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A B S T R A C T

Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave 
(BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index 
(CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard 
approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered 
by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive tech
niques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external 
electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or 
failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost 
piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin 
aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse 
wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and 
posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide 
a comprehensive cardiovascular patient’s health profile. In a test with a 28-year-old male subject, the sensor 
yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs 
from the combination of the four different arterial positions, in good agreement with the typical values reported 
in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical 
diagnosis in preventing CVDs.

1. Introduction

Cardiovascular diseases (CVDs), including hypertension, coronary 
artery disease, and stroke, are the leading cause of death in the world 
every year, causing approximately 17 million annual global deaths 
(“Cardiovascular diseases (CVDs),” n.d.; Nabel, 2003). Prevention and 
timely therapy are today the most effective ways to decrease mortality 
(Roth et al., 2015). Nowadays, the typical methods employed to detect 

the presence of a CVD are coronary computed tomography (CT) (Budoff 
et al., 1996; Han et al., 2016), magnetic resonance imaging (MRI) (A.C. 
and Y., 2004), intra-arterial catheters (Yoo et al., 2011), cuff-based 
sphygmomanometers (Man et al., 2022), auscultation (Boulares et al., 
2021), electrocardiography (Bhatia and Dorian, 2018; Siontis et al., 
2021), and so on (Altintas et al., 2014; Joung et al., 2023). Nevertheless, 
these techniques still present difficulties, such as high costs and the need 
for a fixed posture and well-trained personnel for measurement (Avolio 
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et al., 2010; Khan Mamun and Elfouly, 2023; Sharma et al., 2017), the 
risk of exposure to ionizing radiation (Hamilton-Craig et al., 2012; 
Kitagawa et al., 2008), or, in the case of arterial catheters, the possible 
risk of infection (McGhee and Bridges, 2002; Rastegar et al., 2020). For 
this reason, in the last decades, flexible and wearable sensors for col
lecting physiological parameters have made important progress driven 
by the goal of facilitating personalized medical diagnosis and therapies 
(Chen et al., 2021; Kwon and Dong, 2022; Y. Park et al., 2017; Zhang 
et al., 2023). Among all the sensors, piezoelectric and triboelectric ones 
have received significant attention because they don’t need an external 
power supply to operate. Moreover, piezoelectric devices have gained 
more success because of their higher response to strain (or rather higher 
piezoelectric charge density at the same strain level) and higher dura
bility than their triboelectric counterparts (Huang et al., 2023). Due to 
these advantages, piezoelectric sensors have been employed in the 
noninvasive detection of CVDs by measuring several cardiovascular 
parameters such as heart rate (A et al., 2022; D. Y. Park et al., 2017; 
Setyowati et al., 2017), continuous blood pressure (BP) (Dagdeviren 
et al., 2014; Kim et al., 2023; Li et al., 2023; Min et al., 2023; Tian et al., 
2024; Wang et al., 2018; Yi et al., 2022a), heart sounds (Qu et al., 2021; 
Shumba et al., 2024), and pulse wave velocity (PWV) (Chen et al., 2019; 
Gatkine et al., 2013; Katsuura et al., 2017; Kim et al., 2023; Wang et al., 
2018). Nevertheless, piezo-sensor applications in healthcare remain 
challenging and have some drawbacks. Interesting outcomes reported in 
the literature are achieved by exploiting piezoelectric sensors based on 
lead zirconate titanate (Pb[ZrxTi1-x]O3, PZT) (Dagdeviren et al., 2014; Li 
et al., 2023; Min et al., 2023; D. Y. Park et al., 2017; Wang et al., 2018; Yi 
et al., 2022a) material, which, despite the high piezoelectric coefficient, 
is highly toxic due to the presence of lead (Pb) (Maeder et al., 2004). Its 
toxicity is further enhanced due to its evaporation during calcination 
and sintering in the production phase, causing environmental pollution 
(Ibn-Mohammed et al., 2017). During fabrication, other proposed sen
sors (Chen et al., 2019; Tian et al., 2024) employ dangerous and toxic 
reagents such as hydrofluoric acid (HF) or N,N-dimethylformamide 
(DMF). Aluminum Nitride (AlN), grown on a flexible Kapton substrate, 
presents several advantages compared to other piezoelectric materials, 
such as better compatibility with standard fabrication processes, high 
electromechanical coupling (Giordano et al., 2009), high resistivity 
(Eom and Trolier-McKinstry, 2012), no-toxicity due to its lead-free na
ture, and high thermal stability (Abid et al., 1986). This paper describes 
a flexible and non-toxic AlN-based piezoelectric sensor that can monitor 
cardiovascular parameters without risks to patient health and the 
environment. To achieve a larger view of patient health, the developed 
sensors are placed on four body locations: (i) carotid, (ii) wrist, (iii) 
elbow, and (iv) ankle through a skin-safe and fully compatible 
pressure-sensitive adhesive (Derma-Tac™) film. From the acquired 
piezo-signals, heart rate, blood pressure waves, mean arterial pressure 
(MAP), stiffness index (SI), reflection index (RI), seven pulse wave ve
locities (PWVs), and cardio-ankle vascular index (CAVI) are calculated. 
Our results match the values reported in the literature and provide a 
wide view of a subject’s state of health. This study furnishes a safer and 
bio-compatible alternative to measure cardiovascular parameters and 
can be considered a new step toward the personalized prevention and 
early diagnosis of CVDs.

2. Materials and methods

2.1. Sensor fabrication

As reported by Natta et al. (Natta et al., 2021, 2022), the micro
fabrication process starts with laminating the substrate (Kapton foil) on 
a silicon (Si) wafer using a thin PDMS sticking layer. The heterostructure 
was sputtered onto Kapton foil and patterned by optical lithography and 
chemical dry etching. In particular, the AlN interlayer (120 nm) was 
deposited using a pure Al target (99.9995%). The AlN interlayer pro
vided a template to reduce the amorphous polyimide surface and 

promote higher columnar orientation of the grown piezoelectric AlN 
film. The Mo bottom electrode (200 nm) was deposited in the same run 
using a pure Mo target (99.95%). The patterning of Mo bottom electrode 
and AlN interlayer was performed by dry etching with ICP-RIE (Induc
tively Coupled Plasma - Reactive Ion Etching). The AlN piezoelectric 
film and top Mo electrode were deposited in the same run. The piezo
electric AlN film was sputtered without heating the substrate, using the 
same Al target as AlN interlayer. The Mo top layer was sputtered 
exploiting the same conditions of the bottom electrode. These two films 
were finally patterned by the ICP-RIE etching system. After the 
patterning step, the multilayered stack was uniformly coated with a 1 
μm-thick Parylene film deposited by chemical vapor coating (Specialty 
Coating System PDS, 2010 Labcoater). The electrical shielding is man
ufactured using a lift-off process. A thin titanium layer (Ti, 30 nm) is 
added using sputtering system, before the deposition of Mo (400 nm) in 
the same run, to improve the adhesion between the metal and the par
ylene layer. After the lift-off, another 1 μm-thick Parylene film is 
deposited by chemical vapor coating (Specialty Coating System PDS, 
2010 Labcoater) to provide electrical insulation and waterproofing. Vias 
to the contact pads for the bottom electrode and the signal electrode 
were then opened through the Parylene layer by oxygen plasma etching. 
The device was finally cut and peeled off from the rigid Si substrate. The 
final device had a thickness of about 30 μm and a total area of 2 cm2.

2.2. Sensor packaging and electrical connections

A custom-made electric pad is attached to the sensor through a z- 
conductive tape purchased from 3M™. AlN sensor charge output is 
converted into voltage using a Kistler 5165A charge amplifier. The gain 
of the Kistler is 0.1 V/pC. A 0.5 Hz high pass filter and a 40 Hz low pass 
filter are employed during the acquisitions. The amplifier outputs are 
also connected to a Tektronix MDO4104-3 oscilloscope to allow signal 
visualization. An Olimex Shield-EKG-EMG open-source hardware board 
records the ECG signal while an OMRON M3 Comfort (HEM-7154-E) is 
employed to acquire momentary blood pressure and heart rate.

2.3. Acquisitions and data analysis

The piezoelectric and ECG signals are carried out on a healthy sub
ject, a male of age 28. Written informed consent is obtained from all 
human subjects. All measurements are carried out on the same subjects 
when sitting. Piezoelectric sensors are applied to four subjects’ body 
locations: carotid, wrist, elbow, and ankle. ECG is measured on the chest 
for all cases. All signals acquired through the piezoelectric sensors are 
denoised using a third-order IIR bandpass filter with a 0.5–8 Hz cutoff 
frequency.

2.4. Measurements on the subject

Ethical review and approval were waived for this study. Study par
ticipants were chosen among the study’s authors and informed consent 
was obtained. Parylene C and dermal glue, materials in contact with the 
skin, are commercially available for this specific use and/or 
biocompatible.

3. Theory and calculations

Fig. 1a shows a schematic illustration of the piezoelectric sensor. Its 
structure is based on a thin film heterostructure grown on a Polyimide 
substrate (Kapton® foil) template with an AlN-interlayer (AlN-IL, 120 
nm) on the top. The heterostructure consists of a Molybdenum bottom 
and top electrodes (Mo, 250 nm) with the piezoelectric layer (highly c- 
axes oriented AlN, 1 μm thick) in between. The whole fabrication pro
cess (reported in Materials and Method, Supporting Information) trades 
on standard microfabrication techniques, including photolithography 
and sputtering deposition (Natta et al., 2021, 2022). All layers are 
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deposited on Kapton foil (25 μm thick), which was attached to a Si rigid 
support by a thin layer of PDMS acting as a weak sticking film. The 
Kapton was chosen as the substrate because of its great resistance to very 
high deposition temperatures reached during the fabrication process. 
Kapton is also the reference industry standard in flexible electronics for 
its reliability, durability, and unique combination of electrical, thermal, 
chemical, and mechanical properties (Algieri et al., 2018; Guido et al., 
2016; Natta et al., 2019). After cutting the sensors with a laser cutter tool 
and peeling them off from the fabrication substrate, they are applied on 
the skin through a skin-safe and fully compatible pressure-sensitive 
adhesive (Derma-Tac™) film. Tests are conducted on the subject 
under rest conditions. During these tests, the signals acquired by the 
sensors are generated in response to the heartbeat.

Among all the cardiovascular parameters, blood pressure (BP) is one 
of the most studied because it can provide information about the stiff
ness of the vessel wall and vessel diameter, both related to cardiovas
cular disease (Safar et al., 2015). It is commonly measured through 
sphygmomanometers, which give only static and time-isolated systolic 
BP (SBP) and diastolic BP (DBP). On the other hand, continuous BP 
monitoring due to blood pressure waves (BPWs) allows for a check of 
how SBP and DBP change in time, providing a more efficient method to 
track a patient’s health. As schematically shown in Fig. 1b, and as 

reported in the literature (Li et al., 2023; Tian et al., 2024; Yi et al., 
2022a), BPWs can be calculated from the piezoelectric signals through 
the following equation 

FBP(t)=
1

αR

∫ t

0
V(t)dt + C (1) 

where FBP is the blood pressure function (in mmHg), α depends on the 
structure and material properties of the sensor, R is the external elec
trical resistance, V is the voltage obtained by the conversion of the 
piezoelectric sensor charge output, and C is a correction factor related to 
the initial BP of the subject (Tian et al., 2024; Yi et al., 2022a).

Fig. 2a shows the piezoelectric signal acquired from the radial artery 
of our subject. In Eq. (1), the integral of the voltage provides the shape of 
the BPW (Fig. 2b-c) while, as already reported (Tian et al., 2024; Yi 
et al., 2022a), the BP values are obtained calibrating the BPW using the 
values of SBP and DBP measured through a medical sphygmomanom
eter. In the first part of each pulse, the pressure increases to the systolic 
blood pressure due to the blood ejected from the left ventricle to the 
aorta. The pressure falls to the diastolic blood pressure (DBP) in the 
second part when the blood flows out from the aorta. The descending 
part of the waveform is interrupted at the dicrotic notch corresponding 

Fig. 1. a) Flexible piezoelectric sensor structure; b) schematic illustration of the piezoelectric response generated by the sensor and converted in blood pres
sure wave.
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to the closure of the aortic valve. Fig. 2b and c show the measured 
piezoelectric voltage signal acquired from the radial artery and the 
corresponding BPW estimated with the previously described method 
after the calibration. In contrast, Fig. 2d shows the trend over time of the 
SBP and DBP measured through the calibrated BPW.

In addition to BPs, waveforms in Fig. 2b allow us to calculate other 
important clinical parameters such as the stiffness index (SI), the 
reflection index (RI), and the mean arterial pressure (MAP), which are 
defined as follows: 

SI=
h

ΔT
(2) 

RI=
b
a

⋅100% (3) 

MAP=DBP +
1
3
(SBP − DBP) (4) 

where h is the subject’s height, ΔT is the time delay between the systolic 
and diastolic peaks, while a and b are the magnitudes of the systolic and 
diastolic peaks, respectively. These derived risk markers are analyzed to 
evaluate different related cardiovascular risks. In particular, MAP refers 
to the average arterial BP and is clinically used to detect mild cases of 
hypertension (Kandil et al., 2023). SI increases with age and is associ
ated with hypertension (Boutouyrie et al., 2021), diabetes-associated 
arteriosclerosis (Xu et al., 2016), and end-stage renal disease (London, 
2018). Finally, RI measures small to medium-sized arterial stiffness and 
is a predictor of cardiovascular events in a 6,8-year follow-up of 
well-controlled hypertensive individuals independent of other risk fac
tors (Brillante et al., 2008; Wu and Chen, 2022).

4. Results and discussion

In this case, MAP corresponds to 86.2 ± 1.5 mmHg, while SI and RI, 
estimated on a normalized BPW, are 7.1 ± 0.2 m/s and 54.4 ± 0.5 %, 
respectively. Proving the healthy state of our 176 cm tall 28-year-old 

male subject (Brillante et al., 2008; Kandil et al., 2023; Li et al., 
2018)). In this study, the piezo-signals and the corresponding extracted 
BPWs are measured on four arterial pulse sites: carotid, brachial, radial, 
and posterior tibial arteries (Fig. 3a). All signals are acquired from the 
same subject and, during all the time required for our tests, no decline in 
the sensor’s performance was observed, proving its long-term durability. 
Moreover, for every acquisition, the big active area of our sensor (6 mm 
× 6 mm) allows us to always cover the area of interest, avoiding the 
error that may occur from misplacement. Fig. S1 presents the scalograms 
of the piezoelectric signals and fast Fourier transform (FFT) from every 
analyzed position. The dominant frequencies of 1.11, 1.25, 1.02, and 
1.12 Hz, are in good agreement with the typical values, which range 
between 1 and 1.67 Hz in healthy adults (Yi et al., 2022b). Moreover, 
they correspond to 66.6, 75, 61.2, and 67 beats per minute (bpm) for 
carotid, brachial, radial, and posterior tibial arteries, respectively. Since 
the signals are acquired at different times, the heartbeat recorded at the 
various positions is slightly different. Fig. 3(f–i) shows how the shape of 
the BPW changes continuously through the arterial system. In particular, 
as the sensor is positioned more distally, the dicrotic notch moves 
further down the BPW. This phenomenon can be explained by consid
ering that when a wave generated from the heart propagates distally, it 
encounters regions of varying impedance mismatch, causing a reflected 
wave that goes back towards the heart during late systole and early 
diastole (Shirwany and Zou, 2010). When this reflected wave travels 
from an artery farther from the heart, it will take much time to run 
across the distance, causing a lower dicrotic notch along the BPW.

BPWs can also be employed to calculate the pulse wave velocities 
(PWVs). PWV is the speed at which the pressure wave travels through 
the arterial tree and provides information about arterial stiffness 
(Cavalcante et al., 2011). Among all the cardiovascular parameters, it’s 
one of the most frequently employed to predict cardiovascular diseases 
in different adult population groups, including those with hypertension 
(Boutouyrie et al., 2002), renal disease (Guerin et al., 2001), and dia
betes (Elias et al., 2017). Several PWVs are reported in the scientific 
literature, and the reported values mainly depend on the start and 

Fig. 2. a) Piezoelectric signal collected from the radial artery and b) converted blood pressure waveforms; c) Zoomed waveform extracted from b); d) SBP and DBP 
trend over 60 s.
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arrival points of the pressure wave (Wang et al., 2023) on the body. In 
this respect, the PWV can be measured as the difference between the 
electrocardiogram (ECG) and the piezoelectric signals according to the 
following equation: 

PWV =
D

PAT
(5) 

where D is the distance between the area of the ECG electrodes and the 
piezoelectric sensor whereas the pulse arrival time (PAT) is the time 
delay between the R-peak of the acquired ECG and the onset of a pulse in 
the BPW (Dhillon and Banet, 2019). On the other hand, when the PWV is 

measured using two piezoelectric sensors placed at two different sites, 
the equation becomes: 

PWV =
L

PTT
(6) 

where L is the path length between the two sites and the pulse transit 
time (PTT) is the time delay in the pressure wave’s arrival at the two 
positions (Liu et al., 2021). In this study, we used the BPWs shown in 
Fig. 3 and the synchronized ECG signals (acquired on the chest for all 
cases) to calculate seven different values of the PWVs. Fig. 4a presents a 
schematic illustration of the measurements. As seen in Fig. 4b-c, in the 

Fig. 3. a) Schematic illustration of the measured arterial pulse sites. Piezoelectric signals (b–e) and corresponding blood pressure waves (f–i) are collected from the 
carotid (b, f), brachial (c, g), radial (d, h), and posterior tibial (e, i) arteries, respectively.
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case of heart-carotid PWV (hcPWV, green line in Fig. 4a), D and PAT are 
22 cm and 103 ± 5 ms, respectively, resulting in a hcPWV = 2.1 ± 0.1 
m/s. In heart-brachial PWV (hbPWV, Fig. 4d-e and blue line in Fig. 4a), D 
and PAT increase to 44 cm and 143 ± 5 ms, providing a hbPWV = 3.1 ±
0.1 m/s. Moving distally to heart-radial PWV (hrPWV, Fig. 4f-g and 
brown line in Fig. 4a), D and PAT are 70 cm and 186 ± 5 ms, resulting in 
a hrPWV = 3.8 ± 0.1 m/s. Finally, in heart-tibial PWV (htPWV, Fig. 4h-i 
and magenta line in Fig. 4a), D and PAT become 155 cm and 220 ± 3 ms 
while htPWV = 7.0 ± 0.1 m/s. In addition, acquiring the piezoelectric 
signals from the brachial and radial arteries simultaneously (as shown in 
Fig. S2) it is possible to evaluate the brachial-radial PWV (brPWV). As 
shown in Figs. S3(a–b), brachial and radial BPWs have a PTT = 24 ± 3 
ms, with L = 26 cm, leading to a brPWV = 10.8 ± 1.4 m/s. Placing 

sensors on brachial and posterior tibial arteries at the same time, we are 
also able to measure the brachial-ankle PWV (baPWV). In this case L =
144 cm and, as shown in Figs. S3(c–d), PTT = 100 ± 5 ms, providing a 
baPWV = 14.4 ± 0.7 m/s. Lastly, thanks to piezosignals from carotid 
and radial arteries we measured the carotid-radial PWV (crPWV) which, 
due to an L = 69 cm and a PTT = 84 ± 6 ms (Figs. S3(e–f)), results to be 
equal to 8.2 ± 0.6 m/s.

The htPWV, also known as heart-ankle PWV (haPWV) (Rico Martín 
et al., 2020), is also used to measure the cardio-ankle vascular index 
(CAVI). This parameter evaluates the stiffness of the arterial tree from 
the origin of the aorta to the ankle, and it’s considered a predictor 
marker of CVDs (Matsushita et al., 2019). High CAVI values reflect the 
presence of several risk factors, such as hypertension (Hayashi et al., 

Fig. 4. a) Schematic illustration of the measured PWVs using simultaneously an ECG sensor placed on the chest and piezoelectric sensors positioned on b) carotid, d) 
brachial, f) radial, and h) posterior tibial arteries; c, e, g, i) Zoomed waveform extracted from b), d), f), and h).
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2015), diabetes mellitus (Ibata et al., 2008), and dyslipidemia (Satoh 
et al., 2008). Knowing the htPWV, the CAVI parameter can be calculated 
as: 

CAVI=
2ρ
ΔP

⋅
(

ln
SBP
DBP

)

⋅htPWV2 (7) 

where ρ is the blood density, and ΔP = SBP – DBP. CAVI values, ac
cording to age and gender, are classified as normal (CAVI <8), border
line (8 ≤ CAVI <9), and abnormal (CAVI ≥9) (Rico Martín et al., 2020). 
For the 28-year subject under test, with an SBP and DBP of 116 and 73 
mmHg, respectively, the resulting CAVI is 7.8 ± 0.2, matching the 
values previously reported (Shirai et al., 2019). As shown in Table 1, as 
well as CAVI, other values of health people’s PWVs, MAP, SI, and RI 
acquired with commercial devices have already been reported (Chen 
et al., 2019; Li et al., 2015; Scalia et al., 2021; Torrado et al., 2011; Wang 
et al., 2023) and match our results, proving that our sensor is a valid 
option to check cardiovascular parameters and monitor subjects’ health. 
Moreover, as shown in Table S1 in Supporting Information, unlike the 
standard commercial devices, our sensor is wearable and more user 
friendly, allowing it to be placed on the site of interest without a stan
dardized method and the intervention of an operator. Finally, to prove 
the reproducibility of our measurements, in Table S2 in Supporting In
formation we provide the heart-radial pulse arrival times (PATs) and the 
heart-radial pulse wave velocities (hrPWVs) measured on five different 
healthy subjects. From the values listed in Table S2, it’s clear that all the 
tested subjects have hrPWVs similar to each other and consistent with 
those already reported in the literature (Wang et al., 2023), demon
strating the reliability of our results.

5. Conclusions

This paper proposes an alternative method to monitor cardiovascular 
parameters by exploiting an innovative and highly sensitive piezoelec
tric sensor. The bio-compatible, noninvasive, wearable, and flexible 
device consisting of a Mo/AlN/Mo sandwich structure is a safer option 
compared to ones previously reported in the literature, which, 
employing PZT as piezoelectric material, are toxic and pollutants, rep
resenting a danger for human and environment health. We have 
demonstrated that starting from the acquired piezo signal, it’s possible 
to calculate and evaluate the blood pressure waves and several clinical 
parameters as predictor markers of critical cardiovascular diseases. In 
addition, with the integration of a standard ECG device, PWVs and CAVI 
can be measured, allowing the evaluation of central and peripheral 
arterial stiffness. The results obtained from the acquisitions performed 
on healthy subjects are in good agreement with those reported in the 
scientific literature, showing that they can be easily used in a clinical 
trial to detect the presence of CVDs (even if they were acquired on 
healthy subjects). These preliminary results pave the way for the use of 
piezoelectric technology as a very promising method for measuring 
physiological markers in a safe, non-invasive, non-obtrusive manner and 
with a significant reduction in energy consumption and costs, allowing 
for an important leap towards personalized healthcare.
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Table 1 
Comparison between the cardiovascular parameters measured through our 
sensors and the ones acquired with commercial devices.

Parameter Values - 
Our 
Sensor

Values - 
Commercial 
Sensor

Commercial Sensor 
Model

Reference

MAP 86.2 ±
1.5 
mmHg

89 ± 10 
mmHg

Pulse Trace system 
(Micro Medical, 
Gillingham, Kent, UK)

Brillante 
et al. 
(2008)

SI 7.1 ±
0.2 m/s

7.3 ± 1.3 m/s Pulse Trace system 
(Micro Medical, 
Gillingham, Kent, UK)

Brillante 
et al. 
(2008)

RI 54.4 ±
0.5 %

69 ± 14 % Pulse Trace system 
(Micro Medical, 
Gillingham, Kent, UK)

Brillante 
et al. 
(2008)

hcPWV 2.1 ±
0.1 m/s

2.4 ± 0.5 m/s Ultrasound Doppler 
system (iU22, 
PhilipsUltrasound, 
Bothell, WA)

Li et al. 
(2015)

hbPWV 3.1 ±
0.1 m/s

3.2 ± 0.3 m/s BP-203RPE III; Omron 
Colin, Co., Ltd., Tokyo, 
Japan

Wang et al. 
(2023)

hrPWV 3.8 ±
0.1 m/s

4.2 ± 0.4 m/s BP-203RPE III; Omron 
Colin, Co., Ltd., Tokyo, 
Japan

Wang et al. 
(2023)

htPWV 7.0 ±
0.1 m/s

8.4 ± 1.4 m/s Philips Interventional 
Hemodynamic System 
with Patient Monitor 
IntelliVue X3

Scalia 
et al. 
(2021)

brPWV 10.8 ±
1.4 m/s

8.2 ± 2.2 m/s BP-203RPE III; Omron 
Colin, Co., Ltd., Tokyo, 
Japan

Wang et al. 
(2023)

baPWV 14.4 ±
0.7 m/s

12.5 ± 2.1 m/ 
s

BP-203RPE III; Omron 
Colin, Co., Ltd., Tokyo, 
Japan

Wang et al. 
(2023)

crPWV 8.2 ±
0.6 m/s

8.1 ± 0.2 m/s Motorola MPX 2050, 
Motorola Inc., Corporate 
1303 E. Algonquin Road, 
Schaumburg, Illinois, 
60196, USA

Torrado 
et al. 
(2011)

CAVI 7.8 ±
0.2

7.8 ± 1.2 VaSera System (Fukuda 
Denshi, Co. LTD)

Shirai 
et al. 
(2019)
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bios.2024.116790.
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