age of 60 [12].
It is characterized by a widespread loss of functional neuronal inter-
action and progressive impairment of memory. Currently, there is no
reliable biochemical marker for the diagnosis of AD, and it can only be
considered ‘possible’ or ‘probable’ based on the outcome of neuropsy-
chological tests that evaluate memory, language, and attention-related
issues, such as the Mini-Mental State Examination (MMSE) [13]. The
current limitations in diagnostic approaches highlight the necessity for
an early and objective method for detecting AD. In this regard, EEG
has emerged as a promising solution [1,14]. In fact, the quantitative
analysis of EEG signals has the potential for identifying biomarkers for
AD diagnosis. Studies based on frequency methods show that an EEG
signal of patient with AD presents an increase in the relative power of
low-frequency bands (delta, 0.5–4 Hz, and theta, 4–8 Hz), combined
with a reduction in the mean alpha frequency 8–13 Hz [15–17]. Fur-
thermore, synchronization could be a useful indicator for AD, revealing
variations in functional connectivity, especially within the beta and
theta frequency bands, when contrasted with healthy subjects [18–20].
Recently, there has been a growing interest in applying complexity
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Fig. 1. Taxonomy of complexity measures mostly used in the analysis of EEG signal
predictability and regularity.

analysis to EEG signals in individuals with AD, reporting a reduction in
complexity and an increase in signal regularity [21–24]. By combining
the evaluation of EEG signals’ complexity with the measurement of
frequency band powers, the EEG analysis can assume a great potential
for AD diagnosis, especially for the timely detection of the so-called
Mild Cognitive Impairment (MCI) i.e., the early stage of AD [25].

On such basis, this study proposes a specific procedure based on
Multiscale Fuzzy Entropy (MFE) for analyzing the complexity of the
EEG traces of a set of AD and healthy subjects. The aim is to identify
particular channels and frequency bands that facilitate discrimina-
tion between healthy individuals and patients with AD through EEG
complexity analysis. This objective falls within the larger scope of
enhancing healthcare through the adoption of advanced processing
techniques that enable periodic screening, diagnosis, and prevention of
AD [10,15].

The remainder of the paper is organized as follows. Section 2 pro-
vides an overview of state-of-the-art methods based on entropy analysis
for the monitoring and diagnosis of AD. Section 3 addresses the basic
theoretical concepts of the proposed technique, the dataset adopted
in this work, the implementation of the method, and the statistical
analysis performed on the data. Section 4 describes the experimental
results and addresses the discussions. Finally, conclusions are reported
in Section 5.

2. Related works

Complexity science focuses on investigating and describing sys-
tems composed of various interconnected components that function
and interact at various levels. These systems exhibit chaotic behavior,
characterized by unpredictability and irregularities that arise from non-
linear interactions. Indeed, a complex system exhibits two distinct
features: predictability and regularity [10,23]. The former refers to the
temporal evolution of the system states into spatial and/or temporal
dimensionality. On the other hand, regularity refers to the number
of pattern repetitions in the system. However, a full reconstruction
of the spatio-temporal dimensionality of the signal is required for
predictability calculations, whereas regularity measures explore fewer
details in the time–frequency domain, resulting in greater robustness.
Therefore, since brain processes are characterized by the interchange
of noisy and low-amplitude signals, in this case, regularity measures
are more appropriate to fully investigate the complexity of bio-signals
compared to predictability measures that may be less reliable [23].

In recent years, the analysis of non-linear systems through complex-
ity has emerged as a prominent approach for studying electrophysi-
ological signals, investigating neurodegenerative diseases and mental
2

states [26,27]. Several metrics have been proposed to evaluate the
predictability and regularity of the brain. Fig. 1 shows the most com-
monly used. Entropy has emerged as the predominant metric employed
for quantifying brain complexity [28–30], with particular attention to
Approximate Entropy (ApEn), Sample Entropy (SampEn), and Fuzzy
Entropy (FuzzyEn) [31,32]. These measures allow for the evaluation of
similarities between patterns of signals, identifying repeated sequences
in the time series. More in detail, for doing that, ApEn and SampEn
use a binary mechanism (Heaviside function) with a threshold value,
whereas FuzzyEn uses a fuzzy membership function by returning a real
number between 0 and 1. Typically, these metrics are applied to the
signal at its original time scale, the reason why they are called single-
scale metrics. On the other hand, it is worth noting that EEG signals
can provide different and extremely useful information for the purpose
of understanding brain dynamics when they are analyzed at different
spatial and temporal scales [33]. More specifically, at the spatial di-
mension, brain complexity can be defined by the intricacy of activities
within specific brain regions or individual neurons and groups of neural
cells. Meanwhile, at the temporal dimension, neural complexity can
be ascertained by the intricacy of activity patterns over time. Hence,
single-scale methods may not be adequate for accurately characterizing
EEG complexity. Instead, a multiscale approach is necessary to fully
capture the EEG brain signal complexity in space and time [23].

The multiscale entropy concept is schematized in Fig. 2. As a matter
of fact, the multiscale entropy measures [38], evaluating signal com-
plexity at varying resolution scales, are especially valuable for inves-
tigating the brain and the association between EEG signals complexity
and neuro-degenerative disorders, in particular for AD. In the literature,
several studies have been dedicated to the investigation into Multiscale
Sample Entropy (MSE) of EEG signals from patients diagnosed with
different degrees of AD [34,35,39]. The findings demonstrate that the
quantification of complexity levels at multiple temporal scales provides
a dynamic representation of the progression of AD. Notably, it appears
that entropy significantly decreased from moderate to severe stages of
AD, as opposed to the early stage of AD, where entropy levels were
comparable to those of healthy controls. These reductions in complexity
may indicate deficits in thought-processing capacity and/or reduced
responsiveness to an external stimulus.

Mizuno et al. [34] observed a decrease of MSE at small time scales
in frontal regions, while the brain complexity increased at larger time
scales in many different brain areas, which could be associated with
phenomena of incorrect connection between the regions. Sun et al. [40]
showed a statistically significant difference in the MSE of the tempo-
ral, occipito-parietal, and right frontal lobes between AD, MCI, and
healthy individuals. More specifically, healthy individuals exhibited
higher entropy than MCI and AD patients at short-scale factors, while
the opposite trend was observed at long-scale factors. More recently,
Su et al. [37] utilized multiscale fuzzy entropy (MFE) to enable early
diagnosis of MCI patients. Their findings indicated that the prefrontal
lobe may be a particularly sensitive brain area. Specifically, the MFE
of normal controls was greater than that of individuals with MCI in the
Fp1 and Fp2 channels.

Table 1 provides a summary of findings from the referenced liter-
ature. Across the considered studies, multiscale entropy calculations
were exclusively conducted on wide frequency ranges, lacking differ-
entiation for single EEG bands. Notably, these studies reflect some
challenges related to the lack of standardized approaches. The inherent
complexity and variability of brain signals, combined with the absence
of a definitive gold standard for metrics and parameters, complicate
direct comparisons with existing literature.

Based on these considerations, this study focuses on an MFE algo-
rithm for analyzing the complexity of EEG signals in AD and healthy
subjects, identifying channels and frequency bands that facilitate dis-

crimination between the two groups.



Measurement 225 (2024) 114040A. Cataldo et al.
Table 1
Multiscale Entropy Analysis in EEG Data for distinguishing Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) in existing literature.

Study Method Subjects Frequency range Findings

Mizuno et al. [34] MSE (20 time scales) 15 AD + 18 HS 1.5Hz to 60Hz Trend inversion with decreased complexity for short-time scales
and increased complexity for long-time scales in AD subjects.

Yang et al. [35] MSE (20 time scales) 108 AD + 15 HS 0.05Hz to 70Hz Trend inversion with decreased complexity for short-time scales and
increased complexity for long-time scales in subjects with severe AD.

Fan et al. [36] MSE (20 time scales)
for ML algorithm

108 AD + 15 HS 0.05Hz to 70Hz Maximum classification accuracy of about 80%
between normal controls and subjects with severe AD.

Su et al. [37] MFE (15 time scales) +
Phase Lag Value (PLV)
for ML algorithm

28 MCI + 21 HS 1Hz to 45Hz Maximum classification accuracy of about 83%
between normal controls and subjects with MCI.
Fig. 2. Multiscale entropy concept. Multiscale entropy is an information-theoretic
metric to describe the temporal irregularity of time series data. It measures the
probability that two patterns of sequence length 𝑚 (here, 2) remain similar when the
next sample 𝑚 + 1 is included in the sequence.

3. Materials and methods

As mentioned in Section 1, this study aims to develop a procedure
based on MFE to analyze the complexity of EEG traces and identify
the channels and frequency bands that allow distinguishing between
healthy individuals and patients with AD. In this regard, a set of data
was selected from an extensive publicly available archive of clinical
EEG recordings collected at Temple University Hospital (TUH) [41].
The utilization of these public data has allowed the validation of the
method on real subjects, whose pathological condition was determined
by medical personnel. The data were appropriately preprocessed, and
the MFE-based algorithm was applied.

In the following sections, after outlining the theoretical foundations
for the MFE, the proposed method is described in detail.
3

3.1. Multiscale Fuzzy Entropy (MFE)

MFE was recently introduced as an evolution of the more traditional
entropy-based techniques such as Approximate Entropy (ApEn) and
Sample Entropy (SampEn) [42]. These techniques try to quantify how
regular or chaotic a time series is by analyzing the signal through a
sliding window that searches for similar patterns. However, ApEn and
SampEn make matching vectors with either 1 or 0 values; this is a
non-real situation for biological signals when there may be uncertainty
about sharing between classes.

Conversely, FuzzyEn overcomes this limitation since it relies on the
theory of fuzzy logic, which accepts the concept of partial truth. Unlike
Boolean logic, which employs only binary values, fuzzy logic grants a
continuous degree of truth with values ranging from 0 (representing
‘‘totally false’’) to 1 (representing ‘‘totally true’’). Interpreting these real
values as a degree of belonging to a set of similar patterns, this function
is also known as the membership function.

In EEG analysis, FuzzyEn is employed to assign a certain degree
of similarity among patterns throughout the entire time series. Then,
the total contribution of all values between 0 and 1 computed for
each template will represent a measure of the complexity of the brain
waveforms.

In addition, FuzzyEn shows a weaker dependence on record length
than ApEn and SampEn [42], and it reduces the impact of the variation
of some arbitrary parameters in the formulations (such as the sample
length 𝑚 and the threshold 𝑟 for calculating distance) on results. Indeed,
it has been shown how ApEn and SampEn lack consistency when
slightly different values for input parameters are used to evaluate the
same EEG record [43]. For all these reasons, in this work, FuzzyEn
was selected for calculating entropy. Furthermore, a multiscale strategy
is required in order to broaden the search for patterns of different
time resolutions. This more comprehensive approach is particularly
valuable for EEG signals [10], as it offers insights into the organization
of brain processes with diverse temporal dynamics. In light of these
considerations, MFE was selected for this investigation and the related
mathematical framework will now be explained in more detail.

As aforementioned, FuzzyEn relies on a fuzzy membership function
to compare two vectors and determine their degree of similarity as a
real number in the range [0, 1].

Given a discrete time series 𝑥[𝑛] consisting of 𝑁 samples, a first
vector 𝐗𝑚

𝑖 of 𝑚 consecutive samples is collected:

𝐗𝑚
𝑖 = {𝑥[𝑖], 𝑥[𝑖 + 1],… , 𝑥[𝑖 + 𝑚 − 1]} − 𝑥0[𝑖], (1)

where 𝑖 is the starting time point of the generic pattern and 𝑥0[𝑖] is the
mean value of all 𝑚-selected samples. Then, a shifted version 𝐗𝑚

𝑗 , with
𝑖 ≠ 𝑗, is moved along the trace and compared to the first vector 𝐗𝑚

𝑖 .
The similarity degree 𝐷𝑚

𝑖𝑗 of 𝐗𝑚
𝑗 to 𝐗𝑚

𝑖 is calculated as

𝐷𝑚
𝑖𝑗 = 𝜇(𝑑𝑚𝑖𝑗 , 𝑛, 𝑟) = exp

(

−(𝑑𝑚𝑖𝑗 )
𝑛

𝑟

)

, (2)

where 𝑑𝑚𝑖𝑗 is the maximum absolute difference between the two vectors
and 𝜇 stands for the fuzzy membership function. As can be seen
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Table 2
Summarized characteristics of the selected subjects.

Diagnosis Sex Number of subjects Age (mean ± std)

AD F 9 78.5 ± 11.7
HS F 9 78.4 ± 8.1
AD M 8 84.7 ± 4.5
HS M 8 68.8 ± 3.1

from Eq. (2), an exponential function is a typical choice for 𝜇 in order
to meet two requirements: it should be continuous to avoid abrupt fluc-
tuations and it should maximize self-similarity [44]. The smoothness of
the exponential fuzzy function is adjusted by two arbitrarily assigned
parameters, namely 𝑛 and 𝑟 shown in (2). Consequently, the mean over
all of the different sequences of length 𝑚 is computed as follows:

𝑚 = 1
𝑁 − 𝑚

𝑁−𝑚
∑

𝑖=1

(

1
𝑁 − 𝑚 − 1

𝑁−𝑚−1
∑

𝑗≠𝑖,𝑗=1
𝐷𝑚

𝑖𝑗

)

. (3)

Similarly, computations are repeated for a second vector 𝐗𝑚+1
𝑖 of

length 𝑚+1, obtaining the mean 𝜙𝑚+1 from Eq. (3). Finally, FuzzyEn can
be estimated as the negative natural logarithm of the deviation between
𝜙𝑚 and 𝜙𝑚+1:

𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑚, 𝑛, 𝑟) = ln𝜙𝑚 − ln𝜙𝑚+1. (4)

As a result, FuzzyEn is the conditional probability that trends ob-
served for 𝑚 points are the same for (𝑚 + 1) points. On such basis,
FuzzyEn represents a single-scale measure that is characterized by a
not adequate sensitivity in order to understand the brain’s dynamic
complex mechanisms. For these reasons, as aforementioned, a multiscale
approach based on FuzzyEn is much more suitable. In this way, MFE
enables the estimation of the brain processes complexity over a time-
scale interval [37], in order to obtain more useful information that
would otherwise be lost. The idea behind the multiscale approach is
to recalculate the selected entropy method on the original signal 𝑥[𝑛]
whenever the time scale is varied:

𝑦𝑠[𝑛] =
𝑗+𝑠−1
∑

𝑖=𝑗
𝑥[𝑛], for 1 ≤ 𝑗 ≤ 𝑁 − 𝑠 + 1, (5)

where 𝑦𝑠[𝑛] is the new time series at the 𝑠th scale factor. A scaling factor
of at least 15 is recommended [37].

3.2. Dataset description

The dataset consists of a large archive of 26.846 clinical EEG record-
ings collected at Temple University Hospital (TUH) of Philadelphia
from 2002 to 2017 [45], including a variety of seizure types and other
neurological disorders. Each EEG record, in EDF standard format, is
associated with a textual clinician report generated by the neurologist
following EEG analysis. These documents reported, for each patient,
personal data such as age and sex, full medical history with the diseases
the subject suffering from, and medications. The corpus is publicly
available from the Neural Engineering Data Consortium [41].

For the present study, on the basis of clinical reports, a total of
17 subjects with a diagnosis of AD were selected, being careful not to
consider subjects suffering from other neurological diseases in addition
to AD. On the other hand, 17 healthy subjects (HS) were extracted
from a subset of the main one called TUH Abnormal EEG Corpus
(TUAB) [41], considering EEGs that have been annotated as normal
by neurologists. Information on the number of subjects, sex, and range
of ages is detailed in Table 2. For patients with multiple EEG records,
the more recent was used. The selected data were re-sample at 250 Hz
and 19 EEG channels were selected according to the 10-20 electrode
placement system, specifically Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1,
4

O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. t
3.3. Implementation

Fig. 3 describes the steps of the proposed methodology. As afore-
mentioned, the EEG signals of selected groups of subjects were consid-
ered. For each subject, 60 s of clean signal were manually selected from
the closed-eyes trace. Then, a standardized preprocessing pipeline (see
Fig. 3) was applied to the selected traces. In particular, the main pre-
processing steps applied to the selected data were: epoching, amplitude
scaling, and band filtering.

1. Epoching consists of splitting the continuous EEG trace into
shorter segments called ‘‘epochs’’, typically ranging from a few
hundred milliseconds to a few seconds in length. Each epoch
represents a discrete time window of the signal and can be used
for further analysis, such as averaging across multiple epochs to
reduce noise and enhance the signal of interest. As mentioned
earlier, the available data were resting state and no stimulus was
administered, hence the choice of epoch duration was arbitrary.
Inspired by previous works in the literature [35], the total
60-second EEG trace was divided into 20 epochs of 3-second
duration. Given the sampling frequency of 250 Hz, each epoch
consisted of 750 samples.

2. Amplitude scaling denotes the procedure of adapting all the raw
EEG signals to a standardized scale, with the aim of ensuring am-
plitude consistency across different recording configurations and
individuals [46]. In the context of this study, scaling assumes
particular relevance, given that the EEG data were recorded over
a wide span of years and with possibly different instrumentation.
Therefore, to make the MFE results as independent as possible
from inter-individual variability, each trace was scaled channel
by channel. A maximum-minimum normalization was chosen for
these data, using the following formula:

𝑥𝑛𝑜𝑟𝑚,𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑚𝑖𝑛,𝑖
⋅ (𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛) + 𝐴𝑚𝑖𝑛, (6)

where 𝑖 is the channel index, while 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 define the
extremes of the output amplitude range. Maxima and minima
were calculated for each epoch, then the relative median values
𝑥𝑚𝑎𝑥,𝑖 and 𝑥𝑚𝑖𝑛,𝑖 of the two vectors were identified and used as
reference values of the normalization.

3. Band filtering served the purpose of restricting the investigation
to the frequency range of interest. Specifically, the signal was
band-pass filtered between 0.5 to 30 Hz for considering the most
significant part of EEG signals, and then the data was filtered
for the four main bands of the EEG signal: delta (0.5 to 4 Hz),
theta (4 to 8 Hz), alpha (8 to 13 Hz), and beta (13 to 30 Hz).
A finite impulse response (FIR) filter with an order equal to the
number of samples in a single epoch was applied. Consequently,
the first epoch related to the transient was excluded from each
time series.

Finally, the preprocessed EEG data were analyzed epoch-wise to
alculate the Multiscale Fuzzy Entropy (MFE) values. Due to the lack
f established guidelines for parameters selection in MSE calculation,
alues of m and r were set to 2 and 0.20, respectively, based on existing
iterature [35,40]. A range of scale factors from 1 to 20 was chosen to
ffectively discriminate between the AD and control groups, as reported
n the literature [35,38,40]. Moreover, experimental findings from
reliminary investigation suggested that the use of at least 20 scale
actors ensures a sufficient number to capture the whole dynamics. The
FE values for each subject and EEG channel in the specific frequency

ange were obtained by averaging across all 19 epochs.
The implementation of the methods described above was carried out
hrough MATLAB ©.
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Fig. 3. Proposed methodology. For each subject, 60 s of clean EEG signal were selected. Then, the EEG traces were (1) epoched into 3-second segments, (2) normalized, and (3)
filtered. Finally, (4) epoch-wise analysis of processed EEG data was conducted to determine Multiscale Fuzzy Entropy (MFE) values, obtained by averaging across all 19 epochs
for each subject and EEG channel in the specific frequency range.
3.4. Statistical analysis

The two-sided Mann–Whitney U-test [47] was employed to assess
differences for each channel, each band, and each scale factor between
the AD group and the HS group. This test is a non-parametric statistical
test used to compare two independent groups when normal distribu-
tions cannot be assumed. A significance level equal to 0.05 was chosen
for this analysis. Hence, MFE differences between the two groups will
be considered significant when associate p-values < 0.05.

3.5. Cluster analysis

The k-means algorithm [48] was employed to assess the detection
efficacy of the proposed method, specifically to analyze the presence
of two well-defined clusters (AD and HS) in our MFE data. In greater
detail, k-means clustering facilitates the grouping of similar data points
and the identification of underlying patterns solely based on input
vectors, without relying on known or labeled outcomes. Consequently,
data points are clustered based on shared similarities. To quantitatively
evaluate the clustering results, the Silhouette Score (S) was employed. It
measures the cohesion and separation of data points within clusters and
helps determine whether the clusters are well-separated and internally
homogeneous. This score, ranging from −1 to +1, is computed using
the formula:

𝑆 = 1
𝑁

𝑁
∑

𝑖=1

𝑚𝑎𝑥(𝑎𝑖𝑏𝑖)
𝑏𝑖 − 𝑎𝑖

(7)

where 𝑁 is the number of data points, ai is the average distance of
data point i to all other data points in the same cluster (intra-cluster
distance) and, bi is the average distance of data point i to all other data
5

points in the nearest cluster (inter-cluster distance). A positive score
denotes appropriate clustering, with the data point being closer to its
assigned cluster than the nearest neighboring cluster.

4. Results and discussion

As aforementioned, the experimental procedure was carried out on
data selected from a publicly-available dataset. More in detail, 17 sub-
jects with AD and 17 control HS were considered. The obtained results
in terms of mean (dots) and standard deviation (bars) are reported in
Fig. 4, which shows the comparison between the MFE values of the AD
subjects and those of the HS, depending on the scale factors. In this
regard, MFE profile could provide useful information about the level of
randomness/entropy in each time scale of the signal. Specifically, the
MFE trends are shown for the whole frequency range and for the delta,
theta, alpha, and beta bands. For the sake of brevity, only the results
obtained when the electrodes are placed on the sagittal line (Fz, Cz,
Pz) are presented, since the curves obtained from the other channels
exhibit a similar trend.

As a first observation, it is clear that, over the whole considered
frequency range (0.5–30 Hz), the MFE curves exhibit a different be-
havior between HS and patients with AD for short- and long-time
scale factors. Notably, the MFE curve of AD subjects is systematically
lower on the short-time scales and significantly higher on the long-
time scales compared to HS. These results suggest that different trends
between short- and long-time scales were probably due to different
pathophysiologic mechanisms of brain activity in AD or HS subjects.
As per the short-time scales, the lower MFE observed in AD patients
suggests a shift in brain activity towards regularity with a loss of
physiologic complexity and dynamic mechanisms. In addition, with



Measurement 225 (2024) 114040A. Cataldo et al.

e

r
t
c
t
b
r

Fig. 4. Comparison between the MFE values of the AD patients and HS, depending on the scale factors. The results are reported in terms of mean (dots) and standard deviation
(bars). The rows show the frequency ranges: all (0.5–30 Hz), delta 𝛿 (0.5–4 Hz), theta 𝜃 (4–8 Hz), alpha 𝛼 (8–13 Hz), and beta 𝛽 (13–30 Hz). On the columns, sagittal-line
lectrodes Fz, Cz, Pz are presented.
p
c
a
f

egard to long-time scales, the finding of higher MFE values in pa-
ients with AD could suggest that their brain activity may be more
omplex or less predictable than that of healthy controls. However,
his is not exactly correct since, based on the hypothesis introduced
y Costa et al. [38] and Goldberger et al. [49], and increased ir-
egularity (therefore an increased entropy) does not imply increased
6

m

hysiologic dynamical complexity. On the contrary, this phenomenon
ould indicate a chaotic and nonfunctional system characterized by
non-stationary brain activity associated with aging or illness. Both

indings support the assumption of loss of physiological complexity.
Moreover, as illustrated in Fig. 4, the impact of cognitive impair-

ent in individuals with AD is more evident from the analysis of the
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Fig. 5. Statistical significance of the MFE results assessed using the Mann–Whitney U-test: p-values. Each subplot represents a frequency range: all (0.5–30 Hz), delta 𝛿 (0.5–4 Hz),
theta 𝜃 (4–8 Hz), alpha 𝛼 (8–13 Hz), and beta 𝛽 (13–30 Hz). Given a significance level of 0.05, green pixels indicate significant median differences between AD and HS groups
for each EEG channel and scale factor.
Fig. 6. K-means clustering results for each EEG frequency band. For visualization clarity, each dot represents the average MFE value on scale factors.
Table 3
Summary of the obtained results.

Band MFE Notes

All 𝐴𝐷 < 𝐻𝑆 on the short time scales
𝐴𝐷 > 𝐻𝑆 on the long time scales

At short time scales there is a shift in AD brain activity towards regularity with a
loss of physiologic complexity and dynamic mechanisms.
At long time scales there is a chaotic and nonfunctional behavior characterized
by a non-stationary brain activity.

𝛿
𝜃

𝐴𝐷 > 𝐻𝑆
𝐴𝐷 > 𝐻𝑆

This phenomenon can be attributed to the pathological decline that is observed in
individuals with AD, since cognitive impairment is accompanied by changes in
frequency-specific neural activity with a shift of brain activities to lower frequencies.

𝛼
𝛽

𝐴𝐷 < 𝐻𝑆
𝐴𝐷 < 𝐻𝑆

Also in this case, the behavior is due to the shift in brain activity from higher to
lower frequencies. Therefore, at the higher frequency bands (𝛼 and 𝛽) the MFE
values of the AD group are lower than those of the HS group.
specific frequency bands. Specifically, it is worth noting that at the
lower frequency bands (delta and theta), the MFE curves of the two
groups exhibit an opposite behavior compared to that at the higher
frequency bands (alpha and beta). More in detail, the analysis of delta
and theta frequency bands reveals that the MFE values of the AD
group systematically exceed those of the HS group, with this difference
becoming more pronounced at larger scale factor values. In contrast, in
the alpha and beta frequency bands, the MFE values of the AD group
are lower than those of the HS group.

This phenomenon can be attributed to the pathological decline that
is observed in individuals with AD. Indeed, in the literature, it is
agreed upon that cognitive impairment is accompanied by changes in
frequency-specific neural activity.

Specifically, conventional EEG power analysis conducted on AD
patients typically reveals a slowing EEG pattern characterized by in-
creased delta band power and decreased alpha activity [50–52], and
this is also reflected in the complex activity of the brain. Moreover,
the evidence of different behavior in MFE for AD patients and HS
in frontal-central position both for short- and long-time scale could
be correlated with fast and slow EEG oscillations, providing evidence
for this association [34,35]. Finally, these findings are predictive of
7

cognitive deterioration in patients with AD and can be a useful in-
dex to identify also the condition of mild cognitive impairment, so
as to achieve an early diagnosis with the potential to increase the
effectiveness of therapy. Table 3 summarizes the obtained results.

Statistical tests described in Section 3.4 were performed to assess the
discrimination power of MFE and the results are presented in Fig. 5. The
differences between AD and HS groups result in statistically significant
(green pixels) across all the frequency ranges, with a few exceptions.
Notably, considering the overall band, a loss of significance is mainly
observed at the central scale factors (red pixels around scales 8-12),
attributable to the inversion of trends between the two groups. Within
the delta band, diminished discrimination power is evident in only
channels F7 and T3. As for the theta band, the most significant channels
are found to be F3, C4, and P4, along with the three sagittal channels
Fz, Cz, and Pz. Finally, in alpha and beta bands, the MFE is statistically
significant across all channels and scale factors.

Cluster analysis described in Section 3.5 was performed to assess the
power of MFE in AD detection. The k-means analysis was conducted by
considering all the MFE values on scale factors. The obtained results are
shown in Fig. 6. Specifically, for the sake of clarity, Fig. 6 presents the
obtained clusters for AD (blue) and HS (red) for all the frequency ranges
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by considering MFE values in Fz and Cz (x- and 𝑦-axis, respectively).
For each plot, a silhouette score (𝑆) is also reported. Silhouette scores
exceeding 0.60 are evidently obtained for all frequency bands, confirm-
ing appropriate clusters. The MFE values in the alpha and beta bands
allow for better discrimination between AD and HS, as also observed
by the statistical test.

This exploratory investigation represents a step towards the devel-
opment of a tool for diagnosing Alzheimer’s disease based on EEG
signals and neural complexity. In a long-term view, the obtained results
can potentially aid in early diagnosis and improve the effectiveness
of therapy for AD patients. Differently from some conventional tech-
niques [53], EEG is non-invasive and cost-effective; it can capture
real-time neural activity, making it a practical and advantageous tool
for routine clinical assessments. To achieve this goal, however, some
aspects still need to be addressed. Firstly, it is important to extend the
number of subjects (also with individuals with other pathologies). This
would allow to establish the applicability and generalizability of the
current findings. Moreover, additional analyses should be conducted
using other publicly available datasets (e.g., CAUEEG dataset [54])
and self-collected data through an experimental campaign conducted
under resting-state conditions as well as in the presence of different
stimuli (e.g. olfactory stimuli, given that individuals with cognitive
impairment often exhibit anosmia [10,14]). As aforementioned, this
study addressed the possibility of discerning potential differences in
complexity between individuals with AD and healthy subjects by using
MFE. In fact, the literature reveals some challenges related to the lack of
standardized approaches and of an absolute ‘‘truth’’ in EEG-complexity
based analysis for AD. Numerous factors, including age, gender, disease
severity, and test execution conditions, likely contribute to this variabil-
ity. Based on these considerations, subjects were selected carefully, so
as to have a well-balanced group of healthy individuals and patients
with Alzheimer’s disease. Furthermore, individuals with other known
medical conditions were excluded to minimize potential confounding
factors. However, in future research, it will be useful to explore the
comorbidities, so as to provide a more comprehensive understanding
for clinical practice. Finally, it could be of interest to combine EEG com-
plexity analysis with signal coherence and synchronization analysis,
like functional analysis [19] and phase lag index [55,56] to gain further
insights into the neural mechanisms underlying cognitive decline in
patients.

5. Conclusions

In this work, an entropy-based algorithm using MFE as a method to
quantify the complexity of EEG signals was presented. The multiscale
approach for computing FuzzyEn allows the analysis of neural signals
complexity over a time-scale interval obtaining more useful information
about the brain processes. The proposed method was applied to EEG
data of 17 AD and 17 healthy subjects from a public dataset. The results
showed that AD patients exhibit different MFE profiles compared to
healthy controls. In particular, AD patients presented lower MFE values
at short-time scales and higher values at long-time scales, indicating a
shift towards regularity and randomness, respectively, in brain activity.
Furthermore, the impact of cognitive impairment in AD patients was
more evident in the analysis of specific frequency bands, with higher
MFE values in delta and theta bands and lower values in alpha and
beta bands. It is clear that, in AD subjects, the brain processes on
short- and long-time scales could depend on the effects of an underlying
pathology.

The obtained results can potentially aid in early diagnosis and
improve the effectiveness of therapy for AD patients. The MFE-based
complexity analysis could play a pivotal role in advancing early diagno-
sis and enhancing the efficacy of therapy for individuals affected by AD.
The integration of this novel approach with existing diagnostic methods
has the potential to unveil early signs of AD in patients manifesting mild
or non-specific symptoms, thereby facilitating prompt diagnosis and
8

timely intervention. The non-invasive nature, cost-effectiveness, and
real-time capturing of neural activity through EEG render it a practical
and advantageous tool for routine clinical assessments, for longitudinal
studies and continuous monitoring, providing insights into the pro-
gression of the pathology. While further work is needed, the obtained
results represent an important step forward for the development of an
MFE-based metric for AD diagnosis.
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