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A LOGICAL FRAMEWORK FOR DATA-DRIVEN

REASONING

PAOLO BALDI, ESTHER ANNA CORSI, HYKEL HOSNI

Abstract. We introduce and investigate a family of consequence re-
lations with the goal of capturing certain important patterns of data-
driven inference. The inspiring idea for our framework is the fact that
data may reject, possibly to some degree, and possibly by mistake, any
given scientific hypothesis. There is no general agreement in science
about how to do this, which motivates putting forward a logical formu-
lation of the problem. We do so by investigating distinct definitions of
“rejection degrees” each yielding a consequence relation. Our investi-
gation leads to novel variations on the theme of rational consequence

relations, prominent among non-monotonic logics.

Keywords. Data-driven inference, significance inference, null hypothesis sig-
nificance testing, non-monotonic logic.

1. Introduction and motivation

The research reported in this note originates in [2], where a case is made
for investigating consequence relations capable of expressing certain aspects
of scientific inference. In particular, we are interested in capturing the fact
that data may lead scientists to reject, possibly to some degree, and possibly
by mistake, any given scientific hypothesis.

The canonical treatment of this general problem makes one of its first ap-
pearances in a 1925 book which went on to shape the methodology of much
empirical science [17]. In it, R.A. Fisher draws attention to “the logical
nature” of the inference underpinning tests of significance. The problem he
sets out to address is that of examining a scientific hypothesis (H0) based
on the observations it leads to, if true. When the observations so obtained
are improbable enough, they provide grounds for us to reject the assump-
tion that H0 is indeed true. Fisher’s line of reasoning culminates with what
became known as the Fisher disjunction:

The force with which such a conclusion is supported is logi-
cally that of the simple disjunction: Either an exceptionally
rare event has occurred, or [H0] is not true. ([18], p.39.)
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We understand Fisher’s “simple” as “being governed by logic”, which of
course for him could only be (an informal version of) classical logic. Setting
aside some rare yet notable exceptions discussed in Section 5.1, the statistical
and methodological communities seem to have taken this informal-classical-
logic view at face value. Interestingly, this applies to both supporters and
critics of the procedures put forward by Fisher. For the focus of the long-
standing debates on tests of significance, and in particular on the infamous
p-value [58], is usually on the meaning and nature of probability, rather than
on the properties of the inferences scientists make with it.

This paper takes a logical perspective on inference based on the data-driven
rejection of scientific hypotheses. And, insofar as this is possible, it aims
to do so independently of any philosophical view on probability. We ask
which properties are desirable for a consequence relation whose intended
semantics is based on the degree of rejection that a given set of data pro-
vides to a given hypothesis. Hence we consider a more abstract and general
problem than that envisaged by Fisher (and his many followers), which is
however recovered as a special case of our question. Our results suggest that
reasonable answers to our main question will be variations on the theme of
non-monotonic consequence relation, in the sense brought to the attention
of logicians by [52, 30, 34, 36].

The remainder of this introductory section provides the essential background
on the kind of scientific inference we focus on, along with the required logical
preliminaries. We clearly do not aim at exhausting the many ramifications
of the vast topic of scientific inference. On the contrary, the following two
subsections should be thought of as delimiting the scope of our investigation.
We defer the discussion on related work to the concluding section of the
paper.

1.1. NHST. According to a basic tenet in the methodology of science, to
assess a scientific hypothesis, one looks at its logical consequences. In this
context, the pattern of inference captured by modus tollens becomes promi-
nent. If a sentence θ, which is known to be false, follows logically from
sentence ϕ, then we should conclude ¬ϕ. As we will now recall, this classi-
cal pattern of inference is often taken to lend its validity to the procedure
known as Null Hypothesis Statistical Testing (NHST).

Let H0 be a sentence (in classical logic) standing for a scientific hypothesis,
usually referred to as the null hypothesis. The key idea in NHST is to set up
an experiment which leads to observations under the assumption that H0 is
true. Denote by σ a test statistics, i.e. a function of the observations thus
obtained. Finally, associate to this function the quantity usually referred to
as the “observed level of significance”, or the “probability value”, or simply
the “p-value”. This latter is the calculated conditional probability of seeing
equally extreme or more extreme data (according to the test statistics) given



A LOGICAL FRAMEWORK FOR DATA-DRIVEN REASONING 3

H0. In analogy with modus tollens one says that H0 should be rejected if
the p-value is small enough. Here is a schematisation of the argument:

(1) Suppose H0;
(2) Calculate the p-value for some test statistics σ (i.e. a well-defined

function of the data observed conditional on H0);
(3) The smaller the p-value, the stronger the reason to believe that H0

is not true.

Many statisticians and methodologists explicitly draw the parallel between
(versions of) the above and modus tollens. To make a few notable examples,
the authors of [13] speak of “inductive modus tollens”, [39] refers to “statis-
tical modus tollens”, whereas [51] tellingly notes that it is the analogy with
modus tollens which gives tests of significance prominence in the “scientific
method”:

[Modus tollens] is at the heart of the philosophy of science,
according to Popper. Its statistical manifestation is in [the]
formulation of hypothesis testing that we will call ‘rejection
trials’. ([51], p.72)

Quite interestingly, this view is shared also by prominent critics of NHST,
e.g. [55].

Whilst the appeal of the loose analogy with modus tollens is clear, it is
misleading nonetheless. For no probabilistic test will deliver ¬H0. Royall is
again an authoritative voice who acknowledges the problem, but then argues
that it is of no real consequence.“But the form of reasoning in the statistical
version of the problem parallels that in deductive logic: if H0 implies E
(with high probability), then not-E justifies rejecting H0” [51], p.73.

The qualitative difference between H0 being classically false and it being
very improbable did not escape the attention of Fisher and his scrupulous
followers, when they insist that the p-value is best interpreted as the degree
to which observational data turns out to be incompatible with H0. So a
significance test can only lead one to conclude that H0 is unlikely to be true,
if the p-value is small enough. But then the validity of this conclusion owes
to the Fisher disjunction, rather than to modus tollens. And in turn, the
former is grounded on the metaphysical assumption that small-probability
events normally do not happen. Many methodologists, probabilists and
statisticians strongly disagree with this, as testified by the animosity of the
long-lasting debate on this topic [26, 58, 59].

Since “being unlikely true” is logically distinct from “being classically false”,
we have no reason to believe that the above schematisation holds under un-
certainty. Indeed, it is well known that modus tollens need not be adequate
for probabilistic reasoning [6], and in general fails to deliver a point-valued
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probability [57]. Given that uncertainty is the norm, rather than the ex-
ception in science, and that uncertainty is most typically quantified proba-
bilistically, the standard justification for adopting the canonical significance
tests is, at the very least, in clear need of a logical clarification.

Note that a line of criticism has indeed addressed “the logic of NHST”,
concluding that it is defective [46, 15, 31, 55]. The following example, which
probably appears for the first time in [46] is by now standard.

Example 1. Consider the following argument.

1 Either Harold is a US citizen or he is not;
2 If Harold is a US citizen, than he is most probably not a member of

Congress;
3 Harold is a member of Congress;
∴ Harold is likely not a US citizen.

Whilst assumptions 1-3 are all true, the conclusion is absurd, since being a
US citizen is a necessary condition to sit in the US Congress. And yet it
would be arrived at through (a kind of) modus tollens.

Those who use it take the argument in Example 1 to be conclusive in showing
the fallacious nature of NHST. Note however that the criticism is conclusive
only if one assumes that classical logic is the logic against which a pattern
of inference can be evaluated. However, as remarked above, classical logic
is hardly adequate to capture the “most probably” and the “likely” which
appear in 2 and in the conclusion. Non-monotonic consequence relations, on
the contrary can express them, as detailed in Section 4.3. And indeed, if one
looks at it from the non-monotonic-logic point of view, a natural conclusion
of premisses 1-3 in Example 1 is that Harold is not a typical US citizen.

Finally a remark on terminology. Statisticians and methodologists go to
great lengths to distinguish significance tests from the associated decision
of either “retaining” or “rejecting” the null hypothesis, a procedure made
prominent by J. Neyman and E. Pearson. In this latter approach one fixes,
before running the relevant experiment, a given threshold for rejection, usu-
ally referred to as “critical region” and denoted by α. If, conditional on
H0, the observations fall within this region, then H0 is rejected. How-
ever, the noticeable mathematical commonalities between the Fisher and
the Neyman-Pearson takes on the problem, lead to the mishmash of the
two methodologies under the heading NHST, see [12] for a comprehensive
analysis. In what follows we can be rather casual about this internal divide
within the classical statistical tradition, because none of our results below
is affected by committing to either of the competing views.

1.2. Strong Inference. The method of strong inference was put forward
in 1964 Science editorial by mathematician and biophysicist John Platt [47].
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Ever since it has been argued, especially in the life sciences, to provide a
methodological guidance to hypothesis testing for working scientists [28] and
indeed a sound generalisation of NHST [4].

Platt offers the following schematic representation of strong inference in [47]:

1) Devising alternative hypotheses;
2) Devising a crucial experiment (or several of them), with

alternative possible outcomes, each of which will, as
nearly as possible, exclude one or more of the hypothe-
ses;

3) Carrying out the experiment so as to get a clean result;
1’) Recycling the procedure, making subhypotheses or se-

quential hypotheses to refine the possibilities that re-
main; and so on.

According to the author, the distinctive trait of strong inference lies in the
fact that it requires scientists to produce as many competing hypotheses as
possible in the given context. This gives rise to a rich tree of alternatives.
As strong inference proceeds, the tree is pruned by (the logical consequences
of) observations, i.e. outcomes of “crucial experiments”. The process runs
until, in the best possible scenario, a single hypothesis survives.

Strong inference appears to have attracted very little interest from the logi-
cal community. However, we suggested in [2] that, owing to the conceptual
analogies with the Ulam-Rényi game, introduced by Alfréd Rényi [48] and
Stanislaw Ulam [56], strong inference can give us useful cues about the desir-
able properties of a consequence relation formalising data-driven inference.

1.3. Non-monotonic consequence relations. We will be using several
symbols for related but distinct consequence relations. As usual, |= denotes
classical (propositional) consequence, and ≡ classical equivalence. Then we
use |∼ to denote an arbitrary non-classical consequence relation.

Given the revisable nature of scientific inference, our logical framework is
closely related to the family of non-monotonic logics. Those originated in
the 1980s, mainly within the artificial intelligence community, for knowledge
representation and reasoning purposes, see [38] for a recent and broad ap-
praisal with a comprehensive bibliography. After a couple of decades since
the first proposals, the community of non-monotonic logicians converged
on three important logical systems: cumulative System C, the preferential

System P, and the rational System R. Table 1 presents the latter.

System C and System P are two subsets of System R. System C is defined by
(REF), (LLE), (RWE), and (CMO), whereas System P also satisfies (AND)
and (OR). In the interest of readability, we do not introduce distinct symbols
for the three consequence relations characterizing those systems.
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ϕ |∼ ϕ
(REF)

ϕ |∼ ψ ψ |= ξ

ϕ |∼ ξ
(RWE)

ϕ |∼ ξ ϕ |= ψ ψ |= ϕ

ψ |∼ ξ
(LLE)

ϕ |∼ ψ ϕ |∼ ξ

ϕ ∧ ξ |∼ ψ
(CMO)

ϕ |∼ ψ ϕ |∼ ξ

ϕ |∼ ψ ∧ ξ
(AND)

ϕ |∼ ξ ψ |∼ ξ

ϕ ∨ ψ |∼ ξ
(OR)

ϕ|∼ψ ϕ 6 |∼¬ψ

ϕ ∧ ξ|∼ψ
(RMO)

Table 1. System R

1.4. Plan of the paper. Section 2 sets out the intended semantics for
consequence relations based on “degrees of rejection”. Its formalisation, de-
noted by |∼RJ , will constitute a blueprint for defining consequence relations
which capture specific aspects of this. Section 3 investigates |∼

lRJ and |∼αRJ

which are based on probabilistic rejection and are closely related to max-
imum likelihood and NHST, respectively. Then, building closer ties with
USI games, we introduce and investigate |∼uRJ in Section 4. This is shown
satisfy (UMO), a form of constrained monotonicity which, to the best of
our knowledge, has not been investigated before. Theorem 1, the main re-
sult of this paper, establishes a form of completeness for |∼uRJ . Section 5
summarises our contributions and lists future works on this topic.

2. The blueprint RJ-consequence

The key contribution of this paper is a proposal for the formalisation of
consequence relations capturing a central feature of scientific inference: re-
jecting certain hypotheses in the light of data. Doing this requires inevitable
abstraction so, to pin down the intended semantics of the consequence rela-
tions of interest, we first strip down our problem of many of the details en-
countered in scientific practice. This, we submit, leaves us with three central
features of data-driven inference: (i) There is a distinction between data and
hypotheses, but it pertains to the attitude scientists have towards the state-
ments representing them, rather than the nature of the statements them-
selves; (ii) experiments (the data-generating processes) can be repeated, and
may lead to non-unique outcomes; (iii) When making data-driven inferences,
scientists can rely on knowledge that is not subject to questioning by the ex-
periment at hand. Since Definition 1 below captures the interaction of those
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three features, let us first motivate their desirability in the light of data-
driven inference. While doing so, we will also introduce some terminology
and notation.

To tackle the subtleties involved in (i) we work with a language composed
of two (finite) sets of propositional variables H = {H1, . . . ,Hn} and D =
{d1, . . . , dl}, standing for hypotheses and data, respectively. We do not as-
sume that the sets are disjoint, and sometimes we require them not to be,
as in Proposition 3 below. We denote by FmH and FmD the set of propo-
sitional formulas generated by closing H and D, respectively, under the
usual connectives ∧,∨,¬. The set of all formulas is denoted by Fm, i.e.
Fm = FmD ∪ FmH. We denote elements of Fm by lowercase Greek letters.

The key element in our construction is the degree to which data δ ∈ FmD

rejects a hypothesis ϕ ∈ FmH. As will be clear in Section 3 and in Section 4,
detailing the specific properties of degrees of rejection will lead to distinct
consequence relations. This is why we refer to the Definition 1 below as a
blueprint consequence relation.

To motivate (ii) recall that one key feature in the complicated process that
leads to data-driven scientific knowledge is the “replicability” of the tests
or experiments which engender it. The relevance of this for the intended
semantics of the consequence relations we are about to construct is that
the same hypothesis may be confronted multiple times by the same data. A
textbook situation in which this happens is when sampling with replacement
from an urn. But of course, concrete cases of scientific inference will not be so
easy to describe (mathematically). Moreover, scientists may make mistakes
in the experimental setup, in the data analysis, or at any other point of the
procedure. We accommodate those heterogeneous cases centring Definition
1 on the degree of rejection that a multiset of data ∆ from FmD puts forward
against hypothesis ϕ ∈ FmH.

We denote by MD the set of multisets built over the formulas in FmD.
Henceforth, abusing notation we will use curly brackets for denoting both a
multiset and a set of elements1.

Finally, to motivate (iii), note that in scientific inference data is not certain.
This is one reason why the replicability of experimental setups is of critical
importance. However, since we are putting forward a logical framework, we
must provide our ideal and logically omniscient scientists with knowledge
about the problem at hand which is not revisable as a consequence of the
experiment. To capture this we will assume that data-driven inference is
performed under the assumption that the hypotheses in H = {H1, . . . ,Hn}

1Recall that the set MS of multisets built over a set S can be more formally identified
with the set N

S of functions from S to N, where f ∈ N
S stands for the multiset where

each s ∈ S occurs f(s) = n times.
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are mutually exclusive and exhaustive. We capture this through the follow-
ing classical formula T

T :=
∨

H∈H

H ∧
∧

H,H′∈H, H 6=H′

H → ¬H ′.

We are now ready to provide the blueprint definition of the degree r to which
data reject a hypothesis. Section 3 and 4 will investigate two special cases
which arise by specifying distinct ways of computing r.

Definition 1. We say that r : MD×H → R+∪{∞} is a degree of rejection

if, for any γ, δ ∈ FmD, ∆ ∈ MD and H ∈ H, the following hold:

(1) If T, γ |= δ, then rγ(H) ≥ rδ(H).
(2) If T,H |= δ then rδ(H) = 0.
(3) If T, δ |= ¬H, then rδ(H) > 0 .
(4) If r∆(H) 6= ∞, then r∆(H) =

∑

δ∈∆ rδ(H).

When no confusion is likely to arise, we simply speak of r∆ as “the degree
of rejection” and denote it by r.

Proposition 4 below shows that the definition is well-posed. In fact the
remainder of this paper provides examples of functions which satisfy Defini-
tion 1 and explores how they provide the semantics for distinct consequence
relations.

Part (1) of the definition states that, modulo T , logically stronger data pro-
vide a higher degree of rejection. If we do not insist on limiting our inferences
to satisfiable data, this implies that observing contradictions provides the
maximal degree of rejection for any hypothesis in FmH. This is at odds
with the scientific practice where we may observe a contradiction between
the data and a hypothesis, but we typically do not observe contradictory
data. As a consequence, we will tacitly assume that the elements of FmD

are satisfiable even if the formalism does not require us to do so.

Conditions (2) and (3) link degrees of rejection to classical logic. The former
states that no positive degree of rejection can be provided when one observes
a logical consequence, modulo T , of a given hypothesis. (3) states that a
degree of rejection cannot be zero whenever the data, modulo T , entail the
negation of the hypothesis. This is where Definition 1 marks a genuine
departure from the traditional idea that the relation between observations
and hypotheses is governed entirely by classical deduction, and in particular
through modus tollens. Whilst it may happen, in special cases, that rδ(H) =
1 for data and hypotheses such that δ |= ¬H, this need not be true in
general and r can take any positive value up to ∞. This departure from
classical logic is motivated, as noted in the introductory section of this work,
by the fact that data obtained in any experimental setup may translate
into incomplete, scarce, noisy, or otherwise imperfect evidence. Condition
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(3) ensures that the semantics of data-driven inference accommodates this
central feature of scientific inference at root.

Finally, condition (4) states that the degree to which a hypothesis is rejected
by data is computed as the sum of the degrees of rejection obtained trough
each single piece of data in the multiset ∆. As a justification for aggregating
with the sum, as opposed to any other function, at present we can offer its
simplicity and the interesting consequences it leads to. Note however that
additive aggregations are used across many (distinct) formalisms in uncer-
tain reasoning, including the sums of “uncertainties” in Adams’s probabilis-
tic logic [1], and the sums of “risks” in Giles’s game-theoretic foundation of
many-valued logic [21].

The next step towards the intended semantics of our blueprint consequence
relation revolves around the set Ĥ∆ of hypotheses in H which are least

rejected by the data in ∆:

Ĥ∆ = arg min
H∈Hf

∆

r∆(H). (1)

where Hf
∆ is the set of hypotheses with a finite degree of rejection. The ratio-

nale behind least-rejection is that the elements of Ĥ∆ are those hypotheses
which “did best against data” in ∆.

Remark 1. Ĥ∆ is empty only when there is no hypothesis with a finite
rejection degree, i.e. if r∆(H) = ∞ for each H ∈ H.

We are now ready to define the blueprint consequence |∼RJ as classical
model-preservation under least-rejection.

Definition 2 (RJ-consequence). Let ∆ be a multiset of formulas in FmD

and ϕ ∈ FmH. We say that ϕ is an RJ-consequence of ∆, written ∆|∼RJϕ,

if T,H |= ϕ, for each H ∈ Ĥ∆.

The instantiations of the blueprint consequence to be investigated in this pa-
per will make explicit the nature of the ordering among rejected hypothesis
which makes the minimality featuring in (1) precisely defined. But readers
who are familiar with the preferential variety of non-monotonic logic will
realise immediately from Definition 1 that our blueprint belongs to that
family.

As an immediate consequence of Definition 2 and Remark 1 we have that
|∼RJ is explosive in the sense that if there are no least-rejected hypotheses,
then all hypotheses are rejected by data.

Lemma 1. Suppose Ĥ∆ = ∅ . Then ∆|∼RJϕ for any ϕ ∈ FmH.

Proposition 1 shows that |∼RJ satisfies (multiset versions of) the rules (RWE),
(LLE), and (AND), whereas Proposition 2 shows that |∼RJ fails, desirably,
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unconstrained monotonicity. Finally, Proposition 3 shows that |∼RJ satisfies
the rules of rational consequence relation with the important exception of
(OR), which will be discussed later.

∆|∼ϕ ϕ |= ψ

∆|∼ψ
(RWE)

∆, γ|∼ϕ |= γ ↔ δ

∆, δ|∼ϕ
(LLE)

∆|∼ϕ ∆|∼ψ

∆|∼ϕ ∧ ψ
(AND)

Table 2. System RJ

Proposition 1. RJ-consequence satisfies the rules in Table 2.

See the Appendix for the proof.

It is well-known [36, 37, 23] that (non-monotonic) logical systems satisfying
(AND) provide qualitative representations of reasoning under uncertainty.
This may appear to be at odds with the “numerical” semantics provided by
degrees of rejection. However this is not sufficient to make |∼RJ quantitative.
In fact the magnitude of degrees of rejection are immaterial in (1), where
only comparisons of such degrees are relevant.

Next, we ensure that |∼RJ does not satisfy unconstrained monotonicity
(MON). Since our consequence relations are defined on multisets of pre-
misses, two distinct formulations of unconstrained monotonicity must be
taken into account:

γ|∼ϕ

γ ∧ δ|∼ϕ
(AMON)

∆|∼ϕ

∆,∆′|∼ϕ
(MMON),

where, as usual, |∼ stands for an arbitrary consequence relation.

Proposition 2. Neither (AMON) nor (MMON) hold for |∼RJ .

See the Appendix for the proof.

In preparation for the last proposition of this Section, which pins down
the conditions under which reflexivity, rational monotonicity and cut are
satisfied by |∼RJ , recall that we work with distinct languages for data and
hypotheses. Since Proposition 1 involves only rules which do not feature
individual formulas on both sides of |∼RJ , the proof carries through even if
the two languages are disjoint. This possibility, however, must be ruled out
for |∼RJ to satisfy the rules of the next Proposition. Moreover we must set
to infinity the rejection degree provided by contradictory data against any
hypothesis. Recall also that we denote by T the formula expressing that
hypotheses form a partition.
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ϕ|∼ϕ
(REF)

∆|∼ψ ∆ 6 |∼¬ϕ

∆, ϕ|∼ψ
(RMO)

∆, ϕ|∼ψ ∆|∼ϕ

∆|∼ψ
(CUT)

∆|∼ψ ∆|∼ϕ

∆, ϕ|∼ψ
(CMO)

Table 3.

Proposition 3. Suppose FmD ∩ FmH 6= ∅. Assume further that if T |= ¬δ
then rδ(H) = ∞ for each H ∈ H. Then |∼RJ satisfies the rules in Table 3.

See the Appendix for the proof.

For |∼RJ to be a rational consequence relation it should also satisfy (OR). It
does not, as detailed in Section 3.2, where we also explain why this is indeed
desirable.

As a concluding remark on our blueprint consequence relation, note that
the supraclassicality of |∼RJ is an immediate corollary of Proposition 3 by
concatenating the arguments for (REF) and (RWE).

Corollary 1. Let ϕ,ψ ∈ FmD ∩ FmH . If ϕ |= ψ then ϕ|∼RJψ.

3. Data-driven probabilistic rejection

This section investigates two ways of defining degrees of rejection through
data-driven probabilities. The first is discussed in Section 3.1 and captures
the core idea of maximum likelihood inference. The second is discussed in
Section 3.3 and is closely related to significance inference and NHST. Each
gives rise to a distinct consequence relation. We argue that both capture
interesting aspects of statistical inference.

Recall that a probability function on Fm is a map P : Fm → [0, 1] which
satisfies normalisation and additivity, i.e.

(1) If |= ϕ then P (ϕ) = 1 and
(2) If |= ¬(ϕ ∧ θ) then P (ϕ ∨ ϕ) = P (ϕ) + P (θ).

Throughout this section we will work with conditional probability functions
of Fm, i.e. P : Fm × Fm+ → [0, 1] defined by

P (δ | H) =
P (δ ∧H)

P (H)
, (2)

where Fm+ denotes the set of elements of Fm whose probability is strictly
positive. Formally, this restriction guarantees we do not divide by 0. Con-
ceptually, it prevents bizarre applications of statistical hypothesis testing
where the hypotheses being tested are known to be false.
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Functions defined as in (2) above are normalised on tautologies and finitely
additive. That is, they satisfy:

If |= ¬(δ ∧ γ) then P (¬δ ∨ ¬γ | H) = P (δ | H) + P (γ | H). (3)

To express the condition to the effect that δ and γ are incompatible, we
will also write δ, γ |= ⊥, where ⊥ is any classical contradiction. Finally the
following holds, and will be used extensively below:

P (¬δ | H) = 1 − P (δ | H). (4)

3.1. lRJ-consequence. To illustrate the idea of likelihood-based rejection,
consider H = {H1,H2} and let

rlδ(Hi) = P (¬δ|Hi) (5)

for data δ ∈ FmD and i ∈ {1, 2}. In this situation H1 belongs to the set of

least rejected hypotheses Ĥδ if and only if rδ(H1) ≤ rδ(H2). By (4) then

H1 ∈ Ĥδ if and only if 1 − P (δ|H1) ≤ 1 − P (δ|H2), i.e.

H1 ∈ Ĥδ if and only if P (δ|H1) ≥ P (δ|H2).

So, when r is computed as in (5), the set of least rejected hypotheses under
δ pins down the set of hypotheses which maximise likelihood. Hence we call
rl the maximal likelihood rejection function.

As above we assume the additive aggregation of the degrees of rejection over
multisets of data:

rl∆(H) =
∑

δ∈∆

rlδ(H).

Proposition 4. rlδ(H) is a degree of rejection.

Proof. We must show that rl satisfies parts (1-3) of Definition 1. For part
(1), recall that γ |= δ entails P (γ|H) ≤ P (δ|H) for all conditional probability
functions defined as in (2). By (4), we get rlδ(H) = P (¬δ|H) ≤ P (¬γ|H) =

rlγ(H), as required. As for (2) observe that if H |= δ then P (δ|H) = 1.

By (4) we have rlδ(H) = P (¬δ|H) = 1 − P (δ|H) = 0, as required. A

similar argument delivers (3). For if H |= ¬δ, we have rlδ(H) = P (¬δ|H) =
1 − P (δ|H) = 1, which is greater than 0. �

We are now ready to define |∼
lRJ , which arises from |∼RJ by imposing rl as

the degree of rejection. Recall that ∆|∼RJϕ if ϕ is a classical consequence

of H for each minimally rejected hypothesis H ∈ Ĥ∆.
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Definition 3. We say that ϕ is a lRJ-consequence of ∆, written ∆|∼
lRJϕ,

if

i) ∆|∼RJϕ, and

ii) r is computed according to (5), i.e. r = rl.

As a consequence of Proposition 4, |∼
lRJ ⊃ |∼RJ . The key difference between

|∼
lRJ and the blueprint |∼RJ lies in the fact that the former satisfies both

conjunction on the left and its converse, namely:

∆, δ, γ|∼ϕ ¬γ,¬δ |= ⊥

∆, δ ∧ γ|∼ϕ
(AND)l

and
∆, δ ∧ γ|∼ϕ ¬γ,¬δ |= ⊥

∆, δ, γ|∼ϕ
(AND)conl

while this is not the case in general for |∼RJ , as we will show in the next
section.

Before proving that (AND)l holds for |∼
lRJ , let us argue in favour of its

desirability. By inspecting the likelihood-based rejection function rl (5) it is
apparent that the semantics of |∼

lRJ builds on “the probability of negations”.
It is therefore the additivity of conditional probability functions (3) which
delivers the validity of this rule.

Proposition 5. In addition to all the rules in Table 2 lRJ-consequence

relations satisfy also (AND)l and (AND)conl .

Proof. Suppose ∆, δ, γ|∼ϕ and ¬δ,¬γ |= ⊥. By (5), we have rlδ∧γ(H) =

P (¬(δ ∧ γ) | H). The right hand side, by the elementary properties of
conditional probability functions equals P (¬δ ∨ ¬γ | H). By the second
hypothesis of (AND)l we know that ¬δ and ¬γ are incompatible. Hence, by
additivity rlδ∧γ(H) = P (¬δ | H) + P (¬γ | H) which equals rlδ(H) + rlγ(H).

This entails that for each H, we have rl∆,γ,δ(H) = rl∆,γ∧δ(H), hence Ĥ∆,γ,δ =

Ĥ∆,γ∧δ and thus ∆, γ, δ|∼RJϕ if and only if ∆, γ∧δ|∼RJϕ. This finally shows

that rl satisfies both (AND)l and (AND)conl . �

3.2. (OR) is not valid for |∼
lRJ . As a consequence of Proposition 4, if

a rule is not valid for |∼
lRJ , then it is not valid for |∼RJ either. And, as

anticipated, a noticeable failure for the blueprint consequence relation is
the rule known in the non-monotonic logic literature as disjunction in the

premisses (OR). Hence both |∼
lRJ and its predecessor |∼RJ , fall short of

being preferential consequence relations in the sense recalled in Section 1.3.

Before showing this, let us make explicit that this is in fact desirable in
light of the intended semantics of the consequence relation(s). Recall that
|∼

lRJ is likelihood based: the degree to which an observation δ rejects a
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hypothesis H is computed as P (¬δ | H). If we were to insist on satisfying
(OR) we would need to guarantee that P (¬(δi∨ δj) | H) = P (¬δi∧¬δj | H)
can always be computed in terms of P (¬δi | H) and P (¬δj | H). But it is
well known that is cannot be done in general, for (conditional) probability
functions are not compositional with respect to conjunction – see Section
1.1 of [25] for a general discussion.

We show that (OR) fails for lRJ-consequence by arguing that the weaker
rule (XOR), introduced in [23], fails too:

Σ, δ|∼ϕ Σ, γ|∼ϕ δ, γ |= ⊥

Σ, δ ∨ γ|∼ϕ.
(XOR)

Lemma 2. (XOR) does not hold for |∼
lRJ .

Proof. To construct the required counterexample, let H = {H1,H2,H3} and
suppose γ, δ |= ⊥, i.e. γ and δ are logically incompatible data. Consider the
following probability assignments:

P (¬δ ∧ γ | H1) = 0.5 P (¬δ ∧ γ | H2) = 0.3 P (¬δ ∧ γ | H3) = 0.7

P (δ ∧ ¬γ | H1) = 0.4 P (δ ∧ ¬γ | H2) = 0.5 P (δ ∧ ¬γ | H3) = 0.1

P (¬δ ∧ ¬γ | H1) = 0.1 P (¬δ ∧ ¬γ | H2) = 0.2 P (¬δ ∧ ¬γ | H3) = 0.2.

Since γ, δ |= ⊥ we have

P (δ ∧ γ | H1) = P (δ ∧ γ | H2) = P (δ ∧ γ | H3) = 0.

Now, by simple computations, we obtain

rlδ(H1) = P (¬δ | H1) = 0.6,

rlδ(H2) = P (¬δ | H2) = 0.5,

rlδ(H3) = P (¬δ | H3) = 0.9,

hence Ĥδ = {H2} and
δ|∼H2 ∨H3.

Moreover,

rlγ(H1) = P (¬γ | H1) = 0.5,

rlγ(H2) = P (¬γ | H2) = 0.7,

rlγ(H3) = P (¬γ | H3) = 0.3,

hence Ĥγ = {H3} and
γ|∼H2 ∨H3.

We have thus shown that the premises of XOR are satisfied. On the other
hand rlδ∨γ(H1) = P (¬δ∧¬γ | H1) = 0.1, rlδ∨γ(H2) = P (¬δ∧¬γ | H2) = 0.2,

and rlδ∨γ(H3) = P (¬δ ∧ ¬γ | H3) = 0.2, so that Ĥδ∨γ = {H1}, and finally

δ ∨ γ 6 |∼H2 ∨H3
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that is, the conclusion of the rule (XOR) is not satisfied. �

3.3. α-RJ consequence. Recall that likelihood is the probability of ob-

served data conditional on a (statistical null) hypothesis. It is a calculated,
rather than estimated, quantity. A long-standing controversy in the method-
ology of statistics revolves around whether likelihood is all that one should
take into account when making data-driven inferences, see [51] for an artic-
ulated account.

As recalled in the introductory Section, the practice known as Null Hy-
pothesis Significance Testing (NHST) combines several aspects of statistical
methodology and gives a prominent role to the p-value which is the cal-
culated probability of obtaining hypothetical data, namely data at least as
improbable as those observed conditional on the null hypothesis. Clearly
the p-value is not entirely data-driven, as it features data which in fact one
has not seen – see [58] for an extensive discussion on this and related point.

For our present purposes it is enough that we capture the qualitative com-
parison of the conditional probabilities involved, and in particular the fact
that when computing p-values, we consider the cumulative probability func-
tion defined over all events which are less probable than those observed
conditional on H0.

To capture this new feature, we add to the language of |∼RJ and |∼
lRJ an

operator tH which associates to each hypothesis H, the formula tH(δ). The
operator is characterised as follows:

δ |= tH(δ),

γ |= δ

tH(γ) |= tH(δ), tH(tH(δ)) |= tH(δ). (6)

From the logical point of view, tH is just a closure operator over the set of
models of the formula δ ∈ FmD. The rules which characterise it express its
extensiveness, monotonicity and idempotence, respectively.

To illustrate, δ |= tH(δ) states that the set of models of δ, which translate
probabilistically as the event that δ occurs, is a subset of the set of models
of tH(δ), the event that data at least as improbable than δ occur. The other
rules read similarly.

The consequence relation to be introduced in Definition 5 below departs in
another way from |∼

lRJ . Recall that NHST combines ideas by Fisher about
significance inference with ideas by Neyman and Pearson about statistical
testing, albeit against the will of all parties involved. Whilst the Fisher
approach insists on p-values providing a degree of inconsistency between the
data and the null hypothesis, the Neyman-Pearson one is oriented towards
the (binary) decision whether to reject or not the null hypothesis. To do so,
a threshold α is fixed at design time which identifies the so-called rejection

region: the null hypothesis is rejected if the observations conditional on the
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null hypothesis falls within this region. The key feature of the consequence
relation |∼αRJ is that of combining the qualitative nature of the binary
decision with the graded interpretation of the p-value.

Two preliminary remarks before we get to the definitions. First, we repre-
sent the p-value associated to hypothesis H by the quantity P (tH(δ) | H).
Building on this, the rejection degree for a hypothesis H ∈ H is set to 1
minus the p-value, provided the latter is below a fixed threshold α. Second,
in Definition 4 below, and in the reminder of this Section, we will assume
that hypotheses in H = {H1, . . . ,Hn} are mutually exclusive and jointly
exhaustive.

Definition 4 (rα). Fix αi ∈ [0, 1) for each Hi ∈ H and suppose δ ∈ FmD.
Then

rαδ (Hi) =

{

1 − P (tHi
(δ) | T ∧Hi) if P (tHi

(δ) | T ∧Hi) ≤ αi

0 otherwise.

Finally,

rα∆(H) =
∑

δ∈∆

rαδ (H),

for any H ∈ H,∆ ∈ MD.

Lemma 3. rα is a degree of rejection.

Proof. We need to check that the rejection degree of Definition 4 satisfies
Definition 1.

For condition (1), in suppose γ |= δ, for γ, δ ∈ FmD. Since γ |= δ, we have
that tHi

(γ) |= tHi
(δ), hence by the monotonicity of probability functions,

P (tHi
(γ) | Hi) ≤ P (tHi

(δ) | H). From this it follows immediately that if
P (tHi

(γ) | Hi) ≥ αi, then P (tHi
(δ) | H) ≥ αi, and 1 − P (tHi

(γ) | Hi) ≥
1 − P (tH(δ) | Hi), hence rαγ (H) ≥ rαδ (H), as required.

The remaining conditions are established similarly, hence we omit checking
them explicitly. �

We now define |∼αRJ as follows.

Definition 5 (|∼αRJ ). We say that ϕ is αRJ-consequence of ∆, written
∆|∼αRJϕ, if

i) ∆|∼RJϕ, and
ii) r is computed according to Definition 4, i.e. r = rα.

The next example shows that |∼αRJ formalises the key inferential step in a
stylised example of a NHST procedure.
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Example 2. Consider the null hypothesis H0 and recall that we are under
the blanket assumption to the effect that hypotheses form a partition. Hence
we can write H = {H0,¬H0} instead of H = {H0,H1}. We fix α0 ∈ (0, 1)
and let α1 = 0. For simplicity, we drop the index of the former, denoting α0

by α. Definition 4 gives us rαδ (H0) = 1−P (t(δ)|H0) whenever P (t(δ)|H0) ≤
α, and rαδ (H0) = 0 otherwise. On the other hand rδ(¬H0) = 1 only if
P (t¬H0

(δ)|¬H0) = 0, and rδ(¬H0) = 0 otherwise. This accounts for the
fact that in NHST one does not consider ¬H0 to be under scrutiny for
possible rejection. Thus ¬H0 is rejected only in case of data practically
impossible under ¬H0 (e.g. in case of logical contradictions), while the focus
is wholly on whether the null hypothesis H0 is rejected. Hence, whenever
P (t¬H0

(δ)|¬H0) 6= 0, we have that Ĥδ = {¬H0} if and only if rαδ (H0) 6= 0,
i.e. P (t(δ)|H0) ≤ α. This means in turn that

δ|∼αRJ¬H0 if and only if P (t(δ)|H0) ≤ α,

i.e. the null hypothesis is rejected exactly when the p-value is below the fixed

significance level (equivalently falls within the rejection region).

Note that the above example also illustrates the asymmetry between re-

jecting the null hypothesis, i.e. δ|∼αRJ¬H0 and retaining it. Indeed, if

P (t(δ)|H0) > α, we have rαδ (H0) = rαδ (¬H0) = 0, hence Ĥ = {H0,¬H0}. So
by Definition 5 we have both δ 6 |∼αRJH0 and δ 6 |∼αRJ¬H0.

The last proposition in this Section compares |∼αRJ and |∼
lRJ , by showing

that neither (AND)l nor (AND)conl , are satisfied by |∼αRJ (recall that by
Proposition 5 they are both satisfied by |∼

lRJ).

Proposition 6. Both (AND)l and (AND)conl are invalid under |∼αRJ .

See the Appendix for the proof.

4. uRJ-consequence

Our next and final instantiation of the blueprint consequence relation |∼RJ

arises by taking the more general approach to data-driven inference offered
by the method of Strong Inference, briefly recalled in Section 1.2 above.

Strong Inference stands in close analogy with the Ulam-Rényi game, which
we spell out as the Ulam-Rényi game for Strong Inference – USI, for short.

4.1. Ulam-Rényi game for Strong Inference. A USI game is played by
Scientists (S) against Nature (N). N “thinks” of a number, called the secret

which is the index of the unique true hypothesis in H = {H1, . . . ,Hn}. S
must figure out what the secret is, which we denote by Hs∗ , and aims to
do so as quickly as possible. The only move available to S is to ask Nature
binary questions, i.e. questions that can be answered with either “Yes” or
“No”. In this latter case we say that the hypothesis has been rejected.
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Ulam-Rényi games are related to logic as follows. In the form just recalled
above, they provide a sound and complete semantics for classical logic. If
however, Nature is allowed to lie m times (m ∈ N), then USI game provides
a sound and complete semantics for the (m + 2)-valued  Lukasiewicz logic
[41, 42].

Building on this, we will assume that N can lie at most 0 ≤ m < ∞ times.
We say that a hypothesis H is temporarily rejected if N answers “No” to
a question about H and m > 0. A hypothesis is rejected if it has been
temporarily rejected at least m+ 1 times.

Rather than a deceptive or mischievous view of Nature, this feature of USI
games captures the fact that data are often gappy, ambiguous, or otherwise
imperfect. Hence lies are interpreted here as mistakes made by scientists
either in the design of experiments or in the analysis of the data generated
by them. The fact that there is a bound to the number of mistakes captures
the single most distinctive aspect of scientific reasoning: it will eventually
self-correct. Indeed, the aim of the USI game is to reject all candidates
except for the secret, which can be temporarily rejected, but not rejected.

The remainder of this work explores the consequences of taking the USI
game as the intended semantics for our uRJ-consequence whose properties
are pinned down in the main result of this paper, Theorem 1 below.

The formal setup is as follows. Each question-and-answer in a USI game is
represented by a formula ϕ in Fm, which we interpret as a positive answer to
the question “Does ϕ hold?”. We assume this is the only kind of data rele-
vant to uRJ-consequence. So ∆ is now a multiset from Fm = FmD = FmH.
This means that data is expressed in the same language of the hypotheses
and we no longer distinguish FmD from FmH. As described in Section 2
scientists playing the USI game can rely on non-revisable assumptions, and
in particular the fact that exactly one of the hypothesis is true (and Nature
cannot lie about this). As usual we capture this with the formula T .

Example 3. Suppose that H = {H1,H2,H3,H4}. Recall that Scientists
can only ask questions of the form “Does the secret belong to D ⊆ H?”.
If, say, D = {H1} then S asks the question “Is the secret H1?”. Suppose
Nature responds “No”. This means that the only hypothesis that has been
temporarily rejected is H1. The information provided by this first round of
the USI game can be expressed by the formula H2 ∨H3 ∨H4 and under the
assumption that T holds, this is logically equivalent to ¬H1. In general, if
Nature’s answer is “Yes” and ID is the set of indexes of the hypotheses in D,
then this information is expressed by the formula

∨

i∈ID
Hi which, modulo

T , is logically equivalent to
∧

i∈[n]\ID
¬Hi (n = |H|). If Nature’s answer

to the question “Does the secret belong to D ⊆ H?” is “No”, then this
information is expressed by the two logically equivalent formulas

∨

i∈[n]\ID
Hi
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and
∧

i∈ID
¬Hi. Table 4 illustrates sample questions-and-answers relative to

H = {H1,H2,H3,H4}.

Question Answer Equivalent Formalizations (given T )
D = {H1,H2} Yes H1 ∨H2 ¬H3 ∧ ¬H4

D = {H4} Yes H4 ¬H1 ∧ ¬H2 ∧ ¬H3

D = {H1,H3,H4} No H2 ¬H1 ∧ ¬H3 ∧ ¬H4

D = {H2} No H1 ∨H3 ∨H4 ¬H2

Table 4. Formalization of data in a USI game

The degree to which a hypothesis is temporarily rejected by a single question-

and-answer δ in a USI game after k questions-and-answers, denoted ruδ , is
arrived at as follows. Before any question is answered, ru∅ (H) equals 0 for
each H ∈ H. Then as data in the form of questions-and-answers arrive, let

ruδ (H) =











∞ if T |= ¬δ,

1 if T,H |= ¬δ,

0 otherwise.

(7)

As usual the aggregation of degrees of rejection yielded by multisets of data
is additive, i.e. the sum of the degree of rejection of the formula occurring
in the multiset.

There are however two exceptional cases where ru∆(H) is taken to be infinite,
and different from the sum. The first arises when

∑

δ∈∆ r
u
δ (Hs∗) > m.

This accounts for the situation in which the secret has been rejected, i.e.
temporarily rejected more times than the fixed number m of available lies.
Since N knows that the secret is true, this is a contradiction. (Recall that
the blueprint consequence relation is explosive, see Lemma 1.) The second
case in which ru∆(Hi) is infinite arises when hypotheses distinct from the
secret are rejected, i.e.

∑

δ∈∆ r
u
δ (Hi) > m.

Summing up, we let:

ru∆(Hi) = ∞

{

if Hi ∈ H and
∑

δ∈∆ r
u
δ (Hs∗) > m

or Hi 6= Hs∗ and
∑

δ∈∆ r
u
δ (Hi)>m

(8)

while, in the remaining cases:

ru∆(Hi) =
∑

δ∈∆

ruδ (Hi). (9)

Note that Hs∗ might not even belong to Ĥ∆ for arbitrary ∆. We are only
guaranteed that ru∆(Hs∗) ≤ m, i.e. it cannot be temporarily rejected more
than m times.

Lemma 4. ru is a degree of rejection.
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Proof. We need to check that the rejection degree defined in (8) and (9)
satisfies Definition 1.

For condition (1), suppose γ |= δ, for γ, δ ∈ Fm. Since γ |= δ, we have
that ¬δ |= ¬γ, hence if T |= ¬δ, we have T |= ¬γ and, if T,H |= ¬δ then
T,H |= ¬γ. This, by equation (7) entails that ruγ (H) ≥ ruδ (H).

The remaining conditions are immediate consequences of the definition,
hence we omit checking them explicitly. �

Example 4. Continuing with the setting of Example 3, let H = {H1,H2,H3,H4}.
Suppose now that the number of lies Nature can use is m = 2. Then, the
following is a possible sequence of plays of the USI game:

(1) Question: “Is the secret in D1 = {H1,H2}?”
Answer: “No”.

(2) Question: “Is the secret in D2 = {H4}?”
Answer: “Yes”.

(3) Question: “Is the secret in D3 = {H1,H2,H3}?”
Answer: “Yes”.

(4) Question: “Is the secret in D4 = {H1,H2,H4}?”
Answer: “No”.

(5) Question: “Is the secret in D5 = {H4}?”
Answer: “Yes”.

(6) Question: “Is the secret in D6 = {H4}?”
Answer: “No”.

Denote with δi the formalization of the i-th question-and-answer, i.e.

δ1 = H3 ∨H4;
δ2 = H4;
δ3 = H1 ∨H2 ∨H3;

δ4 = H3;
δ5 = H4;
δ6 = H1 ∨H2 ∨H3.

Thus, the six moves in the USI game are captured formally by the multiset

∆ = {H3 ∨H4,H4,H1 ∨H2 ∨H3,H3,H4,H1 ∨H2 ∨H3}.

Let us denote with ∆i the multiset consisting of the formalizations of the
first i questions-and-answers according to the sequence just introduced, i.e.
in our specific example:

∆1 = {H3 ∨H4};
∆2 = {H3 ∨H4,H4};
∆3 = {H3 ∨H4,H4,H1 ∨H2 ∨H3};
∆4 = {H3 ∨H4,H4,H1 ∨H2 ∨H3,H3};
∆5 = {H3 ∨H4,H4,H1 ∨H2 ∨H3,H3,H4};
∆6 = {H3 ∨H4,H4,H1 ∨H2 ∨H3,H3,H4,H1 ∨H2 ∨H3}.

Therefore, after each question-and-answer we can compute the degree of
rejection for each hypotheses in H according to (8) and (9). See Tables
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5 and 6 for the computations of the degrees of rejection relative to this
example. Since ru∆6

(Hi) = ∞ for i = 1, 2, 4 and ru∆6
(H3) = 2, i.e. all the

Hypotheses
H1 H2 H3 H4

ruδ1 1 1 0 0

ruδ2 1 1 1 0

ruδ3 0 0 0 1

ruδ4 1 1 0 1

ruδ5 1 1 1 0

ruδ6 0 0 0 1

Table 5. Degrees of
rejection computed on
the single questions-
and-answers δi

Hypotheses
H1 H2 H3 H4

ru∆1
1 1 0 0

ru∆2
2 2 1 0

ru∆3
2 2 1 1

ru∆4
∞ ∞ 1 2

ru∆5
∞ ∞ 2 2

ru∆6
∞ ∞ 2 ∞

Table 6. Degrees of
rejection computed
on the sequence of
questions-and-answers
∆i

hypotheses except for one have been rejected, it follows that H3 is the secret.

This example motivates our next Definition.

Definition 6 (uRJ-consequence). Let ∆ be a multiset in FmH, ϕ ∈ FmH,
and ru∆(ϕ) be defined as in (8) and (9). Then define

∆|∼uRJϕ if T,H |= ϕ, for every H ∈ Ĥ∆.

Note that the fact we restrict data to answers in a USI game, effectively
means that uRJ-consequence relates hypotheses.

A continuation of the Example 4 illustrates Definition 6.

Example 5. Recall that H = {H1,H2,H3,H4}, Nature can lie at most
m = 2 times, and the available data is formalized by the multiset ∆ =
{H3 ∨H4,H4,H1 ∨H2 ∨H3,H3,H4,H1 ∨H2 ∨H3}. For each ∆i each Ĥ∆i

is computed as follows:

Ĥ∆1
= {H3,H4};

Ĥ∆2
= {H4};

Ĥ∆3
= {H3,H4};

Ĥ∆4
= {H3};

Ĥ∆5
= {H3,H4};

Ĥ∆6
= {H3}.

Note that for every i, j s.t. i 6= j we have T,Hi |= ¬Hj. Therefore, the
following consequence relations holds

∆1|∼uRJ¬H1 ∧ ¬H2;
∆2|∼uRJ¬H3;
∆6|∼uRJ¬H1 ∧ ¬H2 ∧ ¬H4.
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On the other hand, we have

∆1 6 |∼uRJ¬H3;
∆1 6 |∼uRJ¬H4;
∆2 6 |∼uRJ¬H4;
∆6 6 |∼uRJ¬H3.

Our next lemma collects immediate consequences of Definition 6 which will
be useful later on.

Lemma 5. Let H = {H1, . . . ,Hn} and let m ≥ 0 be the number of lies

allowed to Nature. The following hold:

(1) Suppose that Ĥ∆ = Ĥ∆′, then ∆|∼uRJϕ if and only if ∆′|∼uRJϕ.

(2) If ∆ rejects Hi, then ∆|∼uRJ¬Hi.

(3) If ∆ rejects Hi, then ∆′|∼uRJ¬Hi for every ∆′ ⊇ ∆
(4) Hs∗ is the secret if and only if for some ∆ ∈ Fm consistent with T ,

we have Ĥ∆ = {Hs∗} and ru∆(Hi) = ∞ for all Hi 6= Hs∗.

To show that indeed |∼uRJ arises from the blueprint |∼RJ consequence rela-
tion we need to formulate a slightly stronger version of the rules (RWE) and
(LLE) where the theory T is mentioned explicitly. (Recall T expresses that
the hypotheses form a partition containing the unique secret). The resulting
amendments are presented in Table 7, which also contains the strengthening
of (AND)l and (AND)conl . Note that, with a slight abuse of notation, we do
not change the name of the rules compared to Table 2.

∆|∼ϕ T,ϕ |= ψ

∆|∼ψ
(RWE)

∆, γ|∼ϕ T |= γ ↔ δ

∆, δ|∼ϕ
(LLE)

∆, γ, δ|∼ϕ T,¬γ,¬δ |= ⊥

∆, γ ∧ δ|∼ϕ
(AND)l

∆, γ ∧ δ|∼ϕ T,¬γ,¬δ |= ⊥

∆, γ, δ|∼ϕ
(AND)conl

Table 7. Rules for mutually exclusive and exhaustive hypotheses

As an immediate consequence of Proposition 2 above, both (AMON) and
(MMON) fail for |∼uRJ , as expected. Moreover a straightforward adaptation
of the arguments provided by the proof of Lemma 1 and Lemma 5 will yield
the following Lemma.

Lemma 6. |∼uRJ satisfies the rules in Table 7.

In light of this we can observe that |∼uRJ arises from |∼RJ by taking r = ru .
To simplify notation in the remainder of this Section we will just write r
and speak of the degree of rejection.
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4.2. Valid rules of inference for |∼uRJ . Since its language allows for a
formula to be both on the left and on the right of the consequence relation
symbol, we can ask whether |∼uRJ satisfies (multiset versions of) (CUT),
(CMO), and (RMO) described in Table 8. Quite interestingly, |∼uRJ also
satisfies a form of constrained monotonicity which to the best of our knowl-
edge has not been investigated before, and which we term (UMO), for USI
games:

∆|∼ψ {∆ \ {δ}|∼ψ}δ∈∆.
∆, ϕ|∼ψ

(UMO)

Before proving its validity, we illustrate the rationale for (UMO). The
non-monotonic behaviour of |∼uRJ is ultimately due to the fact that new
questions-and-answers can change the set of least rejected hypotheses. Note
however that a single question-and-answer may alter the degree of rejection
of each hypothesis by at most by one. Hence, when the degree of rejection
of any least rejected hypothesis, say H, is at least two units smaller than
the others in H, we can be sure that adding just one question-and-answer,
say ϕ, will not change the status of H as a least rejected hypothesis. This
condition on the “distance” between degrees of rejection of least rejected
hypotheses and the others is captured by the second premise of (UMO). If
the degree of rejection of the least rejected hypotheses are smaller by at the
least two units than the others in H, then removing any occurrence of a
formula from the multiset ∆ will not change Ĥ∆, and hence the formulas
that the multiset entails.

Example 6. Suppose
H1,H1 |∼uRJ H1.

Here Ĥ{H1,H1} = {H1}, r{H1,H1}(H1) = 0 and r{H1,H1}(Hi) = 2 for any
Hi ∈ H, with i 6= 1. This ensures that

H1,H1, ϕ |∼uRJ H1

for any formula ϕ, since we may have, at worst, r{H1,H1,ϕ}(H1) = 1, while
r{H1,H1,ϕ}(Hi) ≥ 2 for any i 6= 1. H1 will therefore continue to be the

only formula in Ĥ{H1,H1,ϕ}. The above reasoning is thus captured by the
following application of (UMO):

H1,H1 |∼uRJ H1 H1 |∼uRJ H1

H1,H1,H2 |∼uRJ H1

For a non-example, note that

H1 |∼uRJ H1

H1,H2 |∼uRJ H1

is not valid. To have a correct instance of (UMO), we should also have
|∼uRJH1, which clearly does not hold. In the above consequence we have



24 PAOLO BALDI, ESTHER ANNA CORSI, HYKEL HOSNI

ϕ|∼RJϕ
(REF)

∆|∼uRJψ ∆|∼uRJϕ

∆, ϕ|∼uRJψ
(CMO)

∆, ϕ|∼RJψ ∆|∼RJϕ

∆|∼RJψ
(CUT)

∆|∼ψ ∆ 6 |∼¬ϕ

∆, ϕ|∼ψ
(RMO)

∆|∼ψ {∆ \ {δ}|∼ψ}δ∈∆
∆, γ|∼ψ

(UMO)

Table 8. Rules satisfied by the System |∼uRJ

H1 ∈ ĤH1
, but the difference between rH1

(H2) = 1 and rH1
(H1) = 0 is

not strictly greater than 1. In the consequence we now have r{H1,H2}(H1) =

r{H1,H2}(H2) = 1, and bothH1 andH2 belong to Ĥ{H1,H2}, henceH1,H2 6 |∼uRJH1.

Proposition 7. |∼uRJ satisfies the rules in Table 8.

Thus |∼uRJ is “more monotonic” than rational consequence relations. So
it captures a rather minimal departure from classical deduction in which
non monotonic behaviour arises as a consequence of lies in the USI game,
which corresponds to a variety of errors that scientists can make in exper-
imental research. This vicinity with classical deduction can be interpreted
as data-driven reasoning being a good approximation of the gold standard
of mathematical proof.

4.3. Disjunction in the premisses and Modus tollens hold for |∼uRJ .
In addition to satisfying (UMO) and (RMO), |∼uRJ goes beyond |∼

lRJ by
satisfying also the (OR) rule. In light of our comments on Lemma 2 this
welcome feature of |∼uRJ should not come as a surprise upon careful com-
parison of (5) and (7). Whilst the semantics governing |∼

lRJ is quantitative
(i.e. the full range of probability functions plays a role in (5)), |∼uRJ is
qualitative (i.e. only the extreme points of [0, 1] play any role in (7)).

Lemma 7. |∼uRJ satisfies

∆, γ|∼ψ ∆, δ|∼ψ

∆, γ ∨ δ|∼ψ.
(OR)

See the Appendix for the proof.

The qualitative nature of the degree of rejection underpinning |∼uRJ gives us
also a version of modus tollens. This conspicuous rule, which to some is the
key pattern in scientific reasoning, typically fails for quantitative inference.
A fact that has not gone unnoticed to some critics of NHST, as we recalled
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in Section 1.1 above. Hence the following Lemma, proven in the Appendix,
is of conceptual interest.

Lemma 8. |∼uRJ satisfies

∆, ϕ|∼uRJψ ∆|∼uRJ¬ψ

∆|∼uRJ¬ϕ.
(MT)

We now turn to the main result of this paper.

4.4. A completeness result for |∼uRJ . We make our way now to estab-
lishing a completeness result for uRJ-consequence relations. In preparation
for that, the next Lemma pins down a useful normal form for arbitrary con-
sequences under |∼uRJ . We will show that whenever |∼uRJ relates a multiset
of premises and a conclusion, we can find an equivalent set of consequence
relations |∼uRJ , with “simpler” premises and conclusion. This will be use-
ful in establishing the argument by cases which intervenes in the proof of
Theorem 1.

Lemma 9. Let ∆ be a multiset of formulas in Fm and ψ ∈ Fm. The

following are equivalent:

(1) ∆|∼uRJψ;

(2) A set of consequence relations of the form ¬H l1
1 , . . . ,¬H

ln
n |∼uRJ¬Hj

holds, with multiplicity indices l1, . . . , ln greater or equal than 0 and

j ∈ {1, . . . , n}.

Proof. (1) ⇒ (2). Assume ∆|∼uRJψ. We proceed as follows. First, note that
any formula ϕ in FmH is logically equivalent, modulo T , to the disjunction
of the hypotheses entailing it, i.e. to the formula

ϕ∨ :=
∨

H|=ϕ

H.

In turn, since under our assumptions H 6|= ϕ entails H |= ¬ϕ, the formula
ϕ∨ is equivalent to :

ϕ∧ :=
∧

H|=¬ϕ

¬H.

In the limiting case where {H ∈ H | H |= ϕ} = H, and consequently
{H ∈ H | H |= ¬ϕ} = ∅, we let ϕ∨ ≡ ϕ∧ ≡ T . We then let ∆∧ be the
multiset obtained by replacing each δ ∈ ∆ by δ∧. Since all the formulas in
∆∧ and ψ are logically equivalent (modulo T ) to ∆ and ψ, we will then
have that ∆|∼uRJψ if and only if

∆∧|∼uRJψ∧.

From this latter, we can derive the original ∆|∼uRJψ by repeated backwards
applications of (LLE) to recover ∆, and (RWE) to recover ψ
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Now, if one of the formulas in ∆, say δ∧, is equivalent to T , it does not
temporarily reject any noncontradictory formula, hence

∆∧|∼uRJψ∧ if and only if ∆∧ \ {T}|∼uRJψ∧.

From it we can derive ∆∧|∼uRJψ∧ by just applying (RMO), since
∆∧ \ {T} 6 |∼uRJ¬T , i.e.

∆∧ \ {T}|∼uRJψ∧ ∆∧ \ {T} 6 |∼uRJ¬T

∆∧|∼uRJψ∧
(RMO)

We may thus remove from ∆ all the formulas that are logically equivalent
to T .

Our next step is applying backwards the rules (AND)l and (AND). Note
that we can equivalently take the converse (AND)conl , since the conjuncts
are of the form ¬H1 ∧ ¬H2 ∧ . . . , and their negations H1,H2, . . . are all
mutually exclusive modulo T, hence they satisfy the condition for applying
(AND)conl . We thus reduce ∆∧|∼uRJψ∧ to the set of consequences of the
form:

¬H l1
1 , . . . ,¬H

ln
n |∼uRJ¬Hj

as required.

(2) ⇒ (1). The result follows by applying (forwards, this time) all the rules
used in the previous step. �

The normal form depends on the set of hypotheses H, as the next example
illustrates.

Example 7. Consider first the normal form of H1 ∨ H2,H1 ∨ H3|∼uRJH1

assuming H = {H1,H2,H3}:

δ1 := H1 ∨H2

δ2 := H1 ∨H3

ψ := H1

δ1∧ := ¬H3

δ2∧ := ¬H2

ψ∧ := ¬H2 ∧ ¬H3

Thus, ∆∧ = {¬H3,¬H2} and Ĥ∆∧
= {H1}.

Note that if we let H = {H1,H2,H3,H4} we obtain the following:

δ′1∧ := ¬H3 ∧ ¬H4

δ′2∧ := ¬H2 ∧ ¬H4

ψ′
∧ := ¬H2 ∧ ¬H3 ∧ ¬H4

Hence ∆′
∧ = {¬H3,¬H2,¬H4} and Ĥ∆′

∧
= {H1}.

It is easy to see that, in case H = {H1,H2,H3,H4} we have ∆′
∧ 6 |∼uRJH1.
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Now to our main result.

Theorem 1. Suppose ∆|∼uRJψ and r∆(H) is finite for each H ∈ H. Then

there is a derivation of it using the rules in Table 7 and Table 8.

The proof is in the Appendix. Here we sketch the idea. Lemma 9 guarantees
the existence of a set of

¬H l1
1 , . . . ,¬H

ln
n |∼uRJ¬Hj,

where all the multiplicity indices l1, . . . , ln are greater or equal than 0 and
j ∈ {1, . . . , n}. Pick any such consequences and denote its left-hand side
by ∆′. The proof then proceeds reasoning by induction on the number of
formulas occurring in ∆′. We need to show how to derive ∆′|∼uRJ¬Hj by
a rule in either Table 7 and Table 8, using valid premises with a number of
formulas smaller than ∆′. Example 8 below illustrates some of the relevant
subcases, involving (UMO) and (RMO).

Example 8. We illustrate by way of examples how to apply the rules (UMO)
and (RMO) in the corresponding sub-case of the proof of Theorem 1. In
each case below, we set H = {H1,H2,H3,H4}.

(1) Suppose that ∆′ = {¬H3
4} where 3 is the multiplicity index relative

to ¬H4. Thus, Ĥ∆′ = H \ {H4} = {H1,H2,H3}, and¬H3
4 |∼uRJ¬H4

holds, while Hi |= ¬H4, for every i = 1, 2, 3. If we remove ¬H4

from ∆′, then ∆′ \ {¬H4} = {¬H2
4} and Ĥ∆′ = Ĥ∆′\{¬H4} =

{H1,H2,H3}. Therefore, ∆′ \ {¬H4}|∼uRJ¬H4. In addition, for
every i = 1, 2, 3 we have Hi 6|= H4 and ∆′ \ {¬H4} 6 |∼uRJH4.

In conclusion ¬H3
4 |∼uRJ¬H4 can be obtained by applying (RMO)

to ¬H2
4 |∼uRJ¬H4 as first premise and ¬H2

4 6 |∼uRJH4 as second premise,
i.e.

¬H2
4 |∼uRJ¬H4 ¬H2

4 6 |∼uRJH4

¬H3
4 |∼uRJ¬H4

(RMO)
.

Suppose that ∆′ = {¬H2
1 ,¬H

3
4}. Thus, Ĥ∆′ = {H2,H3}. Since

H2 |= ¬H1 and H3 |= ¬H1, then ¬H2
1 ,¬H

3
4 |∼uRJ¬H1 holds. If

we remove ¬H4 from ∆′, then ∆′ \ {¬H4} = {¬H2
1 ,¬H

2
4} and

Ĥ∆′ = Ĥ∆′\{¬H4} = {H2,H3}. Therefore, ∆′ \ {¬H4}|∼uRJ¬H4.
In addition, for every i = 2, 3 Hi 6|= H1 and ∆′ \ {¬H4} 6 |∼uRJH1.

In conclusion ¬H2
1 ,¬H

3
4 |∼uRJ¬H1 can be obtained by applying

(RMO) to ¬H2
1 ,¬H

2
4 |∼uRJ¬H1 as first premise and

¬H2
1 ,¬H

2
4 6 |∼uRJH4 as second premise, i.e.

¬H2
1 ,¬H

2
4 |∼uRJ¬H1 ¬H2

1 ,¬H
2
4 6 |∼uRJH4

¬H2
1 ,¬H

3
4 |∼uRJ¬H1

(RMO)
.
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(2a) Suppose that ∆′ = {¬H2
1 ,¬H

1
2 ,¬H

3
3 ,¬H

3
4}. Thus, Ĥ∆′ = {H2}.

Since H2 |= ¬H4, then ¬H2
1 ,¬H

1
2 ,¬H

3
3 ,¬H

3
4 |∼uRJ¬H4 holds. If we

remove ¬H3 from ∆′, then ∆′ \ {¬H3} = {¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4}

and Ĥ∆′ = Ĥ∆′\{¬H3} = {H2}. Therefore, ∆′ \ {¬H3}|∼uRJ¬H4. In

addition, H2 6|= H3 and ∆′ \ {¬H3}6 |∼uRJH3.
In conclusion ¬H2

1 ,¬H
1
2 ,¬H

3
3 ,¬H

3
4 |∼uRJ¬H4 can be obtained by

applying (RMO) to ¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 as first premise

and
¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

3
4 6 |∼uRJH3 as second premise, i.e.

¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 ¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

3
4 6 |∼uRJH3

¬H2
1 ,¬H

1
2 ,¬H

3
3 ,¬H

3
4 |∼uRJ¬H4

(RMO)
.

(2a’) Suppose that ∆′ = {¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4}. Thus, Ĥ∆′ = {H2}.

Since H2 |= ¬H4, then ¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 holds.

If we remove ¬H2 from ∆′, then ∆′ \ {¬H2} = {¬H2
1 ,¬H

2
3 ,¬H

3
4}

and Ĥ∆′ = Ĥ∆′\{¬H3} = {H2}. Therefore, ∆′ \ {¬H2}|∼uRJ¬H4.

If we remove ¬H2 and ¬H1 from ∆′, then ∆′ \ {¬H2,¬H1} =

{¬H1,¬H
2
3 ,¬H

3
4} and Ĥ∆′ = Ĥ∆′\{¬H2,H1} = {H2}. Therefore,

∆′ \ {¬H2,H1}|∼uRJ¬H4.
If we remove ¬H2

2 from ∆′, then ∆′ \{¬H2
2} = {¬H2

1 ,¬H
2
3 ,¬H

3
4}

and Ĥ∆′ = Ĥ∆′\{¬H2
2
} = {H2}. Therefore, ∆′ \ {¬H2

2}|∼uRJ¬H4.

If we remove ¬H2 and ¬H3 from ∆′, then ∆′ \ {¬H2,¬H3} =

{¬H2
1 ,¬H3,¬H

3
4} and Ĥ∆′ = Ĥ∆′\{¬H2,H3} = {H2}. Therefore,

∆′ \ {¬H2,H3}|∼uRJ¬H4.
If we remove ¬H2 and ¬H4 from ∆′, then ∆′ \ {¬H2,¬H4} =

{¬H2
1 ,¬H

2
3 ,¬H

2
4} and Ĥ∆′ = Ĥ∆′\{¬H2,H4} = {H2}. Therefore,

∆′ \ {¬H2,H4}|∼uRJ¬H4.
In conclusion ¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 can be obtained by

applying (UMO) to ¬H2
1 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 as first premise and

{{¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4} \ {¬H2,¬H}|∼uRJ¬H4}¬H∈∆′ , i.e.

¬H2
1 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4 {{¬H2

1 ,¬H
2
3 ,¬H

3
4} \ {¬H}|∼uRJ¬H4}¬H∈∆′

¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H4

(UMO)
.

(2b) Suppose that ∆′ = {¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4}. Thus, Ĥ∆′ = {H2}.

Since H2 |= ¬H1, then ¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H1 holds. If we

remove ¬H4 from ∆′, then ∆′ \ {¬H4} = {¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

2
4}

and Ĥ∆′ = Ĥ∆′\{¬H4} = {H2}. Therefore, ∆′ \ {¬H4}|∼uRJ¬H4. In

addition, H2 6|= H1 and ∆′ \ {¬H4} 6 |∼uRJH1.
In conclusion ¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H1 can be obtained by

applying (RMO) to ¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

2
4 |∼uRJ¬H1 as first premise
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and
¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

2
4 6 |∼uRJH4 as second premise, i.e.

¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

2
4 |∼uRJ¬H1 ¬H2

1 ,¬H
1
2 ,¬H

2
3 ,¬H

2
4 6 |∼uRJH4

¬H2
1 ,¬H

1
2 ,¬H

2
3 ,¬H

3
4 |∼uRJ¬H1

(RMO)
.

Example 9. We further illustrate Theorem 1 by showing how to find a
derivation for the normal forms identified in Example 7. To this end, let
H = {H1,H2,H3} and ¬H2,¬H3|∼uRJ¬H2 ∧ ¬H3. Thus,

¬H2|∼uRJ
¬H2 ¬H2 6 |∼

uRJ
H3

¬H2,¬H3|∼uRJ
¬H2

(RMO)
¬H3|∼uRJ

¬H3 ¬H3 6 |∼
uRJ

H2

¬H2,¬H3|∼uRJ
¬H3

(RMO)

¬H2,¬H3|∼uRJ
¬H2 ∧ ¬H3

(AND)
,

is the required derivation.

5. Conclusion and further work

We have introduced a family of consequence relations with the following
intended semantics: ϕ follows from ∆ if ϕ is a classical consequence of every

hypothesis which is least rejected in ∆. The formalisation of this leads to
our blueprint consequence relation of Definition 2. This in turn produces
three distinct, but related consequence relations: |∼

lRJ , |∼αRJ and |∼uRJ .
The first, |∼

lRJ , is based on a rejection function which pins down maximal
likelihood hypotheses. The rejection function underpinning |∼αRJ is based
on a logical rendering of the p-value. Finally, the rejection function defining
|∼uRJ arises by counting of how many times a hypothesis is temporarily
rejected in a USI game.

We showed that |∼
lRJ , |∼αRJ , and |∼uRJ are variations on the theme of ratio-

nal consequence relations, as is their precursor: the blueprint consequence
relation |∼RJ . Table 9 provides a comparison (we omit from the table those
rules which are satisfied by all of them, i.e. REF, LLE, RWE, AND, CUT,
RMO,CMO).

ANDl ANDcon
l OR UMO

|∼
lRJ

|∼αRJ

|∼uRJ
Table 9. A comparison of relevant properties satisfied by
rejection-based consequence relations.

The main result of the paper, Theorem 1, identifies the rules of inference
with respect to which |∼uRJ is complete.

While laying down the intended semantics of our consequence relations, we
detailed why we considered the rejection degrees desirable for maximum
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likelihood, null hypothesis significance tests, and strong inference, respec-
tively. To us this lends support to the blueprint consequence relation being
a promising starting point for a logical investigation into the general prop-
erties of data-driven inference, independently of one’s own preferred view on
the nature of probability.

Given the enormous variety and complexity of scientific inference, what we
have put forward here is just a preliminary set of results. We hope that
this is enough to encourage more logicians to take up the challenge. Not
only will this help revamping the decidedly outdated picture scientists have
of logic, but it may also contribute to bringing some of the most heated
debates on statistical significance and, more generally, on the methodology
of data-driven inference on more logical and less ideological grounds.

5.1. Related and future work. In a series of works culminating in [33],
Henry Kyburg and Choh Man Teng investigate the problem of putting sta-
tistical inference on a non-monotonic logical footing. They do so by taking
as a starting point the defeasible nature of rejecting H0 in NHST. To the
best of our knowledge they are among the very first ones to do this from a
formal-logical point of view. It is therefore appropriate to describe briefly
how the present work departs from the pioneering contribution of Kyburg
and Teng’s.

Conceptually, [33] focusses on the fact that in NHST and, more generally in
statistical inference, one usually justifies conclusions (about the population)
based on the representativeness of the sample. So its aim, as far as the
foundations of statistics is concerned, is to contribute to the long-standing
reference class problem. Our motivating questions is broader, as we pointed
out in the introductory section. Specifically, whilst we acknowledge the
paramount importance of statistical data in scientific inference, we do not
assume that it is the only kind of data relevant to pin down the logical
properties of scientific inference. This is why we encompass the more gen-
eral problem of strong inference, which we capture through USI games. Our
second, and more formal, point of departure from Kyburg and Teng is the
specific non-monotonic framework. Given their research question, Default
Logic [49] is a most natural setup, which they then expand to investigate the
role of probabilistic evidence in providing a semantics for the justification of
non-normal defaults. More precisely, the authors insist that the justification
for the application of a default rule encodes the lack of evidence to the effect
that the statistical sample used in the inference is atypical or biassed. In
line with the broader question asked, our results are formulated in terms
of non-monotonic consequence relations of the preferential kind. As is well
known [36] the two frameworks are related, but distinct. Similarly, and more
importantly, we do not commit to any specific view on the meaning of prob-
ability, which is interpreted evidentially by Kyburg and Teng. Since their
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uncertainty representation belongs to the wider class of imprecise probabil-
ity, we are at present unable to carry out a direct comparison with their
results. This, however, we set out to do in future work.

One problem which arises in the context of rejection-based scientific infer-
ence, is handling conflicting evidence. Kyburg and Teng tackle it at the level
of the measure of uncertainty, which for them is evidential probability as just
recalled. However, it is of technical and conceptual interest to focus on the
fact that rejection-based inference can be seen as a form of paraconsistent
inference. Recall that according to Fisher [16]:

[t]he interest of statistical tests for scientific workers depends
entirely from their use in rejecting hypotheses which are
thereby judged to be incompatible with the observations.

As captured by USI games, if the observations are classically inconsistent
with a set of hypotheses, at least one of them must be rejected. But on
more fine-graned analysis, this kind of “incompatibility” will come in de-
grees. Whilst the consequence relation |∼αRJ tackles this by mimicking
the calculated p-value, it is interesting to address the “degree of incom-
patibility” interpretation of p-values through a paraconsistent consequence
relation, for which a vast landscape of logics are available [7, 9]. As a first
line of work in this direction, it appears promising to distinguish evidence in

favour from evidence against a given hypothesis. In this way a formal link
with First-Degree Entailment [43] becomes available. This would then lead
to revising our blueprint consequence relation to encompass logics of formal
inconsistency [8, 10]. In particular, the probability functions defined over
such systems [11, 29] are expected to give rise to rejection degrees capable
of representing useful inference in light of conflicting evidence, which is very
much the norm in scientific practice. The statistical literature on this is
already quite promising [5, 53, 27, 14], see also [45] for an overview.

This brings us, in conclusion, to a logical take on statistical inference which
has been put forward in the framework of dynamic doxastic logics by Bal-
tag, Rafiee Rad and Smets (BRS) in [3]. In it, the authors model an agent
performing statistical inference, as combining “strong”, epistemic informa-
tion about the probability of an event, with “soft”, doxastic, information.
The latter is construed as a plausibility function, which determines an or-
dering over the epistemically permissible probability distributions, reflecting
the subjective inclination of the agent and the non-definitive evidence she
is confronted with. The agent is then taken to believe only in the maxi-

mal distributions, according to her plausibilistic order. Whilst the research
question underlying the BRS framework is quite distinct from ours, a foun-
dational commonality with the present work stands out: inference arises
against some underlying epistemic ordering and background information.
This is not surprising, since some epistemic ordering is always at the root
of a significance test.
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In conclusion, let us restate the key message of our results: consequence
relations based on degrees of rejection are promising in the investigation
of the validity of data-driven inference. A clear difficulty in making the
next step, and ascertain whether they will also deliver in real-world cases
of scientific inference, is to do with the fact that these are only partially
formal. By this we mean that unlike mathematical proofs, arguments in
data-driven science depend, to some hard-to-pin-down extent to the actual
content of the specific reasoning at hand. This is why we are working on a
bottom-up approach where specific instances of data-driven inference which
a relevant community takes to be valid is represented within our system
of consequence relations and hopefully abstracted to show its general, yet
context-dependent, validity. Key tools in doing this are the further special-
isation of the rejection functions, and in particular alternatives to addition
in the aggregation of the rejection offered by single pieces of data, and a
more fine grained interpretation of the meaning of lies in the USI game. We
hope to report encouraging results in this direction in future work.
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Appendix

Proposition 1. RJ-consequence satisfies the rules in Table 2.

Proof. The proof proceeds by considering each rule in turn.

For (RWE), assume that ∆|∼RJδ and δ |= ψ. Since ∆|∼RJδ for any H ∈ Ĥ∆

we have that T,H |= δ. From δ |= ψ, we then have, for any H ∈ Ĥ∆, that
T,H |= ψ.
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(LLE) holds, since if we take two formulas γ and δ which are logically
equivalent, by (2) in Definition 1 we have rγ(H) = rδ(H) for any H ∈ H.

Hence Ĥ∆,γ = Ĥ∆,δ and ∆, γ|∼RJϕ entails ∆, δ|∼RJϕ .

We now show that (AND) holds. Indeed, assume that ∆|∼RJϕ and ∆|∼RJψ.

For any H ∈ Ĥ∆, we then have that T,H |= ϕ and T,H |= ψ. Hence

T,H |= ϕ ∧ ψ for any H ∈ Ĥ∆. �

Proposition 2. Neither (AMON) nor (MMON) hold for |∼RJ .

Proof. For (AMON), let H = {H1,H2} and take γ|∼RJH1 to be the premise
of (AMON), assuming that rγ(H1) ≤ rγ(H2). Now, we will have rγ∧δ(H1) ≥
rγ(H1) and rγ∧δ(H2) ≥ rγ(H2) by the properties of rejection functions.

However, we may still have rγ∧δ(H1) > rγ∧δ(H2), that is Ĥγ∧δ = {H2},
hence γ ∧ δ 6 |∼RJH1.

As for (MMON), assume again H = {H1,H2} and γ|∼RJH1 with rγ(H1) = 0
and rγ(H2) = 1. Let δ be such that rδ(H1) = 1 and rδ(H1) = 0. We

will have rγ,δ(H1) = rγ,δ(H2) = 1. Hence Ĥγ,δ = {H1,H2}, and clearly
γ, δ 6 |∼RJH1. �

Proposition 3. Suppose FmD ∩ FmH 6= ∅. Assume further that if T |= ¬δ
then rδ(H) = ∞ for each H ∈ H. Then |∼RJ satisfies the rules in Table 3.

Proof. For (REF) we proceed as follows. First, note that from the assump-
tions on T it follows that, for every H ∈ H, either T,H |= δ or T,H |= ¬δ.

In the former case, we have rδ(H) = 0 and H ∈ Ĥδ, while in the latter

rδ(H) > 0, hence H 6∈ Ĥδ. In case that, at least for some H, we have

T,H |= δ, we then immediately obtain, for each H ∈ Ĥδ that T,H |= δ

holds.

Assume now instead that, for all H ∈ H, we have H,T |= ¬δ. Since the
hypotheses are exhaustive and mutually exclusive, this entails that T |= ¬δ,
hence rδ(H) = ∞ for each H ∈ H and by Lemma 1, we have that δ|∼RJδ.

For (CUT), let us assume that (a) ∆, δ|∼RJψ and (b) ∆|∼RJδ. If Ĥ∆ = ∅

then by Lemma 1, ∆|∼RJψ holds. So assume Ĥ∆ 6= ∅ and let H ∈ Ĥ∆.
We need to show that T,H |= ψ. From (b) it follows that T,H |= δ hence,
rδ(H) = 0. But the latter means that r∆,δ(H) = r∆(H) + rδ(H) = r∆(H).

Hence, if H ∈ Ĥ∆, we also have H ∈ Ĥ∆,δ. But by (a), this means that
H |= ψ, thus showing our claim.

For (RMO), assume that ∆|∼RJψ and ∆ 6 |∼RJ¬ϕ. Let us denote by Hϕ all
and only the hypothesis in H that entail ϕ. Since the hypotheses in H are
mutually exclusive and exhaustive we have that the set of all and only the
hypotheses entailing ¬ϕ equals H \Hϕ. Hence, from ∆ 6 |∼RJ¬ϕ it follows
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that Ĥ∆ 6⊆ H \ Hϕ, that is, Ĥ∆ ∩ Hϕ 6= ∅. Now, we claim that Ĥ∆,ϕ is

a subset of Ĥ∆. From this, together with the premise ∆|∼RJψ, it follows

that, for every H ∈ Ĥ∆,ϕ we have H |= ψ. But this amounts at saying that
∆, ϕ|∼RJψ, thus showing that (RMO) holds.

Let us thus prove the claim that Ĥ∆,ϕ is a subset of Ĥ∆. Assume by con-

tradiction that there is a H ∈ Ĥ∆,ϕ such that H 6∈ Ĥ∆. Now, recalling that

Ĥ∆ ∩Hϕ 6= ∅, pick H ′ in such a set. By the fact that H ′ ∈ Hϕ and part (2)
of Definition 1, we have rϕ(H ′) = 0, hence rϕ(H ′) ≤ rϕ(H). On the other

hand since H ′ ∈ Ĥ∆ and H 6∈ Ĥ∆, we have r∆(H ′) < r∆(H). But these two

facts entail that r∆,ϕ(H ′) < r∆,ϕ(H), contradicting the fact that H ∈ Ĥ∆,ϕ.

For (CMO) assume that ∆|∼RJψ and ∆|∼RJδ, i.e. that for any H ∈ Ĥ∆ we

have both H |= ψ and H |= δ. We now show that Ĥ∆,δ ⊆ Ĥ∆.

Suppose that there is a H ∈ Ĥ∆,δ such that H 6∈ Ĥ∆. Thus, there is a

H ′ ∈ Ĥ∆ such that r∆(H) > r∆(H ′). On the other hand, since H ∈ Ĥ∆,δ we
have that r∆,δ(H) ≤ r∆,δ(H

′), from which it follows that r∆(H) + rδ(H) ≤
r∆(H ′) + rδ(H

′) and r∆(H) − r∆(H ′) ≤ rδ(H
′) − rδ(H).

Since r∆(H) > r∆(H ′), we have that 0 < r∆(H) − r∆(H ′). Consequently
0 < rδ(H

′)−rδ(H) and rδ(H) < rδ(H
′). Recall that δ ∈ FmH and in view of

the assumption that the hypotheses are mutually exclusive and exhaustive,
either T,H |= ¬δ or T,H |= δ. Hence we have that rδ(H) > 0 iff H |= ¬δ,
otherwise rδ(H) = 0. Since H |= δ, then H 6|= ¬δ and rδ(H) = 0. Therefore,
from rδ(H) < rδ(H

′) it follows that rδ(H
′) > 0. But rδ(H

′) > 0 means in

turn that H ′ |= ¬δ which contradicts the fact that H ′ ∈ Ĥ∆, in view of

the assumption ∆|∼RJδ. We have thus shown that Ĥ∆,δ ⊆ Ĥ∆. From this,

the conclusion immediately follows. For, if Ĥ∆,δ = ∅, we immediately get

∆, δ|∼RJψ. Otherwise, for any H ∈ Ĥ∆,δ, we also have H ∈ Ĥ∆, and by the
assumption ∆|∼RJψ, that H |= ψ. This finally shows that ∆, δ|∼RJψ. �

Proposition 6. Both (AND)l and (AND)conl are invalid under |∼αRJ .

Proof. Let H = {H1,H2} and γ, δ ∈ FmD such that ¬γ,¬δ |= ⊥. Let
α1 = α2 = 0.3 and both tH1

and tH2
coincide with the identity function.

Consider the following probability assignments:

P (γ ∧ δ | H1) = 0.2 P (γ ∧ δ | H2) = 0.1

P (γ ∧ ¬δ | H1) = 0 P (γ ∧ ¬δ | H2) = 0.4

P (¬γ ∧ δ | H1) = 0.8 P (¬γ ∧ δ | H2) = 0.5

Since ¬γ,¬δ |= ⊥ we have

P (¬γ ∧ ¬δ | H1) = P (¬γ ∧ ¬δ | H2) = 0.
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Now, by simple computations, we obtain

P (γ | H1) = 0.2 P (γ | H2) = 0.5

P (δ | H1) = 1 P (δ | H2) = 0.6

By the definition of rα, we thus get:

rαγ (H1) = 0.8 rγ(H2) = 0

rαδ (H1) = 0 rδ(H2) = 0

rαγ∧δ(H1) = 0.8 rαγ∧δ(H2) = 0.9

We thus obtain
rαγ,δ(H1) = rαγ (H1) + rαδ (H1) = 0.8

and
rαγ,δ(H2) = rαγ (H2) + rαδ (H2) = 0

Thus Ĥγ,δ = {H2}, while on the other hand, since rαγ∧δ(H1) < rαγ∧δ(H2), we

also have Ĥγ∧δ = {H1}.

This shows that
γ, δ|∼αRJH2 γ ∧ δ 6 |∼αRJH2

thus proving that the (AND)l rule does not hold for |∼αRJ .

The same example also shows that the converse (AND)conl does not hold,
since:

γ ∧ δ|∼αRJH1 γ, δ 6 |∼αRJH1

�

Proposition 7. |∼uRJ satisfies the rules in Table 8.

Proof. For (REF), (CUT), (CMO), (RMO) proceed as in Proposition 3.

For (UMO), assume that ∆|∼uRJψ and {∆ \ {δ}|∼uRJψ}δ∈∆. By way of

contradiction, let us assume ∆, ϕ6 |∼uRJψ, i.e. that Ĥ∆,ϕ 6= ∅ (and thus

r∆,ϕ(Hs∗) < m+1) and in particular there is a H ∈ Ĥ∆,ϕ such that H 6|= ψ.

Note that H 6∈ Ĥ∆ , since otherwise by ∆|∼uRJψ, we would immediately
get H |= ψ.

Let us pick now any H ′ ∈ Ĥ∆, so that r∆(H) > r∆(H ′) and H ′ |= ψ

(since ∆|∼uRJψ). Note that, since H ∈ Ĥ∆,ϕ and H ′ ∈ Ĥ∆, both r∆(H)

and r∆(H ′) are distinct from ∞. On the other hand, since H ∈ Ĥ∆,ϕ we
have r∆,ϕ(H) ≤ r∆,ϕ(H ′), hence r∆(H) + rϕ(H) ≤ r∆(H ′) + rϕ(H ′) and
rϕ(H) − rϕ(H ′) ≤ r∆(H ′) − r∆(H) < 0. Thus in particular we obtain
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rϕ(H) < rϕ(H ′). But this can only occurr if rϕ(H) = 0 and rϕ(H ′) = 1.
And this means that r∆,ϕ(H) = r∆(H) while r∆,ϕ(H ′) = r∆(H ′) + 1 and
since r∆,ϕ(H) ≤ r∆,ϕ(H ′), we have r∆(H) ≤ r∆(H ′)+1. Hence we have both
r∆(H) > r∆(H ′) and r∆(H) ≤ r∆(H ′) + 1, that is r∆(H) = r∆(H ′) + 1.

This means that there is a δ ∈ ∆ rejecting H and not rejecting H ′. Let
us consider ∆ \ {δ}. By our choice of δ, we will now have r∆\{δ}(H

′) =

r∆\{δ}(H), hence H ′ ∈ Ĥ∆\{δ}. But this, by the assumption,

{∆\{δ}|∼uRJψ}δ∈∆, entails H ′ |= ψ, which is the desired contradiction. �

Lemma 7. |∼uRJ satisfies

∆, γ|∼ψ ∆, δ|∼ψ

∆, γ ∨ δ|∼ψ.
(OR)

Proof. Let ∆, γ|∼uRJψ and ∆, δ|∼uRJψ. To show ∆, γ ∨ δ|∼uRJψ, let H ∈

Ĥγ∨δ. If either H ∈ Ĥγ or H ∈ Ĥδ, we immediately get, by the assump-

tion, that H |= ψ. We thus assume H 6∈ Ĥγ and H 6∈ Ĥδ, and derive a

contradiction. By H 6∈ Ĥδ, we obtain that there exists a H ′ such that

r∆,γ(H ′) = r∆(H ′) + rγ(H ′) < r∆(H) + rγ(H) = r∆,γ(H)

and by H 6∈ Ĥψ, analogously, we obtain that there exists a H ′′ such that

r∆,δ(H
′′) = r∆(H ′′) + rδ(H

′′) < r∆(H) + rδ(H) = r∆,δ(H)

However, since H ∈ Ĥγ∨δ we have:

r∆,γ∨δ(H) = r∆(H) + rγ∨δ(H) ≤ r∆(H ′) + rγ∨δ(H
′) = r∆,γ∨δ(H

′)

and

r∆,γ∨δ(H) = r∆(H) + rγ∨δ(H) ≤ r∆(H ′′) + rγ∨δ(H
′′) = r∆,γ∨δ(H

′′).

Now, note that rγ∨δ(H) = 1 if and only if γ ∨ δ |= ¬H. Hence rγ∨δ(H) = 1
if γ |= ¬H and δ |= ¬H, and it is 0 otherwise. In other words, rγ∨δ(H) =
min(rγ(H), rδ(H)), and the same clearly holds for H ′ and H ′′. Thus, com-
bining our previous inequalities, we obtain

r∆(H) + rγ∨δ(H) ≤ r∆(H ′) + rγ∨δ(H
′) ≤ r∆(H ′) + rγ(H ′) < r∆(H) + rγ(H)

and similarly

r∆(H)+rγ∨δ(H) ≤ r∆(H ′′)+rγ∨δ(H
′′) ≤ r∆(H ′′)+rδ(H

′′) < r∆(H)+rδ(H)

But now, since rγ∨δ(H) = min(rγ(H), rδ(H)) it is either equal to rγ(H) or
to rδ(H), contradiction. �

Lemma 8. |∼uRJ satisfies

∆, ϕ|∼uRJψ ∆|∼uRJ¬ψ

∆|∼uRJ¬ϕ.
(MT)
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Proof. Assume the two premisses of MT:

(A1) ∆, ϕ|∼uRJψ, i.e. for each H ∈ Ĥ∆,ϕ, H |= ψ, and that

(A2) ∆|∼uRJ¬ψ, i.e. for each H ∈ Ĥ∆, H |= ¬ψ.

We show that for each H ∈ Ĥ∆, H |= ¬ϕ. Suppose, on the contrary,

that there exists H ′ ∈ Ĥ∆ such that H ′ 6|= ¬ϕ, i.e. ϕ does not reject H ′.

ThereforeH ′ ∈ Ĥ∆,ϕ and H ′ |= ψ, but this is in contradiction with (A2). �

Theorem 1. Suppose ∆|∼uRJψ and r∆(H) is finite for each H ∈ H. Then

there is a derivation of it using the rules in Table 7 and Table 8.

Proof. We will show how to find a derivation of ∆′|∼uRJ¬Hj, proceeding
by induction on the number of formulas occurring in ∆′. Henceforth, in
the applications of (UMO) and (RMO) we will not explicitly consider the
additional condition that r∆,ϕ(H) is finite for each H ∈ H since this will
always hold, under our assumption that r′∆(H) is finite for each H.

For the base case, when ∆′ is composed of only one formula, it has to be of
the form ¬Hj|∼uRJ¬Hj, which is clearly an instance of (REF). That this can
be the only case when the size of ∆′ is one, follows from the fact that, for any
i 6= j we would have that Hj ∈ Ĥ¬Hi

and Hj 6|= ¬Hj. Hence ¬Hi 6 |∼uRJ¬Hj

if i 6= j.

Now let us consider the inductive step. By Definition 6 and the normal form
of the formulas in ∆′ we have two possibilities:

(1) Ĥ∆′ = {H | ¬H 6∈ ∆′} that is, the least rejected hypotheses are
those that do not occur in ∆′ at all, or

(2) Ĥ∆′ = {Hk | lk 6= 0 and lk is a minimal non-zero index among the
l1, . . . , ln}.

In case (1), for any H ∈ Ĥ∆′ , we have ¬H 6∈ ∆′, i.e. r∆′(H) = 0. However,

we have that Hj 6∈ Ĥ∆′ . Indeed, if we had Hj ∈ Ĥ∆′ , from ∆′|∼uRJ¬Hj, we
would get that Hj |= ¬Hj, which is absurd.

Now, if there are no hypotheses in ∆′ distinct from Hj , this means that our

consequence is of the form (¬Hj)
lj |∼uRJ¬Hj. Hence we could reduce its size

by the following application of RMO.

¬H
lj−1
j |∼uRJ¬Hj (¬Hj)

lj−1 6 |∼uRJ¬¬Hj

(¬Hj)
lj |∼uRJ¬Hj

(RMO)

Now upon removal of any formula ¬H ′ from ∆′ distinct from ¬Hj, we will

still have r∆′\{¬H′}(H) = 0, for any H ∈ Ĥ∆′ . This means that, if H ∈ Ĥ∆′ ,

then still H ∈ Ĥ∆′\{¬H′}. Recall now that T∆,H |= ¬H ′ for any ¬H ′ ∈ ∆′,
and H |= ¬Hj.



38 PAOLO BALDI, ESTHER ANNA CORSI, HYKEL HOSNI

On the other hand, by assumption, Ĥ∆′ does not contain Hj, and since

H ′ 6= Hj, we may safely assume that Hj 6∈ Ĥ∆′\{¬H′}. This means that still
∆′ \ {¬H ′}|∼uRJHj.

Hence, we have shown that both ∆′\{¬H ′} 6 |∼uRJH
′ and ∆′\{¬H ′}|∼uRJHj.

We then get ∆′|∼uRJ¬Hj by applying (RMO) as follows:

∆′ \ {¬H ′}|∼uRJ¬Hj ∆′ \ {¬H ′} 6 |∼uRJ¬¬H
′

∆′|∼uRJ¬Hj

(RMO)
.

Let us now consider case (2), where the least rejected hypotheses occurr

(negated) in ∆′, i.e. for any H ∈ Ĥ∆′ , we have ¬H ∈ ∆′, hence r∆′(H) 6= 0.
Since Hj 6|= ¬Hj and ∆′|∼uRJ¬Hj we may again exclude that Hj is any of
the least rejected hypotheses.

Let us first consider the subcase (2a) where Hj is the maximally rejected
hypothesis. We need to distinguish three sub(sub)cases.

(2a’) If in ∆′ there is another maximally rejected hypothesis, say Hp, in
addition to Hj , we use (RMO) to remove (reasoning backwards) one of its
occurrences.

First, note that since ∆′|∼uRJ¬Hj, we have, for any H ∈ Ĥ∆′ , that H |=

¬Hj, and in particular Hj 6∈ Ĥ∆′ . The removal of an occurrence of a
maximally rejected ¬Hp will not affect this. In other words, we still have

Hj 6∈ Ĥ∆′\{¬Hp} hence ∆′ \ {¬Hp}|∼uRJ¬Hj. On the other hand, recall that
by assumption of case (2) the least rejected hypotheses, say Hk, occur in
∆′. Upon removal of an occurrence of the maximally rejected hypothesis
Hp, we still have Hk ∈ Ĥ∆′\{¬Hp}. Since Hk |= ¬Hp, we will then have

∆′ \ {¬Hp} 6 |∼uRJHp. Hence we may derive ∆′|∼uRJ¬Hj as follows:

∆′ \ {¬Hp}|∼uRJ¬Hj ∆′ \ {¬Hp} 6 |∼uRJ¬¬Hp

∆′|∼uRJ¬Hj

(RMO)
.

(2a”) Assume now that: (i) Hj is a maximally rejected hypothesis (as per
assumption of case (2a)); (ii) Hj is the unique maximally rejected hypothesis
(in contrast to case (2a’)); (iii) Hk is a least rejected hypothesis, that by
assumption (2) occurs (negated) in ∆′.

This means that we have r∆′(Hj) > r∆′(Hk). Note that r∆′(Hj) = r∆′\{¬Hk}(Hj)
and r∆′(Hk) = r∆′\{¬Hk}(Hk) + 1, hence

r∆′\{¬Hk}(Hj) > r∆′\{¬Hk}(Hk) + 1 > r∆′\{¬Hk}(Hk). (*)

This entails Hj 6∈ Ĥ∆′\{¬Hk}, hence ∆′ \{¬Hk}|∼uRJ¬Hj. However, for any
¬H ∈ ∆′ \ {Hk}, we have either

r∆′\{¬Hk ,¬H}(Hj) = r∆′\{¬Hk}(Hj) − 1

or
r∆′\{¬Hk,¬H}(Hj) = r∆′\{¬Hk}(Hj)
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depending on whether ¬H |= ¬Hj (i.e. H is actually Hj) or not. In both
cases we have

r∆′\{¬Hk,¬H}(Hj) ≥ r∆′\{¬Hk}(Hj) − 1.

Hence we obtain

r∆′\{¬Hk,¬H}(Hj) ≥ r∆′\{¬Hk}(Hj)−1 > r∆′\{¬Hk}(Hk) ≥ r∆′\{¬Hk,¬H}(Hk)

where the strict inequality follows from (*), and the last inequality follows
directly from the definition of the degree of rejection r.

This shows that Hj 6∈ Ĥ∆′\{¬Hk ,¬H} for any choice of ¬H (including ¬Hj).
Hence, for any ¬H ∈ ∆′:

∆′ \ {¬Hk,¬H}|∼uRJ¬Hj.

We can thus derive ∆′|∼uRJ¬Hj using the rule application:

∆′ \ {¬Hk}|∼uRJ¬Hj {∆′ \ {¬Hk,¬H}|∼uRJ¬Hj}¬H∈∆′

∆′|∼uRJ¬Hj

(UMO)

and the above reasoning, showing that its premises hold.

Finally, our last subcase of (2a) is (2a′′′), when there is no other hypotheses

but ¬Hj in ∆′, i.e. ∆′|∼uRJ¬Hj is actually of the form ¬H
lj
j |∼uRJ¬Hj. We

derive it, starting from ¬Hj|∼uRJ¬Hj, by repeated applications of (RMO),
beginning with

¬Hj|∼uRJ¬Hj ¬Hj 6 |∼uRJ¬¬Hj

¬Hj,¬Hj|∼uRJ¬Hj
(RMO)

.

Consider now case (2b), where Hj is not a maximally rejected hypotheses,
and let Hp be any maximally rejected hypothesis. Since ∆′|∼uRJ¬Hj, we

know that Hj 6∈ Ĥ∆′ , i.e. Hj is not a least rejected hypothesis either. Upon
removal of one occurrence of ¬Hp, Hj will still not be a least rejected hy-

pothesis, hence Hj 6∈ Ĥ∆′\{¬Hp}and ∆′ \ {¬Hp}|∼uRJ¬Hj. Moreover, there

will be at least a least rejected hypothesis in Ĥ∆′\{¬Hp} that is distinct from

Hp, hence ∆′ \ {¬Hp} 6 |∼uRJHp.

This means that we may consider the following application of (RMO):

∆′ \ {¬Hp}|∼uRJ¬Hj ∆′ \ {¬Hp} 6 |∼uRJ¬¬Hp

∆′|∼uRJ¬Hj

(RMO)
,

completing our proof. �
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