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A B S T R A C T

In sustainable agriculture, intercropping systems represent a valuable approach. These systems involve placing
mutually beneficial plant types in close proximity to each other, with the goal of exploiting biodiversity
to reduce pesticide and water usage, as well as improve soil nutrient utilization. Despite its potential, the
optimization of intercropping systems has received limited attention in previous studies. One of the first
steps in the design of an intercropping system is the solution of the crop planting layout problem, which
involves meeting crop demand while maximizing positive interactions between adjacent plants. We perform
a complexity analysis of this problem and solve it through constraint programming, an artificial intelligence
technique, which relies on automated reasoning, constraint propagation and search heuristics. To this aim, we
present two constraint programming models based on integer variables and interval variables, respectively.
Through a computational study on real-life instances, we examine the impact of different modelling approaches
on the difficulty of solving the crop planting layout problem with standard constraint programming solvers.
This research work has also provided the groundwork for a sowing robotic arm (under development), aiming
to automate intercropping systems and assist farm workers.
1. Introduction

Food security has been achieved in the 20th century thanks to
industrial agriculture, characterized by just a few profitable crops, with
the nutrient cycles externally regulated.

Nowadays, there is wide consensus about the enormous environ-
mental footprint and the low climate resilience of intensive monocul-
ture, which outweigh its positive aspects in the long run. In mono-
culture farming, the field is managed as a single unit. This allows for
the execution of cultivation tasks with efficient large-scale machinery.
However, since a large extent of genetically uniform crops is rare
in nature, farmers need to maintain stable yields through the use of
synthetic fertilizers and crop protection products, such as pesticides. It
is now known that such input intensification, along with low-diversity
agricultural systems, contributes to soil erosion, water pollution, atmo-
spheric carbon levels, and diminishes biodiversity (Goulson et al., 2015;
Tilman et al., 2011; Tissier et al., 2016; Kinzig et al., 2006).

Crop diversification. A sustainable alternative to intensive monoculture
appears to be crop diversification, i.e. the practice of cultivating in a
given area more than one crop belonging to different species. The main
underlying idea is that, in natural systems, ecosystem functions are
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heavily influenced by species richness (Malézieux, 2012). By providing
additional ecosystem services, crop diversification helps to stabilize food
production over time (Renard and Tilman, 2019) and prevent toxic
pesticides and synthetic fertilizers (Duru et al., 2015), avoid excessive
tillage and preserve soil, water and biodiversity (Barot et al., 2017;
Beillouin et al., 2019; Tamburini et al., 2020; Beillouin et al., 2021).
Benefits of crop diversification in industrial agriculture is being inves-
tigating not only from an agro-ecological perspective but also in terms
of its socio-economical impacts as well as its burden in terms of man-
agerial complexity. In particular, the main challenge for an agronomic
advisor is to determine a trade-off between the maximization of agro-
ecological services and the minimization of management complexity
(Ditzler et al., 2021).

The main goal of crop diversification is the maximization of positive
interactions among different crop species. To achieve this goal, there
are two main agronomic strategies: crop rotation and intercropping.
Crop rotation involves temporal diversification. Specifically, it aims to
minimize the impact of monoculture farming by reducing its intensity,
which refers to the duration of time during which the same crop is
grown on a specific land plot. The crop rotation calendar of a land plot
vailable online 26 June 2024
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indicates the period from planting to harvesting for each crop in the ro-
tation, as well as fallow periods and the planting of green manure crops
(Leoni et al., 2015). Crop rotation offers various benefits, including
mitigation of soil damage and preservation of soil resources (Dogliotti
et al., 2003; Venter et al., 2016), as well as improved weed suppres-
sion (Weisberger et al., 2019). Intercropping systems are based on
patial diversification achieved by simultaneously cultivating mutually
eneficial plant types in close proximity to each other. The optimization
oal is to maximize positive spatial interactions. In Khanal et al. (2021),
he authors provide a review of the main existing metrics used in the
cientific literature to assess intercropping systems, in terms of direct
nd private costs and benefits, as well as indirect and social costs and
enefits.

trip intercropping. In intercropping systems, crops can be grown to-
ether according to three main layouts (Bybee-Finley and Ryan, 2018).
ixed intercropping refers to grow several crop species with no

articular spatial configuration. Relay intercropping refers to stag-
ered planting of two or more crops so that only parts of their life
ycles overlap. In this article, we focus on strip intercropping layout,
here two or more crop species are grown adjacent to one another.
lants are arranged in long and narrow strips, consisting of one or
ore rows. Such layout facilitates independent crop management by

xisting farm machinery and promotes ecological interactions between
djacent strips (Juventia et al., 2022). Strip intercropping experienced
opularity in the United States during the latter half of the 20th century
s a means to address soil erosion and reduce reliance on mineral fertil-
zers (Francis et al., 1986). Moreover, it has been extensively utilized in
hina for numerous decades (Li et al., 2020). Despite this, the adoption
f strip intercropping remained limited in Europe. Potential explana-
ions for this disparity include not only cultural variations but also
ystemic differences in intercropping practices. Indeed, in Europe, most
ystems are mixed intercropping with cereal/legume combinations har-
ested together for animal feed. The potential of strip intercropping was
ighlighted in a comprehensive global meta-analysis comparing various
ntercropping methods in Yu et al. (2015). The analysis revealed a 25%
ncrease in yield for strip cropping systems compared to sole crops,
long with a higher land equivalent ratio for strip cropping compared
o mixed intercropping. Other recent meta-analysis show that strip
ntercropping reduces both pest infestation (Tajmiri et al., 2017) and
isease incidence (Zhang et al., 2019).

mplementing strip intercropping. Ditzler and Driessen (2022) discussed
bout the socio-technical lock-ins encountered by farmers when they
ry to implement an intercropping system. Such challenges are present
t all levels of production, from field to market. Indeed intercropping
ractices often require strategic investments, such as acquiring special-
zed machinery and making adjustments to management, processing,
nd marketing methods (Morel et al., 2020). From this perspective,
trip intercropping offers a notable implementation advantage over
ther intercropping techniques. Indeed strip configurations can be ad-
usted to accommodate the working width of available on-farm machin-
ry, while still facilitating interaction among crops placed in adjacent
ows.

In this paper we focus on the Crop Planting Layout Problem (CPLP),
hich represents one of the initial steps in the design of an intercrop-
ing system. The goal of the CPLP is to fulfil known crop demands
hile maximizing positive interactions between neighbouring plants.
e specifically focus on CPLP in strip intercropping systems, where

ach row can accommodate multiple crop species. This is a relatively
ew farming method aimed to enhance the delivery of agro-ecological
ervices by reducing the size of homogeneous field units, each meant
s a strip portion planted with a single crop species. As the resolution
f in-field crop diversity increases, agroecosystems become increasingly
apable of self-regulation (Van Apeldoorn et al., 2011). This places the
armer in a role that is less focused on externally regulating nutrient
ycles and crop protection, but more on facilitating agroecological
2

rocesses to obtain harvestable yields (Philip Robertson et al., 2014;
torkey et al., 2015; Tittonell et al., 2016). As the management role
f the farmer becomes more complex and knowledge-intensive, the
mportance of using quantitative tools to support the design of cropping
ystems also increases. Current quantitative methods already prescribe
nowledge-intensive decisions, primarily regarding crop selection, ro-
ation, and land-area assignment (Dogliotti et al., 2003; Groot et al.,
010; Martin et al., 2019). To the best of our knowledge, the Crop
lanting Layout Problem in intercropping systems has only recently
een addressed for the first time with a (semi-quantitative) approach
y Juventia et al. (2022). In particular, the authors have proposed a
ramework for the integration of practical implementation-oriented cri-
eria with the solution of the CPLP in strip intercropping. The proposed
ramework aims to provide a systematic exploration and evaluation of
trip intercropping configurations. The authors presented a case study
n which about 100,000 layouts were automatically generated by two
uantitative tools, i.e., ROTAT and RotaStrip. The generated layouts
ere then filtered to retain configurations that met a set of operating

onstraints. The filtered configurations were ranked according to some
ndicators. Finally, the researchers selected 16 Pareto-optimal layouts
nd visually presented them to farmers for the final selection. One
f the main limitations of the framework proposed by Juventia et al.
2022) lies in the use of quantitative methods, originally designed for
arms with one main crop per year and, therefore, not suitable for
ealing with the combinatorial optimization structure of the CPLP in
trip intercropping systems. This paper aims to overcome this drawback
y applying Constraint Programming (CP), an Artificial Intelligence
AI) planning technique, to formulate and solve optimally the CPLP
n strip intercropping systems. In particular, the Crop Planting Layout
roblem is (declaratively) modelled through CP by encoding decisions
s variable starting and ending positions of homogeneous field units, each

corresponding to a strip portion planted with a single crop species.
Relationships among variables (i.e. decisions) are expressed through
mathematical and symbolic constraints.

The constraint programming paradigm. The advantage of solving com-
binatorial optimization problems through CP is two-fold. From a mod-
elling point of view, in a constraint language complex relationships can
be expressed with declarative, compact and flexible models (Focacci
et al., 2002). From a problem solving perspective, CP solvers implement
a model-and-run paradigm, allowing to obtain good quality solutions

ith a reasonable computational burden (Adamo et al., 2016). During
he solution process, constraints interact through shared variables.
earching for an optimal solution is interleaved with constraint reason-
ng. In particular a constraint propagation (filtering) algorithm infers
emoval of infeasible values from variable domains. A constraint is
onsidered propagated if no more infeasible values can be inferred
or the variables involved in the constraint. The iterative process un-
erlying constraint propagation is finite and incomplete, i.e., it does
ot guarantee the pruning of all infeasible values. For this reason,
ropagation is interleaved with search. When propagation reaches a
ixed point, a branching step partitions the problem into subproblems,
efined by instantiating a variable to its values in its domain. Specif-
cally, in the CPLP, a variable instantiation represents the assignment
f a homogeneous field unit to a portion of strip starting and ending
t given positions. Each assignment defines a CPLP subproblem. After
he branching step, the CP solver continues its search by solving all
enerated CPLP subproblems. In constraint programming, the optimiza-
ion goal is implemented as a sequence of feasibility problems. As soon
s a feasible CPLP solution is reached, the corresponding objective
unction value is computed. Then a bounding constraint is added into
he constraint pool, requiring that further feasible layouts must have a
igher value of total positive interactions.

It is worth noting that there are combinatorial problems that are
ore easily solved using Mixed Integer Linear Programming (MILP).
his is the case of pure problems that are likely to be tackled with
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Mathematical Programming approaches, leveraging their (well studied)
geometrical structure. A typical example is the Travelling Salesman
Problem where Branch-and-Cut approaches (Applegate et al., 1998)
outperform CP based approaches. Nevertheless, this gap is significantly
reduced when, for example, time-interval based constraints are con-
sidered (Schreye, 1999). Broadly speaking, Constraint Programming
has shown to be more robust and efficient than the MILP approach
for modelling and solving a large panel of combinatorial optimization
problems, where decisions correspond to intervals with variable starting
nd ending values. This is due to two main reasons:

• CP interval-based models are concise and very expressive, since
CP declarative languages separate interval-based decisions from
logical aspects. As a result, CP interval-based models occupy
less memory than their MILP counterparts, which require a huge
amount of (additional) auxiliary variables to model logical as-
pects.

• The inference underlying CP interval-based models is very ef-
ficient due to the conditional domain maintained in interval-
based decisions, which naturally allows conjunctive reasoning
between constraints. The inference underlying MILP solvers relies
on generating and adding new constraints, contributing to further
increase the size of the MILP model.

s aforementioned in the Crop Planting Layout problem, the main
ecision component prescribes the assignment of a homogeneous field
nit to a portion of strip starting and ending at given positions. This
mplies that CPLP is suitable to be successfully formulated as a CP
nterval-based model. For a more in-depth analysis of the relationship
etween these two model-and-run approaches, i.e. Constraint Program-
ing and Mixed Integer Linear Programming, interested readers may

efer to Focacci et al. (2002) and Bockmayr and Kasper (1998).

. Objectives

The main goals of this paper can be summarized as follows.

• We introduce and motivate the CPLP as a discrete optimization
decision problem. In particular we deal with strip intercrop-
ping systems, where each row is modelled as a sequence of
homogeneous field units, each corresponding to a strip portion
planted with a single crop species. The Crop Planting Layout
Problem aims to determine the size of each homogeneous field
unit so that to satisfy known crop demands and maximize positive
interactions between adjacent field units.

• We explore for the formulation and solution of the CPLP, the
application of constraint programming, an AI planning technique.
Two alternative constraint programming models are proposed.
The former makes use of interval variables and can be run by
a restricted set of solvers, typically equipped with a scheduling-
dedicated modelling language; the latter is based on integer vari-
ables and (basically) solver-independent.

• To ensure that the use of AI in agriculture has a positive envi-
ronmental impact, it is essential to develop approaches that bal-
ance effectiveness with the use of computational resources (Rol-
nick et al., 2022). For these reasons we also study the compu-
tational complexity, both theoretically and empirically, of the
proposed approach. The computational results showed that the
proposed AI-based approach is not energy-intensive to run. It
takes only a few minutes to generate high-quality solutions us-
ing computational resources typically available on a laptop or
smartphone.

• As stated in Ditzler et al. (2023), the user-friendliness of auto-
matic planning tools plays a central role to enhance the way
of thinking of stakeholders involved in the design and imple-
mentation of strip intercropping systems. To this aim, the pro-
3

posed optimization approach has been successfully integrated w
into an AI-based platform as a REpresentational-State-Transfer-
Application Programming Interfaces (Rest-API) service, which can
be seamlessly invoked through a dedicated mobile application.

The remainder of this paper is organized as follows. Section 3 reviews
previous related contributions. Section 4 provides a problem definition
along with an illustrative example. Section 5 presents two constraint
programming models. In Section 6 a complexity analysis is performed.
Section 7 describes system implementation details. In Section 8 is
presented a critical evaluation of the proposed approach. Section 9
concludes this paper and discusses possible future research works.

3. Previous related works

In this paper we are interested in the combinatorial optimization
issues implied by the higher managerial complexity of crop diversifi-
cation. To this aim, in the following we review main contributions,
where crop diversification has been modelled as a discrete optimization
problem.

Literature on optimization of crop rotations. In the literature, deter-
mining the crop rotation calendar has been modelled as a scheduling
problem known as the Crop Rotation Scheduling Problem (CRSP).
There are several contributions addressing solution approaches for
CRSP. Clarke (1989) proposes one of the first optimization model
dealing with combinatorial aspects of crop rotation. Dogliotti et al.
(2003) propose an approach for handling environmental constraints for
crop succession in each crop rotation. Alfandari et al. (2015) prove the
-hardness of the CRSP, when objective function is the minimization
of the land used to cover crops demand. In dos Santos et al. (2010),
the CRSP is modelled as a 0–1 linear program, maximizing land use
and taking into account demand constraints. The authors propose a
solution approach based on column generation. A similar solution
approach is adopted by dos Santos et al. (2011) to solve a model
for the CRSP without demand constraints. The contribution by dos
Santos et al. (2011) is the first one to introduce adjacency constraints,
i.e. preventing that crops of the same botanical family be cultivated in
adjacent plots during the same period. In Aliano Filho et al. (2014),
the model proposed by dos Santos et al. (2011) is adapted in order
to take into account demand constraints and maximize the profit of
planted crops. Metaheuristics are devised as solution approaches. The
contribution by Regis Mauri (2019) improves the mathematical model
proposed by dos Santos et al. (2011), so as to make it more general
and easier to be solved by a commercial solver. In addition, five
different relaxation approaches are devised to find high-quality bounds
and solutions for the CRSP. Recently, Benini et al. (2023) provide
a formal characterization and the complexity analysis of the CRSP
based on sequences of 𝑘 consecutive crops. They propose Integer Linear
Programming models tailored for the best practices in Mediterranean
pedo-climatic contexts, where 𝑘 is set to 3. The experimental campaign

ith real data demonstrates that the proposed models can efficiently
olve real-life instances.
Literature on optimization of intercropping systems. Intercropping has

een widely practised in smallholder cropping systems. For these rea-
ons, optimization of intercropping systems has been addressed by
nly a few contributions. According to Czárán and Bartha (1990), the
ndividual-based plant models can be classified as either grid-based or
eighbourhood-based. Each model has its definition of zone-of-occupancy,
eant as the space required by the plant to allow for proper root
evelopment and access to sunlight. In grid-based models the space is
iscretized into a grid of cells where plants may be placed. The zone-
f-occupancy of a plant corresponds to a set of contiguous cells, whilst
lant interactions are defined by empirical rules. In neighbourhood
odels, each individual plant has a zone-of-occupancy modelled in the

ontinuous space, and plant interaction models are based on analytical
odels. Avigal et al. (2021) formulate the CPLP as a nonlinear program,

here the zone-of-occupancy is modelled as a circular zone, whilst
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Fig. 1. A planting area with 𝑅 = 3 rows, 𝑁 = 12 positions. Blue circles represent
fertigation points located at the centre of the served area.

positive interactions between pair of plants are encoded as coefficients
of a matrix, referred to as companionship values. The authors do not
provide any details about the solver used to determine the optimal
solution. A simulation approach is adopted to tune the input parameter,
modelling the maximum level of overlap between plants in the non-
linear program. Ding et al. (2020) formulate the CPLP in a continuous
space with the aim of determining rows spacing in a strip intercropping
layout. Each row can be associated to only one species. The interaction
model is neighbourhood-based and the CPLP is solved by a (heuristic)
genetic algorithm and rows spacing is determined with the goal of
maximizing light interception. Computational tests have been carried
out with only two species (soybean and maize) and a given inter-
planting ratio. To the best of our knowledge the present work is the
first contribution dealing with the CPLP where the plant interaction
model is grid-based.

4. Problem formulation and background

In this section we introduce notation underlying the encoding of a
CPLP solution along with an illustrative example. Then it is provided a
formal definition of the CPLP.

Notation for the planting area. In a strip intercropping system based on
a grid-based interaction model, the planting area is partitioned into a
grid of cells with 𝑅 (equally spaced) rows (i.e. strips), each consisting
of 𝑁 positions. We denote with (𝑟, 𝑝) the 𝑝th cell on row 𝑟, with 𝑟 =
1,… , 𝑅 and 𝑝 = 1,… , 𝑁 . Each row is equipped with a set of fertigation
points equally spaced. On the 𝑟th row, each fertigation point serves

𝑓𝑟 contiguous cells. This implies that each row 𝑟 has
⌊

𝑁
𝑓𝑟

⌋

fertigation

points. Fig. 1 shows a planting area consisting of three rows, each one
partitioned into twelve cells (𝑁 = 12). The number of fertigation points
is respectively equal to six, twelve and three, i.e. 𝑓1 = 2, 𝑓2 = 1 and
𝑓3 = 4.

Notation for the set of species. We denote with 𝐻 the number of differ-
ent species available to be planted. Each crop ℎ is characterized by a
demand of 𝑑ℎ units, with ℎ = 1,… ,𝐻 . Each unit of crop ℎ requires at
least 𝑜ℎ contiguous cells. Since each plant has to be assigned to exactly
one fertigation point, each unit of crop ℎ requires 𝑔𝑟ℎ = max{𝑜ℎ, 𝑓𝑟}
contiguous cells, when assigned to row 𝑟. In a CPLP solution, each single
strip is modelled as a sequence of clusters, each corresponding to a
strip portion occupied by only one species. The length of a cluster is
expressed in terms of number of positions. For each crop ℎ the farmer
provides bounds on the cluster length, i.e. a lower bound 𝑐ℎ ≥ 𝑜ℎ and
an upper bound 𝐶ℎ ≤ 𝑁 . The farmer controls through these bounds
the layout resolution in terms of crop diversity. In particular, in a
CPLP solution, shorter clusters correspond to higher resolution of crop
diversity. Nevertheless, the three-year experiment conducted by Ditzler
et al. (2023) has shown that ecological objectives can be achieved with-
out compromising production objectives by increasing crop diversity
resolution, up to a certain threshold. Beyond this point, the experiment
showed that it is unclear whether a balance between ecological and
production goals can be maintained. Ditzler et al. (2023) also observed
that this uncertainty is primarily attributed to existing agronomic and
technological constraints that limit the production capacities of highly
diverse cropping systems in industrialized contexts. The bounds on
cluster length aim to model the farmer’s knowledge of the trade-off
4

between crop diversity and production goals, accounting for agronomic
and technological constraints on production capacities. For example,
let us consider a planting area with only two crop species, ℎ1 and
ℎ2, where 𝑜ℎ1 = 𝑜ℎ2 = 1. To satisfy agronomic and technological
constraints, the farmer may require that each cluster occupies a portion
of the strip equal to at least one-quarter and one-third, respectively,
i.e., 𝑐ℎ1 ≥

⌊𝑁
4

⌋

and 𝑐ℎ2 ≥
⌊𝑁
3

⌋

. On the other hand, to balance eco-
logical and production goals, the farmer may also impose constraints
on the maximum crop diversity resolution of a single strip. This can
be modelled by specifying the maximum number of distinct clusters
that can be placed on a single strip. Below, we provide some examples
of how these technological constraints and limits on the crop diversity
resolution of a single strip can be encoded using parameters 𝑐ℎ1 , 𝑐ℎ2 ,
𝐶ℎ1 and 𝐶ℎ2 .

• If the farmer requires that no more than one cluster can be placed
on a single strip, then we have 𝑐ℎ1 = 𝑐ℎ2 = 𝐶ℎ1 = 𝐶ℎ2 = 𝑁 .

• If the farmer requires that no more than two distinct clusters can
be placed on a single strip, then we have 𝑐ℎ1 = 𝑐ℎ2 =

⌊𝑁
2

⌋

and
𝐶ℎ1 = 𝐶ℎ2 = 𝑁 .

• If the farmer requires that no more than three two distinct clusters
must be placed on a single strip, then we have 𝑐ℎ1 =

⌊𝑁
4

⌋

,

𝑐ℎ2 =
⌊𝑁
3

⌋

, and 𝐶ℎ1 = 𝐶ℎ2 = 𝑁 .

Finally, we observe the higher the upper bound 𝐶ℎ, the greater the
variability of a planting layout in terms of distinct cluster length values.
For example, due to technological constraints, the farmer may impose
a unique cluster length for each crop ℎ, i.e. 𝑐ℎ = 𝐶ℎ with ℎ = 1,… ,𝐻 .

Cluster placement policy on a single row. Let consider a cluster consisting
of 𝛿ℎ units of crop ℎ to be planted on row 𝑟, where the first 𝑁𝑟 cells
have been previously assigned to other clusters, with 𝑁𝑟 < 𝑁 . The
cluster placement policy states that, when placed on row 𝑟, the cluster
occupies an interval of positions from the cell (𝑟,𝑁𝑟 + 1) to the cell
(𝑟,𝑁𝑟 + 𝜆𝑟ℎ). Algorithm 1 computes the cluster length 𝜆𝑟ℎ as follows.
First it computes the minimum number of fertigation points needed
for placing 𝛿ℎ plants of crop ℎ on row 𝑟. This value is determined by
Algorithm 1 at line 1, as the minimum integer number 𝑛𝑟ℎ that satisfies
the following inequality:

𝑔𝑟ℎ × 𝛿ℎ ≤ 𝑛𝑟ℎ × 𝑓𝑟.

Then the cluster length is set by Algorithm 1 at line 2 as follows:

𝜆𝑟ℎ = 𝑛𝑟ℎ × 𝑓𝑟.

Finally Algorithm 1-line 3 checks if the length 𝜆𝑟ℎ satisfies upper and
lower bound constraints, that is:

𝑐ℎ ≤ 𝜆𝑟ℎ ≤ min{𝐶ℎ, 𝑁 −𝑁𝑟}.

If the feasibility check fails (Algorithm 1-line 4), the policy declares the
cluster placement unfeasible for the row 𝑟 (i.e. 𝜆𝑟ℎ = −1).

Algorithm 1: Computing cluster length
Input: 𝑔𝑟ℎ, 𝑓𝑟, 𝛿ℎ, 𝐶ℎ, 𝑐ℎ
Output: 𝜆𝑟ℎ

1 𝑛𝑟ℎ ←

⌈

𝑔𝑟ℎ × 𝛿ℎ
𝑓𝑟

⌉

;

2 𝜆𝑟ℎ ← 𝑛𝑟ℎ × 𝑓𝑟;
3 if (𝜆𝑟ℎ > min{𝐶ℎ, 𝑁 −𝑁𝑟}) ∨ (𝜆𝑟ℎ < 𝑐ℎ) then
4 𝜆𝑟ℎ ← −1
5 end if

Fig. 2 reports an example corresponding to the placement of three
clusters each consisting of three units of crop ℎ̄ with 𝑜ℎ̄ = 3, 𝑐ℎ̄ = 𝑜ℎ̄
and 𝐶ℎ̄ = 𝑁 . The planting area is empty, i.e. 𝑁𝑟 = 0 for 𝑟 = 1, 2, 3. The
lengths 𝜆 computed by Algorithm 1 are equal to
𝑟ℎ
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Fig. 2. Example of three clusters placed on the planting area of Fig. 1.

• 10 positions for the first row where 𝑓1 = 3, i.e.

𝑛1ℎ̄ =
⌈

max{3, 2} × 3
2

⌉

= 5

𝜆1ℎ̄ = 5 × 2 = 10

• 6 positions for the second row where 𝑓2 = 1, i.e.

𝑛2ℎ̄ =
⌈

max{3, 1} × 3
1

⌉

= 9

𝜆2ℎ̄ = 9 × 1 = 9

• 12 positions for the third row where 𝑓3 = 4, i.e.

𝑛3ℎ̄ =
⌈

max{3, 4} × 3
4

⌉

= 3

𝜆3ℎ̄ = 3 × 4 = 12

The cluster placement is feasible for all three rows, i.e. 3 ≤ 𝜆𝑟ℎ̄ ≤ 12
with 𝑟 = 1, 2, 3.

Notation for interactions. The farmer evaluates feasible crop planting
layouts in terms of the positive interactions triggered by placing in
proximity mutual beneficial crops. We consider two cells (𝑟, 𝑝) and (𝑟′, 𝑝)
to be adjacent if they belong to adjacent rows and share a boundary that
is not a discrete set of points. Each crop planting layout is evaluated
in terms of interactions occurring between adjacent cells. To this aim
we use a score matrix 𝐴 ∈ R𝐻×𝐻 , where the integer coefficient 𝑎ℎ𝑘 is
an empirical measure of the symmetric relationship between plants of
species ℎ and 𝑘, with 𝑎ℎ𝑘 = 𝑎𝑘ℎ and ℎ, 𝑘 = 1,… ,𝐻 . More formally
an interaction occurs when species ℎ and 𝑘 occupy cells (𝑟, 𝑝) and
(𝑟 + 1, 𝑝), with 𝑟 = 1,… , 𝑅 − 1 and 𝑝 = 1,… , 𝑁 . The coefficient 𝑎ℎ𝑘
is an integer value, which models an interaction between crops ℎ and
𝑘 that might be either mutual beneficial (𝑎ℎ𝑘 > 0) or not-beneficial
(𝑎ℎ𝑘 < 0) or neutral (𝑎ℎ𝑘 = 0). In the following, we will use both the
terms companionship value and score value to refer to the coefficient 𝑎ℎ𝑘.
We also assume that the farmer provides a set  of crop pairs. Each
pair (ℎ, 𝑘) ∈  corresponds to a no-adjacency constraint, stating that it
is not feasible to place at adjacent positions crops ℎ and 𝑘. A relevant
example of no-adjacency constraints is provided by allelopathy, i.e. a
crop ℎ releases toxic chemicals that inhibit growth of another crop 𝑘.
Such not-beneficial interactions are modelled with 𝑎ℎ𝑘 = 𝑎𝑘ℎ = −𝑀 ,
with M a large positive value.

An illustrative example. Fig. 3 reports an example of a feasible layout.
The planting area has three rows with twelve positions, i.e. 𝑅 = 3
and 𝑁 = 12. The colour of each vertex denotes the associated crop.
Regarding planting capacity of each row, the planting area of Fig. 3
refers to the basic case where each cell is served by one fertigation
point, i.e. 𝑓𝑟 = 1 with 𝑟 = 1, 2, 3. The crop demands refer to three
crops: tomatoes (red cells), broccoli (green cells) and peppers (blue
cells). The demands are 6 units of tomatoes (i.e. 𝑑1 = 6), 4 of broccoli
(i.e. 𝑑2 = 4) and 2 of peppers (i.e. 𝑑3 = 2). The level of occupancy of the
three species is respectively 2 cells for tomatoes (i.e. 𝑜1 = 2), 3 cells for
broccoli (i.e. 𝑜2 = 3), 2 cells for peppers (i.e. 𝑜3 = 2). Lower and upper
bounds on cluster length are 𝑐ℎ = 𝑜ℎ and 𝐶ℎ = 𝑁 , with ℎ = 1, 2, 3.
The layout in Fig. 3 prescribes two clusters for each crop with each
cluster spanning 6 positions. As far as the layout score is concerned,
for each pair of crops ℎ and 𝑘 the coefficient 𝑎ℎ𝑘 ∈ {1,−100, 0}. In
5

particular each coefficient models an interaction which might be either
Fig. 3. Example of a CPLP solution with three crops: tomatoes (red cells), broccoli
(green cells), peppers (blue cells).

mutual beneficial (𝑎ℎ𝑘 = 1) or not-beneficial (𝑎ℎ𝑘 = −1) or neutral
(𝑎ℎ𝑘 = 0). The layout of Fig. 3 triggers interactions that are either
neutral or beneficial, with a total score of 12. In particular, the first
twelve pairs of adjacent cells (i.e., ((𝑟, 𝑝); (𝑟+1, 𝑝)) with 𝑟 = 1, 2 and 𝑝 =
1,… , 6) contribute to the total score with the twelve mutual beneficial
interactions between tomatoes and broccoli (i.e., 𝑎12 = 𝑎21 = 1). The
remaining twelve pairs of adjacent cells do not contribute to the total
score due to neutral interactions. Specifically, peppers and broccoli
have a neutral interaction (i.e., 𝑎23 = 𝑎32 = 0), occurring between the
remaining six pairs of adjacent cells belonging to the first two rows
(i.e., ((1, 𝑝); (2, 𝑝)) with 𝑝 = 7,… , 12). A neutral interaction also occurs
between adjacent cells of the second and third row (i.e., pairs of cells
((2, 𝑝); (3, 𝑝)) with 𝑝 = 7,… , 12) since they have all been occupied by the
same species (i.e., 𝑎ℎℎ = 0 with ℎ = 1,… , 3).

Problem definition. Given a planting area and crop demands, a fea-
sible crop planting layout prescribes an assignment of crops to cells
compliant with the cluster placement policy, so that to satisfy crop
demands, planting capacity of rows, no-adjacency constraints as well
as constraints on minimum and maximum cluster length. The crop
planting layout problem aims to determine a feasible crop planting
layout that maximizes the total score of crop combinations.

5. Constraint programming models

This section is devoted to the formulation of two (alternative) CP
models. The proposed models share the following set of parameters
to be computed in a pre-processing phase for each pair (𝑟, ℎ), with
ℎ = 1,… ,𝐻 and 𝑟 = 1,… , 𝑅.

First, tighter bounds 𝑐′𝑟ℎ and 𝐶 ′
𝑟ℎ on cluster lengths are computed as

follows:

𝑐′𝑟ℎ = min
𝑖∈[𝑐ℎ ,𝐶ℎ]

(𝑖|𝑖 mod 𝑔𝑟ℎ = 0),

𝐶 ′
𝑟ℎ = max

𝑖∈[𝑐ℎ ,𝐶ℎ]
(𝑖|𝑖 mod 𝑔𝑟ℎ = 0).

To model the constraint on the maximum cluster length, we compute
the minimum distance 𝑐𝑟ℎ between two clusters of species ℎ planted on
the same strip, that is:

𝑐𝑟ℎ = min(𝑐′𝑟𝑘|𝑘 ∈ {1,… ,𝐻}⟍{ℎ}).

Given row 𝑟, the maximum number of clusters of crop ℎ that can
be placed on the row 𝑟 can be computed by taking into account the
demand 𝑑ℎ, cluster length constraints and row planting capacity as
follows:

𝜂𝑟ℎ = ⌊

min{𝑑ℎ × 𝑔𝑟ℎ,
⌊

𝑁
𝑔𝑟ℎ

⌋

} + 𝑐𝑟ℎ

𝑐′𝑟ℎ + 𝑐𝑟ℎ
⌋.

Table 1 summarizes all symbols used in this section.

5.1. A CP model based on interval variables

Interval variables are a modelling feature provided by some CP
solvers, e.g. Google ORTools (Perron and Furnon, 2022) and IBM CP
Optimizer (IBM ILOG, 2023). Even though such modelling concepts are
typically exploited to represent activities in scheduling problems, they
are a mathematical abstraction of intervals with variable starting and
ending values. For these reasons, the use of interval variables can be
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extended (in quite natural way) to model decisions in the Crop Planting
Layout Problem.

Interval variables. An interval variable 𝑥 is a decision variable whose
domain consists of subsets of type {⟂} ∪ {[𝑎, 𝑏) | 𝑎, 𝑏 ∈ Z, 𝑎 ≤ 𝑏}. Some
of the basic constraints on interval variables allow: to limit the possible
positions of an interval variable; to define precedence relations between
two interval variables. An important characteristic of interval variables
is that they can be optional. Thus solving a constraint programming
model with optional interval variables also means prescribing which
optional interval variables will be instantiated (i.e. 𝑥 ∶= [𝑎, 𝑏)) and
which interval variables will not be present (i.e. 𝑥 ∶=⟂). In particular
when the interval variable 𝑥 is present in the solution (i.e. 𝑥 ≠⟂), its
domain is defined by a tuple of ranges:

([𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥], [𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥], [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]).

The range [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥] ∈ Z represents the domain of the starting
position. Similarly, [𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥] ∈ Z and [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] ∈ Z denote, respec-
tively, the domain of the ending position and length. The (internal)
consistency of the variable 𝑥 is based on the internal consistency of the
ranges defining its domain. When the bounds of such ranges assume
inconsistent values (for instance because 𝜎𝑚𝑖𝑛 > 𝜎𝑚𝑎𝑥 or because 𝜖𝑚𝑖𝑛 −
𝜎𝑚𝑎𝑥 > 𝑑𝑚𝑎𝑥), if presence status of the interval has been already set to
selected (i.e. 𝑥 ≠⟂), then a failure is triggered. Otherwise, the interval
presence status is automatically set to unselected (i.e. 𝑥 ∶=⟂).

As far as the CPLP is concerned, we recall that the parameter 𝜂𝑟ℎ
represents the maximum number of no-overlapping clusters of crop ℎ
that can be placed on the row 𝑟, with ℎ = 1,… ,𝐻 , 𝑟 = 1,… , 𝑅. In
articular, we model with the optional interval variable 𝑥𝑟ℎ𝑖 the 𝑖th
nterval of positions on row 𝑟 occupied by crop ℎ, whose domain is
epresented by the tuple of ranges ([1, 𝑅], [1, 𝑁], [𝑐′𝑟ℎ, 𝐶

′
𝑟ℎ]), with ℎ =

,… ,𝐻 , 𝑟 = 1,… , 𝑅 and 𝑖 = 1,… , 𝜂𝑟ℎ. In the following we denote with
(𝑥), 𝜎(𝑥) and 𝜖(𝑥) functions that return, respectively the length, the
irst position and the final position of an interval variable 𝑥.
Sequence Variables. A CPLP solution prescribes for each row a se-

uence of (no-overlapping) interval variables. To represent this compo-
ent of the solution, the proposed model exploits the notion of sequence
ariable, a decision variable whose value corresponds to a permutation
f (present) interval variables belonging to the set . More formally,
et assume that all variables in  have been instantiated, with 𝑛 = ||.

permutation 𝜋 of  is a function 𝜋 ∶  → [0, 𝑛], with the length
f the permutation equal to the number of variables present in .
he domain of a sequence variable 𝒔 defined on  is the set of all
ossible permutations 𝜋. For example if  = {𝑥, 𝑥′} is a set of two
nterval variables with 𝑥 being present and 𝑥′ optional, the domain
() = {(𝑥), (𝑥, 𝑥′), (𝑥′, 𝑥)} of the sequence 𝒔 defined on  consists of 3

ermutation values {𝜋1, 𝜋2, 𝜋3} such that 𝜋1(𝑥) = 1, 𝜋1(𝑥′) = 0, 𝜋2(𝑥) = 1,
2(𝑥′) = 2, 𝜋3(𝑥) = 2, 𝜋3(𝑥′) = 1. Constraints on sequence variables
odel rules for cutting off unfeasible permutations or for specifying the

rder of intervals in the permutation in terms of relative position of
heir start and end values. We model with 𝒔𝑟 a sequence variable with
𝑟 ∈ 𝛱(𝑟), where 𝑟 is the set of interval variables 𝑥𝑟ℎ𝑖 associated to
ow 𝑟, i.e. 𝑟 = {𝑥𝑟ℎ𝑖|ℎ = 1,…𝐻, 𝑖 = 1,… , 𝜂𝑟ℎ} and 𝑟 = 1,… , 𝑅.
Integer variables. Finally we denote with 𝛿𝑟ℎ𝑖 the number of plants

laced in the 𝑖th interval of positions on row 𝑟 occupied by crop ℎ,
ith ℎ = 1,… ,𝐻 , 𝑟 = 1,… , 𝑅 and 𝑖 = 1,… , 𝜂𝑟ℎ.
Global constraints. A powerful modelling tool concerns global con-

traints, which allow a concise description of the problem as well as effi-
ient and effective propagation through special purpose inference algo-
ithms. In particular we exploit the global constraint 𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑠𝑟,𝑀𝑟,
𝑓𝑡𝑒𝑟), which defines a sequence 𝑠𝑟 of non-overlapping interval vari-
bles, with each interval variable in the sequence constrained to end
efore the start of all its successors in the sequence. The transition
istance matrix 𝑀𝑟 ∶ {1,…𝐻} × {1,…𝐻} → Z+ defines the minimal
umber of positions that must separate two clusters in the row 𝑟. Since
6

e aim to forbid overlapping of clusters in each row 𝑟 and enforce the
inimal distance between consecutive clusters, we define the matrix
𝑟 as follows:

𝑟ℎ𝑘 =

{

0 ℎ ≠ 𝑘,
𝑐𝑟ℎ ℎ = 𝑘,

ith ℎ, 𝑘 = 1,… ,𝐻 and 𝑟 = 1,… , 𝑅.
CP solvers offer constraints over interval variables that make easy

o handle complex relationship without using complex expressions of
ogical connectors. On the other hand CP community lacks of a set of
uch constraints that is shared by all constraint programming solvers.
or these reasons, we formulate the first model by using constraints
xtracted from IBM’s CP Optimizer. This implies that it may not be
ossible to run the exact same model in another solver such as OR
ools, because these features might require different names.

max
𝐻
∑

ℎ=1

𝐻
∑

𝑘=1
𝑎ℎ𝑘 ×

𝑅−1
∑

𝑟=1

𝜂𝑟ℎ
∑

𝑖=1

𝜂𝑟+1,𝑘
∑

𝑗=1
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝑥𝑟ℎ𝑖, 𝑥𝑟+1,𝑘,𝑗 , 0) (1)

.𝑡.
𝑅
∑

𝑟=1

𝜂𝑟ℎ
∑

𝑖=1
𝛿𝑟ℎ𝑖 = 𝑑ℎ ℎ = 1,… ,𝐻 (2)

𝜆(𝑥𝑟ℎ𝑖) =
⌈

𝑔𝑟ℎ × 𝛿𝑟ℎ𝑖
𝑓𝑟

⌉

× 𝑓𝑟 ℎ = 1,… ,𝐻, 𝑖 = 1,… , 𝜂𝑟ℎ, 𝑟 = 1… , 𝑅 (3)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝒔𝑟,𝑀𝑟, 𝐴𝑓𝑡𝑒𝑟) 𝑟 = 1… , 𝑅 (4)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝([𝑥𝑟ℎ𝑖]
𝜂𝑟ℎ
𝑖=1 , [𝑥𝑟+1,𝑘𝑗 ]

𝜂𝑟+1,𝑘
𝑗=1 ) 𝑟 = 1… , 𝑅 − 1, (ℎ, 𝑘) ∈  (5)

The objective function (1) states that the model aims to maximize
he total companionship. In particular the 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑥′, 𝑎𝑏𝑠𝑉 𝑎𝑙)

method calculates the length of the overlap between interval variables 𝑥
and 𝑥′. When interval variable 𝑥 or 𝑥′ is absent, the function returns the
alue 𝑎𝑏𝑠𝑉 𝑎𝑙. Constraints (2) requires that the CPLP solution satisfies
he demand of crop ℎ = 1,… ,𝐻 . Constraints (3) determine the cluster

length according to the placement policy (Algorithm 1: line 1–line 2).
Constraints (4) forbid overlapping of clusters in each row 𝑟 and enforce
the minimal distance between consecutive clusters.

No-adjacency constraints are modelled as no-overlapping
constraints by (5).

5.1.1. Boosting propagation and search
Propagation algorithms aim to identify a feasible solution by fil-

tering out the domain of each decision variable into a single value.
We start by observing that a constructive heuristic for CPLP should
determine first cluster lengths satisfying constraints (2)–(3) and, then,
cluster first-positions satisfying no-overlapping constraints (4)–(5). This
implies that the feasibility of a CPLP solution is mainly due to length
values of the selected intervals. For these reasons we annotate the
model with

𝑠𝑡𝑟𝑜𝑛𝑔(𝜆(𝑥𝑟ℎ𝑖)) 𝑟 = 1,… , 𝑅 ℎ = 1,… ,𝐻 𝑖 = 1,… , 𝜂𝑟ℎ.

to encourage the solver to enrich stronger (higher inference) constraints
on length variables. Assigned an integer value to 𝛿𝑟ℎ𝑖, constraints
(3) consider domain values of interval lengths individually, with the
propagation algorithms dynamically discovering which values in each
domain either satisfy or violate constraints (3). Nevertheless we can
precompute such values and store them in the sets 𝐿𝑟ℎ, where

𝐿𝑟ℎ = {0} ∪ {𝜆 | 𝜆 ∈ [𝑐′𝑟ℎ, 𝐶
′
𝑟ℎ] ∶ 𝜆 𝑚𝑜𝑑 𝑓𝑟 = 0}

with 𝑟 = 1,… , 𝑅 and ℎ = 1,… ,𝐻 . Then the solver can be enriched
with higher inference by adding the boolean constraints (6). In par-
ticular constraints (6) determine whether the interval length 𝜆(𝑥𝑟ℎ𝑖) is
contained within the value set 𝐿𝑟ℎ.

𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠(𝜆(𝑥𝑟ℎ𝑖), 𝐿𝑟ℎ) (6)

with 𝑟 = 1,… , 𝑅, ℎ = 1,… ,𝐻 and 𝑖 = 1,… , 𝜂𝑟ℎ.
After propagation, if there is at least one variable with multiple

values, branching (value instantiation) takes place and the search
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continues. Efficient branching strategies play a key role in reaching
a feasible solution within shorter computational time. Problem struc-
ture(s) can be exploited in boosting the search procedure by avoiding to
explore equivalent search space. To this aim we consider the other main
component of a CPLP solution: sequencing decisions. No overlapping
constraints (4)–(5) rely on sequence variables associated to interval
variables. In particular, permutations in the domain of sequence vari-
ables are symmetric in nature, since we can easily generate a new
ermutation from another one. Indeed given a CPLP solution, if we
wap on the same row two clusters of the same crop with the same
ength, then the total companionship of the new solution will not
hange. In order to prune off such symmetric solutions we add the
ollowing constraints, where ℎ = 1,… ,𝐻 , 𝑟 = 1,… , 𝑅 and 𝑖 = 1,… , 𝜂𝑟ℎ

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑥𝑟ℎ,𝑖−1, 𝑥𝑟ℎ𝑖, 𝑐𝑟ℎ) 𝑖 ≥ 2 (7)

𝑥𝑟ℎ𝑖 ≠⟂⇒ 𝑥𝑟ℎ,𝑖−1 ≠⟂ 𝑖 ≥ 2 (8)

𝑏𝑒𝑓𝑜𝑟𝑒(𝒔𝑟, 𝑥𝑟ℎ,𝑖−1, 𝑥𝑟ℎ𝑖) 𝑖 ≥ 2 (9)

𝑒𝑛𝑑𝑂𝑓𝑃 𝑟𝑒𝑣(𝒔𝑟, 𝑥𝑟ℎ𝑖, 1) = 𝜎(𝑥𝑟ℎ𝑖) (10)

𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑁𝑒𝑥𝑡(𝒔𝑟, 𝑥𝑟ℎ𝑖, 𝑁 + 1) = 𝜖(𝑥𝑟ℎ𝑖) (11)

The main underlying idea is to model precedence relationship between
clusters of crop ℎ on row 𝑟. Constraints (7) and (8) guarantee consis-
tency between conditional domains of interval variables 𝑥𝑟ℎ𝑖 and its
immediate predecessor 𝑥𝑟ℎ,𝑖−1. In particular constraints (7) exploit the
𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑥, 𝑥′, 𝑐) method, stating that 𝑐 is the minimum distance
(i.e. number of positions) between the end of cluster 𝑥 and the start
of cluster 𝑥′. It imposes the inequality 𝜖(𝑥) + 𝑐 ≤ 𝜎(𝑥′). Constraints (8)
require that the interval variable 𝑥𝑟ℎ𝑖 is selected only if the interval
variable 𝑥𝑟ℎ,𝑖−1 is also present in the solution. Constraints (9) exploit the
𝑏𝑒𝑓𝑜𝑟𝑒 method in order to require that, given two instantiated interval
variables 𝑥𝑟ℎ,𝑖−1 ≠⟂ and 𝑥𝑟ℎ𝑖 ≠⟂ with 𝑖 ≥ 2, the interval 𝑥𝑟ℎ𝑖−1 has
to appear before the interval 𝑥𝑟ℎ,𝑖. Other intervals may be ordered in
between the two. Constraints (10) and (11) model consistency among
domains of interval variables included in the sequence 𝒔𝑟. In particular
constraints (10) state that the starting position of the interval variable
𝑥𝑟ℎ𝑖 has to be equal to the end of the interval variable that precedes
interval 𝑥𝑟ℎ𝑖 in sequence variable 𝒔𝑟. The method 𝑒𝑛𝑑𝑂𝑓𝑃 𝑟𝑒𝑣 returns
value 1 when interval 𝑥𝑟ℎ𝑖 is present (i.e. 𝑥𝑟ℎ𝑖 ≠⟂) and is the first
interval of sequence 𝒔𝑟. When the interval 𝑥𝑟ℎ𝑖 is not present (i.e. 𝑥𝑟ℎ𝑖 =
⟂), 𝑒𝑛𝑑𝑂𝑓𝑃 𝑟𝑒𝑣 returns the constant value 0. Similarly constraints (11)
state that the ending position of the interval variable 𝑥𝑟ℎ𝑖 has to be
equal to the start of the interval variable that is next to interval 𝑥𝑟ℎ𝑖
in sequence variable 𝒔𝑟. The method 𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑁𝑒𝑥𝑡 returns value 𝑁 + 1
when interval 𝑥𝑟ℎ𝑖 is present (i.e. 𝑥𝑟ℎ𝑖 ≠⟂) and is the last interval
of sequence 𝒔𝑟. When the interval 𝑥𝑟ℎ𝑖 is not present (i.e. 𝑥𝑟ℎ𝑖 =⟂),
𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑁𝑒𝑥𝑡 returns the constant value 0.

5.2. A CP model based on integer variables

We propose an alternative (solver-independent) CP model, based on
nteger variables 𝑧𝑟ℎ𝑗 modelling, for each crop ℎ, the starting position of
he 𝑗th cluster on row 𝑟, with ℎ = 1,… ,𝐻 , 𝑟 = 1,… , 𝑅 and 𝑗 = 1,… , 𝜂𝑟ℎ.

Its domain is the finite set {0,… , 𝑁}. In particular, if 𝑧𝑟ℎ𝑗 = 0 then the
corresponding cluster is not selected by the current CPLP solution. If
𝑧𝑟ℎ𝑗 ≠ 0, then the integer variable 𝑦𝑟ℎ𝑗 > 0 represents the length of
the corresponding cluster, with 𝑦𝑟ℎ𝑗 ∈ {𝑐′𝑟ℎ,… , 𝐶 ′

𝑟ℎ}
⋃

{0}. A null length
(i.e. 𝑦𝑟ℎ𝑗 = 0) is implied by a not selected cluster (i.e. 𝑧𝑟ℎ𝑗 = 0). Given
two adjacent rows 𝑟 and 𝑟+ 1, if the CPLP solution selects two clusters
associated to two distinct crops ℎ and 𝑘, with ℎ ≠ 𝑘, then the local
companionship is proportional to the number 𝜃(ℎ, 𝑘, 𝑟, 𝑖, 𝑗) of adjacent
positions computed as:

𝜃(ℎ, 𝑘, 𝑟, 𝑖, 𝑗) = max{min{𝑧𝑟ℎ𝑖 + 𝑦𝑟ℎ𝑖, 𝑧𝑟+1,𝑘,𝑗 + 𝑦𝑟+1,𝑘,𝑗}

− max{𝑧𝑟ℎ𝑖, 𝑧𝑟+1,𝑘,𝑗}, 0},
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Table 1
Index sets, parameters and decision variables.
Parameters
𝐻 Number of different species, with index ℎ ∈ {1,… ,𝐻} and 𝑘 ∈ {1,… ,𝐻}
𝑅 Number of strips, with index 𝑟 ∈ {1,… , 𝑅}
𝑁 Number of positions for each strip, with index 𝑝 ∈ {1,… , 𝑁}
𝑓𝑟 Number of contiguous cells served by each fertigation point on 𝑟th row
𝑑ℎ Demand of the species ℎ
𝑜ℎ Occupancy of species ℎ
𝑔𝑟ℎ Number of contiguous cells requested for crop ℎ, equal to max{𝑜ℎ , 𝑓𝑟}
𝑐ℎ Lower bound on the cluster length of crop ℎ provided as input by the

farmer
𝐶ℎ Upper bound on the cluster length for each crop ℎ provided as input by

the farmer
𝑁𝑟 Cells that have been previously assigned to other clusters on row 𝑟
𝑛𝑟ℎ Minimum number of fertigation points such that 𝑔𝑟ℎ × 𝛿ℎ ≥ 𝑛𝑟ℎ × 𝑓𝑟
𝜆ℎ𝑟 Cluster length, computed as 𝑛𝑟ℎ × 𝑓𝑟
𝑎ℎ𝑘 Coefficient of companionship between species ℎ and 𝑘
𝑀 A large positive value
𝑐′𝑟ℎ A tighter lower bound on the cluster length of crop ℎ computed as a

multiple of 𝑔𝑟ℎ
𝐶 ′
𝑟ℎ A tighter upper bound on the cluster length of crop ℎ computed as a

multiple of 𝑔𝑟ℎ
𝑐𝑟ℎ Minimum distance between two clusters of species ℎ in a strip 𝑟
𝜂𝑟ℎ Maximum number of clusters of crop ℎ that can be placed on row 𝑟 with

index 𝑗 ∈ {1,… , 𝜂𝑟ℎ}
𝑟 Set of interval variables 𝑥𝑟ℎ𝑖 associated to row 𝑟
𝑀𝑟 Matrix defining the minimal number of positions that must separate two

clusters in the row 𝑟
𝐿𝑟ℎ Set of values of interval lengths multiples of 𝑓𝑟
Index sets
𝑆 Set of no-adjacency crop pairs
Interval variables
𝑥𝑟ℎ𝑖 The 𝑖th interval of positions on row 𝑟 occupied by crop ℎ
𝑠𝑟 A sequence variable in 𝛱(𝑟)
Integer variables
𝑧𝑟ℎ𝑗 Starting position of the 𝑗th cluster on row 𝑟 for each crop ℎ, with

𝑗 = 1,… , 𝜂𝑟ℎ
𝑦𝑟ℎ𝑗 Length of the 𝑗th cluster on row 𝑟 for each crop ℎ
𝛿𝑟ℎ𝑗 Units of crop ℎ placed in the 𝑗th cluster on row 𝑟

with 𝑟 = 1,… , 𝑅 − 1, ℎ, 𝑘 = 1,… ,𝐻 , and 𝑖, 𝑗 = 1,… , 𝑁 . For example,
given two adjacent rows 𝑟 and 𝑟+1, if two clusters occupy, respectively,
the intervals [𝑧𝑟ℎ𝑖, 𝑧𝑟ℎ𝑖 + 𝑦𝑟ℎ𝑖] = [2, 7] and [𝑧𝑟+1𝑘𝑗 , 𝑧𝑟+1𝑘𝑗 + 𝑦𝑟+1𝑘𝑗 ] = [3, 9],
then

𝜃(ℎ, 𝑘, 𝑟, 𝑖, 𝑗) = max{min{7, 9} − max{2, 3}, 0} = 4.

We still denote with 𝛿𝑟ℎ𝑗 the number of plants of crop ℎ included
in the 𝑗th cluster placed on row 𝑟, with ℎ = 1,… ,𝐻 , 𝑟 = 1,… , 𝑅 and
𝑖 = 1,… , 𝜂𝑟ℎ. The Crop Planting Layout Problem can be formulated as:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝐻
∑

ℎ=1

𝐻
∑

𝑘=1
𝑎ℎ𝑘 ×

𝑅−1
∑

𝑟=1

𝜂𝑟ℎ
∑

𝑖=1

𝜂𝑟+1,𝑘
∑

𝑗=1
𝜃(ℎ, 𝑘, 𝑟, 𝑖, 𝑗) (12)

𝑠.𝑡.

𝑧𝑟ℎ𝑗 = 0 ⟹ 𝑦𝑟ℎ𝑗 = 0 ℎ = 1,… ,𝐻, 𝑟 = 1,… , 𝑅, 𝑗 = 1,… , 𝜂𝑟ℎ (13)

𝑧𝑟ℎ𝑗 + 𝑦𝑟ℎ𝑗 ≤ 𝑁 + 1 ℎ = 1,… ,𝐻, 𝑟 = 1,… , 𝑅, 𝑗 = 1,… , 𝜂𝑟ℎ (14)
𝑅
∑

𝑟=1

𝜂𝑟ℎ
∑

𝑗=1
𝛿𝑟ℎ𝑗 = 𝑑ℎ ℎ = 1,… ,𝐻 (15)

𝑦𝑟ℎ𝑗 =
⌈ 𝑔𝑟ℎ × 𝛿𝑟ℎ𝑗

𝑓𝑟

⌉

× 𝑓𝑟 ℎ = 1,… ,𝐻, 𝑗 = 1,… , 𝜂𝑟ℎ, 𝑟 = 1… , 𝑅 (16)

𝑧𝑟ℎ𝑗 ≠ 0 ∧ 𝑧𝑟𝑘𝑖 ≠ 0 ⇒ 𝑧𝑟ℎ𝑗 + 𝑦𝑟ℎ𝑗 ≤ 𝑧𝑟𝑘𝑖 ∨ 𝑧𝑟𝑘𝑖 + 𝑦𝑟𝑘𝑖 ≤ 𝑧𝑟ℎ𝑗

ℎ, 𝑘 = 1,… ,𝐻, 𝑟 = 1,… , 𝑅, 𝑗 = 1,… , 𝜂𝑟ℎ, 𝑖 = 1,… , 𝜂𝑟𝑘
(17)

𝑧𝑟ℎ𝑖 ≠ 0 ∧ 𝑧𝑟ℎ𝑖+1 ≠ 0 ⟹ 𝑧𝑟ℎ𝑖 + 𝑦𝑟ℎ𝑖 + 𝑐𝑟ℎ ≤ 𝑧𝑟,ℎ,𝑖+1

ℎ = 1,… ,𝐻, 𝑟 = 1,… , 𝑅, 𝑖 = 1,… , 𝜂𝑟ℎ − 1 (18)
𝑧𝑟ℎ𝑖 ≠ 0 ∧ 𝑧𝑟+1,𝑘,𝑗 ≠ 0 ⟹ 𝑧𝑟ℎ𝑖 + 𝑦𝑟ℎ𝑖 ≤ 𝑧𝑟+1,𝑘,𝑗 ∨ 𝑧𝑟ℎ𝑖 ≥ 𝑧𝑟+1,𝑘,𝑗 + 𝑦𝑟+1,𝑘,𝑗
𝑖 = 1,… , 𝜂𝑟ℎ, 𝑗 = 1,… , 𝜂𝑟+1,𝑘, 𝑟 = 1,… , 𝑅 − 1, (ℎ, 𝑘) ∈  (19)
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𝑧𝑟ℎ𝑖 ≠ 0 ⇒ 𝑧𝑟ℎ,𝑖−1 ≠ 0 𝑟 = 1,… , 𝑅, ℎ = 1… ,𝐻, 𝑖 = 2,… 𝜂ℎ𝑟 (20)

The objective function (12) states that the CPLP aims to maximize the
total companionship. Constraints (13) model the relationship between
cluster starting position and the corresponding length. Inequalities (14)
model upper bound on the ending positions of clusters. Equalities (15)
represent the demand satisfaction constraints. Constraints (16) model
the cluster length according to the placement policy (Algorithm 1: line
1–line 2). Constraints (17) model the no-overlapping constraints for
pair of clusters placed on the same row. Similarly constraints (18)
model the minimum distance between two clusters placed on the same
row and associated to the same crop. No-adjacency constraints are
modelled by (19). Finally constraints (20) aim to model symmetry
breaking by modelling a precedence relationship between the clusters
of each crop placed on the same row.

6. Complexity

Let us denote with d-CPLP, the decision version of the CPLP, meant
as the problem of determining if there exists a feasible solution satis-
fying all crop demand. Let us assume that the d-CPLP does not admit
an answer yes (i.e. it is not guaranteed that a feasible solution meeting
all crop demand exists). In this case one can decide to unmeet part
of the demand and introduce a new variable 𝑢ℎ, denoting the amount
of unsatisfied demand for crop ℎ, with ℎ = 1,… ,𝐻 . The demand
constraints and the objective function become:
𝑅
∑

𝑟=1

𝜂ℎ
∑

𝑗=1
𝛿𝑟ℎ𝑗 + 𝑢ℎ = 𝑑ℎ ℎ = 1,… ,𝐻,

min
∑

ℎ∈𝐻
𝜔ℎ × 𝑢ℎ, (21)

where 𝜔ℎ is the cost of one unit of unmet demand of crop ℎ, with
ℎ = 1,… ,𝐻 . In particular when all costs 𝜔ℎ are positive, solving
the d-CPLP is equivalent to asking for any feasible solution of cost
zero under (21). Therefore, a reduction to d-CPLP suffices for the total
companionship function.

Theorem 1. d-CPLP is strongly NP-complete.

Proof. We prove the thesis by reduction from the strongly -
complete 3-PARTITION problem (Garey and Johnson, 1979), which
can be defined as follows.

Instance. We are given an integer 𝑏 ∈ N and a set of 3𝑛 integers
 = {𝑞1,… , 𝑞3𝑛} satisfying the following two conditions

i ∑3𝑛
𝓁=1 𝑞𝓁 = 𝑛 × 𝑏

ii 𝑏∕4 < 𝑞𝓁 < 𝑏∕2 ∀𝓁 ∈ {1,… , 3𝑛}.

Problem. Find whether there exists a partition of  into 𝑛 subsets
1,… ,𝑛 that satisfies ∑

𝑞∈𝓁′
𝑞 = 𝑏, ∀𝓁′ ∈ {1,… , 𝑛}.

Given any instance of 3-PARTITION, we build an instance of d-
CPLP with a set  of 𝑛 crops, i.e.  = {ℎ1,… , ℎ𝑛}. All crops have the
same demand 𝑏, i.e. 𝑑ℎ = 𝑏 with ℎ ∈ . Each crop ℎ is characterized
by a single value of cluster length, with 𝑐ℎ = 𝐶ℎ = 𝑁 , and each
𝑢𝑛𝑖𝑡 of crop ℎ occupies a single position on a row, i.e. 𝑜ℎ = 1 with
ℎ ∈ . As a result each row can be associated to only one cluster (no-
overlapping constraints). The planting area consists of 3𝑛 rows 𝑟1,… , 𝑟3𝑛

and each row 𝑟𝓁 is equipped with 𝑞𝓁 fertigation points, i.e. 𝑞𝓁 =
⌊

𝑁
𝑓𝑟𝓁

⌋

.

This implies that 𝑞𝓁 is the planting capacity of row 𝑟𝓁 , meant as the
maximum number of plants that can be associated to row 𝑟𝓁 , with
𝓁 ∈ {1,… , 3𝑛}. As reported in Fig. 4 a d-CPLP instance can be modelled
on a complete bipartite graph G, where the set of vertices is partitioned
into two subsets. The former corresponds to the vertices on the left in
8

Fig. 4. Reduction of 3-PARTITION to d-CPP.

Fig. 4 and models rows (strip-vertices). The latter corresponds to the
vertices on the right and represents crops (crop-vertices). Each crop-
vertex ℎ has 𝑏 units of outflow. Each strip-vertex 𝓁 has 𝑞𝓁 units of
maximum inflow. One unit of flow sent on edge {ℎ,𝓁} models that
one unit of crop ℎ has been assigned to row 𝓁, with a consumption
of one unit of its capacity 𝑞𝓁 . A feasible d-CPLP solution corresponds
to an integer flow in 𝐺, sending out all 𝑛 × 𝑏 units from the crop-
vertices while respecting each planting capacity 𝑞𝓁 and no-overlapping
constraints, i.e., the flow entering a strip-vertex 𝓁 originates from nodes
all associated to the same crop, with 𝓁 = 1,… , 3𝑛.

Let us assume that the d-CPLP instance built above admits answer
yes. Given the flow on 𝐺 corresponding to a feasible CPLP solution, we
have that each strip-vertex must receive flow from at most one crop-
vertex, i.e. there is room for planting a single cluster on each strip.
Moreover each crop-vertex must send flow to at least 3 strip-vertices,
i.e. 𝑏∕4 < 𝑞𝓁 < 𝑏∕2 ∀𝓁 ∈ {1,… , 3𝑛}. Since ∑3𝑛

𝓁=1 𝑞𝓁 = 𝑛 × 𝑏, each strip-
vertex 𝓁 has to receive exactly 𝑞𝓁 units of flow. As a result the 𝑏 outflow
units of each crop-vertex must be sent to exactly three strip-vertices. In
other words one can find a subset of exactly three strip-vertices whose
capacities sum to 𝑏, and all these 𝑛 subsets are disjoint, i.e. the given
instance of the 3-PARTITION admits answer yes.

We now demonstrate that if the given 3-PARTITION is a yes-
instance then the d-CPLP admits answer yes. By hypothesis, there exists
a feasible 3-PARTITION solution, that is a partition of  into 𝑛 subsets
1,… ,𝑛 that satisfy ∑

𝑞∈ℎ
𝑞 = 𝑏, ∀ℎ ∈ {1,… , 𝑛}. Since ∑3𝑛

𝑗=1 𝑞𝓁 = 𝑛×𝑏
and 𝑏∕4 < 𝑞𝓁 < 𝑏∕2 ∀𝓁 ∈ {1,… , 3𝑛}, we have that each subset ℎ
consists of three elements. One can determine an integer flow in 𝐺, such
that each crop-vertex ℎ ∈ {1,… , 𝑛} has an outflow of 𝑏 units, reaching
three strip-vertices with capacity 𝑞𝓁 ∈ ℎ, with 𝓁 ∈ {1,… , 3𝑛}. Because
the subsets ℎ are disjoint, the inflow of strip-vertex 𝓁 consists of 𝑞𝓁
units, all coming from the same node ℎ. Therefore, the d-CPLP instance
has answer yes.

We have proved that the d-CPLP admits answer yes to the in-
stance built above if and only if the given 3-PARTITION instance is
a yes-instance. Hence the thesis is proved. □

7. System implementation details

This work is part of a research project aiming to automate the design
and control of an intercropping system according to the Industry 4.0
paradigm (Lezoche et al., 2020). The proposed solution approach has
been integrated as AI-cloud-service in a microservice oriented platform,
developed by the team of researchers involved in the project. This sec-
tion focuses on the implementation details of the system. Fig. 5 provides
a high-level overview of the whole system architecture. In particular, its
components include a front-end mobile application, a gateway service,
a relational database, and two back-end micro-services. The CPLP and
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Fig. 5. System architecture.

CP services constitute the core component of the system, referred to
as AI-CPLP. In the following we give a general description of each
component.

The management mobile application is a user-friendly native appli-
cation developed for both iOS and Android using Microsoft Xamarin.
It is responsible for sanitizing the end user input before invoking the
back-end. There is no direct connection between the application and
the AI-CPLP back-end. Instead, the mobile application communicates
with a gateway service in order to provide some essential information:
the irrigation system configuration, the selected plant species and the
farmer’s preferences in terms of minimum and maximum cluster length
for each selected species. Fig. 6 reports some representative screens
captured by the mobile client application.

The Gateway is a public-exposed cloud service written in PHP which
performs two tasks. First of all, it collects data from the mobile applica-
tion and securely stores it in a relational database. Secondly, it triggers
the AI-CPLP back-end whenever the end user send a request through the
application. It is worth noting that all communication messages are in
JSON format.

The relational database stores the knowledge base of our system
and has been implemented using the open-source MariaDB database
management system. It stores every end user request and response.
Moreover, it contains the score matrix 𝐴. In particular, we refer to
the spatial diversity scoring system proposed by Juventia et al. (2022),
where each score value 𝑎ℎ𝑘 is obtained by combining two types of
indicators. The first indicator combines farmers’ experience with data
from literature on intercropping practices. The aim is to model the
effects of crops on each other’s yield and pest and pathogen attack.
An indicator value of −1 (undesirable effect), 0 (neutral effect), and
+1 (desirable effect) is assigned. We augmented the first indicator with
no-adjacency constraints, encoded in the knowledge base with a score
value 𝑎ℎ𝑘 = −100. The second indicator takes into account the spreading
of farm operations and soil disturbance. In particular, the indicator
value assesses whether a crop pair has sowing or harvesting periods
that are at least three weeks apart. In the second indicator this is
represented by a minimum score of 0 (i.e., overlapping sowing and
harvesting periods), +1 (i.e., either the sowing or the harvesting period
overlaps), or +2 (i.e., no overlap between the sowing and harvesting
periods of the two crops).

The CPLP micro-service has been coded in Java using Spring Boot
framework responsible for back-end validation, CPLP problem instance
encoding and resolution through the invocation of CP solver micro-
service.
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The CP solver micro-service runs an off-the-shelf black-box CP solver
in order to provide a solution for a given CPLP problem instance. We
implemented the CP model based on integer variables (12)–(20) using
MiniZinc (Nethercote et al., 2007), an open-source framework equipped
with a solver-independent CP modelling language. Performances are
strongly related to the algorithm used as back-end solver for filtering,
propagation and search. In particular, the MiniZinc framework com-
piles a CP model into FlatZinc, a low-level language designed to be
easily interfaceable to constraint solvers, which might be either exter-
nal or internal. We chose the (external) Google OR-Tools (Perron and
Furnon, 2022) solver. Since 2013, Google OR-Tools has consistently
been a top-performing solver in the MiniZinc Constraint Modelling and
Optimization Competition (MiniZinc, 2023), an annual international
competition that promotes research and development of constraint
programming technologies. Concerning the CP model based on inter-
val variables (1)–(11), we used the Optimization Programming Lan-
guage (OPL) (Van Hentenryck, 1999), a proprietary modelling language
equipped with a repertoire of scheduling functions tailored for the CP
Optimizer (IBM ILOG, 2023), the commercial CP solver developed by
IBM ILOG.

7.1. Computational campaign

The aim of our computational experiments was to assess the per-
formance of the proposed models on realistic instances. All test files
are available at https://cloud-simple.it/cplp. All the experiments were
run on a standalone Linux machine with an Intel Core i7 processor
composed by 4 cores clocked at 2.5 GHz and equipped with 16 GB of
RAM. We have tested the proposed models on a set of 572 instances.
As aforementioned this work is part of a research project aiming to
automate the design and control of intercropping systems. To this aim
demands and parameters inherent the planting areas were provided by
farmers involved in the research project as stakeholders. In particular,
test instances refer to two types of planting area: the former has 𝑅 = 6
rows with a number of positions 𝑁 ∈ {33, 60, 100, 135} for each row,
the latter has 𝑅 = 8 rows and can only accommodate at most 𝑁 =
100 or 135 plants on each row. Each position was equipped with a
fertigation point, i.e. 𝑓𝑟 = 1 with 𝑟 = 1,… , 𝑅. The demand concerns 8
horticulture species, each characterized by its own occupancy and level
of companionship with the other species, as detailed in Table 2. It is
worth noting that the level of plant occupancy has been chosen based
on the farmer’s experience with intercropping systems. In particular,
the distance between adjacent strips and the levels of occupancy have
been selected with the aim of maximizing light interception. Each
instance refers to 𝐻 different species with 𝐻 ∈ {2, 4, 6, 8}. Cluster
length constraints follow five different policies, detailing the percentage
of coverage of a single cluster, i.e.:

1 𝑐ℎ = 𝐶ℎ = 𝑁 ,

2 𝑐ℎ = 𝑁
2

and 𝐶ℎ = 𝑁 ,

3 𝑐ℎ = 3𝑁
8

and 𝐶ℎ = 𝑁
2

,

4 𝑐ℎ = 𝑁
4

and 𝐶ℎ = 𝑁 ,

5 𝑐ℎ = 𝑁
4

and 𝐶ℎ = 𝑁
2

with ℎ = 1,… ,𝐻 . For any feasible combination of parameters (𝐻,𝑅,𝑁,
), we generated up to five instances. In particular, no instances were
generated for the infeasible combinations (8, 6, 100,1) and (8, 6, 135,
1), whilst only one instance was generated for each combination
(8, 8, 𝑁,1) with 𝑁 ∈ {100, 135}. Farmers also required that no-
adjacency constraints were exploited to model the antagonism between
species, meant as pair of species (ℎ, 𝑘) with 𝑎ℎ𝑘 = −100 and ℎ, 𝑘 =
1,… ,𝐻 . In particular we generated two types of instances for each
combination (𝐻,𝑅,𝑁,), labelled as 𝐻𝑎𝑟𝑑 and 𝑆𝑜𝑓𝑡. The 𝐻𝑎𝑟𝑑 in-
stances encoded plant antagonism with ℎ𝑎𝑟𝑑 no-adjacency constraints,

https://cloud-simple.it/cplp
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Fig. 6. Details of the management mobile app of Fig. 5.
i.e.  = {(ℎ, 𝑘) | 𝑎ℎ𝑘 = −100, ℎ = 1… ,𝐻, 𝑘 = 1,… ,𝐻}. The 𝑆𝑜𝑓𝑡
instances refers to 𝑠𝑜𝑓𝑡 no-adjacency constraints, i.e.  ∶= ∅. This
leads to a computational campaign carried out on 1144 instances. In
the following we briefly refer to

• the model based on interval variables as 𝐼𝑉 model;
• the model based on integer variables as 𝐼𝑃 model.

Instances were solved with a time limit of 480 s. The CP-optimizer
solver was able to determine a feasible solution for all instances of
both variants of 𝐼𝑉 model, with 440 out of 572 instances solved to
optimality. The OR-Tools was not able to determine at least one feasible
solution for 21 instances (𝐻𝑎𝑟𝑑) and 32 instances (𝑆𝑜𝑓𝑡). As far as the
𝐼𝑃 model is concerned, the number of instances solved to optimality by
OR-Tools was 386 (𝐻𝑎𝑟𝑑) and 345 (𝑆𝑜𝑓𝑡). Fig. 7 details results also for
time limits lower than 480 s. Results show that CP-Optimizer required
at least 120 s to determine at least one feasible solution for all instances
of the 𝐼𝑉 model, whilst the remaining time was spent to improve the
solution quality. It is worth noting that solutions violating adjacency
constraints are feasible for the 𝑆𝑜𝑓𝑡 instances of both models. Such an
increase in the number of feasible solutions worsens the success rate
of OR-Tools, whilst it has no significant impact on the success rate
of CP-Optimizer. In particular for the 21 𝐻𝑎𝑟𝑑-instances and 32 𝑆𝑜𝑓𝑡-
instances of the 𝐼𝑃 model, no feasible solution was found even when
we increased the time limit to 3600 s. In order to investigate which are
the complicating constraints for such instances of the 𝐼𝑃 model, we
report in Table 3 the success rates of 𝐼𝑃 model for each policy. Results
show that OR-Tools solver was able to find at least one feasible solution
for all instances of 𝐼𝑃 model with a minimum cluster length not lower
than 37% of the number 𝑁 of row positions, i.e. policies 1, 2 and
3. Nevertheless, a lower minimum cluster length makes difficult to
find a feasible solution for instances of 𝐼𝑃 , i.e. 4 and 5. The worst
success rate occurred for 𝑆𝑜𝑓𝑡 instances with 4 and 5, corresponding
to instances with the largest set of feasible solutions. Additional tables
are available at https://cloud-simple.it/cplp. Results show that for both
𝐻𝑎𝑟𝑑 and 𝑆𝑜𝑓𝑡 variants of 𝐼𝑉 model, CP-Optimizer took (on average)
less than 20 s to find the optimal solution for about 420 instances out
to 572 and less than 35 s to determine at least one feasible solution for
all 572 instances. On the other hand the OR-Tools determined a feasible
solution within 202 (166) s on average for 540 (551) out of 572 instances
of the 𝑆𝑜𝑓𝑡 (𝐻𝑎𝑟𝑑) variant of 𝐼𝑃 model.

We have observed that the most challenging instances occur when
using the cluster length policy 5, where the total number of feasible
clusters ranges from 2 to 4 for each strip. Given that we considered 8
crop species and 8 strips, we can assert that the proposed approach
10
Table 2
Score matrix of species and their respective occupancy. Symbols + and − correspond
to 𝑎ℎ𝑘 = 1 and 𝑎ℎ𝑘 = −100, respectively. Empty cells refer to the default value 𝑎ℎ𝑘 = 0.

Table 3
Feasibility OR-Tools: policies.
 Count Hard Soft

60 s 120 s 240 s 480 s 60 s 120 s 240 480 s

1 92 92 92 92 92 92 92 92 92
2 120 120 120 120 120 120 120 120 120
3 120 120 120 120 120 120 120 120 120
4 120 108 110 114 115 102 108 111 114
5 120 88 98 100 104 80 86 90 94

Total 572 528 540 546 551 514 526 533 540

is well-suited for instances with a total number of feasible clusters
not exceeding 256. By adjusting the lower bound on cluster length
𝑐ℎ and reducing the number of species 𝐻 , our model can efficiently
determine the optimal layout for larger planting areas. For instance, it
can determine the optimal layout for a planting area with 128 strips
and 4 crop species using the cluster length policy 1. However, for
scenarios with a higher number of feasible clusters, our approach may
not guarantee the determination of high-quality CPLP solutions within
a few minutes using computational resources typically available on a
laptop or a smartphone.

8. Discussion

In this paper, we introduced an application of AI planning tech-
niques for supporting the design of strip intercropping layouts. Given
a planting area and known crop demands, the optimization goal was

https://cloud-simple.it/cplp
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Fig. 7. Success rates for 𝐻𝑎𝑟𝑑 and 𝑆𝑜𝑓𝑡 instances.

to maximize crop diversity, while considering production and tech-
nological constraints. We also delved into studying the computational
complexity of the proposed AI-based approach, both theoretically and
empirically. Initially, we demonstrated the strong -completeness
of the considered optimization problem, regardless of the objective
function under consideration. Subsequently, we carry out a computa-
tional analysis to evaluate the performance of the proposed models
on real-world datasets consisting of instances with up to eight crops
requiring 1080 plants. The computational results demonstrated that
the AI-based solution approach is sustainable, since it is not energy-
intensive to run (Rolnick et al., 2022). Indeed, it determines high-
quality solutions in just a few minutes by requiring computational
resources typically available on a laptop or smartphone. Options exist
for making the proposed approach more general by incorporating other
diversity dimensions in the scoring system.

Recently (Juventia et al., 2022) devised a framework for the system-
atic exploration and evaluation of spatio-temporal strip intercropping
layouts. The main limitation of the proposed approach relies on the use
of quantitative tools not designed to cope with multiple dimensions
in crop diversifications. To overcome this limitation, the framework
requires user supervision to automatically filter layouts generated by
quantitative methods. Our optimization approach can be augmented, in
quite natural way, to include temporal crop diversification as follows.
Given a partition of the planning horizon in 𝑇 time periods, the
proposed CP formulations should take into account temporal dimension
by defining the time copy (𝑟, 𝑝, 𝑡) of cell (𝑟, 𝑝) in period 𝑡, with 𝑟 = 1,…𝑅,
𝑡 = 1,… , 𝑇 and 𝑝 = 1,… , 𝑁 . Then an asymmetric score value 𝑎′ℎ,𝑘 quan-
tifies interactions between crop ℎ and crop 𝑘 assigned, respectively, to
the time copies (𝑟, 𝑝, 𝑡) and (𝑟, 𝑝, 𝑡+ 1) of cell (𝑟, 𝑝). If it is required that
crop ℎ has not to be assigned to the same cell for two consecutive peri-
ods, then the negative interaction 𝑎′ = −100 is added in the knowledge
11

ℎℎ
base. The total score is then obtained by adding both temporal and
spatial scores of crop combinations in the layout. It is worth noting that,
agronomic research in the past mainly addressed temporal aspects at
annual scale. Embedding temporal diversity into our CP models would
enable the evaluation of spatio-temporal interactions at a finer time
resolution, such as sowing and harvesting. Our modelling approach can
be extended to include further crop diversity dimensions. For example
recently (Ditzler et al., 2021) devised a conceptual framework for a
scoring system with three diversity dimensions, which are space, time
and genes. The genetic diversity was meant to model single and mixed
cultivar. Our CP formulation can take into account such third diversity
dimension by adding the mixed cultivar to the set of crop species.
If crop ℎ is a mixed cultivar, then a positive interaction 𝑎ℎℎ = 1 is
reported in knowledge base. In a more recent contribution, Ditzler
et al. (2023) carried out a three-year experiment to assess the potential
of high-resolution intercropping system. To interpret empirical data,
the authors relied on the scoring system proposed in Ditzler et al.
(2021). These recent contributions suggest that an interesting area for
future research is the development of ad-hoc automatic planning tools
designed to optimize multi-dimension crop diversity at field scale. In-
deed, although our CP model can be naturally extended to incorporate
dimensions such as time and genetic diversity, solving it with standard
solvers may become energy-intensive due to the exponential increase
in the number of constraints and decision variables.

As observed by Ditzler et al. (2023), strip intercropping can, for the
most part, be implemented using common agricultural machinery. To
implement the layout prescribed by the proposed algorithm, currently
available planting seedling machines can be utilized (Williames, 1997).
These machines are equipped with seedbeds, each accommodating from
60 to 120 young seedlings ready for transplantation. Each seedbed is
typically a flat, raised area of soil where seeds are sown for germination
and seedling growth before being transplanted to their final growing
location. Seedlings are arranged in rows within the seedbed, with
adequate spacing between each seedling to allow for proper root devel-
opment and access to sunlight. Currently, the sowing phase is carried
out by seeding roll machines designed for single-crop seedbeds. The
farmers involved in the project collaborated with a robotics developer
to test a proof-of-concept of a sowing robotic arm. Fig. 8 shows how
the system architecture of Fig. 5 has been extended with a mobile
app. This app has been specifically designed to retrieve a previously
saved CPLP solution and convert it into a robot work plan. The cell
rows underlying the CPLP solution are mapped with the positions of
the seedbeds, and then each crop-to-cell assignment is converted into
a pick-and-place action. The resulting work plan is then sent to the
robotic arm. The seeds are made available on a rotating plate, equipped
with compartments corresponding to the distinct crop species. Using a
pneumatic end effector, the robotic arm picks up seeds of one crop from
the rotating plate and places them into the positions of the seedbed
assigned to the crop in the CPLP solution. Fig. 9 shows the proof-of-
concept of the sowing robotic arm made by 3D printing, as well as the
interface of the mobile app.

Finally it is worth noting that the research project was conducted
participatorily with farmers interested in experimenting with strip in-
tercropping systems. One of the participating farmers successfully used
the AI-based platform to design and implement a strip intercropping
layout in the greenhouse shown in Fig. 10, comprising 5 rows, 5 clusters
and 5 species. According to the farmer, this marks the initial stride
towards integrating the research project’s outcomes into a large-scale
industrialized setting.

9. Conclusions

This paper proposes a new AI-based approach for automating inter-
cropping systems. By presenting two constraint programming models,

we have successfully demonstrated the determination of optimal crop
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Fig. 8. How to integrate a sowing robotic arm in the system architecture of Fig. 5.
Fig. 9. The proof-of-concept of the sowing robotic arm and the sowing mobile app.
Fig. 10. The test case.
planting layouts with the objective of maximizing the positive interac-
tions between plants placed in close proximity. The proposed models
are tailored for strip intercropping systems where the layout of fertiga-
tion points is divided into rows and the plant interaction model is grid-
based. We prove that the considered problem is strongly -complete.
Integrating the proposed planning approach within an AI-based plat-
form has enabled the development of an intelligent decision-making
service, that can be seamlessly invoked by farmers through a dedicated
mobile application. Numerical experiments on a set of benchmark
instances, based on real-world data, show that standard solvers provide
a good tradeoff between solution quality and computational resource
12
utilization. In particular, the two proposed models were both able to
solve instances where no more than two different species are placed on
the same row. When it is feasible to place a higher number of species on
a single row, the model based on interval variables outperformed the
model based on integer variables. This suggests that the difficulty of the
decision problem is mainly due to the assignment decision component,
prescribing how to arrange plants on each strip. We finally observe,
the proposed decision-making service has been developed under the
assumption that the scoring system encodes only spatial crop diversifi-
cation. An emerging research area is represented by the development
of optimization tools for incorporating multiple diversity dimensions
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at the field scale as part of cropping system planning. A promising
research direction is to extend the proposed AI-based planning ap-
proach to include crop diversification at several dimensions, including
spatial, temporal, genetic, and fertigation diversity. This introduces
additional constraints to the (hard) assignment decisions and suggests
that developing ad-hoc optimization algorithms is an interesting area
for future research.
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