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Abstract: Artificial intelligence has emerged as promising tool to decode an image transmitted
through a multimode fiber (MMF) by applying deep learning techniques. By transmitting
thousands of images through the MMF, deep neural networks (DNNs) are able to decipher the
seemingly random output speckle patterns and unveil the intrinsic input-output relationship.
High fidelity reconstruction is obtained for datasets with a large degree of homogeneity, which
underutilizes the capacity of the combined MMF-DNN system. Here, we show that holographic
modulation can encode an additional layer of variance on the output speckle pattern, improving
the overall transmissive capabilities of the system. Operatively, we have implemented this by
adding a holographic label to the original dataset and injecting the resulting phase image into
the fiber facet through a Fourier transform lens. The resulting speckle pattern dataset can be
clustered primarily by holographic label, and can be reconstructed without loss of fidelity. As an
application, we describe how color images may be segmented into RGB components and each
color component may then be labelled by distinct hologram. A ResUNet architecture was then
used to decode each class of speckle patterns and reconstruct the color image without the need
for temporal synchronization between sender and receiver.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The success of wavefront shaping (WS) techniques [1] has enabled exploitation of modal diversity
in multimode optical fibers (MMFs) to finely control light transmission by operating phase-only
modulation at the fiber input, overcoming the inherent optical turbidity of the waveguide. WS
methods to control light transmission through MMFs are based on the recording of both intensity
and phase of the speckle patterns at the fiber output and on the use of phase conjugation or
transmission matrix method to create the desired amplitude distribution at the fiber output [2–11].
This has led to set of novel applications, including low invasiveness neural endoscopes with
sub-cellular spatial resolution [12–17], far-field imaging [18], holographic optical tweezers [19],
and remote control of plasmonic structures [20]. These techniques are complemented by the
faster WS-free methods based on reflectance imaging [21,22] and compressive sensing [23],
which are however limited in terms of signal to noise ratio.

Alternatively, recent works have shown the transmissive properties of MMFs may be evaluated
by artificial intelligence techniques without the need for any phase measurement at the MMF’s
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output [24,25]. By directly projecting the screen of a phase-only spatial light modulator (SLM)
onto the fiber facet via a 4f system, deep learning has been established as a technique to reconstruct
the SLM pattern and thus “see” the SLM screen through the fiber, and the ability to “learn” the
transmission matrix of a multimode fiber is now well understood to be an efficient method to
reconstruct images transmitted through a MMF. For such a problem, the image may either be
coupled by a 4f system directly projecting the image onto the fiber facet [24,25], or indirectly
by focussing the image through Fourier transform lens onto the fiber facet [26]. Typically, tens
of thousands of images are then coupled through the fiber to train the network and several
thousand are used to validate it. Since these pioneering works, significant advancements have
been made in improving the training fidelity. Recently, an attention layer has been shown to
reduce the requirement of a large dataset down to hundreds of images [27] or, alternatively, a
simpler network architecture (hidden layer dense neural network) may reduce the training time
to several minutes [28]. Utilising training data sets where the fiber is physically or thermally
perturbed, image reconstruction has been demonstrated with strong resilience to the bending
[29–32], and temperature changes [33]. Wang et al investigated the role of light source line width
and stability on image reconstruction [34]. Going full circle, by applying an “actor” and “trainer“
network model, the machine learning technique can also be used to project desired light patterns
through the fiber [35]. Despite these impressive advancements, little attention has been paid to
the possibility of increasing the transmissive capabilities by an “all optical” method.

Here, we show how a Fourier lens-based coupling can be further exploited to increase the
variance of the output speckle patterns and can “holographically label the dataset”. When a
dataset is modulated by multiple holograms, we find that the data primarily clusters based on
the holographic carrier, which in turn act as a “label” for the transmitted data. As an example,
we demonstrate how a color image can be segmented and each color component then projected
and transmitted with a superimposed holographic label. The developed deep learning method
is then able cluster the data based on different labels and also to reconstruct the image without
loss of fidelity. Previous works have largely focussed on the transmission of grayscale images
with the notable exception of Caramazza et al [26], where time-division is used to transmit color
information requiring temporal synchronization between the sender (SLM) and the receiver
(CCD). Our technique of holographic labelling allows the data to be classified into distinct clusters
based on only the speckle pattern and requires no temporal synchronization between sender and
receiver. This supports the more general conclusion that introducing additional variance in the
output speckles can help in better exploiting the wealth of information that can be transmitted
through MMFs.

2. Methods

2.1. Optical techniques

Figure 1(A) shows the principle of encoding image data into a spatially varying hologram on the
input facet of the fiber. Our results leverage on the hypothesis that changing the holographic
label changes the basis of modes excited with lower mutual correlation than changing only the
image data. This can be observed by studying the stacks of speckle patterns shown in Fig. 1(A),
obtained by labelling the image data (ϕdata) with (ϕholo) to obtain the phase mask:

ϕmask = arg(exp(i(ϕdata + ϕholo))) (1)

We selected ϕholo to be a blazed grating: by varying its pitch and rotation the image data is
moved across the fiber core. This generates much higher variance in the output speckle patterns
than modulating only the image, which we attribute to an higher level of orthogonality in the
plane of the facet over the Fourier plane (screen of SLM) as a basis for the modes of the fiber.
ϕdata can be mathematically reconstructed from ϕmask without loss of information and by taking
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Fig. 1. A) Principle of encoding image data in a hologram. By the addition of a blazed grating, the data is shifted around 
the fiber core which encodes a higher level of variance in the output speckles than the data itself. B) Optical setup used 
to transmit data through the MMF, M—mirror, L—lens, MO—objective, MMF—multimode fiber, SLM—spatial light 
modulator, BS—beam splitter, and CCD—charged coupling device. C) Structure of the implemented ResUNet 
grayscale image reconstruction convolutional neural networks. 

In the experimental implementations described in next paragraphs, the phase image 𝜙𝑚𝑎𝑠𝑘 
was injected into a MMF (50 μm core, 0.22 NA, Thorlabs (FG050LGA), approximately 5 cm 
long) through the optical setup illustrated in Figure 1B. The phase image was scaled between 0 
(black) and 𝜋 (white) to ensure maximum contrast between white and black regions of the 
image  [33]. A 633 nm laser beam was expanded by a telescope and had its polarization rotated 
to match the screen of a reflective, phase-only, SLM. The reflected light passed through a 
second telescope which de-magnifies the beam to match the back aperture of MO1, coupling 
light into the MMF. The screen of the SLM is the Fourier plane of the focal point of MO1 and 
therefore pixels in the image correspond to different insertion angles. Therefore, higher order 
modes carry information from the edge of the image, while lower order modes represent the 
center of the image. The zero diffraction from the SLM was spatially filtered at the focal point 
of the telescope (L3/L4) by a removable razor blade, while the alignment of the hologram and 
MMF was monitored on a charge coupled device (CCD1). The transmission through the fiber 
was collected by MO2, and the MMF’s output facet imaged on CCD2 to monitor the output 
speckle patterns. The SLM was given 150 ms to refresh when changing the pattern and the 
exposure time of the CCD was in total 60 ms. 

2.2 Neural network

Speckle patterns generated at the output of the MMF are fed into a deep, fully convolutional 
neural network based on the ResUNet architecture  [36], having the role of unveiling the phase 
pattern 𝜙𝑚𝑎𝑠𝑘 based only on the speckle data. ResUNet is an evolution of the U-Net 
architecture  [37], enhancing its depth by incorporating a residual backbone  [38]. This 
modification is crucial as it addresses issues such as accuracy degradation and vanishing 
gradients, allowing for more effective and stable training  [39]. A comprehensive visualization 
of the network's architecture is presented in Figure 1C, including the number of layers and the 
shape of the output tensor at each stage, providing a clear reference for readers to grasp the 
network's structural intricacies. In terms of activation functions, all neurons in this network 
utilize the rectified linear unit (ReLU). This choice not only simplifies the network's 

Fig. 1. A) Principle of encoding image data in a hologram. By the addition of a blazed
grating, the data is shifted around the fiber core which encodes a higher level of variance
in the output speckles than the data itself. B) Optical setup used to transmit data through
the MMF, M—mirror, L—lens, MO—objective, MMF—multimode fiber, SLM—spatial
light modulator, BS—beam splitter, and CCD—charged coupling device. C) Structure of
the implemented ResUNet grayscale image reconstruction convolutional neural networks.

the Fourier transform of ϕmask, and it can also be verified that the image data is primarily encoded
in the first order (as this is where the majority of amplitude lies). In the following, we use a
blazed grating as ϕholo, however any other phase pattern that can increase the variance can be
employed to implement the technique.

In the experimental implementations described in next paragraphs, the phase image ϕmask was
injected into a MMF (50 µm core, 0.22 NA, Thorlabs (FG050LGA), approximately 5 cm long)
through the optical setup illustrated in Fig. 1(B). The phase image was scaled between 0 (black)
and π (white) to ensure maximum contrast between white and black regions of the image [33]. A
633 nm laser beam was expanded by a telescope and had its polarization rotated to match the
screen of a reflective, phase-only, SLM. The reflected light passed through a second telescope
which de-magnifies the beam to match the back aperture of MO1, coupling light into the MMF.
The screen of the SLM is the Fourier plane of the focal point of MO1 and therefore pixels in the
image correspond to different insertion angles. Therefore, higher order modes carry information
from the edge of the image, while lower order modes represent the center of the image. The zero
diffraction from the SLM was spatially filtered at the focal point of the telescope (L3/L4) by
a removable razor blade, while the alignment of the hologram and MMF was monitored on a
charge coupled device (CCD1). The transmission through the fiber was collected by MO2, and
the MMF’s output facet imaged on CCD2 to monitor the output speckle patterns. The SLM was
given 150 ms to refresh when changing the pattern and the exposure time of the CCD was in total
60 ms.

2.2. Neural network

Speckle patterns generated at the output of the MMF are fed into a deep, fully convolutional
neural network based on the ResUNet architecture [36], having the role of unveiling the phase
pattern ϕmask based only on the speckle data. ResUNet is an evolution of the U-Net architecture
[37], enhancing its depth by incorporating a residual backbone [38]. This modification is crucial
as it addresses issues such as accuracy degradation and vanishing gradients, allowing for more
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effective and stable training [39]. A comprehensive visualization of the network’s architecture is
presented in Fig. 1(C), including the number of layers and the shape of the output tensor at each
stage, providing a clear reference for readers to grasp the network’s structural intricacies. In terms
of activation functions, all neurons in this network utilize the rectified linear unit (ReLU). This
choice not only simplifies the network’s computations but also aligns with the desired behaviour,
making it a suitable choice for this specific application. Moreover, ReLU is preferred for its
ability to achieve faster training speeds compared to other activation functions, contributing to the
overall efficiency of the learning process [40]. The convolutional operator used in this ResUNet
architecture consists of 6 consecutive convolutional layers each followed by batch normalization
and ReLU activation. The input and output of this operator are added together to implement the
short skip needed in ResUNet architecture.

In the following, we first identify and describe the increased variance in the speckle patterns
dataset. Then we verify that the proposed holographic modulation provides state-of-the-art
reconstruction quality and, in the final part of the manuscript, we provide the evidence that
the additional variance can be employed as holographic label for the transmitted data. For this
latter part we employed the approach to generate red, green and blue (RGB) labels and transmit
segmented color images. We employed a network architecture comprising three parallel ResUNet
components. Each of these components generates an output, which corresponds to transmitted
color. The final 3 dimensional tensor within each network (disregarding the fourth dimension for
data batches) is then concatenated along the third dimension, resulting in another 3D tensor with
a three-fold increase in depth for each channel. This augmented tensor subsequently undergoes
further processing through a convolutional network based on the ResNet architecture, aligning
its output with a fully realized RGB 3D tensor. In all cases, 50 epochs of the network were
tested (except for the RGB images for which 100 were developed). The epoch with minimal
validation loss was then used for image reconstruction. It took approximately 1 minute to train
each epoch of the network for grayscale image reconstruction and around 3 minutes per epoch for
RGB image reconstruction. Therefore, 50 epochs of grayscale reconstruction can be trained in
under 1 hour and 100 epochs of RGB reconstruction took around 5 hours to complete. Once
the network was trained an image can be reconstructed in under 1 ms. We have chosen to use
training datasets consisting of tens of thousands of images to ensure optimal training, but recent
techniques based on attention mechanisms allow machine learning TM characterization using
much smaller datasets [27].

3. Results

3.1. Encoding variance through holographic coupling

To verify that the amount of variance associated to the additional ϕholo can be greater than the
one associated to ϕdata, 2000 handwritten digits (28 by 28 pixels) in the MNIST dataset were
coupled through 35 holographic labels ϕholo (corresponding to 35 positions on the input facet).
The 35 input positions fully overlaid the core of the fiber as shown in Supplement 1. The number
of modes carried by the fiber is approximately 1495 at 633 nm and thus capable of carrying the
28 by 28 MNIST digits (784 pixels). The resultant speckle patterns were then analysed using
principal component analysis (PCA). Figure 2(A) shows a scatter plot of the two highest variance
principal components (PC1 and PC2), colored by holographic label number (1 to 35, left) and
Fig. 2(B) shows the data colored by MNIST digits (right). From this visualization it is clear that
the two component PCA allows to obtain clusters related to the 35 holographic labels, while there
is only a very slight sub-clustering corresponding to digit classification. Although some overlap
is observed between the clusters in the two-components graph (PC1 and PC2), including higher
order components of the PCA could separate this. This can be confirmed by considering the
cumulative variance explained by the PCA, shown in Fig. 2(C). An inflection point at 70% of
the cumulative variance is observed after the 34th component which corresponds to number of

https://doi.org/10.6084/m9.figshare.25461988
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holographic labels-1. Decreasing the number of labels moves the inflection point to left of the,
confirming that the highest amount of variance is to be assigned to variance generated in the
speckle pattern by ϕholo rather than by ϕdata.

Fig. 2. Multivariate analysis of the speckle patterns corresponding to handwritten digits coupled through 35 unique 
holograms on the input facet. A) Scatter plot of first two PCA components for all 70000 speckle patterns colored by 
hologram number. The 35 input positions are evenly distributed over the entire core and shown in the supplement. B) 
Scatter plot of first two PCA components for all 70000 speckle patterns colored by digit number. C) Plot showing 
cumulative variance explained by each PC component, the inflection point at No of holograms-1 is marked. D) UMAP 
projection of all 70000 speckle patterns colored by hologram number E) UMAP projection of all 70000 speckle patterns 
colored by digit. F) Correlation matrix between the 70000 speckle patterns.

To gain a better representation of the speckle patterns dataset, a method that expresses 
a much wider amount of variance for each component is therefore required. We therefore 
applied Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), 
exploiting non-linear expression of the dataset and well suited to represent fiber speckle 
patterns  [31,41]. The UMAP analysis separates the data into 35 main clusters corresponding 
to each hologram as shown in Figure 2D. Compared to the PCA, the label-based clustering is 
extremely strong. Strikingly, the two component UMAP analysis is also capable of representing 
variance in the “digit” dataset (Figure 2E) despite being an “unsupervised” technique. Indeed, 
when colored by handwritten digit, sub-clusters are observed in each of the 35 main clusters, 
with strong topological symmetry. Within each cluster, digits “0”, “1”, “3” and “6” appear to 
form distinct sub-clusters whereas “4”, “7” and “9” and “2”, “5” and “8” are overlaid. The 
clustering of holographic labels can also be observed by considering the correlation matrix 

Fig. 2. Multivariate analysis of the speckle patterns corresponding to handwritten digits
coupled through 35 unique holograms on the input facet. A) Scatter plot of first two PCA
components for all 70000 speckle patterns colored by hologram number. The 35 input
positions are evenly distributed over the entire core and shown in the supplement. B) Scatter
plot of first two PCA components for all 70000 speckle patterns colored by digit number. C)
Plot showing cumulative variance explained by each PC component, the inflection point at
No of holograms-1 is marked. D) UMAP projection of all 70000 speckle patterns colored
by hologram number E) UMAP projection of all 70000 speckle patterns colored by digit. F)
Correlation matrix between the 70000 speckle patterns.

To gain a better representation of the speckle patterns dataset, a method that expresses a much
wider amount of variance for each component is therefore required. We therefore applied uniform
manifold approximation and projection for dimension reduction (UMAP), exploiting non-linear
expression of the dataset and well suited to represent fiber speckle patterns [31,41]. The UMAP
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analysis separates the data into 35 main clusters corresponding to each hologram as shown in
Fig. 2(D). Compared to the PCA, the label-based clustering is extremely strong. Strikingly, the
two component UMAP analysis is also capable of representing variance in the “digit” dataset
(Fig. 2(E)) despite being an “unsupervised” technique. Indeed, when colored by handwritten
digit, sub-clusters are observed in each of the 35 main clusters, with strong topological symmetry.
Within each cluster, digits “0”, “1”, “3” and “6” appear to form distinct sub-clusters whereas
“4”, “7” and “9” and “2”, “5” and “8” are overlaid. The clustering of holographic labels can
also be observed by considering the correlation matrix between the speckle patterns shown in
Fig. 2(F). Speckle ID corresponds with label’s position (that is, the first 2000 IDs correspond
to first holographic label, ID 2001 to 4000 to the second holographic label, and so on until
68001 to 70000 corresponding to the 35th ϕholo). Strong correlation is observed between speckle
patterns excited through the same holographic label. To verify that this result, and the principle of
holographically encoded variance does not depend on fiber length or bending state, we repeated
the above experiment with a 1-metre-long fiber in a coiled confirmation. The result of the
PCA/UMAP is shown in Supplement 1 and a similar clustering was observed.

3.2. Reconstruction of holographically coupled data

Whilst the multivariate analysis above allows recovery of input holographic label without
supervision, to reconstruct the data within a single cluster a supervised CNN is required. To verify
that this is possible with no loss of reconstruction fidelity, we have compared the reconstruction
of handwritten digits (grayscale) transmitted through the fiber by setting ϕholo= zero or a blazed
grating. In each case, 40000 digits were transmitted to train the ResUNet outlined in the
experimental section, 5000 were used to validate and 5000 were used to test. The network was
trained on the handwritten digit (ϕdata) regardless of ϕholo and the ResUNet network depicted
in Fig. 1(C) was used. Figure 3(A) shows reconstruction with ϕholo= zero, with the first row
displaying a subset of the original handwritten input digit from the MNIST dataset, while the
second shows ϕmask (which in this case is equivalent to ϕdata). The third row shows the output
speckle patterns when each ϕmask is set on the SLM and transmitted through the MMF. The
ResUNet reconstruction of ϕdata based on the output speckle patterns is shown in the final row.
Figure 3(B) instead shows reconstruction with ϕholo= blazed grating, the rows are organized
as in panel A. In both cases, the reconstructions are extremely similar to the original data and
each digit is easily identifiable. We quantified this by measuring the structural similarity index
(SSIM) between the reconstructed image and the original. For the test data, the average SSIM
between the input image and CNN reconstructed was 0.95±0.03 for ϕholo= Zero and 0.95±0.03
when ϕholo= blazed grating, which is typical for handwritten digit reconstruction [32]. This is
illustrated in the bar charts in Fig. 3(C) and histogram in Fig. 3(D) (only the data used to test the
network is included in the statistical analysis and examples shown in Fig. 3). The training loss
and validation loss are shown in Fig. 3(E), with the training loss being overlapped and therefore it
can be determined that in both cases handwritten digits may be transmitted with high SSIM and
equivalent training times. The model is built from the epoch when the validation loss is lowest.
In terms of the overall training performance, it can be observed that whilst the validation loss
converges, the training loss continued to decline with additional epochs. This suggests a small
degree of overfitting of the model to the training data at higher epochs, however, as the validation
loss did not rise this shows that they would also provide a viable reconstruction. Ultimately, the
reconstruction of ϕdata is not impacted on whether an additional blazed grating is added on.

Moving towards more complex datasets, we applied the same test to the CIFAR (grayscale)
dataset. Typically, it is more challenging to transmit natural scenes than handwritten digits as
the data has higher variance and, as such, the SSIM of the reconstruction is generally lower. As
in the previous experiment, 40000 images were transmitted and used as a training set, while
5000 were used for validation and 5000 used to test. Reconstructions with ϕholo= zero or a

https://doi.org/10.6084/m9.figshare.25461988
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Fig. 3. Reconstruction of grayscale handwritten digits through a MMF, coupled with either 𝜙ℎ𝑜𝑙𝑜= zero or a blazed 
grating. A) The top row are example handwritten digits to be transmitted through the fiber (𝜙𝑑𝑎𝑡𝑎 ), the second row 
shows 𝜙𝑚𝑎𝑠𝑘 which is shown on the SLM and in this case is equal to 𝜙𝑑𝑎𝑡𝑎 the third row shows the resultant output 
speckle pattern (scale bar is 10 um) and the final row shows the CNN  reconstruction of 𝜙𝑑𝑎𝑡𝑎 with the SSIM  inset. 
B) The top row are example handwritten digits to be transmitted through the fiber (𝜙𝑑𝑎𝑡𝑎), the second row shows 𝜙𝑚𝑎𝑠𝑘 
the third row shows the resultant output speckle pattern (scale bar is 10 um) and the final row shows the CNN 
reconstruction of 𝜙𝑑𝑎𝑡𝑎 with the SSIM  inset C) Bar charts showing the average SSIM for the test data set for each 
coupling D) Histograms of the SSIM for the test data set for each coupling. E) Learning curve for the development of 
the network for each coupling.

data or natural scenes through an optical fiber using ResUNet type architecture  [32]. Again, 
the result was analysed in terms of the training loss over the network construction and it was 
determined that for either natural scenes or handwritten digits, the quality of the reconstruction 
is unaffected by the coupling of the data in the Fourier plane of the SLM. Overall, the above 
results demonstrate that holographic labelling does not impact the reconstruction fidelity of the 
neural network. In the following we aim at exploring potential applications of the technique.

3.3 Holographic modulation enables RGB image transmission

Fig. 3. Reconstruction of grayscale handwritten digits through a MMF, coupled with either
ϕholo= zero or a blazed grating. A) The top row are example handwritten digits to be
transmitted through the fiber (ϕdata), the second row shows ϕmask which is shown on the
SLM and in this case is equal to ϕdata the third row shows the resultant output speckle
pattern (scale bar is 10 um) and the final row shows the CNN reconstruction of ϕdata with
the SSIM inset. B) The top row are example handwritten digits to be transmitted through the
fiber (ϕdata), the second row shows ϕmask the third row shows the resultant output speckle
pattern (scale bar is 10 um) and the final row shows the CNN reconstruction of ϕdata with the
SSIM inset C) Bar charts showing the average SSIM for the test data set for each coupling
D) Histograms of the SSIM for the test data set for each coupling. E) Learning curve for the
development of the network for each coupling.
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blazed grating are shown in Fig. 4(A), (B). As before, the top row shows ϕdata the second
shows ϕmask the third shows the output speckle patterns and the final shows the reconstruction
of ϕdata based on the output speckle. For the test data the SSIM between the input image and
reconstructed was 0.67±0.11 for ϕmask = 0 coupled data and 0.67±0.11 when ϕmask is equal to a
blazed grating (Fig. 4(C), (D)). Such values are typical for the reconstruction of CIFAR data or
natural scenes through an optical fiber using ResUNet type architecture [32]. Again, the result
was analysed in terms of the training loss over the network construction and it was determined that
for either natural scenes or handwritten digits, the quality of the reconstruction is unaffected by
the coupling of the data in the Fourier plane of the SLM. Overall, the above results demonstrate
that holographic labelling does not impact the reconstruction fidelity of the neural network. In
the following we aim at exploring potential applications of the technique.

3.3. Holographic modulation enables RGB image transmission

We now consider how the holographic label may be used to encode additional information in the
data transmission. We associated three different ϕholo to red, green and blue (RGB) channels of a
color image. Firstly, the image was segmented into the single RGB components (ϕR, ϕG, ϕB) and
each was added to their a different holographic grating ϕholo,R, ϕholo,G and ϕholo,B, selected so
that the position of the projection were evenly displaced along an arc of the fiber core. That is, if
ϕcolor = ϕR + ϕG + ϕB, then the color image may be coupled through our MMF by sequentially
showing arg(exp(i(ϕR + ϕholo R))), arg(exp(i(ϕG + ϕholo G))) and arg(exp(i(ϕB + ϕholo B)) on the
screen of the SLM and recording the output speckle on CCD2. This process was repeated for
25000 colored CIFAR images (75000 distinct phase masks). Of which, 22500 colored images
were used to build the deep neural network and 2500 to validate. As described in the methods,
we chose to train a ResUNet type architecture illustrated in Fig. 5(A) to reconstruct a RGB image.
The loss function is defined on the concatenated RGB image as well as each component as
follows:

L =
λ1
N

(︂∑︂
|ϕR − ˆ︂ϕR | +

∑︂
|ϕG − ˆ︂ϕG | +

∑︂
|ϕB − ˆ︂ϕB |

)︂
+
λ2
3N

∑︂
|ϕRGB − ˆ︁ϕRGB |

Where ˆ︂ϕR, ˆ︂ϕG, ˆ︂ϕB and ˆ︁ϕRGB refer to the reconstructions of ϕR, ϕG, ϕB and ϕRGB and λ1 = 1 and
λ2 = 0.1 and N is the number of pixels in the image.

The resultant reconstruction is shown in Fig. 5(B): the top box shows the original images,
the second box displays the speckle patterns from each of the 3 holographic channels and the
third shows the reconstructed image. The reconstructed color images are extremely similar to
the originals and this appears to be independent of color/intensity information, as quantified by
measuring the SSIM between original and reconstructed images. CIFAR images are classified
as images of airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks and the
resultant SSIM of the reconstruction for each class is shown in Fig. 5(C) and the histogram
across all classes in Fig. 5(D). From the plot, we determine that the reconstruction quality is
independent of image class. Across all classes in the validation data, the average SSIM was
0.77±0.09 confirming that our technique can reconstruct color images with high fidelity. The
training curves are shown in Fig. 5(E), demonstrating that our network was optimized for image
reconstruction.

To test that the data can be clustered by holographic label as in Fig. 2, PCA was applied to the
dataset. The holographic variance of the speckle patterns is clearly visible in the scatter plot of
PC2 and PC3 shown in Fig. 5(F), confirming that the data is perfectly clustered by holographic
label. We remark that PC1 represented an intensity variance between the green and red/blue
channels, therefore, the highest three principal components account for variation in holographic
label only, as confirmed by the inflection point of the cumulative variance explained data in the
inset of Fig. 5(F).
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 Fig. 4. Reconstruction of grayscale natural scenes (CIFAR) coupled with either 𝜙ℎ𝑜𝑙𝑜= zero or a blazed grating A) The 
top row are example handwritten digits shown on the SLM and transmitted through the fiber (𝜙𝑑𝑎𝑡𝑎 ), the second row 
shows 𝜙𝑚𝑎𝑠𝑘 which in this case is equal to 𝜙𝑑𝑎𝑡𝑎 the third row shows the resultant output speckle pattern (scale bar is 
10 um) and the final row shows reconstruction of 𝜙𝑑𝑎𝑡𝑎 with the SSIM  inset. B) The top row are example handwritten 
digits shown on the SLM and transmitted through the fiber (𝜙𝑑𝑎𝑡𝑎), the second row shows 𝜙𝑚𝑎𝑠𝑘 the third row shows 
the resultant output speckle pattern (scale bar is 10 um) and the final row shows reconstruction of 𝜙𝑑𝑎𝑡𝑎 with the SSIM  
inset C) Bar charts showing the average SSIM for the test data set for each coupling D) Histograms of the SSIM for 
the test data set for each coupling. E) Learning curve for the development of the network for each coupling. 

We now consider how the holographic label may be used to encode additional information 
in the data transmission. We associated three different 𝜙ℎ𝑜𝑙𝑜 to red, green and blue (RGB) 
channels of a color image. Firstly, the image was segmented into the single RGB components 
(𝜙𝑅,𝜙𝐺,𝜙𝐵) and each was added to their a different holographic grating 𝜙ℎ𝑜𝑙𝑜,𝑅, 𝜙ℎ𝑜𝑙𝑜,𝐺 and
𝜙ℎ𝑜𝑙𝑜,𝐵, selected so that the position of the projection were evenly displaced along an arc of the 
fiber core. That is, if 𝜙𝑐𝑜𝑙𝑜𝑟 = 𝜙𝑅 + 𝜙𝐺 + 𝜙𝐵, then the color image may be coupled through 
our MMF by sequentially showing arg (exp(𝑖(𝜙𝑅 + 𝜙ℎ𝑜𝑙𝑜 𝑅))), arg (exp(𝑖(𝜙𝐺 + 𝜙ℎ𝑜𝑙𝑜 𝐺))) 

Fig. 4. Reconstruction of grayscale natural scenes (CIFAR) coupled with either ϕholo=
zero or a blazed grating A) The top row are example handwritten digits shown on the SLM
and transmitted through the fiber (ϕdata), the second row shows ϕmask which in this case is
equal to ϕdata the third row shows the resultant output speckle pattern (scale bar is 10 um)
and the final row shows reconstruction of ϕdata with the SSIM inset. B) The top row are
example handwritten digits shown on the SLM and transmitted through the fiber (ϕdata), the
second row shows ϕmask the third row shows the resultant output speckle pattern (scale bar
is 10 um) and the final row shows reconstruction of ϕdata with the SSIM inset C) Bar charts
showing the average SSIM for the test data set for each coupling D) Histograms of the SSIM
for the test data set for each coupling. E) Learning curve for the development of the network
for each coupling.
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Fig. 5. A) Structure of the implemented ResUNet type color image reconstruction convolutional neural networks. B) 
Reconstruction of colored CIFAR images through multimode fiber original image (top box), corresponding three 
speckle patterns (middle box) and reconstructed image (bottom box) with SSIM value inset.   C) Bar chart showing 
average SSIM for each image class (test data) D) Histogram of SSIM (test data). E) Curves showing the training and 
validation loss over 100 epochs, the epoch achieving the minimal validation loss was used for the reconstruction shown 
here. F) Scatter plot of second and third PCA component for all 75000 speckle patterns, the data is perfectly clustered 
by holographic channel, the inset shows the cumulative variance explained by each principal component with the 
inflection at no of components =3 marked.

bandwidth associated to multiple receivers, without any requirements for the receivers and the 
senders to agree on a new temporal order of the transmitted packages. Supplementary Figure 

Fig. 5. A) Structure of the implemented ResUNet type color image reconstruction
convolutional neural networks. B) Reconstruction of colored CIFAR images through
multimode fiber original image (top box), corresponding three speckle patterns (middle box)
and reconstructed image (bottom box) with SSIM value inset. C) Bar chart showing average
SSIM for each image class (test data) D) Histogram of SSIM (test data). E) Curves showing
the training and validation loss over 100 epochs, the epoch achieving the minimal validation
loss was used for the reconstruction shown here. F) Scatter plot of second and third PCA
component for all 75000 speckle patterns, the data is perfectly clustered by holographic
channel, the inset shows the cumulative variance explained by each principal component
with the inflection at no of components =3 marked.



Research Article Vol. 32, No. 11 / 20 May 2024 / Optics Express 18906

Finally, we aim to assess if holographic labelling assists in overall performance of reconstruction
of RGB images. To test this, we transmitted the same CIFAR dataset using the conventional
technique (with only a temporal label). Example reconstructions, speckle patterns and training
curves are shown in Supplement 1. The average SSIM was 0.78 ±0.09 and the training curves
follow that in Fig. 5. Therefore, the label represents an additional information transmitted through
the fiber without affecting the overall reconstruction capability of the system. This is evident by
the strong clustering of holographic label observed in Fig. 5(F) that cannot be achieved for the
temporally labelled data (Supplement 1).

4. Discussion and conclusion

In this work we show that the optical superimposition of additional variance in phase image
transmission through MMF can enrich the wealth of information encoded in the speckle patterns at
the fiber output. For this, we propose a modulation technique based on the introduction of additive
holograms that generate artificial variance that supersedes the variance of the unmodulated
speckle dataset. We demonstrate that this may be done with no loss of reconstruction fidelity by
the CNN UNet employed to extract the original image from the speckles pattern. The holograms
act as a label for the transmitted data, with multivariate analysis confirming each holographic
labels clusters independently. This has the added advantage over a solely temporal label as the
label may be reconstructed by considering only the speckle pattern and there is no requirement for
temporal synchronization between sender and receiver. This concept is detailed in Supplement 1.
Supplementary Figure S4 describes how holographic labelling can allow dynamic reconfiguration
of the bandwidth associated to multiple receivers, without any requirements for the receivers
and the senders to agree on a new temporal order of the transmitted packages. Supplement 1
instead depicts how the transmission of holographically-labeled streams of RGB data requires
no synchronization pulse to associate the received image to being red, green or blue, therefore
increasing the actual transmission rate.

As an example application, we show how an RGB image may be transmitted through three
holographically-labelled channels. The RGB image can be reconstructed without the need for a
temporal synchronization between the detector and the SLM (as in [26]) after the initial training
step. We have used a blazed grating to induce holographic variance, however potentially any
kind of holographic carrier may be used, provided it can generate greater variance in the output
speckle patterns than the one contained in the dataset itself. We note that the average SSIM for
the reconstructed color images is significantly higher than that of the grayscale images. In Fig. 5
the average SSIM for colored images was 0.77±0.09 whereas was 0.65±0.11, 0.65±0.11 and
0.65±0.11 for each R, G and B component. Tentatively, it could be hypothesized that the increase
in SSIM is due to a data fusion effect across all channels. Between each RGB component, there
exists strong correlation and as the loss function is a linear combination of each component and
the concatenated image the network is able to learn this aspect of the structure within the CIFAR
dataset. This is also the case for data that is only labelled temporally (Supplement 1).

Overall, a limitation of our technique and other SLM/MMF optical systems [42] is the speed of
transmission modulation (over data transmission through a SMF/MMF) which is determined by
the the refresh rate of the SLM, being on the ms scale). This results in a relatively low bandwidth
when compared with other optical communication systems. Nevertheless, substituting the SLM
for a micro LED arrays which can achieve refresh rates of 100 MHz would present an opportunity
to increase frame rate [43].

Finally, we remark that machine learning based techniques are a straightforward technique
to achieve image reconstruction through dynamically bent [31] and thermally perturbed [33]
multimode fibers, going forward we see our technique as complementary to these methods.
Potentially, RGB images could be transmitted through dynamically perturbed fibers without
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requirement for temporal synchronicity. As well as this the technique may reveal more broad
insights into holographic control of modal propagation in multimode optical fibers.
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