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Abstract We analyze the parity-odd correlators 〈J J O〉odd ,
〈J JT 〉odd , 〈T T O〉odd and 〈T T T 〉odd in momentum space,
constrained by conformal Ward identities, extending our for-
mer investigation of the parity-odd chiral anomaly vertex.
We investigate how the presence of parity-odd trace anoma-
lies affect such correlators. Motivations for this study come
from holography, early universe cosmology and from a recent
debate on the chiral trace anomaly of a Weyl fermion. In the
current CFT analysis, O can be either a scalar or a pseu-
doscalar operator and it can be identified with the trace of
the stress–energy tensor. We find that the 〈J J O〉odd and
〈T T O〉odd can be different from zero in a CFT. This occurs
when the conformal dimension of the scalar operator is
�3 = 4, as in the case of O = Tμ

μ . Moreover, if we assume
the existence of parity-odd trace anomalies, the conformal
〈J JT 〉odd and 〈T T T 〉odd are nonzero. In particular, in the
case of 〈J JT 〉odd the transverse–traceless component is con-
strained to vanish, and the correlator is determined only by
the trace part with the anomaly pole.

1 Introduction

Among the quantum field theory anomalies, the chiral
anomaly is one of the most discussed, both in its global and
gauged versions. It appears in parity-odd correlators with
multiple vectors (J ) and axial vector (J5) currents, usually
denoted as the 〈AVV 〉 and 〈AAA〉, or in other parity-odd
correlators such as the 〈J5T T 〉, where an axial vector cur-
rent is contracted with two stress–energy tensors (T ). The
anomalous conservation identity is

∇μ〈Jμ
5 〉 = a1 εμνρσ FμνFρσ + a2 εμνρσ Rαβ

μν Rαβρσ . (1)

The anomalous terms on the right-hand side are called Pon-
tryagin densities. The first term (F F̃) appears in the analysis
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of the 〈AVV 〉 and 〈AAA〉 correlators while the second one
(RR̃) is encountered in the analysis of the 〈J5T T 〉 correlator.

Recently, we have investigated the 〈AVV 〉 and 〈AAA〉
correlators in the context of CFT in momentum space [1].
We have shown how the expression of such correlators can be
reconstructed by requiring that they satisfy conformal Ward
identities (CWIs). The approach avoids any reference to a
perturbative realization and is, in this respect, nonperturba-
tive. We only require, as boundary condition on the solution
of the differential equations, that the divergences of the J5 and
J currents are either anomalous or conserved. In other words,
CFT does not tell us whether a certain correlator is anoma-
lous or not, but once we set the anomaly boundary conditions
on their operators, motivated by physical considerations or
by previous perturbative analysis, the CWIs – anomalous or
ordinary – constrain significantly its expression.

For example, if we separate the 〈AVV 〉 into a longitudinal
and a transverse part, the CWIs are then sufficient to deter-
mine its transverse part explicitly, once its longitudinal part
is constrained by the anomaly. The boundary condition on
the divergence of the current is solved by introducing a min-
imal, specific, tensor structure, containing an anomaly pole.
In this paper, we review very briefly the procedure followed
in the case of the anomalous 〈AVV 〉 correlator in appendix
A, that may help to clarify the approach. The final expression
of the correlator that we obtain depend on the parameter that
constrains its longitudinal structure.

For the parity-even case, one can recover, for instance,
Furry’s theorem on the vanishing of the 〈VVV 〉 vertex, with-
out directly invoking charge conjugation (C) invariance, as
in the perturbative analysis. The only conditions that one has
to impose on the correlator are just the conservation of the
three vector currents and the conformal Ward identities.
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1.1 The inclusion of the anomaly

For the moment we just recall that perturbative analysis of
parity-odd correlators reveals that an anomaly, either chiral
or conformal, as just mentioned, is always associated with the
presence either of a longitudinal or of a trace structure, in both
cases characterised by the inclusion of an anomaly pole [2,3].
The pole term, as identified by the longitudinal/transverse
decomposition [4] in the 〈AVV 〉, takes the role of a pivot
for the determination also of all the form factors of this dia-
gram by imposing the CWIs, i.e. the remaining transverse
ones. In this way, a single longitudinal tensor structure and
form factor accounts for the anomaly, enforced by external
anomalous (for chiral currents) and ordinary (for the vector
currents) conservation Ward identities, while the transverse
part is obtained by solving the conformal constraints. For the
〈AVV 〉 correlator, the two parts of the decomposition are
coupled together by the conformal equations.

1.2 Parity-odd trace anomalies and regularizations

Conformal anomalies, on the other end, have some distinctive
features that make them more complex compared to the chiral
ones, due to the presence of both topological and of non
topological terms in the anomaly functional. We recall that
trace anomalies are associated with the generation of a parity-
even anomaly functional, given by

gμν〈Tμν〉 = b1 E4 + b2 C
μνρσCμνρσ + b3 ∇2R + b4 FμνFμν,

(2)

where Cμνρσ is the Weyl tensor and E4 is the Gauss–Bonnet
term

CμνρσCμνρσ = Rμνρσ Rμνρσ − 2RμνRμν + 1

3
R2,

E4 ≡ E = Rμνρσ Rμνρσ − 4RμνRμν + R2. (3)

However, as was first found by Capper and Duff [5,6] on
dimensional grounds and by requiring covariance, the struc-
ture of the trace anomaly in four dimensions can be more
general than (2) and constrained to be of the form

A = b1 E4 + b2 C
μνρσCμνρσ + b3 ∇2R + b4 F

μνFμν

+ f1 εμνρσ RαβμνR
αβ

ρσ + f2 εμνρσ FμνFρσ , (4)

which includes both parity-even and parity-odd terms.
The parity-odd ones were investigated in the action in [7]

as possible sources of CP violation induced by gravity, pro-
viding a possible solution to a long standing problem. Also,
their connection with the anomalies was central in the investi-
gation of the quantum inequivalence of different representa-
tions of antisymmetric tensor fields coupled to gravity [8,9].
Therefore, there are very significant reasons to investigate

their role in a clear physical context, especially in a phase of
the early universe where conformal symmetry is expected to
play a fundamental role.

Under parity inversion, all the terms in the trace anomaly
are invariant except for the last two of them. The parity of the
F F̃ term is odd, while for the RR̃ it is not naturally defined
in a curved background. For both terms, though, we expect
the coefficients to be real in order to comply with unitarity.
We recall that F F̃ ∼ E · B is CP-odd as well as time reversal
odd. Indeed, if we consider that the stress–energy tensor is
a fundamental composite operator of the Standard Model
(SM), the presence of imaginary coefficients would endanger
the consistency of the theory. All the coefficients in Eq. (4)
have been computed in the parity-even case, and their values
strictly depend on the number and type of massless fields
entering in the perturbative quantum corrections, but they
are real. The computation of the parity-odd ones has also
been performed in free field theory realizations in different
regularization schemes, from dimensional reduction (DRED)
[10] to Pauli Villars (PV) [11,12] to the ’t Hooft–Veltman–
Breitenlohner–Mason (HVBM) scheme [13], showing that
they are zero.

Without entering into the debate whether free field the-
ory, and the SM in particular, is affected by such parity-odd
anomaly terms, one may ask, on general grounds, whether
CFTs allow such parity-odd terms in the case in which the
fi ’s are generic, and the possible constraints on the structure
of the correlators. Their real or imaginary character is not
relevant for our purposes and is independent of the fact that a
free field theory realization is possible. We are going to find
significant constraints on their structure from the solution of
their CWIs.

1.3 Motivations and methodology

As mentioned, several computations of these correlators with
Weyl fermions in different regularization schemes indicate
that the fi vanish. An older previous analysis in free field
theory of the 〈T J J 〉odd , reached this conclusion [10]. Sev-
eral further studies have confirmed this result [11–18]. In the
last few years, however, following the work of [19], other
groups have claimed the existence of non-vanishing parity-
odd terms in the trace anomaly of Weyl fermions, employing
either a diagrammatic approach or the heat-kernel method
[20–25]. Moreover, new independent results have appeared
recently, in support of these alternative conclusions [26,27]
(see [28,29] for the supersymmetric version). Notice that in
these computations the coefficients fi are found to be nonzero
and imaginary, raising a crucial issue with unitarity. These
results, if confirmed, would be of remarkable phenomeno-
logical relevance, since such anomalies would prove that
the chiral spectrum of the Standard Model, for its consistent
coupling to gravity, needs to be modified with the addition,
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for example, of extra chiral fermions. For example, if we
accept these results, we can prove quite immediately that the
〈T JY JY 〉, where JY is the hypercharge current of the Stan-
dard Model (SM), does not vanish and extra chiral matter is
needed.

The study of parity odd trace anomalies is related also to
the holographic contest. Indeed, in [19,30] the author pre-
sented a holographic model which yields a Pontryagin den-
sity in the trace of the e. m. tensor, but again with unitarity
problems.

Our analysis, here, will be limited to abelian gauge
currents and parity-odd anomalies of 3-graviton vertices
(T T T ), leaving further, more general studies of other corre-
lators to future work.

The use of the CWIs to determine parity-odd anomaly cor-
relators – independently of any free field theory realization
– has been first discussed in [1] in the chiral anomaly case.
Here we are going to extend that analysis, finding very strong
constraints on the correlators that we investigate.

Concerning the methodology that we use, we recall that
the general solution of the CWIs have been successfully ana-
lyzed in momentum space [31,32] in the scalar and tensor
cases respectively, for parity-even correlators, in the presence
of ordinary (parity-even) trace anomalies, corresponding the
Euler–Poincarè density E and the square of the Weyl tensor
C.

In this paper, we follow closely the procedure adopted in
[32], and investigate the CWIs using a similar decomposition
of the correlators into transverse traceless, trace and longi-
tudinal sectors. We will investigate the 〈J J O〉, 〈J JT 〉 and
〈T T O〉 correlators in their CP-odd sectors, while in the case
of the 〈T T T 〉 our analysis will be limited to the longitudinal
and trace sectors, leaving the transverse–traceless sector to
incoming work. This sector of the 〈T T T 〉 is less relevant for
the purpose of a comparison with the perturbative prediction
and the ongoing debate over the vanishing or non vanishing
of the parity-odd parts of such correlator, since no parity-odd
anomaly has been predicted for the 〈T T T 〉 in all the com-
putations. This is the case if the trace anomaly is defined
in the usual sense, as a trace operation performed after the
computation of the quantum corrections as

Aodd ≡ gμν〈Tμν〉. (5)

In this case, then the 〈T T T 〉odd can be nonzero only if we
allow a nonzero trace anomaly in the correlators obtained by
the functional differentiation of (5), otherwise it is identically
zero. In the perturbative analysis of [20–25], the anomaly –
in the case of the 〈T T T 〉 – comes instead from the second
(subtraction) term in the modified definition of the functional
A according to (6). This is a subtraction term in which the
trace is performed before the quantum average. In our CFT
analysis, as we are going to explain, the subtraction term cor-
responds to the computation of the anomaly of the 〈T T O〉

and 〈J J O〉, with the scalar or pseudoscalar operator O iden-
tified with the trace of T .

Our results show some interesting features of the corre-
lators, quite different in the 〈J JT 〉 and 〈T T T 〉 cases. For
example, we show that parity-odd correlators such as the
〈J JT 〉 or the 〈J J O〉 and 〈T T O〉 all satisfy non anomalous
CWIs. The only correlator that satisfies anomalous CWIs is
the 〈T T T 〉 limitedly to the special CWIs.

From this perspective, the result is quite similar to the case
of the 〈AVV 〉 chiral anomaly correlator, that also satisfies
ordinary special and dilatation CWIs. Indeed, in both cases,
in the perturbative realizations of such correlator, there is no
counterterm available, since the F F̃ and RR̃ terms are both
topological and all the form factors become finite, just by
enforcing the conservation WIs on the vector currents.

In the case of the 〈J JT 〉, the correlator can be nonvanish-
ing if we allow an anomalous trace as in (5). The interesting
fact is that the special and dilatation CWIs are non anomalous
and the solution satisfies the ordinary conformal constraints
even in the presence of a nonzero trace. This solution is any-
how rather peculiar, since all the other sectors of this corre-
lator (transverse–traceless and longitudinal) are constrained
by the same equations to vanish.

We recall that, recently, novel approaches have been
adopted for the construction of parity-odd correlation func-
tions. In particular in [33] it has been shown that parity-odd
CFT 3-point functions can be obtained by acting in a specific
way on the parity-even sector of some correlation functions.
Concerning the requirement of dealing with non-conserved
currents, these have been investigated, for instance, in [34]
even for higher spin operators, but only in the parity-even
case. Moreover, in [35] the authors use both the momentum
space CWIs as well as spin-raising and weight-shifting oper-
ators to fix the form of parity-odd correlators. However, both
[33] and [35] investigate anomaly-free cases.

2 Definition of the anomaly and scheme dependence

If an anomaly is interpreted as the failure of the trace oper-
ation to commute with a quantum average, then the trace
anomaly may also be defined as the difference of two trace
operations on the stress–energy tensor, one performed before
the quantum average and one after, as proposed by Duff
[6,36]

A = gμν(x)
〈
Tμν(x)

〉 − 〈
Tμ

μ (x)
〉
, (6)

which is the definition considered in [25].
We pause to define our notations. In the following we

will denote with O ≡ Tμ
μ the trace of the stress–energy

tensor, while T will be denoting the same operator but with
free indices. In the case in which the stress–energy tensor
is parity-odd, its trace is a pseudoscalar operator, at times
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indicated as O5 ≡ T5
μ
μ, whenever necessary. The notation is

reminiscent of the ways in which the γ5 chiral projector is
positioned in the loop of the Feynman expansion, either at the
T vertex or at the J vertex, turning a T into a T5 or a J into a
J5. In the context of correlators containing CP-odd operators
of a CFT, is may be useful to characterize which operators
are CP-even and which are CP-odd, since this information is
crucial for the consistency of the WIs. For instance, parity-
odd 2-point functions 〈J J 〉odd vanish, since one of the two
J ’s is actually a J5.

Therefore, in the parity even case (6) can then be written
in the form

A = gμν(x)
〈
Tμν(x)

〉 − 〈O(x)〉 , (7)

and in the parity-odd case as

A = gμν(x)
〈
T5μν(x)

〉 − 〈O5(x)〉 . (8)

However, we will try to avoid any cumbersome notation
unless it is strictly necessary. The importance of (8) is that, for
a non conformal theory, the contributions to the trace which
are non invariant under the symmetry – for instance mass
dependent terms – are removed by the subtraction. However,
according to Bonora [25], the last term in Eq. (6) gives also
nonvanishing contributions to the trace anomaly in the mass-
less limit.

A peculiar character of the regularization discussed in [25]
is that a term which was initially introduced to cancel clas-
sical contributions in non-conformal theories – the second
term of (8) – can be responsible for generating the entire
parity-odd trace anomaly RR̃.

Moreover, the results seem to depend on how the scheme
and regularization prescriptions are applied. However, as
suggested in [25], one may get different perturbative results
because one stops at the lowest order. If one was able to work
out the next perturbative orders, while still preserving diffeo-
morphism covariance, one would find the same results (0 or
not 0), independently of the regularization scheme.

In schemes based on dimensional reduction DRED, where
the traces are performed in four dimensions, the perturbative
computations are quite simple. In this regularization scheme,
in 3-point functions containing a parity-odd sector, the first
term can be defined in multiple but equivalent ways – i.e. for
the case of gauge contributions F F̃ by tracing either 〈J JT5〉
or 〈J5 JT 〉 or 〈J5 J5T5〉 – all of them characterised, in the
perturbative analysis, by an odd number of γ5. We classify
these cases, from the CFT viewpoint, simply as 〈J JT 〉odd .

Similarly, the second term can be equivalently defined as
〈O5 J J 〉 or 〈OJ5 J 〉 or 〈O5 J5 J5〉, since the position of the
projector is irrelevant in the identification of the transverse
traceless sector of this correlator. We classify these cases
from the CFT viewpoint simply as 〈J J O〉odd . As already
mentioned, in the hierarchical WIs, some care is however
necessary.

We will come back to address the connection between our
results and perturbation theory in a separate work. Here we
will simply focus on the solution of the CFT constraints on
such correlators coming from the CWIs in the presence of
parity-odd traces, with an anomaly defined as in (6).

2.1 Anomalous CWIs and the absence of a 0/0 limit

The correlation functions are fixed by anomalous CWIs that
can be written down directly at d = 4. In general, the method
consists in deriving the ordinary (i.e. non anomalous) CWIs
satisfied by the theory in general d dimensions, and intro-
ducing a renormalization procedure that allows to remove
the divergences generated by the solution in the d → 4 limit.
This approach has been developed, independently of any free
field theory realization, in [32,37,38] by introducing suitable
counterterms for each type of correlator. In the case of par-
ity even trace anomalies, correlators such as the 〈T J J 〉even
satisfy ordinary CWIs in d dimensions and are renormalized
by the inclusion of a 1/(d − 4) F2 counterterm. Obviously,
the types of counterterms needed in the renormalization of
a generic CFT are those that appear in the expression of the
trace anomaly in the parity even case.

For correlators such as the 〈T T T 〉even two counterterms
are needed, VE/ε and VC2/ε, with

VE (g, d) ≡ με

∫
dd x

√−g E, ε = d − 4

VC2(g, d) ≡ με

∫
dd x

√−g C2. (9)

E is evanescent, for being topological at d = 4, but it is
necessary in order to satisfy in the anomaly effective action,
the Wess–Zumino consistency condition. The generation of
the anomaly, in DR, is associated with the non invariance of
the two counterterms under Weyl variations

2gμν

δ

δgμν

VE = δ

δφ
VE = ε

√
gE,

2gμν

δ

δgμν

VC2 = δ

δφ
VC2 = ε

√
g

[
C2 + 2

3
�R

]
(10)

where we have introduced the conformal decomposition of
the metric

gμν = ḡμνe
2φ (11)

in terms of a conformal factor (φ) and a fiducial metric ḡ.
Notice that in the case of a topological contribution (E) the
extension of the εμνρσ tensor is a matter of prescription. In the
parity-odd case, terms such as RR̃ and F F̃ cannot really play
the role of counterterms in the derivation of a trace anomaly
– in this case inducing a finite renormalization of the quan-
tum corrections – since they are not linear in ε under Weyl
variations and we cannot perform the ε → 0 limit. We recall
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that in DR, the evanescence is related to the 0/0 behaviour
of a certain counterterm, which is clearly ensured by the
relations (10) but not in the parity-odd case. Therefore it
is certainly true, from these types of considerations, that the
singularities of the corresponding diagrams should disappear
once we impose some external WIs on the specific correla-
tor. However, topological anomalies can be generated also
without resorting to any regularization procedure, such as in
the 〈AVV 〉 chiral anomaly diagram.

3 Anomalous CWIs and their parity-odd extension

In this section we examine the anomalous CWIs relying on
a derivation that is strictly enforced at d = 4, using a geo-
metric approach. This allows us to overlook for a moment at
the nature of the RR̃ and F F̃ counterterms, as we have just
mentioned above, by assuming that both terms are present in
the trace anomaly.

It is convenient – and also more direct – to follow the
derivation of these equations starting from the functional inte-
gral defining the partition function via the anomaly action S

exp
{
i S[g]} ≡

∫
[d
] exp

{
i Scl[
, g]} (12)

over all the matter/radiation fields (at all scales), here denoted
as 
, since the equations that we obtain can be naturally
extended to the correlators of a non-Lagrangian CFT. By
expanding this 1PI quantum action functional in a Taylor
series

S[g + h] = S[g] +
∞∑

n=1

1

2n n!
∫

d4x1 . . . d4xn

× √−g(x1) . . .
√−g(xn)Sμ1ν1...μnνn

n (x1, . . . , xn; g)
× hμ1ν1(x1) . . . hμnνn (xn),

(13)

we define the n−point coefficients of the expansions as

Sμ1ν1...μnνn
n (x1, . . . , xn; g) ≡ 2n√−g(x1) . . .

√−g(xn)

× δnS[g]
δgμ1ν1(x1) . . . δgμnνn (xn)

(14)

that equal the correlation functions of stress–energy tensors
for non-coincident spacetime points

〈Tμ1ν1(x1) . . . Tμnνn (xn)〉 ≡ Sμ1ν1...μnνn
n (x1 . . . xn) (15)

in a metric background g. For n = 1 the one-point function

Sμν
1 (x; g) ≡ 〈

Tμν(x)
〉
g = 2√−g(x)

δS[g]
δgμν(x)

(16)

equals the renormalized expectation value of Tμν(x) and
S[g] is the finite renormalized 1PI effective action.

In the case of a pseudoscalar operator O, the parameteri-
zation of the correlation functions derived from its quantum
average will be performed as usually done in the longitu-
dinal/transverse decomposition, in full generality. The con-
tribution of such correlation functions to the CWIs, will be
derived by observing that the subtraction term in (8) will be
defined using the operation

〈O(x1)〉 = 〈2gμν(x1)
δ

δgμν(x1)
Scl〉, (17)

performed before any further differentiation with respect to
the background metric

〈T T O〉 = 2√
g(x1)

2√
g(x2)

δ

δgμ1ν1(x1)

δ

δgμ2ν2(x2)
〈O(x1)〉. (18)

Let us now introduce the following quantity which we are
going to use in the next sections

Ã ≡ 2gμν

δS[g]
δgμν

= √
g gμνT

μν

= f1
√
g εμνρσ R αβ

μν Rρσαβ + f2
√
g εμνρσ FμνFρσ .

(19)

Notice that Ã differs from the anomaly A defined in the
previous sections by a factor

√
g. Since we are using the

Levi-Civita pseudotensor εμνρσ with ε0123 = 1√
g , the

√
g

dependence in (19) cancels out. Therefore, the gauge term
F F̃ in Ã is metric independent. This point will be crucial in
our following analysis.

3.1 The general structure of the anomalous CWIs

Since we are not invoking any renormalization of the corre-
lators but only the presence of a chirally odd trace anomaly
at d = 4, we need to trace back the steps of a derivation
of the anomalous CWIs at d = 4, derived in [39]. For the
derivation of the dilatation and the special CWIs we use the
conservation of the conformal currents

Jμ

(K )(x) ≡ Kν(x) T
μν(x) (20)

expressed in terms of the Kμ(x)s, which are the Conformal
Killing Vectors (CKVs) satisfying the equation

∂(μKν) ≡ 1

2

(
∂μKν + ∂νKμ

) = 1

d
ημν (∂ · K ) (21)

in a d dimensional Minkowski space. The conservation of
Jμ

(K ) is violated in the case of a conformal anomaly. The cur-
rent (20) can be inserted in the n-point stress tensor correlator
to derive anomalous CWIs. Thus, we are led to consider total
divergences of the form
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∂

∂xν

{
Kμ(x)Sμνμ1ν1...μnνn

n+1 (x, x1, . . . , xn)
}

= Kμ(x) ∂νSμνμ1ν1...μnνn
n+1 (x, x1, . . . , xn)

+ 1

d
(∂ · K ) ημν Sμνμ1ν1...μnνn

n+1 (x, x1, . . . , xn), (22)

where (21) has been used, in order to derive the CWIs for the
n-point functions of the stress tensor. The derivation of the
identities require an integration of the previous equation over
the spacetime points, assuming that we can drop a boundary
term. In this case, since the trace anomaly introduces a term
that can, in principle, be supported at spacetime infinity, the
integration needs to be checked a posteriori.

The derivation of this equation can be found in [39] for the
〈T T T 〉, while the derivation for the 〈J JT 〉 will be worked
out below. If we use on the rhs of (22) the conservation and
anomalous trace Ward Identities for the (n+1)-point function
Sn+1, we can derive the dilatation CWIs for K of the form

K (D)
μ (x) ≡ xμ, ∂ · K (D) = d, (23)

whereas the special CWIs are derived by introducing d Spe-
cial Conformal Killing vectors in flat space

K (C) κ
μ (x) ≡ 2xκ xμ − x2δκ

μ,

∂ · K (C) κ (x) = (2d) xκ , κ = 1, . . . , d (24)

which generate all the CWIs when these 4-vectors are substi-
tuted into (22). For n = 3, denoting the conformal weights
of the operators with �i , we have

3∑

i=1

(

�i + xμ
i

∂

∂xμ
i

)
〈
Tμ1ν1 (x1) T

μ2ν2 (x2) T
μ3ν3 (x3)

〉

= 23
∫

dx
δ3Ã(x)

δgμ1ν1 (x1) δgμ2ν2 (x2) δgμ3ν3 (x3)
(25)

for the dilatation WI, and

3∑

i=1

[
2xκ

i

(
�i + xα

i
∂

∂xα
i

)
− x2

i δ
κα ∂

∂xα
i

]

× 〈Tμ1ν1(x1)T
μ2ν2(x2)T

μ3ν3(x3)〉
+ 2

[
δκμ1x1α − δκ

αx
μ1
1

]
〈T αν1(x1)T

μ2ν2(x2)T
μ3ν3(x3)〉

+ 2

[
δκν1x1α − δκ

αx
ν1
1

]
〈Tμ1α(x1)T

μ2ν2(x2)T
μ3ν3(x3)〉

+ 2

[
δκμ2x2α − δκ

αx
μ2
2

]
〈Tμ1ν1(x1)T

αν2(x2)T
μ3ν3(x3)〉

+ 2

[
δκν2x2α − δκ

αx
ν2
2

]
〈Tμ1ν1(x1)T

μ2α(x2)T
μ3ν3(x3)〉

+ 2

[
δκμ3x3α − δκ

αx
μ3
3

]
〈Tμ1ν1(x1)T

μ2ν2(x2)T
αν3(x3)〉

+ 2

[
δκν3x3α − δκ

αx
ν3
3

]
〈Tμ1ν1(x1)T

μ2ν2(x2)T
μ3α(x3)〉

= 24
∫

dx xκ δ3Ã(x)

δgμ1ν1(x1)δgμ2ν2(x2)δgμ3ν3(x3)
(26)

for the special conformal WIs. We are going to discuss the
structure of these equations in the following, but first we
turn to the analogous equations for the 〈J JT 〉, 〈J J O〉 and
〈T T O〉 correlators.

3.2 The 〈J JT 〉

A similar analysis can be done for the 〈J JT 〉, as we are now
going to show, since it has not been given before.

We start by assuming that the following surface terms
vanish, due to the fast fall-off behaviour of the correlation
function at infinity

0 =
∫

dx ∂μ

[
Kν〈Tμν(x)Jμ1(x1)J

μ2(x2)T
μ3ν3(x3)〉

]

=
∫

dx
(
∂μKν

) 〈Tμν(x)Jμ1(x1)J
μ2(x2)T

μ3ν3(x3)〉
+Kν∂μ〈Tμν(x)Jμ1(x1)J

μ2(x2)T
μ3ν3(x3)〉. (27)

Recalling the conformal Killing vector equation (21), we can
then write

0 =
∫

dx

(
∂ · K
d

)
ημν〈Tμν(x)Jμ1(x1)J

μ2(x2)T
μ3ν3(x3)〉

+Kν∂μ〈Tμν(x)Jμ1(x1)J
μ2(x2)T

μ3ν3(x3)〉. (28)

On the right-hand of the last equation we have the trace and
the divergence of a four-point correlator function. We can
use the anomalous trace equation and the conservation of the
energy–momentum tensor in order to rewrite such terms. We
will show this in the following.

We first focus on the dilatations. The Killing vectors in
this case are given by (23).

The invariance under diffeomorphism leads to

∇μ〈Tμν〉 − Fνμ〈Jμ〉 + Aν ∇ · 〈J 〉 = 0. (29)

Applying functional derivatives to this last equation and
going to the flat limit, we obtain

0 = ∂μ〈Tμν(x)Jμ1(x1)Jμ2 (x2)Tμ3ν3(x3)〉
−ημ3ν3

(
∂μδxx3

) 〈Jμ1(x1)Jμ2 (x2)Tμν(x)〉
+

[
− δ

μ1
μ ∂νδxx1 + δ

μ1
ν ∂μδxx1

]
〈Jμ(x)Jμ2 (x2)Tμ3ν3(x3)〉

+
[

− δ
μ2
μ ∂νδxx2 + δ

μ2
ν ∂μδxx2

]
〈Jμ1(x1)Jμ(x)Tμ3ν3(x3)〉

+1

2
〈Jμ1(x1)Jμ2 (x2)Tμλ(x)〉

[
δ
ν3
λ δνμ3∂μδxx3
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+δ
ν3
μ δνμ3∂λδxx3 − δ

ν3
λ δ

μ3
μ ∂νδxx3

+δ
μ3
λ δνν3∂μδxx3 + δ

μ3
μ δνν3∂λδxx3 − δ

μ3
λ δ

ν3
μ ∂νδxx3

]

+δμ3ν3
(
∂λδxx3

) 〈Jμ1(x1)Jμ2 (x2)T λν(x)〉, (30)

where we denoted with δxy the Dirac delta function δ4(x−y).
The anomalous trace equation is instead given by

0 = 2gμν(x)
δS[g]

δgμν(x)
− Ã(x). (31)

Applying once again functional derivatives to this last equa-
tion and going to the flat limit, we have

0 = ημν〈Tμν(x)Jμ1(x1)J
μ2(x2)T

μ3ν3(x3)〉
+2δxx3〈Jμ1(x1)J

μ2(x2)T
μ3ν3(x3)〉

−2
δ3Ã(x)

δAμ1(x1)δAμ2(x2)δgμ3ν3(x3)
. (32)

Inserting the Eqs. (23), (30) and (32) into (28) and inte-
grating by parts we arrive to

3∑

i=1

(

�i + xμ
i

∂

∂xμ
i

)

〈Jμ1(x1)J
μ2(x2)T

μν(x3)〉

= 2
∫

dx
δ3Ã(x)

δAμ1(x1)δAμ2(x2)δgμ3ν3(x3)
(33)

for the dilatation CWI.
If, instead ,we consider the special conformal transforma-

tions, the Killing vectors are given in (24). Proceeding in a
similar manner we arrive at the expression

3∑

i=1

[
2xκ

i

(
�i + xα

i
∂

∂xα
i

)
− x2

i δ
κα ∂

∂xα
i

]

× 〈
Jμ1 (x1) J

μ2 (x2) T
μ3ν3 (x3)

〉

+ 2

[
δκμ1x1α − δκ

αx
μ1
1

] 〈
Jα (x1) J

μ2 (x2) T
μ3ν3 (x3)

〉

+ 2

[
δκμ2x2α − δκ

αx
μ2
2

] 〈
Jμ1 (x1) J

α (x2) T
μ3ν3 (x3)

〉

+ 2

[
δκμ3x3α − δκ

αx
μ3
3

]
〈Jμ1(x1)J

μ2(x2)T
αν3(x3)〉

+ 2

[
δκν3x3α − δκ

αx
ν3
3

]
〈Jμ1(x1)J

μ2(x2)T
μ3α(x3)〉

= 22
∫

dxxκ δ3Ã(x)

δAμ1 (x1) δAμ2 (x2) δgμ3ν3 (x3)
(34)

for the special CWI.

3.3 〈J J O〉 and 〈T T O〉

The analysis of the subtraction terms in the anomaly (6) will
be taken into account by the inclusion of a scalar or pseu-
doscalar operator, indicated with O. In the case of the 〈J J O〉
we obtain for the dilatation WI

3∑

i=1

(

�i + xμ
i

∂

∂xμ
i

)
〈
Jμ1 (x1) J

μ2 (x2) O (x3)
〉

=
∫

dx
δ3Ã(x)

δAμ1 (x1) δAμ2 (x2) δφ0 (x3)
(35)

and

3∑

i=1

[
2xκ

i

(
�i + xα

i
∂

∂xα
i

)
− x2

i δ
κα ∂

∂xα
i

]

× 〈Jμ1(x1)J
μ2(x2)O(x3)〉

+ 2

[
δκμ1x1α − δκ

αx
μ1
1

]
〈Jα(x1)J

μ2(x2)O(x3)〉

+ 2

[
δκμ2x2α − δκ

αx
μ2
2

]
〈Jμ1(x1)J

α(x2)O(x3)〉

= 2
∫

dx xκ δ3Ã(x)

δAμ1(x1)δAμ2(x2)δφ0(x3)
(36)

for the special CWI, while for the 〈T T O〉 the dilatation WI
is

3∑

i=1

(

�i + xμ
i

∂

∂xμ
i

)
〈
Tμ1ν1 (x1) T

μ2ν2 (x2) O (x3)
〉

= 22
∫

dx
δ3Ã(x)

δgμ1ν1 (x1) δgμ2ν2 (x2) δφ0 (x3)
, (37)

and the special CWI is

3∑

i=1

[
2xκ

i

(
�i + xα

i
∂

∂xα
i

)
− x2

i δ
κα ∂

∂xα
i

]

× 〈Tμ1ν1(x1)T
μ2ν2(x2)O(x3)〉

+ 2

[
δκμ1x1α − δκ

αx
μ1
1

]
〈T αν1(x1)T

μ2ν2(x2)O(x3)〉

+ 2

[
δκν1x1α − δκ

αx
ν1
1

]
〈Tμ1α(x1)T

μ2ν2(x2)O(x3)〉

+ 2

[
δκμ2x2α − δκ

αx
μ2
2

]
〈Tμ1ν1(x1)T

αν2(x2)O(x3)〉

+ 2

[
δκν2x2α − δκ

αx
ν2
2

]
〈Tμ1ν1(x1)T

μ2α(x2)O(x3)〉

= 23
∫

dx xκ δ3Ã(x)

δgμ1ν1(x1)δgμ2ν2(x2)δφ0(x3)
. (38)

In the equations above we have introduced a coupling of the
operator O to an external source φ0(x).
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3.4 The 〈T T T 〉 in momentum space

The structure of the anomalous CWIs in momentum space
are defined by applying a Fourier transform. We recall their
general structure in the case of the 〈T T T 〉, the other being
similar.

We first introduce the Fourier transform of the functional
derivative of the anomaly functional in the form

(2π)4 δ4(p1 + · · · + pn+1) Ãμ2ν2...μn+1νn+1
n (p1, . . . , pn+1)

≡
∫

d4x1 . . . d4xn+1 eip1·x1+···+i pn+1·xn+1

× δnA(x1)

δgμ2ν2(x2) . . . δgμn+1νn+1(xn+1)

∣∣∣
f lat

. (39)

We can then write the anomalous Dilatation CWI in momen-
tum space
[

4 − p1 · ∂

∂p1
− p2 · ∂

∂p2

]

× 〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉
= 8 Ãμ1ν1μ2ν2μ3ν3

3 (p1, p2,−p1 − p2),

(40)

where we set �i = d = 4. The special CWI are instead
given by

2∑

j=1

[

−2 p jα
∂2

∂p jα∂p jκ
+ pκ

j
∂2

∂p jα∂pα
j

]

×〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉
+ 2

(
ηκμ1

∂

∂pα1
1

− δκ
α1

∂

∂p1μ1

)

×〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉

+ 2

(

ηκν1
∂

∂pβ1
1

− δκ
β1

∂

∂p1ν1

)

×〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉
+ 2

(
ηκμ2

∂

∂pα2
2

− δκ
α2

∂

∂p2μ2

)

×〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉

+ 2

(

ηκν2
∂

∂pβ2
2

− δκ
ν2

∂

∂p2ν2

)

×〈Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(−p1 − p2)〉
= −16

∂

∂p3κ

Ãμ1ν1μ2ν2μ3ν3
3 (p1, p2, p3)

∣∣∣
p3=−p1−p2

.

(41)

Notice that the presence of a differentiation of A3 with
respect to one of the momenta on the rhs of the last equation
(41) is what makes the anomalous term nonzero in the case
of a topological anomaly. The differentiation comes from
the presence of the factor xκ in the integration of (26). The
anomalous contribution is present, naturally, in all the CWIs,

but in some cases it can vanishes, as we are going to show
below.

3.5 The non anomalous character of the CWIs

Let us have a closer look at the rhs of conformal equations,
in the case in which the anomaly contains topological terms
of the form RR̃ and F F̃ . We are going to show that for
some of these equations the anomalous contribution van-
ishes. In other words, they correspond to ordinary (i.e. non-
anomalous) CWIs.

In the case of a topological anomaly, the term on the right-
hand sides of (25), (33), (35), (37), always vanish. Indeed,
topological anomalies are scale-invariant: they do not break
dilatations. This can be seen for example in the case of the
dilatation equations of the 〈T T T 〉 in (25). If we commute the
integration and the functional differentiation with respect to
the metric on the rhs of the equations we get a vanishing
result
∫

dx
δ3Ã(x)

δgμ1ν1 (x1) δgμ2ν2 (x2) δgμ3ν3 (x3)

= δ3

δgμ1ν1 (x1) δgμ2ν2 (x2) δgμ3ν3 (x3)

∫
dx ˜A(x) = 0.

(42)

However special conformal transformations can potentially
be broken by a topological anomaly. Indeed, the anomalous
term on the right-hand side of the equations (26), (34), (36),
(38) in principle can be non-vanishing due to the presence of
xκ in the integrand, as mentioned above. Let’s illustrate this
point case by case.

In the case of Ã(x) = √
g f εμνρσ FμνFρσ , it is clear that

the anomaly does not depend on the metric since

εμνρσ = εμνρσ

√
g

(43)

with ε0123 = 1. Therefore, when applying a functional
derivative with respect to the metric to Ã(x), we get a van-
ishing result

δ3Ã(x)

δAμ1(x1)δAμ2(x2)δgμ3ν3(x3)
= 0. (44)

This shows that (33) and (34) are homogeneous and hence-
forth they are ordinary CWIs. A similar result is obtained in
the case of (35) and (36) since

δ

δφ0
= 2gμν

δ

δgμν

. (45)

Therefore, dilatations and special conformal transformations
are ordinary in the case of the 〈J JT 〉 and 〈J J O〉.

Let us now look at the conformal equations of the 〈T T O〉.
The anomalous term is given by RR̃ which is Weyl invari-

123
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ant. Therefore, when acting on it with the operator δ
δφ0

=
2gμν

δ
δgμν

we get a vanishing result. As a consequence, once
again the anomalous term vanishes in the Eqs. (37) and (38)
and the correlator satisfies ordinary CWIs.

The last correlator we need to consider is the 〈T T T 〉. As
we already said, dilatations are not broken by a topologi-
cal anomaly. However one can check that in the case of the
〈T T T 〉 the anomalous term does not vanish in the special
conformal Ward identities.

We conclude that almost all of all the CWIs we considered
are ordinary and non-anomalous. The only anomalous CWI
is the (26), which is allowed to be nonzero in the presence of
an RR̃ term in the anomaly functional.

4 The 〈J J O〉odd correlator in CFT

In this section we study the conformal constraints on the
〈J J O〉 correlator where each J can be a conserved vec-
tor current or an anomalous axial-vector current. Our result
is valid for every odd parity 〈J J O〉 correlator constructed
with two potentially different (axial and/or conserved) cur-
rents and a scalar/pseudoscalar operator. As we will see, the
solution of the CWIs of the correlator can be written in terms
of 3K integrals that needs a regularization. Therefore, we
work in the general scheme {u, v} where d = 4 + 2uε and
the conformal dimensions �i of the operators is shifted by
(u + vi ) ε with arbitrary u and vi .

We start by decomposing the operators J in terms of their
transverse part and longitudinal ones (also termed “local”)
[32]

Jμi (pi ) ≡ jμi (pi ) + jμi
loc(pi ), (46)

where

jμi (pi ) = πμi
αi

(pi ) J
αi (pi ), jμi

loc(pi ) = pμi
i pi αi

p2
i

Jαi (pi ),

(47)

having introduced the transverse projector

πμ
α = δμ

α − pμ pα

p2 . (48)

We then consider the following conservation Ward identities

∇μ〈Jμ
c 〉 = 0, ∇μ〈Jμ

5 〉 = a εμνρσ FμνFρσ (49)

of the expectation value of the conserved Jμ
c and anomalous

Jμ
5 currents.

The vector current is coupled to the vector source Vμ and
the axial-vector current to the source Aμ. The operator O in
the 〈J J O〉 is coupled to a scalar field source φ. Applying

multiple functional derivatives to (49) with respect to the
sources, after a Fourier transform, we find the conservation
Ward identities related to the entire correlator

piμi 〈Jμ1(p1)J
μ2(p2)O(p3)〉 = 0, i = 1, 2, 3. (50)

Such equation is satisfied independently of the fact that J ’s
are conserved vector or axial-vector currents. Indeed, the chi-
ral anomaly does not contribute to the 〈J J O〉. Due to the
identities in (50), the longitudinal part of the correlator van-
ishes. On the other hand, the transverse part can be formally
expressed in terms of the following tensor structure
〈
Jμ1 (p1) J

μ2 (p2) O (p3)
〉 = 〈

jμ1 (p1) j
μ2 (p2) O (p3)

〉

= πμ1
α1

(p1) πμ2
α2

(p2)
[
A(p1, p2, p3)ε

α1α2 p1 p2
]
, (51)

where εα1α2 p1 p2 ≡ εα1α2ρσ p1ρ p2σ . Notice that in this case
one can omit the projectors π

μi
αi (pi ) since they act as an

identity on the tensorial structure in the brackets.

4.1 Dilatation and special conformal ward identities

We start analysing the conformal constraints on the form
factor A(p1, p2, p3). The invariance of the correlator under
dilatation is reflected in the equation

⎛

⎝
3∑

i=1

�i − 2d −
2∑

i=1

pμ
i

∂

∂pμ
i

⎞

⎠ 〈Jμ1(p1)Jμ2 (p2)O(p3)〉 = 0.

(52)

By using the chain rule

∂

∂pμ
i

=
3∑

j=1

∂p j

∂pμ
i

∂

∂p j
, (53)

in term of the invariants pi = |
√
p2
i | and by considering the

decomposition (51), we can rewrite the dilatation equation
as a constraint on the form factor A

3∑

i=1

pi
∂A

∂pi
−

(
3∑

i=1

�i − 2d − N

)

A = 0, (54)

with N = 2, the number of momenta that the form factor A
multiply in the decomposition.

The invariance of the correlator with respect to the special
conformal transformations is encoded in the special confor-
mal Ward identities

0 =
2∑

j=1

[

−2
∂

∂p jκ
− 2pα

j
∂2

∂pα
j ∂p jκ

+ pκ
j

∂2

∂pα
j ∂p jα

]

× 〈Jμ1(p1)J
μ2(p2)O(p3)〉
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+ 2

(
δμ1κ

∂

∂pα1
1

− δκ
α1

∂

∂p1μ1

)
〈Jα1(p1)J

μ2(p2)O(p3)〉

+ 2

(
δμ2κ ∂

∂pα2
2

− δκ
α2

∂

∂p2μ2

)
〈Jμ1(p1)J

α2(p2)O(p3)〉

≡ Kκ 〈Jμ1(p1)J
μ2(p2)O(p3)〉. (55)

The special conformal operator Kκ acts as an endomorphism
on the transverse sector of the entire correlator. We can then
perform a transverse projection on all the indices in order to
identify a set of partial differential equations

πλ1
μ1

(p1)π
λ2
μ2

(p2)

(
Kκ 〈Jμ1(p1)J

μ2(p2)O(p3)〉
)

= 0. (56)

We then decompose the action of the special conformal oper-
ator on the transverse sector in the following way

0 = πλ1
μ1

(p1) πλ2
μ2

(p2)Kk 〈
Jμ1 (p1) J

μ2 (p2) O (p3)
〉

= πλ1
μ1

(p1) πλ2
μ2

(p2)
[
C11ε

p1 p2μ1μ2 pκ
1 + C21ε

p1 p2μ1μ2 pκ
2

+C31ε
p1κμ1μ2 + C32ε

p2κμ1μ2 + C33 p
μ1
2 ε p1 p2κμ2

+C34 p
μ2
3 ε p1 p2κμ1

]
, (57)

where Ci j are scalar functions of the form factor A and its
derivatives. The tensor structures we have written are not all
independent and can be simplified in order to find the minimal
decomposition, using the following Schouten identities

ε[p1 p2μ1μ2 pκ]
1 = 0,

ε[p1 p2μ1μ2 pκ]
2 = 0, (58)

according to which we can eliminate C33 and C34

πλ1
μ1

(p1)π
λ2
μ2

(p2)

(
ε p1 p2κμ1 pμ2

3

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)

(
1

2
ε p1κμ1μ2(p2

1 + p2
2 − p2

3)

+ε p1 p2μ1μ2 pκ
1 + ε p2κμ1μ2 p2

1

)

πλ1
μ1

(p1)π
λ2
μ2

(p2)

(
ε p1 p2κμ2 pμ1

2

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)

(
− 1

2
ε p2κμ1μ2(p2

1 + p2
2 − p2

3)

+ε p1 p2μ1μ2 pκ
2 − ε p1κμ1μ2 p2

2

)
. (59)

Therefore we can rewrite Eq. (57) in the minimal form

0 = πλ1
μ1

(p1) πλ2
μ2

(p2)Kk 〈
Jμ1 (p1) J

μ2 (p2) O (p3)
〉

= πλ1
μ1

(p1) πλ2
μ2

(p2)
[
C11ε

p1 p2μ1μ2 pκ
1

+C21ε
p1 p2μ1μ2 pκ

2 + C31ε
p1κμ1μ2 + C32ε

p2κμ1μ2
]
,

(60)

where we have redefined the form factors Ci j in order to
include the contribution of the old C33 and C34. Due to the
independence of the tensor structures listed above, the special
conformal equations can be written as

Ci j = 0. (61)

In particular, C11 = 0 and C21 = 0 are equations of the
second order and therefore they are called primary equations
[32]. All the others are first order differential equations and
are called secondary equations. The explicit form of the pri-
mary equations is

K31A = 0,

K32A = 0, (62)

where we have defined

Ki = ∂2

∂p2
i

+ (d + 1 − 2�i )

pi

∂

∂pi
, Ki j = Ki − K j . (63)

The secondary equations are

0 = p2
∂A

∂p2
+ (d − 1 − �2)A,

0 = p1
∂A

∂p1
+ (d − 1 − �1)A. (64)

4.2 Solution of the CWIs

The most general solution of the conformal Ward identities
of the 〈J J O〉 can be written in terms of integrals involving a
product of three Bessel functions, namely 3K integrals. For
a review on the properties of such integrals, see Appendix B
and [32,40,41]. We recall the definition of the general 3K
integral

Iα{β1β2β3} (p1, p2, p3) =
∫

dxxα
3∏

j=1

p
β j
j Kβ j

(
p j x

)
, (65)

where Kν is a modified Bessel function of the second kind. In
particular, we will use the reduced version of the 3K integral
defined as

JN{k j} = I d
2 −1+N

{
� j− d

2 +k j
}, (66)

where we introduced the condensed notation {k j } = {k1, k2,

k3}. The 3K integral satisfies an equation analogous to the
dilatation equation with scaling degree

deg
(
JN{k j}

)
= �t + kt − 2d − N , (67)
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where

kt = k1 + k2 + k3, �t = �1 + �2 + �3. (68)

From this analysis, it is simple to relate the form factors to
the 3K integrals. Indeed, the dilatation Ward identities tell us
that the form factor A needs to be written as a combination
of integrals of the following type

JN+kt ,{k1,k2,k3}, (69)

with N = 2, the number of momenta that the form factor
multiplies in the decomposition (51). The special confor-
mal Ward identities fix the remaining indices k1, k2 and k3.

Indeed, recalling the following property of the 3K integrals

Knm JN{k j} = −2kn JN+1{k j−δ jn} + 2km JN+1{k j−δ jm},
(70)

we can write the most general solution of the primary equa-
tions (62) as

A = c1 J2{0,0,0}, (71)

where c1 is an arbitrary constant. Before moving on to the
secondary equations, we need to discuss the possible diver-
gences in 3K integrals which, in this case, can occur for some
specific values of �3. In general, it can be shown that the 3K
integral Iα{β1,β2,β3} diverges if

α + 1 ± β1 ± β2 ± β3 = −2k, k = 0, 1, 2, . . . (72)

For a more detailed review of the topic, see Appendix B and
[32,40,41]. If the above condition is satisfied, we need to
regularize the integrals

d → 4 + 2uε �i → �i + (u + vi ) ε. (73)

In general, the regularisation parameters u and vi are arbi-
trary. For simplicity, in this paper we will choose the same
vi = v for each operator. If a 3K integral in our solution
diverges, we can expand the coefficient in front of such inte-
gral in the solution in powers of ε

ci =
∞∑

j=−∞
c( j)
i ε j , (74)

and then we can require that our entire solution is finite for
ε → 0 by constraining the coefficients c( j)

i . Looking at our
solution we can see that J2{0,0,0} ≡ I3+uε{1+vε,1+vε,−2+�3+vε}
diverges for ε → 0 when

�3 = 0, 4, 6, 8, 10, . . . (75)

Let us now look at the secondary conformal equations

0 = p2
∂A

∂p2
− (�2 − d + 1)A

0 = p1
∂A

∂p1
− (�1 − d + 1)A. (76)

We can solve such equation by performing the limit pi → 0
for various values of �3 (see Appendix B for a review of the
procedure). If the Eq. (75) is not satisfied and the 3K integral
is finite, the secondary equations lead to the condition c1 =
O(ε) and therefore the entire correlator vanishes. However,
in the case �3 = 4, the secondary equations still lead to
c1 = c(1)

1 ε + O(ε2) but since the following 3K integral has
a pole [32,41,42]

I3+uε{1+vε,1+vε,2+vε} = 2

(u − 3v)ε
+ O(ε0), (77)

the ε in the solution cancels out and we end up with a
finite non-zero solution. The coefficient c(1)

1 remains uncon-
strained. A similar story occurs when �3 = 0 since

I3+uε{1+vε,1+vε,−2+vε} = 2

(u − v) p4
3 ε

+ O(ε0). (78)

Note that such value of �3 is not physical and violates uni-
tarity bounds. However, sometimes this may not constitute
a problem if, for example, we are working in a holographic
contest. One can check that for �3 = 6, 8, 10 . . . and so on,
the correlator vanishes. Indeed, in this cases the secondary
equations require the coefficient c1 to scale with high pow-
ers of ε that can not be compensated by the poles of the 3K
integral I3+uε{1+vε,1+vε,−2+�3+vε}. In the end we have

〈
Jμ1 (p1) J

μ2 (p2) O(�3 
=0,4) (p3)
〉 = 0

〈
Jμ1 (p1) J

μ2 (p2) O(�3=4) (p3)
〉 = c(1)

1 ε p1 p2μ1μ2

〈
Jμ1 (p1) J

μ2 (p2) O(�3=0) (p3)
〉 = c(1)

1

p4
3

ε p1 p2μ1μ2 , (79)

where we have absorbed a factor 2/(u − 3v) or 2/(u − v) in
the constant c(1)

1 . Therefore, excluding the unphysical case
�3 = 0, the only other case where the correlator does not
vanish is �3 = 4, which is satisfied for example if O =
∇μ J

μ
5 or O = Tμ

μ . Furthermore, it is important to note that
the most general solution that we have found for the 〈J J O〉
with �3 = 4 can be written in terms of functional derivatives
F F̃

δ4(p1 + p2 + p3)
〈
Jμ1 (p1) J

μ2 (p2) O(�3=4) (p3)
〉

=
∫

dx1 dx2 dx3 e
−i(p1x1+p2x2+p3x3)

×
δ2

[
f εμνρσ Fμν(x3)Fρσ (x3)

]

δAμ1(x1) δAμ2(x2)
, (80)

in accord with the chiral anomaly formula (1) for O(�3=4) =
∇ · J5, and potentially a parity-odd trace anomaly F F̃ for
the case O(�3=4) = Tμ

μ .
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5 The 〈J JT〉odd correlator in CFT in the traceless case

In Sect. 3, we have found that the special and dilatation CWIs
satisfied by the 〈J JT 〉 are non-anomalous even in the pres-
ence of a trace anomaly F F̃ . The natural question to ask is
if a parity-odd trace anomaly is still allowed for these corre-
lators, and what are the implications of these equations for
the structure of their longitudinal and transverse components.
The decomposition in such components has been introduced
in [32] and discussed in several works, including their renor-
malization in a general CFT [38,41]. These former analysis,
at least in the case of the 〈T T T 〉 and 〈T J J 〉, in the parity
even case, have been exactly matched in perturbation theory
at one-loop and simplified, using three separate sectors of
free field theories (Lagrangian) parameterizations.

The three constants appearing in the solution of the corre-
sponding CWIs can be uniquely related at d = 4 and d = 5
with the multiplicities of scalars (nS), fermions (n f ) and
spin-1 gauge fields (nV ) of such free field theory realizations
[43,44], providing a direct way to investigate the renormal-
ization of the corresponding correlators using only ordinary
Feynman diagrams. A general review of these methods can
be found in [45].

As already mentioned in the previous sections, diagrams
affected by topological anomalies do not need overall any
regularization, the reason being that the possible countert-
erms that one could consider at one-loop in such realizations,
are evanescent. However, it is well known from the analysis of
the 〈AVV 〉 interaction, where one faces such issues, that this
diagram is affected by an ambiguity related to the momen-
tum representation of the vertex, which can be avoided by
enforcing external Ward identities on the same vertex.

In this section we study the conformal constraints on
the 〈J JT 〉odd correlator. We assume that the correlator is
not anomalous and therefore, if we trace over the energy–
momentum, we get a vanishing result. We will relax such
assumption in the next section.

We start the analysis by decomposing the operators T and
J in terms of their transverse traceless part and longitudinal
ones (also termed “local”)

Tμi νi (pi ) = tμi νi (pi ) + tμi νi
loc (pi ), (81)

Jμi (pi ) = jμi (pi ) + jμi
loc(pi ), (82)

where

tμi νi (pi ) = �
μi νi
αiβi

(pi ) T
αiβi (pi ),

tμi νi
loc (pi ) = �

μi νi
αiβi

(p) T αiβi (pi ), (83)

jμi (pi )=πμi
αi

(pi ) J
αi (pi ), jμi

loc(pi )=
pμi
i pi αi
p2
i

Jαi (pi ),

(84)

having introduced the transverse–traceless (�), transverse
(π), longitudinal (�) projectors, given respectively by

πμ
α = δμ

α − pμ pα

p2 ,

�
μν
αβ = 1

2

(
πμ

α πν
β + π

μ
β πν

α

)
− 1

d − 1
πμνπαβ,

�
μi νi
αiβi

= pi βi
p2
i

[

2δ(νi
αi

pμi )
i − piαi

(d − 1)

(

δμi νi + (d − 2)
pμi
i pνi

i

p2
i

)]

+πμi νi (pi )

(d − 1)
δαiβi ≡ Iμi νi

αi
pi βi + πμi νi (pi )

(d − 1)
δαiβi . (85)

The link between the transverse and longitudinal and sectors
is property of the 〈AVV 〉 interaction at CFT level, while for
this correlator this will not occur. We have summarised in
appendix A the approach in the case of the 〈AVV 〉 in order
to emphasize the difference between the two cases, which
are remarkable.

With these information at hand, the procedure to obtain
the general structure of the correlator starts from the trace
and conservation Ward identities

∇ · 〈Jc〉 = 0, ∇ · 〈J5〉 = a εμνρσ FμνFρσ ,

∇μ〈Tμν〉 + Fμν〈Jμ〉 + Aν∇μ〈Jμ〉 = 0, gμν〈Tμν〉 = 0.

(86)

We first assume a traceless energy–momentum tensor. Later
we will also consider the case of an odd-parity trace anomaly.
Applying multiple functional derivatives to the Ward identi-
ties with respect to the field sources, after a Fourier transform,
we find

piμi 〈Jμ1(p1)J
μ2(p2)T

μ3ν3(p3)〉 = 0, i = 1, 2, 3 (87)

and

δμ3ν3〈Jμ1(p1)J
μ2(p2)T

μ3ν3(p3)〉 = 0. (88)

Such equations are satisfied independently of the fact that
J are conserved vector or axial-vector currents. Notice that
(88), in the parity-even case would allow 2-point functions
J J on the rhs, that here are, instead, absent. If the parity-
odd operator of the 〈J JT 〉 is T, then it is clear by symmetry
that we cannot construct on the rhs a parity-odd 〈J J 〉 with
two parity-even vector currents J. A similar result holds if
both vector currents are parity-odd as well as T . If the two
vector currents have mixed parity, say a 〈J J 〉odd , then one
can easily check that this correlator vanishes.

Due to the Ward identities (87), the longitudinal part of
the correlator vanishes. On the other hand, the transverse–
traceless part can be formally expressed in terms of the fol-
lowing independent tensor structures and form factors

〈Jμ1 (p1) J
μ2 (p2) T

μ3ν3 (p3)〉
= 〈 jμ1 (p1) j

μ2 (p2) t
μ3ν3 (p3)〉
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= πμ1
α1

(p1) πμ2
α2

(p2) �
μ3ν3
α3β3

(p3)
[
A1ε

p1 p2α1α2 pα3
1 pβ3

1

+A2ε
p1α1α2α3 pβ3

1 + A3ε
p2α1α2α3 pβ3

1

+A4ε
p1 p2α2α3δα1β3

]
. (89)

Note that we are not considering the following tensor struc-
tures in our decomposition

pα1
2 pβ3

1 ε p1 p2α2α3 , pα2
3 pβ3

1 ε p1 p2α1α3 , δβ3α2ε p1 p2α1α3 .

(90)

This is due to the Schouten identities (179) which relate these
tensorial structures to those written in Eq. (89).

5.1 Dilatation and special conformal ward identities

In this section we start to analyse the conformal constraints
on the form factors. The invariance of the correlator under
dilatation is reflected in the equation

(
3∑

i=1

�i − 2d −
2∑

i=1

pμ
i

∂

∂pμ
i

)

× 〈
Jμ1 (p1) J

μ2 (p2) T
μ3ν3 (p3)

〉 = 0. (91)

By using the chain rule

∂

∂pμ
i

=
3∑

j=1

∂p j

∂pμ
i

∂

∂p j
, (92)

in term of the invariants pi = |
√
p2
i | and by considering the

decomposition (89), we can rewrite the dilatation equation
as a constraint on the form factors

3∑

i=1

pi
∂A1

∂pi
(p1, p2, p3)

−
(

3∑

i=1

�i − 2d − 4

)

A1(p1, p2, p3) = 0

3∑

i=1

pi
∂A2

∂pi
(p1, p2, p3)

−
(

3∑

i=1

�i − 2d − 2

)

A2(p1, p2, p3) = 0

3∑

i=1

pi
∂A3

∂pi
(p1, p2, p3)

−
(

3∑

i=1

�i − 2d − 2

)

A3(p1, p2, p3) = 0

3∑

i=1

pi
∂A4

∂pi
(p1, p2, p3)

−
(

3∑

i=1

�i − 2d − 2

)

A4(p1, p2, p3) = 0. (93)

The invariance of the correlator with respect to the special
conformal transformations is instead encoded in the special
conformal Ward identities

0 =
2∑

j=1

[

−2
∂

∂p jκ
− 2pα

j
∂2

∂pα
j ∂p jκ

+ pκ
j

∂2

∂pα
j ∂p jα

]

× 〈Jμ1(p1)Jμ2 (p2)Tμ3ν3(p3)〉

+ 2

(

δμ1κ
∂

∂pα1
1

− δκ
α1

∂

∂p1μ1

)

〈Jα1 (p1)Jμ2 (p2)Tμ3ν3(p3)〉

+ 2

(

δμ2κ
∂

∂pα2
2

− δκ
α2

∂

∂p2μ2

)

〈Jμ1(p1)Jα2 (p2)Tμ3ν3(p3)〉

≡ Kκ 〈Jμ1(p1)Jμ2 (p2)Tμ3ν3(p3)〉. (94)

We can perform a transverse projection on all the indices
in order to identify a set of independent partial differential
equations

0 = πα1
μ1

(p1) πα2
μ2

(p2)�α3β3
μ3ν3

(p3)Kk

× 〈
Jμ1 (p1) J

μ2 (p2) T
μ3ν3 (p3)

〉

= πα1
μ1

(p1) πα2
μ2

(p2)�α3β3
μ3ν3

(p3)

×
[(

C11ε
p1α1α2α3 pβ3

1 + C12ε
p2α1α2α3 pβ3

1

+C13ε
p1 p2α1α2 pα3

1 pβ3
1 + C14ε

p1 p2α2α3δα1β3
)
pκ

1

+
(
C21ε

p1α1α2α3 pβ3
1 + C22ε

p2α1α2α3 pβ3
1

+C23ε
p1 p2α1α2 pα3

1 pβ3
1 + C24ε

p1 p2α2α3δα1β3
)
pκ

2

+C31ε
κμ1μ2μ3 pν3

1 + C32ε
p1κμ2μ3δμ1ν3

+C33ε
p2κμ1μ3δμ2ν3 + C34ε

p1 p2κμ3δμ1μ2 pν3
1

+C41δ
μ1κεμ2μ3 p1 p2 pν3

1 + C51δ
μ2κεμ1μ3 p1 p2 pν3

1

+C61δ
μ3κε p1μ1μ2ν3 + +C62δ

μ3κε p2μ1μ2ν3

]
, (95)

where Ci j are scalar functions of the form factors A and their
derivatives. Such decomposition is obtained by writing all the
possible tensor structures and then identifying all the inde-
pendent ones. The full procedure is shown in Appendix C.
Due to the independence of the tensor structures of Eq. (175),
the special conformal constraints can then be written as

Ci j = 0, i = 1, . . . 6, j = 1, . . . 4. (96)

123



839 Page 14 of 26 Eur. Phys. J. C (2023) 83 :839

5.2 Solution of the CWIs

In order to solve the CWIs, it is easier to first analyze the
equations involving only the A1 form factor

K31A1 = 0, K32A1 = 0,

(
∂

∂p3
+ 4 − �3

)
A1 = 0.

(97)

The solution to the primary equations which are the first two
is given by the following 3K integral

A1 = b1 J4{0,0,0}, (98)

which is not a divergent 3K integral in d = 4 (see
Appendix B), so in this case we can solve the last equation in
(97) directly without a regularization. We then set ε = 0 and
�3 = 4. Performing the limit p1 → 0, we find the condition
b1 = 0. Therefore, we can write

A1 = 0. (99)

Inserting such solution back into the other conformal equa-
tions, we can write the following primary special conformal
Ward identities

0 = K31A2,

0 = K32A2 −
(

2

p3

∂

∂p3
− 2�3

p2
3

)

(A4 + A2 − A3) ,

0 = K31A3 +
(

2

p3

∂

∂p3
− 2�3

p2
3

)

(A4 + A2 − A3) ,

0 = K32A3,

0 = K31A4, 0 = K32A4. (100)

These equations can be reduced to a set of homogenous equa-
tions by repeatedly applying the operator Ki j on them

0 = K31A2, 0 = K21K32A2,

0 = K21K31A3, 0 = K32A3,

0 = K31A4, 0 = K32A4, (101)

which can be easily derived by looking at the non-homogenous
equations and noticing that K21A4 = 0 and K21(A2 − A3) =
0. The solutions of the homogenous equations can then be
written in terms of the following 3K integrals

A4 = c1 J2,{0,0,0}, A2 = c2 J3{0,1,0} + c3 J2,{0,0,0},
A3 = c4 J3{1,0,0} + c5 J2,{0,0,0}. (102)

In d = 4+2uε, these integrals diverge like 1/ε and therefore
we should perform a regularization as we did for the other
correlators. However here for simplicity we will avoid such
procedure since such divergences don’t particularly spoil our
equations and we can arrive to the same conclusions with or
without the regularization. Therefore, we will set

d = 4, �1 = 3, �2 = 3, �3 = 4. (103)

Inserting our solutions back into the non-homogeneous equa-
tions we find

c1 = −4c2 − c3 + c5, c4 = −c2. (104)

The secondary equations are given by Ci j = 0 with i ≥ 3.

Their explicit expression is

0 = p2
∂A2

∂p2
+ p2

2 + p2
3

p3

∂A2

∂p3

0 = p2
∂A3

∂p2
− p2

∂A4

∂p2
+ p2

2 + p2
3

p3

∂A3

∂p3

0 = − 8

p2
3

A2 +
(

4

p2
1

+ 8

p2
3

)

A3 −
(

4

p2
1

+ 8

p2
3

)

A4

−2p1

p2
3

∂A2

∂p1

+
(

− 2

p1
+ 2p1

p2
3

)
∂A3

∂p1
+

(
2

p1
− 2p1

p2
3

)
∂A4

∂p1

−2p2

p2
3

∂A2

∂p2
+ 2p2

p2
3

∂A3

∂p2
− 2p2

p2
3

∂A4

∂p2
,

0 =
(

4

p2
2

+ 8

p2
3

)

A2 − 8

p2
3

A3 + 8

p2
3

A4 − 2

p2

∂A2

∂p2

− 2

p3

∂A2

∂p3
+ 2

p3

∂A3

∂p3
− 2

p3

∂A4

∂p3

0 = A2 + A3 − A4 − p2
∂A2

∂p2
+ p2

∂A3

∂p2
+ p2

∂A4

∂p2

−p3
∂A2

∂p3
+ p3

∂A4

∂p3

0 = A3 − A4 + p2
∂A4

∂p2
+ p3

∂A4

∂p3

0 = A2 + p2
∂A4

∂p2
. (105)

Working in the limit p3 → 0, the first and second equation
lead to the following constraints

c3 = −2c2, c5 = 4c2. (106)

Inserting such conditions into the last equation and using the
properties (162) of the 3K integrals, we arrive to c2 = 0. In
the end we find that the correlator is identically null

〈Jμ1 (p1) J
μ2 (p2) T

μ3ν3 (p3)〉 = 0. (107)

We conclude that in the absence of a parity-odd trace
anomaly, the parity-odd 〈J JT 〉 vanishes. This result is
slightly modified when we include a parity-odd trace anomaly,
with the result expressed uniquely in terms of an anomaly
pole, as anticipated in (143). We are going to show this in the
next section.
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6 The 〈J JT〉 correlator in CFT with an anomalous
trace

In the previous section we have assumed that there is no
parity-odd trace anomaly. In this section we relax such
assumption by considering a term of the following form

gμν〈Tμν〉 = f εμνρσ FμνFρσ , (108)

where f is an arbitrary constant. In this case, the local part
of the 〈J JT 〉 correlator does not vanish anymore. Indeed,
applying multiple functional derivatives to such equations
with respect to the field sources, after a Fourier transform,
we find

gμν〈Jμ1(p1)J
μ2(p2)T

μν(p3)〉 = 8 f ε p1 p2μ1μ2 . (109)

Therefore, there will be a non-vanishing term of the form〈
jμ1 jμ2 tμ3ν3

loc

〉
contributing to the correlator. Note that we

are still assuming the conservation of the currents and the
energy–momentum tensor [24]

piμi 〈Jμ1(p1)J
μ2(p2)T

μ3ν3(p3)〉 = 0, i = 1, 2, 3. (110)

Using Eq. (109), we can then write the correlator in terms of
its longitudinal and transverse–traceless parts

〈Jμ1 (p1) J
μ2 (p2) T

μ3ν3 (p3)〉 = 〈
jμ1(p1) j

μ2(p2)t
μ3ν3
loc (p3)

〉

+ 〈
jμ1(p1) j

μ2(p2)t
μ3ν3(p3)

〉
, (111)

with

〈
jμ1(p1) j

μ2(p2)t
μ3ν3
loc (p3)

〉 = 8

3
f πμ3ν3(p3)ε

p1 p2μ1μ2 .

(112)

In order to fix the transverse–traceless part, we need to ana-
lyze the conformal constraints in the presence of an anomaly.
As we have seen in Sect. 3, the conformal equations on the
〈J JT 〉 are not violated by the trace anomaly F F̃ . Therefore
we can apply the same procedure discussed in the previ-
ous section for the traceless case, but with the addition of a
term of the form

〈
jμ1 jμ2 tμ3ν3

loc

〉
contributing to the correlator.

However such term does not affect the conformal constraints
written before for the transverse–traceless part since

πρ1
μ1

(p1) πρ2
μ2

(p2)�ρ3σ3
μ3ν3

(p3) K
κ
〈
jμ1 jμ2 tμ3ν3

loc

〉 = 0. (113)

We can prove such equation by using the conservation of the
energy–momentum tensor together with the properties of the
projectors. Therefore, our analysis of the transverse–traceless
part in the previous section still applies. The transverse–
traceless part is still zero and the correlator is purely lon-
gitudinal.

We now recall the definition of the local term

tμν
loc(p) ≡

(
Iμν
αβ + 1

d − 1
πμνδαβ

)
T αβ(p) = 1

d − 1
πμνT α

α (p),

(114)

where in the second identity relation we have used the con-
servation of the energy–momentum tensor. We can then write
the correlator purely in terms of its local part

〈Jμ1 (p1) Jμ2 (p2) Tμ3ν3 (p3)〉 = 〈
Jμ1(p1)Jμ2 (p2)tμ3ν3

loc (p3)
〉

= 8

3
f πμ3ν3(p3)ε p1 p2μ1μ2 . (115)

We have found that the parity-odd structure of the correlator
is forced to appear only in its trace sector with the transverse
traceless sector being identically zero.

As further proof, one can check by a direct computation
that this solution satisfies the non anomalous CWIs (33) and
(34).

7 The 〈TT O〉 correlator in CFT

In this section we study the conformal constraints on
the 〈T T O〉 correlator where each T can be the standard
energy–momentum tensor or T5 of odd parity. Our result
is valid for every odd parity 〈T T O〉 correlator constructed
with standard energy–momentum tensors and/or T5 and a
scalar/pseudoscalar operator O. As we will see, also in this
case the solution of the CWIs of the correlator can be writ-
ten in terms of 3K integrals that needs a regularization.
Therefore, we work in the general scheme {u, v} where
d = 4 + 2uε, with the conformal dimensions �i of the
operators is shifted by (u + vi ) ε with arbitrary u and vi .

We can proceed in a manner similar to the previous corre-
lators by decomposing the 〈T T O〉 into its longitudinal and
transverse–traceless parts. In this case, the conservation and
trace Ward identities for the energy–momentum tensor lead
to the condition1

piμi

〈
Tμ1ν1 (p1) Tμ2ν2 (p2) O (p3)

〉 = 0,

gμiνi

〈
Tμ1ν1 (p1) Tμ2ν2 (p2) O (p3)

〉 = 0, (116)

for i = {1, 2}. Due to the Eq. (116), the longitudinal part of
the correlator vanishes. On the other hand, the transverse–
traceless part can be formally expressed in terms of the fol-
lowing form factors

〈
Tμ1ν1 (p1) Tμ2ν2 (p2) O (p3)

〉 = 〈
tμ1ν1 (p1) tμ2ν2 (p2) O (p3)

〉

1 Note that such equations remain valid even if we allow an odd par-
ity term εμνρσ Rαβ

μν Rαβρσ in the trace anomaly. Indeed if we consider
the case O = Tμ

μ and we trace again over one of the other energy–
momentum tensors, we get a vanishing result. We will show this more
in detail when examining the 〈T T T 〉 correlator.
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= �
μ1ν1
α1β1

(p1) �
μ2ν2
α2β2

(p2)
[
A1(p1, p2, p3)ε

α1α2 p1 p2 pβ1
2 pβ2

3

+A2(p1, p2, p3)ε
α1α2 p1 p2 δβ1β2

]
. (117)

7.1 Dilatation and special conformal ward identities

We can now analyse the conformal constraints on the form
factors A1 and A2. We proceed in a manner similar to the
previous correlators. The invariance of the 〈T T O〉 under
dilatation is reflected in the following constraints on the form
factors

3∑

i=1

pi
∂A1

∂pi
−

(
3∑

i=1

�i − 2d − 4

)

A1 = 0,

3∑

i=1

pi
∂A2

∂pi
−

(
3∑

i=1

�i − 2d − 2

)

A2 = 0. (118)

The invariance of the correlator with respect to the special
conformal transformations is instead encoded in the special
conformal Ward identities

0 = Kκ
〈
Tμ1ν1 (p1) T

μ2ν2 (p2) T
μ3ν3 (p3)

〉

=
2∑

j=1

(
2
(
� j − d

) ∂

∂p jκ
− 2pα

j
∂

∂pα
j

∂

∂p jκ

+ (
p j

)κ ∂

∂pα
j

∂

∂p jα

)

〈
Tμ1ν1 (p1) T

μ2ν2 (p2) O (p3)
〉

+4

(
δκ(μ1

∂

∂pα1
1

− δκ
α1

δ
(μ1
λ

∂

∂p1λ

)

×
〈
T ν1)α1 (p1) T

μ2ν2 (p2) O (p3)
〉

+4

(
δκ(μ2

∂

∂pα2
2

− δκ
α2

δ
(μ2
λ

∂

∂p2λ

)

×
〈
T ν2)α2 (p2) T

μ1ν1 (p1) O (p3)
〉
. (119)

We can perform a transverse projection on all the indices in
order to identify a set of partial differential equations, using
the following minimal decomposition

0 = �ρ1σ1
μ1ν1

(p1) �ρ2σ2
μ2ν2

(p2)Kk 〈
Tμ1ν1 (p1) T

μ2ν2 (p2) O (p3)
〉

= �ρ1σ1
μ1ν1

(p1) �ρ2σ2
μ2ν2

(p2)
[
C11ε

μ1μ2 p1 p2 pν1
2 pν2

3 pκ
1

+C12ε
μ1μ2 p1 p2δ

ν1ν2
3 pκ

1

+C21ε
μ1μ2 p1 p2 pν1

2 pν2
3 pκ

2 + C22ε
μ1μ2 p1 p2δ

ν1ν2
3 pκ

2

+C31ε
p1κμ1μ2δν1ν2 + C32ε

p2κμ1μ2δν1ν2

+C41ε
p1 p2μ1μ2 pν2

3 δκν1 + C51ε
p1 p2μ1μ2 pν1

2 δκν2
]
. (120)

All the tensor structures in this formula are independent.
Indeed, we have not considered the following tensors

ε p1κμ1μ2 pν1
2 pν2

3 , ε p2κμ1μ2 pν1
2 pν2

3 , ε p1 p2κμ2 pμ1
2 pν1

2 pν2
3 ,

ε p1 p2κμ1 pμ2
3 pν1

2 pν2
3 , ε p1 p2κμ1 pν2

3 δμ2ν1 , ε p1 p2κμ2 pν1
2 δμ1ν2 ,

(121)

which can be rewritten in terms of the ones present in our
decomposition, using the Schouten identities

ε[p1 p2μ1μ2 pκ]
1 = 0

ε[p1 p2μ1μ2 pκ]
2 = 0

ε[p1 p2μ1μ2δκ]ν1 = 0

ε[p1 p2μ1μ2δκ]ν2 = 0, (122)

according to which we have

�ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)

(
ε p1 p2κμ1 pμ2

3

)

= �ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)
(

1

2
ε p1κμ1μ2(p2

1 + p2
2 − p2

3)

+ε p1 p2μ1μ2 pκ
1 + ε p2κμ1μ2 p2

1

)

�ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)

(
ε p1 p2κμ2 pμ1

2

)

= �ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)
(

− 1

2
ε p2κμ1μ2(p2

1 + p2
2 − p2

3)

+ε p1 p2μ1μ2 pκ
2 − ε p1κμ1μ2 p2

2

)

�ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)

(
εμ1μ2κp1 pν1

2

)

= �ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)
(

− εκp1 p2μ1δμ2ν1 − ε p1 p2μ1μ2δκν1

)

�ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)

(
ε p2μ1μ2κ pν2

1

)

= �ρ1σ1
μ1ν1

(p1)�
ρ2σ2
μ2ν2

(p2)
(

− εμ2κp1 p2δμ1ν2 − ε p1 p2μ1μ2δκν2

)
.

(123)

We remark that we can always change (μ1 ↔ ν1) and/or
(μ2 ↔ ν2) in order to obtain new Schouten identities. Due to
the independence of tensor structures in our decomposition,
the special conformal equations are written, from (120), as

Ci j = 0 i = 1, . . . 4, j = 1, 2. (124)

The equations with i = {1, 2} are second order differential
equations called primary equations. Their explicit form is
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K31A1 = 0, K32A1 = 0,

K31A2 + 2

p3

∂A2

∂p3
+ 2A1 = 0,

K32A2 + 2

p3

∂A2

∂p3
+ 2A1 = 0. (125)

The other equations are of the first order and are called sec-
ondary ones. Their explicit form is

0 = (2 − 2d + 2�2)A2 − 2p2
∂A2

∂p2
+ p2

1 − p2
2 − p2

3

p3

∂A2

∂p3

0 = (2�3 − 6 − 2d + 2�2) A2 − 2p2
∂A2

∂p2
+ p2

1 − p2
2 − p2

3

p3

∂A2

∂p3

0 = (10 + 2d − 2�2 − 2�3)A1 + 2p2
∂A1

∂p2
+ 2p3

∂A1

∂p3
− 2

p3

∂A2

∂p3

0 = (2 − 2d + 2�2)A1 − 2p2
∂A1

∂p2
− 2

p3

∂A2

∂p3

0 =
(

�1
p2

1 + p2
2 − p2

3

p2
1

− 2 − 4d + 4�2

)

A1 + 2�1

p2
1

A2

− p2
1 + p2

2 − p2
3

p1

∂A1

∂p1
− 2

p1

∂A2

∂p1
− 4p2

∂A1

∂p2

0 =
(

2 + 4d − 4�1 − �2
p2

1 + p2
2 − p2

3

p2
2

)

A1 − 2�2

p2
2

A2

+4p1
∂A1

∂p1
+ p2

1 + p2
2 − p2

3

p2

∂A1

∂p2
+ 2

p2

∂A2

∂p2
. (126)

Note that if we subtract the first two equations we get

0 = (�3 − 4)A2. (127)

Therefore, if �3 
= 4 the entire correlator has to vanish.
In the next section we will study the case �3 = 4, which
importantly is satisfied by

O(�3=4) = Tμ
μ . (128)

7.2 Solutions of the CWIs

We start by writing the most general solution of the primary
equations in terms of 3K integrals

A1 = c1 J4{0,0,0},

A2 = c1

2
J3{0,0,1} + c2 J1{0,0,−1}. (129)

In the case �3 = 4, we need to deal with divergences in
these 3K integrals that can be regularized by considering

d = 4 + 2uε, �i = 4 + (u + v)ε. (130)

So that the 3K Integrals in our solution can be written as
[32,41,42]

J4{0,0,0} = 8

ε (u − 3v)
+ O(ε0),

J3{0,0,1} = −4(2p2
1 + 2p2

2 + p2
3)

ε (u − 3v)
+ O(ε0),

J1{0,0,−1} = − 2p2
3

ε2 (u − 3v)(u − v)
+ O

(
1

ε

)
. (131)

We then perform all the possible zero momentum limits on
the secondary equations (126) and expand the result in pow-
ers of ε. These equations are satisfied for

c1 = c(1)
1 ε + O(ε2),

c2 = −3(u − v) c(1)
1 ε2 + O(ε3), (132)

where c(1)
1 is an arbitrary constant. The first order terms of c1

and c2 cancel out the divergences of the 3K integrals, while
the terms of higher order don’t contribute to the correlator in
the limit of ε → 0. In the end, using the explicit form of the
3K integrals, we can write

〈
Tμ1ν1 (p1) T

μ2ν2 (p2) O(�3 
=4) (p3)
〉 = 0,

〈
Tμ1ν1 (p1) T

μ2ν2 (p2) O(�3=4) (p3)
〉

= �
μ1ν1
α1β1

(p1)�
μ2ν2
α2β2

(p2) 4 c(1)
1

×
[
− p2

1 + p2
2 − p2

3

2
εα1α2 p1 p2δβ1β2 + εα1α2 p1 p2 pβ1

2 pβ2
3

]

= c(1)
1

[
εν1ν2 p1 p2

(
(p1 · p2)δ

μ1μ2 − pμ2
1 pμ1

2

)

+ (μ1 ↔ ν1) + (μ2 ↔ ν2) +
(

μ1 ↔ ν1

μ2 ↔ ν2

)]
, (133)

in the constant c(1)
1 and in the last row we have contracted our

result with the projectors. Similarly to the 〈J J O〉, the only
case where the 〈T T O〉 does not vanish is �3 = 4, which is
satisfied for example if O = ∇· J5 or O = Tμ

μ . Furthermore,
it is important to note that the most general solution that we
have found for the 〈T T O〉 with �3 = 4, can be rewritten as
functional derivatives of RR̃

δ4(p1 + p2 + p3)
〈
Tμ1ν1 (p1) T

μ2ν2 (p2) O(�3=4) (p3)
〉

=
∫

dx1 dx2 dx3 e
−i(p1x1+p2x2+p3x3)

×
δ2

[
f εμνρσ Rαβ

μν(x3)Rαβρσ (x3)
]

δgμ1ν1(x1) δgμ2ν2(x2)
(134)

in agreement with the chiral anomaly formula (1) in the case
O(�3=4) = ∇ · J5 and potentially a parity-odd trace anomaly
RR̃ for the case O(�3=4) = Tμ

μ .

8 The 〈TTT〉 correlator in CFT

This correlator has been studied in several previous works
in coordinate space in a conformal field theory and it was
found by Stanev, for instance, that its parity-odd sector van-
ishes [46]. The analysis in coordinate space avoids the contact

123



839 Page 18 of 26 Eur. Phys. J. C (2023) 83 :839

terms where all the external points of the correlator coalesce,
which are the source of the conformal anomaly.2

However, in these investigations it was always assumed
that odd-parity trace terms were absent

gμi νi 〈Tμ1ν1Tμ2ν2Tμ3ν3〉odd = 0. (135)

Moreover, this correlator vanishes in all the perturbative anal-
ysis presented so far, in different schemes, as for instance in
[25]. Indeed, the claim in [25] is that the gravitational trace
anomaly comes entirely from the second term of (6). Since
our goal is to investigate only the critical cases raised by the
perturbative analysis, we will not investigate completely all
the sectors of the 〈T T T 〉odd when parity-odd trace anomalies
are present.

We are going to show that while all the perturbative anal-
ysis indicate that the 〈T T T 〉odd is identically zero and that
there is no parity-odd trace anomaly from the perturbative
standpoint, if we allow a parity-odd trace anomaly, where the
trace is performed after the quantum average of T, then the
same correlator is not predicted to be zero by the CWIs in its
longitudinal and trace sectors. The result clearly differs from
the ordinary perturbative analysis presented before. Notice
that explicit structure of the transverse/traceless sector, which
is unknown, is irrelevant for this goal, since the three sectors
are orthogonal.

If we admit the Pontryagin density f εμνρσ RαβμνR
αβ

ρσ

as an anomalous trace term for the correlator, we can write

δμ3ν3

〈
Tμ1ν1Tμ2ν2Tμ3ν3

〉

= −16 f

{[
εν1ν2 p1 p2

(
(p1 · p2)δ

μ1μ2 − pμ2
1 pμ1

2

)

+ (μ1 ↔ ν1)

]
+ (μ2 ↔ ν2)

}
. (136)

We can derive analogous expression with the trace over
Tμ1ν1 or Tμ2ν2 by exchanging the momenta and indices
{p1 ↔ p3, μ1 ↔ μ3} or {p2 ↔ p3, μ2 ↔ μ3}. Moreover,
note that if we trace over two e.m. tensors at the same time,
we end up with a vanishing result. Therefore, we don’t have
to include terms built with more than one tloc in the decom-
position of the correlator. Proceeding in a manner similar to
the previous correlators, we can write the following decom-
position

〈Tμ1ν1Tμ2ν2Tμ3ν3 〉 = 〈tμ1ν1 tμ2ν2 tμ3ν3 〉 + 〈tμ1ν1
loc tμ2ν2 tμ3ν3 〉

+〈tμ1ν1 tμ2ν2
loc tμ3ν3 〉 + 〈tμ1ν1 tμ2ν2 tμ3ν3

loc 〉 (137)

with

〈tμ1ν1 tμ2ν2 tμ3ν3
loc 〉 = −16 f

3
πμ3ν3(p3)

2 The inclusion of such contact terms, in the parity even case, has been
discussed instead long ago in [47].

×
{[

εν1ν2 p1 p2

(
(p1 · p2)δ

μ1μ2 − pμ2
1 pμ1

2

)

+ (μ1 ↔ ν1)

]
+ (μ2 ↔ ν2)

}
. (138)

Again, one can derive analogous expression for 〈tμ1ν1
loc tμ2ν2

tμ3ν3〉 and 〈tμ1ν1 tμ2ν2
loc tμ3ν3〉 by exchanging the momenta and

indices {p1 ↔ p3, μ1 ↔ μ3} and {p2 ↔ p3, μ2 ↔ μ3} in
the last equation.

If we then want to fix the transverse–traceless part of the
correlator we need to examine the conformal constraints. The
situation here is remarkably different from the 〈J JT 〉 case.
We know that RR̃ is a topological anomaly so dilatations are
not broken. However in this case special conformal transfor-
mation are broken and therefore if we assume an anomaly
in the 〈T T T 〉 correlator, we expect that there will also be a
non-vanishing transverse–traceless part. This point will be
addressed in a separate work.

9 Summary of the results

We can summarize the result of our analysis before coming
to the conclusions. We have investigated parity-odd terms in
the trace anomaly

Aodd = f1 εμνρσ RαβμνR
αβ

ρσ + f2 εμνρσ FμνFρσ . (139)

If we consider the abelian gauge contribution to the trace
anomaly, i.e. the Chern–Pontryagin density F F̃, the first
term of the anomaly (6) can be evaluated by computing the
〈J JT 〉 correlator. We have shown that conformal invariance
requires the 〈J JT 〉 correlator to be purely longitudinal. It is
possible to fix the longitudinal part of the correlator without
breaking the CWIs in order to account for the term in the
trace anomaly. In momentum space this is summarized by
the following expression:

〈Jμ1 (p1) J
μ2 (p2) T

μ3ν3 (p3)〉odd
= 8

3
f πμ3ν3(p3)ε

p1 p2μ1μ2 . (140)

On the other hand, in order to analyze the second term
of Eq. (6) in CFTs, we have examined the 〈J J O〉 correlator.
Since we need to consider O = Tμ

μ , the conformal dimension
of the scalar operator is fixed to �3 = 4. Remarkably, we
show that such value of �3 is the only physical case where the
correlator can be different from zero. Furthermore, conformal
invariance fixes the 〈J J O〉 to assume the required anomalous
form

〈Jμ1 Jμ2 O(�3=4)〉odd = F
[

δ2Aodd(x3)

δAμ1(x1) δAμ2(x2)

]
(141)

where we denoted with F[ · ] the Fourier transform with
respect to all the coordinates (x1, x2, x3). We are also ignor-
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ing the delta δ4
(∑

pi
)

appearing after Fourier transforming
since it is not included in the definition of the correlator.

We also analyze the gravitational contribution to the odd-
parity trace anomaly, i.e. the Pontryagin density RR̃. In this
case, the first term in Eq. (6), can be evaluated by computing
the 〈T T T 〉 correlator. Contrary to popular belief, such corre-
lator doesn’t need to vanish if we allow the presence of a trace
term. However, although the regularization and prescriptions
adopted by Bonora lead to an anomalous 〈J JT 〉, in the case
of the 〈T T T 〉, the correlator vanishes. Indeed, according to
Bonora, the gravitational contribution to the trace anomaly
comes entirely from the second term of Eq. (6). Therefore,
in this case we don’t really need to impose the presence of
anomalies for the 〈T T T 〉.

In order to analyze the second term in the anomaly (6), we
need to consider the 〈T T O〉 correlator. Conformal invariance
requires such correlator to vanish almost always except in
the case �3 = 4 which again is exactly what we need since
O = Tμ

μ . We show that the conformal structure assumed
by such correlator can exactly explain the odd-parity trace
anomaly

〈Tμ1ν1Tμ2ν2 O(�3=4)〉odd
= F

[
δ2Aodd(x3)

δgμ1ν1(x1) δgμ2ν2(x2)

]
. (142)

The implications for the structure of the effective action in
the external gauge and gravity fields can be summarized by
rather simple nonlocal functionals. Our analysis shows that
in terms of the parity-odd contribution to the effective action,
in the 〈J JT 〉 case, the correlator is represented by the term

SJ JT = f2

∫
d4x ′√g(x ′)

∫
d4x

√
g(x)R(x)�−1

x,x ′F F̃(x ′). (143)

The entire 〈J JT 〉odd correlator can be obtained from (143).
Other parity-odd terms my be taken into account by insert-
ing additional stress–energy tensors, constrained by external
conservation and CWIs.

In the case of the 〈T T T 〉, the Weyl-variant part of the
correlator is generated instead by the functional

ST T T = f1

∫
d4x ′√g(x ′)

∫
d4x

√
g(x)R(x)�−1

x,x ′ RR̃(x ′). (144)

It would be interesting to see what the conformal constraints
predict in more general cases. However, the pattern for 3-
point functions is the usual one, as in the case of the parity-
even trace anomalies and ordinary chiral anomalies

SAVV = a1

∫
d4x ′√g(x ′)

∫
d4x

√
g(x)∂ · B �−1

x,x ′F F̃(x ′), (145)

with B an axial-vector abelian gauge field. In both cases, the
trace and longitudinal sectors are characterised by the presence
of the nonlocal 1/� interaction. The form is that of a bilin-
ear mixing between a spin 1 (for the chiral current, ∂ · B) or
spin 2 external field (R) and an intermediate scalar or pseu-
doscalar interpolating state, times the anomaly contributions
(F F̃ or RR̃). As stressed in other related works, these inter-
actions play a role in the cosmological context, in the analysis
of the conformal backreaction on gravity, and provide a consis-
tent basis for nonlocal cosmological models for the dark energy
(see for instance [48,49]).

10 Conclusions

We have studied the conformal constraints on the correlators
〈J J O〉, 〈T T O〉, 〈J JT 〉 and 〈T T T 〉 which are all related to
possible parity-odd terms in the conformal anomaly.

In the case of the 〈J JT 〉, the structure of the correlator is
limited to a trace sector, while it is more involved in the case of
the 〈T T T 〉. We have shown that in both cases the anomaly con-
straints can be solved by the exchange of an anomaly pole. The
structure of the anomaly actions that account for such correla-
tion functions are very similar to what found in the parity-even
cases, discussed in previous works.

We have found that the 〈J J O〉odd and 〈T T O〉odd can be dif-
ferent from zero in a conformal field theory when the conformal
dimension of the scalar operator is �3 = 4, which is exactly
the case for O = ∇ · J5 and O = Tμ

μ . Remarkably, the general
expression for the conformal 〈J J O〉 and 〈T T O〉 with �3 = 4
corresponds to functional derivatives of the anomaly Aodd

〈Jμ1 Jμ2 O(�3=4)〉

= F
[

δ2Aodd(x3)

δAμ1(x1) δAμ2(x2)

]

〈Tμ1ν1Tμ2ν2 O(�3=4)〉

= F
[

δ2Aodd(x3)

δgμ1ν1(x1) δgμ2ν2(x2)

]
, (146)

where with F[ · ] we have denoted the Fourier transform with
respect to all the coordinates (x1, x2, x3).

These correlators may play an important role in cosmology
since sources of CP violation in the early universe are certainly
welcomed, in order to explain the matter–antimatter asymmetry
of our universe. If conformal symmetry is bound to play an
important role in the very early universe, we are surely entitled to
envision alternative scenarios where the sources of CP violation
are directly connected with gravity.
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The application of such correlators are manifolds and cover a
variety of contexts, ranging from holography [19,50,51] to the
investigation of topological matter [52–54]. It is clear that our
analysis are just a first step towards the general study of CP-odd
anomalies in CFT and their physical implications.
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Appendix A: The parity-odd 〈AVV 〉 and the linking of
different sectors

In this appendix we briefly summarize the approach followed in
the case of the 〈AVV 〉, here denoted as 〈J J J5〉, involving two
conserved and one anomalous currents, in order to highlight
the differences with respect to the 〈J JT 〉odd case. For more
details we refer to [1]. In this case we require the following
Ward identities

piμi 〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = 0, {i = 1, 2}

p3μ3〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = −8 a i ε p1 p2μ1μ2 .

(147)

We decompose the currents into the longitudinal and transverse
components

Jμ(p) = jμ(p) + jμloc(p),

Jμ
5 (p) = jμ5 (p) + jμ5loc(p) (148)

where

jμ = πμ
α (p) Jα(p), jμloc(p) = pμ

p2 p · J (p)

jμ5 = πμ
α (p) Jα

5 (p), jμ5loc(p) = pμ

p2 p · J5(p). (149)

Due to the conservation Ward identities (147) we can write the
correlator in the following form

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = 〈 jμ1(p1) j

μ2(p2) j
μ3
5 (p3)〉

+〈 jμ1(p1) j
μ2(p2) j

μ3
5loc(p3)〉 (150)

where the second term on the right-hand side is fixed by the
anomaly
〈
jμ1 (p1) j

μ2 (p2) j
μ3
5loc (p3)

〉

= pμ3
3

p2
3

p3α3

〈
jμ1 (p1) j

μ2 (p2) J
α3
5 (p3)

〉

= −8ai

p2
3

ε p1 p2μ1μ2 pμ3
3 . (151)

On the other hand, the transverse component can be formally
expressed in terms of two form factors A1 and A2

〈 jμ1(p1) jμ2 (p2) jμ3
5 (p3)〉 = π

μ1
α1 (p1)π

μ2
α2 (p2)π

μ3
α3 (p3)

×
[
A1(p1, p2, p3) ε p1 p2α1α2 pα3

1 + A2(p1, p2, p3) ε p1α1α2α3

− A2(p2, p1, p3) ε p2α1α2α3
]

(152)

where A1(p1, p2, p3) = −A1(p2, p1, p3) due to the Bose sym-
metry.

The two sectors, the longitudinal one, defined by projecting
the entire correlator over the external momenta and the com-
plementary transverse one, are linked together by the CWIs.
Indeed, projecting on the transverse sector the special CWIs,
we can write

0 = π
λ1
μ1(p1)π

λ2
μ2 (p2)π

λ3
μ3(p3)Kκ

[
〈Jμ1(p1)Jμ2 (p2)Jμ3

5 (p3)〉
]

= π
λ1
μ1(p1)π

λ2
μ2 (p2)π

λ3
μ3(p3)Kκ

[
〈 jμ1(p1) jμ2 (p2) jμ3

5 (p3)〉

+〈 jμ1(p1) jμ2 (p2) jμ3
5 loc (p3)〉

]

= π
λ1
μ1(p1)π

λ2
μ2 (p2)π

λ3
μ3(p3)

[
Kκ 〈 jμ1(p1) jμ2 (p2) jμ3

5 (p3)〉

−16 a i (�3 − 1)

p2
3

δμ3κεμ1μ2 p1 p2

]
(153)

where in the last line we computed the action of the operator Kκ

on the longitudinal part of the correlator. Therefore, the special
conformal Ward identities connect the transverse and longitu-
dinal sector of the 〈AVV 〉. We can then solve such equations
together with the dilatations Ward identities in order to deter-
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mine the structure of the form factor A1 and A2 in the transverse
component (see [1] for the details). In the end, we have

〈
jμ1 (p1) jμ2 (p2) jμ3

5 (p3)
〉 = 8ia π

μ1
α1 (p1) π

μ2
α2 (p2) π

μ3
α3 (p3)

×
[
p2

2 I3{1,0,1}ε p1α1α2α3 − p2
1 I3{0,1,1}ε p2α1α2α3

]
. (154)

Note the appearance of the coefficient of the chiral anomaly in
the transverse part of the correlator. On the other hand, as we
have already shown in Eq. (151), the longitudinal part of the
correlator is described by a single structure, corresponding to
the exchange of an anomaly pole in the axial-vector line.

The case of the 〈AVV 〉 correlator is remarkably different
from the 〈J JT 〉odd . Indeed, for this last correlator, after per-
forming the analysis of the conformal constraints in this paper,
we were able to show that the transverse part is not affected by
the presence of an anomalous trace term.

Appendix B: 3K integrals

The most general solution of the conformal Ward identities for
our correlators can be written in terms of integrals involving a
product of three Bessel functions, namely 3K integrals. In this
appendix, we will illustrate such integrals and their properties.
For a detailed review on the topic, see [32,40,41].

B.1 Definition and properties

First, we recall the definition of the general 3K integral

Iα{β1β2β3} (p1, p2, p3) =
∫

dxxα
3∏

j=1

p
β j
j Kβ j

(
p j x

)
(155)

where Kν is a modified Bessel function of the second kind

Kν(x) = π

2

I−ν(x) − Iν(x)

sin(νπ)
, ν /∈ Z

Iν(x) =
( x

2

)ν
∞∑

k=0

1

�(k + 1)�(ν + 1 + k)

( x
2

)2k
(156)

with the property

Kn(x) = lim
ε→0

Kn+ε(x), n ∈ Z. (157)

The triple-K integral depends on four parameters: the power
α of the integration variable x, and the three Bessel function
indices β j . The arguments of the 3K integral are magnitudes
of momenta p j with j = 1, 2, 3. One can notice the integral is
invariant under the exchange (p j , β j ) ↔ (pi , βi ). We will also
use the reduced version of the 3K integral defined as

JN{k j } = I d
2 −1+N

{
� j− d

2 +k j
} (158)

where we introduced the condensed notation {k j } = {k1, k2,

k3}. The 3K integral satisfies an equation analogous to the dilata-
tion equation with scaling degree

deg
(
JN{k j }

)
= �t + kt − 2d − N (159)

where

kt = k1 + k2 + k3, �t = �1 + �2 + �3. (160)

From this analysis, it is simple to relate the form factors to the
3K integrals. Indeed, the dilatation Ward identities tell us that a
form factor needs to be written as a combination of integrals of
the following type

JN+kt ,{k1,k2,k3} (161)

where N is the number of momenta that the form factor multi-
plies in the decomposition. Let us now list some useful properties
of 3K integrals

∂

∂pn
JN

{
k j

} = −pn JN+1
{
k j−δ jn

}

JN
{
k j+δ jn

} = p2
n JN

{
k j−δ jn

} + 2

(
�n − d

2
+ kn

)
JN−1

{
k j

}

∂2

∂p2
n
JN

{
k j

} = JN+2
{
k j

} − 2

(
�n − d

2
+ kn − 1

2

)
JN+1

{
k j−δ jn

},

Kn JN
{
k j

} ≡
(

∂2

∂p2
n

+ (d + 1 − 2�n)

pn

∂

∂pn

)

JN
{
k j

}

= JN+2
{
k j

} − 2kn JN+1
{
k j−δ jn

},

Knm JN
{
k j

} ≡ (Kn − Km )JN
{
k j

} = −2kn JN+1
{
k j−δ jn

}

+2km JN+1
{
k j−δ jm

}. (162)

B.2 Zero momentum limit

When solving the secondary conformal Ward identities, it may
be useful to perform a zero momentum limit. In this subsection,
we review the behaviour of the 3K integrals in the limit p3 → 0.

In this limit, the momentum conservation gives

pμ
1 = −pμ

2 �⇒ p1 = p2 ≡ p. (163)

Assuming that α > βt − 1 and β3 > 0, we can write

lim
p3→0

Iα{β j } (p, p, p3) = pβt−α−1�α{β j } (164)

where

�α{β j } = 2α−3� (β3)

� (α − β3 + 1)

×�

(
α + βt + 1

2
− β3

)
�

(
α − βt + 1

2
+ β1

)

×�

(
α − βt + 1

2
+ β2

)
�

(
α − βt + 1

2

)
. (165)
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We can derive similar formulas for the case p1 → 0 or p2 → 0
by considering the fact that 3K integrals are invariant under the
exchange (p j , β j ) ↔ (pi , βi ).

B.3 Divergences and regularization

The 3K integral defined in (155) converges when

α >

3∑

i=1

|βi | − 1; p1, p2, p3 > 0. (166)

If α does not satisfy this inequality, the integrals must be defined
by an analytic continuation. The quantity

δ ≡
3∑

j=1

∣∣β j
∣∣ − 1 − α (167)

is the expected degree of divergence. However, when

α + 1 ± β1 ± β2 ± β3 = −2k, k = 0, 1, 2, . . . (168)

for some non-negative integer k and any choice of the ± sign, the
analytic continuation of the 3K integral generally has poles in
the regularization parameter. Therefore, if the above condition
is satisfied, we need to regularize the integrals. This can be done
by shifting the parameters of the 3K integrals as

Iα{β1,β2,β3} → I
α̃
{
β̃1,β̃2,β̃3

}

�⇒ JN {k1,k2,k3} → JN+uε{k1+v1ε,k2+v2ε,k3+v3ε}
(169)

where

α̃ = α + uε, β̃1 = β1 + v1ε,

β̃2 = β2 + v2ε, β̃3 = β3 + v3ε (170)

or equivalently by considering

d → d + 2uε; � → �i + (u + vi ) ε. (171)

In general, the regularisation parameters u and vi are arbitrary.
However, in certain cases, there may be some constraints on
them. For simplicity, in this paper we consider the same vi = v

for every i.

B.4 3K integrals and Feynman integrals

3K integrals are related to Feynman integrals in momentum
space. The exact relations were first derived in [32,41]. Here we
briefly show the results. Such expressions have been recently
used in order to show the connection between the conformal
analysis and the perturbative one for the 〈AVV 〉 correlator [1].

Let Kd{δ1δ2δ3} denote a massless scalar 1-loop 3-point
momentum space integral

Kd{δ1δ2δ3} =
∫

ddk
(2π)d

1

k2δ3
∣∣ p1 − k

∣∣2δ2
∣∣ p2 + k

∣∣2δ1
.

(172)

Any such integral can be expressed in terms of 3K integrals and
vice versa. For scalar integrals the relation reads

Kd{δ1δ2δ3} = 24− 3d
2

π
d
2

×
I d

2 −1{ d2 +δ1−δt ,
d
2 +δ2−δt ,

d
2 +δ3−δt }

�(d − δt )�(δ1)�(δ2)�(δ3)

(173)

where δt = δ1 + δ2 + δ3. Its inverse reads

Iα{β1β2β3} = 23α−1πα+1�

(
α + 1 + βt

2

)

×
3∏

j=1

�

(
α + 1 + 2β j − βt

2

)

×K
2+2α,

{
1
2 (α+1+2β1−βt ),

1
2 (α+1+2β2−βt ),

1
2 (α+1+2β3−βt )

}

(174)

where βt = β1 +β2 +β3. All tensorial massless 1-loop 3-point
momentum-space integrals can also be expressed in terms of a
number of 3K integrals when their tensorial structure is resolved
by standard methods (for the exact expressions in this case see
appendix A.3 of [32]).

Appendix C: Schouten identities for the 〈J JT〉

In this section we will derive the following minimal decompo-
sition used when analyzing the special conformal constraints on
the 〈J JT 〉 correlator

0 = πα1
μ1

(p1) πα2
μ2

(p2)�α3β3
μ3ν3

(p3)Kk

× 〈
Jμ1 (p1) J

μ2 (p2) T
μ3ν3 (p3)

〉

= πα1
μ1

(p1) πα2
μ2

(p2)�α3β3
μ3ν3

(p3)

[(
C11ε

p1α1α2α3 pβ3
1

+C12ε
p2α1α2α3 pβ3

1 + C13ε
p1 p2α1α2 pα3

1 pβ3
1

+C14ε
p1 p2α2α3δα1β3

)
pκ

1 +
(
C21ε

p1α1α2α3 pβ3
1

+C22ε
p2α1α2α3 pβ3

1 + C23ε
p1 p2α1α2 pα3

1 pβ3
1

+C24ε
p1 p2α2α3δα1β3

)
pκ

2 + C31ε
κμ1μ2μ3 pν3

1

+C32ε
p1κμ2μ3δμ1ν3 + C33ε

p2κμ1μ3δμ2ν3

+C34ε
p1 p2κμ3δμ1μ2 pν3

1 + C41δ
μ1κεμ2μ3 p1 p2 pν3

1

+C51δ
μ2κεμ1μ3 p1 p2 pν3

1 + C61δ
μ3κε p1μ1μ2ν3

+C62δ
μ3κε p2μ1μ2ν3

]
. (175)
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Such decomposition is obtained first by writing all the possible
tensor structures. In particular the tensor related to the primary
equations are

ε p1α1α2α3 pβ3
1 pκ

1 , ε p2α1α2α3 pβ3
1 pκ

1 , ε p1 p2α1α2 pα3
1 pβ3

1 pκ
1 ,

ε p1 p2α2α3δα1β3 pκ
1

��������
pα1

2 pβ3
1 ε p1 p2α2α3 pκ

1 , ��������
pα2

3 pβ3
1 ε p1 p2α1α3 pκ

1 ,

�������
δβ3α2ε p1 p2α1α3 pκ

1

ε p1α1α2α3 pβ3
1 pκ

2 , ε p2α1α2α3 pβ3
1 pκ

2 , ε p1 p2α1α2 pα3
1 pβ3

1 pκ
2 ,

ε p1 p2α2α3δα1β3 pκ
2

��������
pα1

2 pβ3
1 ε p1 p2α2α3 pκ

2 , ��������
pα2

3 pβ3
1 ε p1 p2α1α3 pκ

2 ,

�������
δβ3α2ε p1 p2α1α3 pκ

2 (176)

while the tensor related to the secondary ones are

εκμ1μ2μ3 pν3
1 , ������

ε p1κμ2μ3 pμ1
2 pν3

1 , ������
ε p2κμ2μ3 pμ1

2 pν3
1 ,

ε p1κμ2μ3δμ1ν3 ,������
ε p2κμ2μ3δμ1ν3

������
ε p1κμ1μ3 pμ2

3 pν3
1 , ������

ε p2κμ1μ3 pμ2
3 pν3

1 , ������
ε p1κμ1μ3δμ2ν3 ,

ε p2κμ1μ3δμ2ν3 ,������
ε p1κμ1μ2 pμ3

1 pν3
1 ,

������
ε p2κμ1μ2 pμ3

1 pν3
1 , ε p1 p2κμ3δμ1μ2 pν3

1 , ��������
ε p1 p2κμ3 pμ1

2 pμ2
3 pν3

1 ,

�������
ε p1 p2κμ3δν3μ2 pμ1

2 ,�������
ε p1 p2κμ3δν3μ1 pμ2

3 ,

�������
ε p1 p2κμ2δμ1μ3 pν3

1 , ��������
ε p1 p2κμ2 pμ1

2 pμ3
1 pν3

1 , �������
ε p1 p2κμ1δμ3μ2 pν3

1 ,

��������
ε p1 p2κμ1 pν3

1 pμ3
1 pμ2

3 ,

�������
δμ3κεμ1μ2 p1 p2 pν3

1 , �������
δμ3κεν3μ1 p1 p2 pμ2

3 , �������
δμ3κεν3μ2 p1 p2 pμ1

2 ,

δμ3κε p1μ1μ2ν3 , δμ3κε p2μ1μ2ν3 ,

δμ2κεμ1μ3 p1 p2 pν3
1 , δμ1κεμ2μ3 p1 p2 pν3

1 . (177)

Not all of these tensors are independent. Indeed all barred tensors
can be rewritten in terms of the non-barred ones thanks to the
Schouten identities. Ignoring all the barred tensors, we then end
up with the minimal decomposition in Eq. (175). We will now
list all the Schouten identities needed in order to eliminate the
barred tensor structures. The first one we consider is

ε[p1 p2μ1μ2δμ3]
α = 0 (178)

which can be contracted with p1α, p2α, δκ
α and δ

ν3
α obtaining

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2μ1μ3 pμ2

3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
− p2

1 + p2
2 − p2

3

2
ε p1μ1μ2μ3

−p2
1ε p2μ1μ2μ3 − ε p1 p2μ1μ2 pμ3

1

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2μ2μ3 pμ1

2

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
p2

1 + p2
2 − p2

3

2
ε p2μ1μ2μ3

+p2
2ε p1μ1μ2μ3 + ε p1 p2μ1μ2 pμ3

1

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2μ1μ2δκμ3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
−ε p2μ1μ2μ3 pκ

1

+ε p1μ1μ2μ3 pκ
2 − ε p1 p2μ2μ3δκμ1 + ε p1 p2μ1μ3δκμ2

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2μ1μ3δμ2ν3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1μ1μ2μ3 pν3

1

+ε p2μ1μ2μ3 pν3
1 + ε p1 p2μ2μ3δμ1ν3

)
. (179)

Then we consider the identities

ε[p1μ1μ2μ3δκ]
α = 0,

ε[p2μ1μ2μ3δκ]
α = 0 (180)

which contracted with p1α, p2α and δ
ν3
α give

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1κμ1μ3 pμ2

3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
−p2

1εκμ1μ2μ3

+ε p1μ1μ2μ3 pκ
1 − ε p1κμ1μ2 pμ3

1

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p2κμ2μ3 pμ1

2

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
−p2

2εκμ1μ2μ3

+ε p2κμ1μ2 pμ3
1 + ε p2μ1μ2μ3 pκ

2

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1κμ1μ2 pμ3

1

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
− p2

1 + p2
2 − p2

3

2
εκμ1μ2μ3

−ε p1μ1μ2μ3 pκ
2 + ε p1κμ2μ3 pμ1

2

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p2κμ1μ2 pμ3

1

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
p2

1 + p2
2 − p2

3

2
εκμ1μ2μ3

+ε p2μ1μ2μ3 pκ
1 − ε p2κμ1μ3 pμ2

3

)
(181)
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πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1κμ1μ3δμ2ν3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
εκμ1μ2μ3 pν3

1

−ε p1μ1μ2μ3δκν3 + ε p1κμ2μ3δμ1ν3

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p2κμ2μ3δμ1ν3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
εκμ1μ2μ3 pν3

1

+ε p2μ1μ2μ3δκν3 + ε p2κμ1μ3δμ2ν3

)
. (182)

The identity

ε[p1 p2μ1μ2δκ]
α = 0 (183)

contracted with p1α and p2α give

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2κμ1 pμ2

3

)

= πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
p2

1 + p2
2 − p2

3

2
ε p1κμ1μ2

+p2
1ε p2κμ1μ2 + ε p1 p2μ1μ2 pκ

1

)

πα1
μ1

πα2
μ2

�α3β3
μ3ν3

(
ε p1 p2κμ2 pμ1

2

)

= πα1
μ1

πα2
μ2

�α3β3
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(
− p2

1 + p2
2 − p2

3

2
ε p2κμ1μ2

−p2
2ε p1κμ1μ2 + ε p1 p2μ1μ2 pκ

2

)
. (184)

It is worth mentioning that one can contract Eq. (183) with δ
μ3
α or

δ
ν3
α obtaining other identities that are not independent taking in

consideration all the identities of this section. Lastly, we consider
the identities

ε[p1 p2μ1μ3δκ]
α = 0,

ε[p1 p2μ2μ3δκ]
α = 0. (185)

Contracting the first identity with δ
μ2
α and the second one with

δ
μ1
α we obtain

πα1
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πα2
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�α3β3
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(
ε p2κμ1μ3 pμ2
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)
(186)

while, if we contract the first identity with p2α and the second
one with p1α, we obtain

π
α1
μ1π
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(187)

and if we contract the first identity with p1α and the second one
with p2α we arrive to
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�α3β3
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(
ε p1 p2κμ1 pμ3

1 δμ2ν3

)
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2 δμ1ν3

)
. (188)

If instead we contract both the identities with δ
ν3
α , we don’t

obtain new independent relations.
In addition to all the identities we have written in this section,

we also need to consider all the equations obtained from such
relations exchanging μ3 ↔ ν3.

123
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