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Abstract

We design four Artificial Neural Network (ANN) models, namely a Multilayer Perceptron (MLP), a Convolutional Neural Network
(CNN), an Extreme Learning Machine network (ELM) and an ensemble model based on stacking (STACKED) to forecast the iono-
spheric vertical Total Electron Content (vTEC) from 1 to 24 hours in advance on a single station at mid latitude. The time series used,
spanning from January 2006 to December 2018, includes vTEC, provided by the Global Navigation Satellite System (GNSS) receiver at
Tsukuba (TSKB), Japan (36.06o N, 140.05o E) and suitable external drivers selected among several helio-geophysical parameters. The
selection of appropriate external drivers is made by rating their relevance on the vTEC at forecasting timescales (from 1 to 24 hours).
The process, based on eleven machine learning models, highlights that the most important external drivers are: the 10.7 cm Solar Flux
(F10.7), the magnitude BT of the Interplanetary Magnetic Field (IMF), and the Auroral Electrojet (AE) index. The forecasting perfor-
mance of the four models (MLP, CNN, ELM, STACKED) is then analysed. The analysis relies on three statistical metrics to compare
actual and forecasted vTEC: the coefficient of determination (R2), the Mean Absolute Error (MAE), and the Root Mean Squared Error
(RMSE). Additionally, descriptive statistics are presented using box and whisker plots. The four ANN models show a quite satisfactory
capability to forecast vTEC when applied to the test dataset which represents 10% of the available data from 2006 to 2018. Furthermore,
by conducting a Wilcoxon signed rank test, it is shown that statistically significant improvements are achieved by the STACKED model
with regard to MLP, CNN and ELM. On average, by analysing the forecasted (from 1 to 24 hours in advance) vs the actual vTEC, the
STACKED model achieves R2 ¼ 0:816;RMSE ¼ 0:426 TECu, and MAE ¼ 0:296 TECu (1 TECunit ¼ 1016 electrons/m2) whilst MLP,
CNN and ELM show respectively R2 ¼ 0:808; 0:812; 0:803;RMSE ¼ 0:436 TECu, 0:431 TECu, 0:441 TECu and MAE ¼ 0:304 TECu,
0:299 TECu, 0:312 TECu.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Around 50 km up to 1000 km and higher, a partially
ionized gas known as the Earth’s ionosphere envelops the
globe. It forms as a result of photoionization caused by
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the Sun’s ultraviolet radiation, and as a result, it varies
throughout the day and with season, reaching its peak of
ionization at local noon. In addition to the ‘‘normal” iono-
spheric diurnal variation, the ionosphere may experience
disturbances, as a result of a variety of solar originating
phenomena (e.g., the Coronal Mass Ejections (CME)),
which propagate to the magnetosphere-ionosphere system
org/licenses/by/4.0/).
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(Mendillo, 2006) and collectively make up what is known
as ‘‘Space Weather”.

To quantify the level of ionization of the upper atmo-
sphere and its variability especially under Space Weather
events, scientists frequently make use of the vertical Total
Electron Content (vTEC), derived from the slant TEC
(sTEC, i.e. total number of electrons integrated between
satellite radio transmitter and the ground-based receiver)
obtained by applying a calibration technique to double fre-
quencies GNSS code and phase observables and a mapping
function projecting the sTEC onto a perpendicular path by
assuming the ionosphere as a thin layer (Cesaroni et al.,
2015; Mannucci et al., 1993).

An example of how complex the ionosphere becomes
under Space Weather events is given by Ngwira et al.
(2019), that investigated vTEC under three interplanetary
shocks strucking the Earth’s magnetosphere in quick suc-
cession on June 22-23, 2015. The authors found that the
ionosphere was being driven by a variety of factors, includ-
ing high-latitude injection, quick penetration electric fields,
disturbance dynamo effect, neural winds, and composition
changes.

Especially under geospatial disturbed conditions, the
ionosphere represents the biggest contributor to the error
budget for GNSS positioning applications, with a signifi-
cant impact on GNSS integrity, accuracy, and availability.
An example is given by the investigation of the 6 September
2017 X-Class Solar Flares (SFs) conducted by Yasyukevich
et al. (2018), on the effects of the two SFs on GPS, GLO-
NASS, and Galileo-based navigation. It was revealed that
the SF did not result in GNSS receivers losing their ability
to track signals accurately, whereas the positioning error
increased by roughly three times in GPS precise point posi-
tioning solution.

As a contribution to countermeasures to mitigate the
errors introduced by the ionospheric threats, several vTEC
forecasting models have been developed using different
approaches. These approaches may be divided into two
general types: (i) traditional methods; (ii) Machine Learn-
ing (ML) based methods. In turn, traditional methods
may be divided into three categories: mathematical, physi-
cal, and empirical (Chapman, 1931a; Chapman, 1931b).
Mathematical models focus on the description of the distri-
butions/dynamics of ionospheric particles (Nijimbere,
2020), whereas physical model are based on physics princi-
ples, for the computation of the distribution of electrons,
ions, and neutral gases in the ionosphere (Schunk et al.,
1986). Additionally, empirical models are data-driven mod-
els that characterize the distribution and behavior of iono-
spheric parameters using experimental data. The most well-
known empirical model of the ionospheric environment is
the International Reference Ionosphere (IRI) (Bilitza,
2001). NeQuick, NeQuick-G, IRI-Plas, adaptive autore-
gressive models are some additional examples of the empir-
ical models used by the scientific community (Nava et al.,
2006; Bilitza et al., 2017).
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ML models are widely used, and flourishing in several
fields of study, including image processing and computer
vision for classification, detection, recognition, language
translation and regression problems. In recent years, many
related works have been done using ML techniques for
ionospheric forecasting.

Zewdie et al. (2021), presented a data-driven forecasting
of vTEC using a Long-Short Time Memory (LSTM) deep
recurrent neural network. In the process of selecting the
input parameters to train the algorithm, they used the Ran-
dom Forest algorithm to perform regression analysis and
estimate the importance of input parameters. The relative
importance of 34 different parameters - including the solar
flux, the solar wind density, the speed of the three compo-
nents of interplanetary magnetic field, Lyman-alpha, Kp,
Dst and the Polar Cap (PC) index - has been analyzed.
The LSTM method was applied to forecast the vTEC up
to 5 hours ahead. A good forecast was achieved with low
RMSE but the RMSE increases as they forecast further
into the future.

Ionospheric space weather forecasting is recommended
in the study of Mallika et al. (2018) to improve the GNSS’s
accuracy. They developed a suitable ionospheric forecast-
ing technique to capture, in particular, the ionospheric dis-
turbances. This approach uses a mix of Principal
Component Analysis (PCA) and Artificial Neural Network
(ANN) techniques to forecast the TEC values of the iono-
sphere. The authors show that the recommended approach
performs more effectively than the earlier models. The
downside of the proposed technique is that it requires a
large training dataset, which increases computation time
and implementation complexity.

Han et al. (2021), spent time figuring out how to predict
ionospheric vTEC values at three IGS GNSS monitoring
sites at the low-latitude area (16o S to 10o S) during times
of strong solar activity and magnetic storms. Multilayer
perceptron (MLP), LSTM, Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) based on subtractive clustering,
and Gradient Boosting Decision Tree (GBDT) were four
distinct ML models utilized in this study during high solar
activity and magnetic storm times. The findings indicate
that ML algorithms outperform the global ionospheric
map prediction model, and that the GBDT model is the
best performing algorithm among them in ionosphere pre-
diction situations.

An innovative method was used in the study of Cesaroni
et al. (2020) to mimic the characteristics of the ionosphere,
particularly during disturbed times. The suggested method
makes use of the Global Ionospheric Map (GIM), pro-
vided by the International GNSS Service (IGS), and then
applies a nonlinear autoregressive neural network with
external input (NARX) to chosen GIM grid points for
the 24-hour single-point vTEC forecasting, taking into
account the actual and predicted geomagnetic conditions.

A LSTM neural network was utilized in the work of Liu
et al. (2020) to forecast the 256 spherical harmonic (SH)
stacked machine learning model for the vertical total electron content
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coefficients that are needed to create global ionospheric
maps. Multiple input data sets, including historical time
series of the SH coefficients, solar extreme ultraviolet
(EUV) flux, disturbance storm time (Dst) index, and hour
of the day, are utilized to train the LSTM neural network.
The LSTM model has been built using a variety of combi-
nations of the aforementioned parameters, and it has been
found that the model which uses all four parameters per-
forms the best. The SH coefficients are then predicted using
the top-performing LSTM model, and the 256 projected
SH coefficients are then utilized to recreate the global
hourly vTEC maps. The results show that the first/second
hour vTEC RMSE during storm time is 1.27/2.20 TECu
and 0.86/1.51 TECu during quiet time, showing that the
developed model performs well during both quiet and
storm times.

Given the ability of nonlinear modelling, Huang and
Yuan (2014) investigated the potential of this approach
when applied to forecast vTEC. They suggested a Gaussian
mixture model–improved Radial Basis Function (RBF)
neural network. The developed RBF network model was
trained, validated, and tested using data from stations
located at various latitudes, including estimated TEC over-
head of GPS ground stations BJFS (39:61o N, 115:89o E),
WUHN (30:53o N, 114:36o E), and KUNM (25:03o N,
102:80o E) for six months in 2011. By contrasting the
RBF network model’s performance with that of a conven-
tional multi-layer feedforward network trained using the
back propagation (BP) technique in terms of predeter-
mined error criteria, it was determined how well it per-
formed. According to the findings of the prediction, the
absolute error within 1.5 TECu is above 90% at stations
BJFS and WUHN and drops to 75% at station KUNM,
which is located at a low latitude.

With the research mentioned above and others, ML
demonstrates its superior performance compared to tradi-
tional methods. However, certain elements need to be
taken into account in order to further enhance the perfor-
mance of ML models over longer predicting horizons. The
fact that the lag between the solar cycle, geomagnetic forc-
ing, and the ionosphere’s reaction is not well understood
with regard to predicting horizons is a definite factor to
be taken into account. Again, a number of ML models
have demonstrated positive outcomes, and each of them
has distinct qualities that are completely tapped into. An
example, the MLP (McCulloch and Pitts, 1943;
Theodoridis, 2015), is the most basic neural network with
the capability to solve complex nonlinear problems, can
handle large amounts of input data and can achieve high
accuracy (e.g., (Mallika et al., 2018)). The convolution step
in a Convolutional Neural Network (CNN) extracts and
reduces the number of parameters via weight sharing
(Theodoridis, 2015). The Extreme Learning Machine
(ELM) model provides good generalization performance
and learns faster than models trained using the backprop-
agation algorithm (Huang et al., 2006; Huang et al., 2011;
Huang, 2014; Huang, 2015).
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In this work, we propose a novel method that could be
used for ionospheric forecast. The goal is to forecast vTEC
from 1 to 24 hours in advance using our proposed ML
based algorithm which, by stacking several fully indepen-
dent neural networks together, builds one robust ensemble
model. This STACKED model is a sequence-to-one model,
which uses different external drivers depending on the fore-
casting timescales. The base neural network models include
MLP, CNN and ELM. In section II, we present the data
used and show how we select the most relevant features
(external drivers used as input parameters) for the predic-
tion task. Moreover, we briefly recall how MLP, CNN,
ELM and the STACKED model work. In Section III we
provide and discuss the experimental results. Finally, in
Section IV we draw our conclusions and highlight possible
future investigation.
2. Data and methods

2.1. Data preprocessing

The National Aeronautics and Space Administration
(NASA) Archive of Space Geodesy1 provided the Global
Navigation Satellite Systems (GNSS) data used in this
study. These are daily 30-second Receiver Independent
Exchange (RINEX) compressed GNSS data from the
mid-latitude station at Tsukuba (TSKB; 36.06o N,
140.05o E) in Japan for the period January 2006 to Decem-
ber 2018. TSKB mid-latitude station has been selected in
this first attempt to build a novel ML model (STACKED)
to avoid the complexity of the ionosphere at high and low
latitude. From RINEX files, we extracted the vTEC firstly
by using the calibration technique developed Ciraolo et al.
(2007) and reported in Cesaroni et al. (2015); Cesaroni
et al. (2021). This algorithm is able to estimate sTEC at
each Ionospheric Pierce Point (IPP) by computing a con-
stant bias for each arc of observation inlcuding the Differ-
ential Code Bias (DCB), the phase ambiguity and all the
non-zero mean errors affecting the Geometry Free Linear
Combination of the GNSS phase and code observables.
The assumption for this estimation is that the ionosphere
can be considered as a thin layer at IPP of 350 km so that
the sTEC can be projected to the vTEC by applying a geo-
metric mapping function. The vTEC spatial beavhiour is
modeled by a polynomial function of the Modified Dip
Latitude (MODIP) and Local Time that is also used to
compute the vTEC over the TSKB GNSS station.

The vTEC dataset includes 2880 values per day and has
missing values. These are fixed by using a forward linear
interpolation within one hour gap. To fix a gap in a range
from one to four hour, both forward and backward linear
interpolation are used. For extended gap durations we uti-
lise the median values computed on the basis of the preced-
ing 27 days. Then, the vTEC dataset is downsampled by
stacked machine learning model for the vertical total electron content
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Table 1
External drivers used for our study.

Parameters

Auroral
Electrojet

AU, AL, AE

Geomagnetic Dst, SYM-H, Kp
Magnetic and

Solar
F10.7, SSN, proton density, flow pressure, solar wind
(Proton QI), the magnitude of the interplanetary
magnetic field BT (nT), vector components (Bx, By, Bz),
flowspeed (V) and vector components (Vx, Vy , Vz)
(km=s)
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averaging 10 points at a time to convert from a 30 seconds
dataset to a 5 minutes dataset. The resulting 5 minutes
downsampled vTEC is plotted in Fig. 1, splitted into three
partitions for training (70%), validation (20%), and testing
(10%).

The external drivers used in this study (Table 1) are
downloaded from https://cdaweb.gsfc.nasa.gov for the per-
iod under consideration (January 2006 - December 2018).
Some of the external drivers may have different timesteps.
To obtain 5 minutes external drivers datasets, we fix their
variable timestep by continual padding using the previous
value until we reach the next one, e.g., as in the case of
Kp (tri-hourly) and F10.7 (daily measure at noon). Finally,
external drivers missing values are fixed using linear inter-
polation. Fig. 2 shows the percentage of missing values of
external drivers and vTEC.

At the end of this preprocessing phase we obtain a con-
solidated vTEC and external drivers dataset (five minutes
sampling) for the entire period (2006 to 2018). To under-
stand which external drivers are suitable as input for our
models in the training, validation and testing phases, we
ranked them in order of importance with regard to their
impact on vTEC forecasting. The algorithm is described
in the following Section.
2.2. Feature ranking

We use a feature ranking algorithm known as permuta-

tion of feature importance, where a feature corresponds to
an external driver. In this approach, to evaluate a feature’s
importance, we first train a model where external drivers
are inputs and vTEC is the output: this allows ranking
the external drivers on the basis of their effects on vTEC
forecasting. Before using the permutation of features
importance technique, we first checked the multicollinear-
Fig. 1. The vTEC data for the Tsukuba station spanning from the year 2006 to
(For interpretation of the references to colour in this figure legend, the reader
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ity of the external drivers as shown in Fig. 3 using a Pear-
son’s correlation coefficient (q) threshold equal to 0:5 to
discard those parameters with jqj P 0:5. This allows reduc-
ing the number of external drivers used as input to the
model. However, the multicollinearity based exclusion pro-
cess shall guarantee that the three groups of parameters
(Table 1) have at least one index in the remaining set of
them. With this in mind, and by considering the results
in Fig. 3, we excluded Kp, Dst, AL, AU, flow pressure
and SSN before applying the permutation of feature
importance technique (since after removing them the
remaining indices are uncorrelated). Firstly, in this
approach the dataset has been normalized using Z-scores:

z ¼ x� lð Þ=r; ð1Þ
where x is a dataset sample and l and r are, respectively,
the mean and standard deviation of the dataset.

Since the external variables are characterized by differ-
ent magnitude and variability, we do this to scale and cen-
ter the dataset. The model is then evaluated. During the
test, the baseline performance by the coefficient of determi-

nation (R2) (Wright, 1921) is computed. A feature is shuf-
fled, the performance is computed, and its performance is
2018 splitted into training (blue), validation (red) and test (green) datasets.
is referred to the web version of this article.)

stacked machine learning model for the vertical total electron content
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Fig. 2. vTEC and external drivers considered (see Table 1), including the fraction of missing values (in orange). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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compared with the baseline performance in each case to
determine the significance of each feature. The significance
of the characteristic is closely correlated to the magnitude
of the change between the baseline performance and the
performance obtained after each shuffling (Altmann
et al., 2010). If a feature’s performance differs noticeably
from the baseline after the shuffle, it is of high relevance.
If a feature’s performance doesn’t alter dramatically, it is
of low relevance. Algorithm 1 (https://scikit-learn.org/
stable/modules/permutation_importance.html.) provides
the pseudo-code of the permutation of feature importance
algorithm.

Algorithm 1. Permutation of feature importance
1: Inputs: fitted predictive model m, tabular dataset
(training or validation) D

2: Compute the baseline performance score s of the
model m on data D (e.g., R2 for a regressor)

3: for each feature j (column of D): do
4: for each repetition k 2 1; . . . ;Kf g: do
5: Randomly shuffle column j of dataset D to
generate a corrupted version of the data named ~Dk;j

6: Compute the score sk;j of the model m on
corrupted data ~Dk;j

7: end for

8: Compute importance ij ¼ s� 1
K

PK
k¼1sk;j for

feature f j
9: end for
5
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Since the lag between the solar cycle, the geomagnetic
forcing and the response of the ionosphere is not very well
known, we performed the permutation of feature impor-
tance algorithm considering different forecasting timescales
between 1 and 24 hours to take into account the possible
different significance of the features for different forecasting
horizons. To determine the importance of the external dri-
vers, we used eleven different ML models including: Ran-
dom Forest, Extreme Gradient Boosting, Gradient
Boosting, linear regression, LASSO, Adaptive Boosting,
Decision Tree, Extra Tree, KNN, Bagging (using SVR as
estimator), Voting (using as estimators: Adaptive Boosting,
Decision Tree, KNN, Random Forest, Extra Tree, Gradi-
ent Boosting, Extreme Gradient Boosting). Bagging
(Breiman, 1996) and Voting (Dietterich, 2000) are used to
combine the other ML models in order to get the best fea-
ture importance score. Owing to the fact that any two opti-
mization algorithms (in this case, ML models based on
solving an optimization problem) are equivalent when their
performance is averaged across several different problems
(in this case, various forecasting horizons) (Wolpert and
Macready, 1997), we average the output of all the models
after performing the feature ranking using all eleven mod-
els. Indeed, on the basis of the ‘‘no free lunch theorem”
(Wolpert and Macready, 1997), averaging the features
ranking score provided by different ML models used to
perform the feature ranking itself, allows avoiding the bias
possibly introduced by a specific algorithm. With this
information, the average significance score over all fore-
stacked machine learning model for the vertical total electron content
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Fig. 3. Multicollinearity between external drivers computed using a threshold of 0.5. Accordingly, we removed Dst, SSN, flow pressure, AL, AU and Kp.
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casting horizons is computed, and Fig. 4 depicts the beha-
viours of the external drivers with regard to various fore-
casting timescales. In Fig. 4, it is observed that for all the
forecasting horizons, F10.7 (red dots) ranked first with
the highest average score of importance. The magnitude
BT of the Interplanetary Magnetic Field (IMF) (blue dots)
is the second important external driver for 1 hour and 24
hour forecasting horizons. For the interval ranging from
2 to 23 hours of forecasting horizons, the second best exter-
nal driver is the Auroral Electrojet (AE) (green dots).
F10.7, BT and AE are briefly described below:

� F10.7: this index has the highest ranking across all pre-
dicted horizons. vTEC tends to exhibit a decrease during
periods characterized by low solar activity, whereas it
shows an increase during periods of high solar activity
(Mukesh et al., 2020; Shenvi et al., 2023). Solar activity
has a direct impact on the ionosphere, thereby influenc-
ing vTEC. The F10.7 solar flux is a frequently employed
metric for quantifying solar activity. It has a strong cor-
relation with sunspot counts and serves as an indicator
for Ultraviolet (UV) and visible solar radiation levels.
Consequently, the utilization of F10.7 is justified due
to its established reliability as an indicator of solar activ-
ity magnitudes.

� BT : this is shown to be the second most influential factor
for forecasting horizons at 1 and 24 hours. BT represents
the overall intensity of the IMF. The metric encom-
passes the amalgamation of magnetic field intensity in
the north-south, east-west, and inward-facing solar vs
outward-facing solar orientations.
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� AE: it exhibits a consistent ranking as the second most
reliable indicator for predicting horizons ranging from
2 to 23 hours. The purpose of AE is to offer a compre-
hensive, numerical assessment of magnetic activity
within the auroral zone, which is generated by intensi-
fied ionospheric currents occurring both below and
within the auroral oval. Ideally, the concept refers to
the comprehensive extent of variation at a given
moment in time from the baseline values of the horizon-
tal magnetic field (h) in the vicinity of the auroral oval.
2.3. STACKED model

To improve the performance of a ML predictive model,
different approaches have been introduced considering an
ensemble of other models as base learners. Bagging, one
possible method, is effective in reducing the variance exhib-
ited by the base models; it uses majority voting among the
produced outputs (Bühlmann, 2012; Altman and
Krzywinski, 2017; Maclin and Opitz, 1997; Theodoridis,
2015). Another approach, called boosting (Bühlmann,
2012; Schapire, 1999; Sabzevari et al., 2018; Theodoridis,
2015; Maclin and Opitz, 1997), is usually helpful in reduc-
ing the bias exhibited by the base models; it uses weighted
voting among the produced outputs. Finally, a different
ensemble approach, called stacking and based on a hierar-
chy of models, was introduced by Wolpert (1992) with the
goal to reduce the bias of the base models. Usually, two
layers of models are used. The lower layer in the hierarchy
includes the base models, whilst the higher layer includes
stacked machine learning model for the vertical total electron content
4.04.055
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Fig. 4. Ranking of external drivers for vTEC forecasting for different forecasting horizons (1 to 24 hours in advance).
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the combined model, which is trained on the outputs pro-
vided by the base models.

Our STACKED model uses ANN models: MLP, CNN
and ELM as its base ANN models. The STACKED model
is a sequence-to-one model exploiting the individual advan-
tages of its base learners (MLP, CNN, ELM) (Taghizadeh-
Mehrjardi et al., 2020; Pavlyshenko, 2018). A MLP is the
most basic neural network, trained using the backpropaga-
tion algorithm during the learning phase. A CNN is also an
ANN model trained using backpropagation. This network
introduces a convolution step, a nonlinear step, and the
pooling step allowing the extraction of the most important
features and reducing the number of parameters via weight
sharing (Theodoridis, 2015). ELM training, on the other
hand, is not based on the backpropagation algorithm. As
a consequence, the learning phase of this model is orders
of magnitude faster than the corresponding ANN models
trained using the backpropagation algorithm. ELM is
known to provide good generalization performance
(Huang et al., 2006; Huang et al., 2011; Huang, 2014;
Huang, 2015).
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Fig. 5 depicts a high level workflow that emphasizes the
STACKED model training phase.

We begin with data preprocessing (vTEC and external
drivers), and perform feature ranking to select the best
two external drivers (from now on, we shall refer to them
respectively as Ext 1 and Ext 2) for each forecasting hori-
zon. We use a supervised learning approach and a sliding
window algorithm (Xiong et al., 2021), which is applied
to the time series (vTEC, Ext 1 and Ext 2) data from Jan-
uary 2006 to December 2018. This preprocessing step is
required in order to prepare the input dataset (pairs
<x; y> in which x is one sample of the dataset and y the
corresponding label) for the predictive models (i.e., the
base learners: MLP, CNN, and ELM). The sliding window
has a fixed width of 288 data points a day (5 minutes data)
and the resulting outcome from the sliding window is par-
titioned into training, validation, and testing data sets
which includes vTEC, Ext 1 and Ext 2. The training and
validation data sets are used in the training phase by
MLP, CNN, and ELM. The outputs of the base learners
are the forecasted vTEC values for both the training and
stacked machine learning model for the vertical total electron content
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Fig. 5. Workflow (related to the training phase) and architecture of our STACKED model, leveraging MLP, CNN and ELM base learners.
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validation periods. These forecasted vTEC values become
the training and validation datasets for the STACKED
model. Similarly, by applying the base learners to the
8
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testing dataset (i.e., the remaining 10% of the dataset), we
obtain as output the forecasted vTEC during the testing
phase. This output is then used by the STACKED model
stacked machine learning model for the vertical total electron content
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in its testing phase. Finally the forecasted vTEC is provided
by the STACKED model without the need of the external
drivers (which, instead, are used by the base learners).

The architectures of the ANN models used as base and
meta learners are detailed in Section 2.4.
2.4. Artificial neural networks

An ANN (McCulloch and Pitts, 1943) interconnects
many artificial neuron units organized into layers. By
changing the synaptic weights to minimize a predetermined
cost function, learning is accomplished. Although training
neural networks is computationally demanding, the back-
propagation algorithm was a breakthrough because it
made it possible to train neural networks on a collection
of input-output training samples (LeCun et al., 1989;
Rosenblatt, 1958; Theodoridis, 2015). From this perspec-
tive, an ANN can be thought as a nonlinear parametric
model (ŷ ¼ f h xð Þ), where h represents the weights/biases
present in the network and x and ŷ represent respectively
the input and output of the neural network. Therefore
the process of training ANN appears not to be different
from any other paramtric prediction model. Three essential
components are required: (i) a set of training samples, (ii) a
loss function, L y; ŷð Þ, and (iii) an iterative algorithm, such
as gradient descent, to optimize the empirical loss,

J hð Þ ¼
XN
n¼1

L yn; f h xnð Þð Þ ð2Þ
2.4.1. Multilayer perceptron

An MLP is a type of feedforward ANN, consisting of
fully connected layers. Fig. 6 shows our MLP architecture.
Training a MLP using the backpropagation algorithm
requires repeatedly computing many diffeent gradients,
which are involved in the solution of the optimization
problem related to the MLP loss function. In turn, this
may lead to vanishing and exploding gradient problems.
In handling such situations, several factors comes into
play: (i) the specific activation function used (ii) the loss
function (iii) the initialization of trainable parameters.
Since the backpropagation algorithm flows first forward
and then backwards, the derivatives of the nonlinear func-
tions used and the weights associated to the neuron units
are multiplied together so that the number of relevant
products grows quickly. Obviously, this problem is exacer-
bated in deep networks (i.e., networks with hundreds or
thousands of layers). It is well known that using as activa-
tion function the Rectified Linear Unit (ReLU) not only
ensures the required nonlinearity of the network but also
helps reducing the training time (Krizhevsky et al., 2012).
ReLU is defined as

ReLU zð Þ ¼ max 0; zf g ð3Þ
ReLU does not suffer from saturation and its derivative is
equal to one when the neuron operates in its active region
9

Please cite this article as: E. N. Asamoah, M. Cafaro, I. Epicoco et al., A
forecasting, Advances in Space Research, https://doi.org/10.1016/j.asr.202
(z > 0). Since the loss function of a MLP is tightly coupled
to the type of output nonlinearity that is used, a ‘‘wrong”
combination can severely affect the speed at which the net-
work learns during training. Moreover, correctly initializ-
ing the trainable parameters is also crucial with regard to
causing vanishing and/or exploding gradients. Therefore,
Glorot and Bengio (2010) proposed an initialization
method (Xavier or Glorot initialization) which helps avoid-
ing this problem.

Mizutani and Dreyfus (2001) provides a complexity
analysis of the supervised MLP-learning algorithm using
backpropagation. The MLP architecture is grouped into
Forward Pass (FP) and Backward Pass (BP). These are fur-
ther subdivided into three processes each. FP processes
include i) node net-input computation, ii) node activation
(or output) evaluation and iii) error (or objective function)
evaluation, whilts BP processes include i) node sensitivity
(or delta) evaluation, ii) gradient computation and iii)
parameter updating (using gradient). The complexity for
the total operations per epoch is given in Table 2.

In Table 2 N is the total number of layers (including the
first input layer), d denotes the number of training data, s
represents a particular layer, P s is the number of nodes in
layer s excluding bias node, PN is the number of output
nodes in the terminal (output) layer N. T s denotes the oper-
ations for evaluating f s �ð Þ where f s �ð Þ is the activation
function in layer s and finally V s represents the operations
for evaluating f s0 �ð Þ where f s0 �ð Þ is the activation function
derivative.
2.4.2. Convolutional neural network

CNN is another kind of feedforward ANN. Different
models have been created to match the characteristics of
the data for various applications (Theodoridis, 2015) but
CNN is one of the major breakthrough appeared in the
context of image analysis. Indeed, in the original model
the neurons were connected to resemble the organization
of the visual cortex of a cat. In our architecture we have
three small CNNs whose outputs are fused and passed to
a fully connected network. For each CNN, the first step
is to apply a convolution operation to the feature vector,
followed by a nonlinear activation function and by a pool-
ing step in order to extract the most important features and

reduce the dimensionality. Let H 2 Rm�m and I 2 Rl�l, then
the convolution operator is defined as

O i; jð Þ ¼
Xm
t¼1

Xm
r¼1

h t; rð ÞI iþ t � 1; jþ r � 1ð Þ ð4Þ

where m < l. The CNN architecture we developed is shown
in Fig. 7. In general, the combination of large sized inputs
(with regard to the number of neuron units in the net-
work’s input layer) and deep neural networks (with regard
to the large number of hidden layers) give rise to an explo-
sion in the number of parameters, which in turn seriously
challenges the network’s generalization performance. This
would require a huge amount of training data in order to
stacked machine learning model for the vertical total electron content
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Fig. 6. Architecture of our MLP model. In this architecture we exploit multiple networks whose outputs are then fused together.

Table 2
Complexity analysis for MLP (for details see (Mizutani and Dreyfus, 2001)).

Forward Pass (FP)

i) Node net-input computation 2d
PN

s¼2 Ps�1 þ 1ð ÞPs ¼ 2dn
ii) Node activation (or output) evaluation d

PN
s¼2T sP s

iii) Error (or objective function) evaluation dPN þ 2dPN

Backward Pass (BP)

i) Node sensitivity (or delta) evaluation dPN þ d
PN�1

s¼1 Psþ1 V sþ1 þ 1ð Þ þ 2d
PN�1

s¼2 PsP sþ1

ii) Gradient computation d
PN�1

s¼1 Ps þ 1ð ÞPsþ1 ¼ dn for incremental or 2dn for batch
iii) Parameter updating (using gradient) 2d

PN�1
s¼1 Ps þ 1ð ÞPsþ1 ¼ 2dn for incremental or 2n (independent of d) for batch
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cope with the overfitting tendency of the network. But, in
CNNs, the use of convolution, nonlinearity and pooling
helps tackling the issue of parameter explosion via weight
sharing; additionally, convolution, nonlinearity and pool-
ing also allow the network extracting useful statistical
information from the input data. The number of opera-
tions required to process a 1D-CNN layer is given as

nf nink � OutputSize ð5Þ
where nf is the number of filters, ni is the input vector size,
nk is the kernel size and the OutputSize is defined as
10
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OutputSize ¼ ns þ 2padding � dilation nk � 1ð Þ � 1

stride
þ 1

� �
ð6Þ

where ns is the input sequence size (for details and other
metrics of computational complexity for a CNN layer see
Freire et al. (2024)).

2.4.3. Extreme learning machine

ELM (Huang et al., 2004; Huang et al., 2006; Huang
et al., 2011; Cambria et al., 2013) is a feedforward ANN
with one or more layers of hidden nodes, and it requires
stacked machine learning model for the vertical total electron content
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Fig. 7. Architecture of our CNN model. In this architecture we have three CNN whose outputs are flattened, fused and passed as an input to a fully
connected neural network.
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tuning for hidden node parameters as well as the weights
that connect inputs to hidden nodes. The weights of the
nodes of hidden layers may be randomly chosen and never
updated, or they may be passed down unchanged from pre-
decessors to successors neurons. The output weights of hid-
den nodes are typically learnt in a single step, which is
equivalent to learning a linear model in most situations.
While achieving greater generalization performance, the
learning speed of the ELM can be thousands of times
quicker than that of conventional feedforward network
learning algorithms like the backpropagation algorithm.
In Akusok et al. (2015), the authors presented a methodol-
ogy and toolbox for highly scalable ELMs.

ELM can be formally described as follows. Given a
collection of N unique training pairs xi; tið Þ; i 2 1;N½ � with
xi 2 Rd a dataset sample and ti 2 Rc its corresponding
label. Then the output equation for a Single-Layer
Feed-forward Network (SLFN) with L hidden neurons
is as follows:
XL

j¼1

bj/ wjxi þ bj
� �

; i 2 1;N½ � ð7Þ
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where / represents the activation function and wj; bj and bj

are respectively the input weight, the bias and the output
weight of the j-th hidden neuron. The relation between
the inputs xi of the network, the target outputs ti and the
estimated outputs yi is given by

yi ¼
XL

j¼1

bj/ wjxi þ bj
� � ¼ ti þ �i; i 2 1;N½ � ð8Þ

where �i is a term related to the approximation error com-
mitted by the network. Representing an ELM network in
matrix form, we have the following:

H ¼
/ w1x1 þ b1ð Þ � � � / wLx1 þ bLð Þ

..

. . .
. ..

.

/ w1xN þ b1ð Þ � � � / wLxN þ bLð Þ

2
664

3
775 ð9Þ

b ¼ bT
1 ; � � � ; bT

L

� �T
;T ¼ yT1 ; � � � ; yTN

� �T ð10Þ
One ELM issue is that frequently this model is over-
determined, i.e., there are more training data samples N

than hidden neurons L (N > L). The model is determined
when the number of training data samples is equal to the
number of hidden neurons (N ¼ L), and it is
stacked machine learning model for the vertical total electron content
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under-determined when the hidden neurons are more than
the training data samples (N < LÞ). To obtain a solution
for an over-determined system, the Moore-Penrose gener-
alized inverse matrix with regularization is used for numer-
ical stability, and the solution is given by the minimum L2

norm of the training error. The same approach can also be
used in the determined and under-determined cases. The
following equations define the Moore-Penrose generalized
inverse of the ELM matrix H.

Hb ¼ T ð11Þ
b ¼ HyT ð12Þ

Hy ¼ HTH
� ��1

HT ð13Þ

where Hy represents the Moore-Penrose generalized

inverse. However, HTH
� ��1

shows numerical instability

when HTH is close to singular. Hence, the Moore-
Penrose generalized inverse with regularization is given as

Hy ¼ HTHþ aI
� �

H, where a ¼ 50� and � is the machine

precision for the used type of floating point numbers
(Akusok et al., 2015; Rao et al., 1972). Our ELM architec-
ture is shown in Fig. 8. The computational complexity for
pseudo-inverse solution (i.e., Eqn (10)) of ELM is given as

O eNLc
� �

where L� c is the dimension of b and eN is the

dimension projected to the hidden layer (see reference
(Akusok et al., 2015)).
2.4.4. Neural network combiner (meta learner)

The meta learner is the model which is situated at the
second level in the hierarchy of the stacked model, above
the base learners. At this level, an ANN is also used to
combine the forecasted vTEC from the individual base
learners. The architecture of our stacked meta-learner is
shown in Fig. 9. The inputs are the vTEC forecasted values
obtained by the MLP, CNN and ELM base learners. These
outputs are combined together, obtaining the training and
validation datasets required to train and validate the meta
learner to forecast the vTEC values. The architecture is
based on three neural network layers: CNN, Gated Recur-
rent Unit (GRU) and Long-Short Term Memory (LSTM)
layers. The latter two networks are examples of Recurrent
Neural Network (RNN). Weight sharing is applied to
CNN, GRU and LSTM layers.

The LSTM unit was invented by Hochreiter and
Schmidhuber (1997) due to the drawback of deep RNN
i.e., the vanishing and exploding gradient problems which
manifest themselves in the Backpropagation Through Time
(BPTT) algorithm. An LSTM unit has the built-in ability
to control the information into and out of the system’s
memory through nonlinear elements know as gates. A gate
is equivalent to applying weight (ranging between 0 and 1)
on the flow of information. Among the different gates,
there are forget, input and output gates. A forget gate (f)
decides whether to retain the previous state or forget it;
an input gate (i), allows introducing new information and
12
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quantifying its importance; an output gate (o), provides
the current state on the basis of the previous hidden state
(ht�1) and input vector (xt). In the LSTM unit, there are
two types of memory-related variables that are propagated,
namely the cell state vector s and the hidden variables vec-
tor h. Fig. 10a shows the basic unit of LSTM and the cor-
responding updating equations are summarized below.

ft ¼ r Ufxt þWfht�1 þ bf
� � ð14Þ

it ¼ r Uixt þWiht�1 þ bi
� � ð15Þ

�s ¼ tanh Usxt þWsht�1 þ bsð Þ ð16Þ
ot ¼ r Uoxt þWoht�1 þ boð Þ ð17Þ

st ¼ st�1 � f þ i � �s ð18Þ
ht ¼ o � tanh stð Þ ð19Þ

where � denotes element-wise product between vectors or

matrices. ft 2 Rh represents the forget gate, Uk 2 Rh�d is a
matrix containing the weights of the inputs (k ¼ f ; i; s; o),
Wk 2 Rh�h is a matrix containing the weights of the recur-

rent connections (k ¼ f ; i; s; o) and bk 2 Rh is the bias vec-

tor (k ¼ f ; i; s; o). xt 2 Rd is the input vector and it 2 Rh is
the input gate. r represents the logistic sigmoid function,

ot 2 Rh is the output gate, st 2 Rh is the state vector at time

t and ht 2 Rh is the hidden vector at time t. The computa-
tional complexity of a LSTM layer is given as
T sh 4d þ 4hþ 3ð Þ, where T s denotes the number of time
steps in the layer that should be taken into account, as
the process is repeated T s times (see, Freire et al. (2024)
for details and other computational complexity metrics).

GRU is a variant of LSTM proposed by Chung et al.
(2014). This gated unit seeks to address the drawback of
LSTM i.e., the training time. LSTM takes longer time in
training due to its sophisticated internal unit as shown in
Fig. 10a. Chung et al. (2014) simplified the internal unit
of LSTM from three gates (forget, input and output gate)
to two gates (reset and update gate) thereby improving
the training time at the same time achieving better perfor-
mance as well (e.g. see Iluore and Lu (2022)). The reset
state (rt), helps determining to what extend the previous
hidden state must be forgotten, whilst the update gate
(zt) allows the model to precisely identify the amount of rel-
evant historical information from prior timesteps that
should be transmitted to future steps. The internal struc-
ture of a GRU is shown in Fig. 10b and the corresponding
equations are summarized below.

zt ¼ r Uzxt þWzht�1 þ bzð Þ ð20Þ
rt ¼ r Urxt þWrht�1 þ brð Þ ð21Þ

~ht ¼ tanh Uhxt þWh rt � ht�1ð Þ þ bh
� � ð22Þ
ht ¼ 1� ztð Þ � ht�1 þ zt � ~ht ð23Þ

where zt 2 Rh is the updated gate, Ul 2 Rh�d and Wl 2 Rh�h

are the unknown parameter matrices to be learned
(l ¼ z; r; h). rt denotes the reset gate and � element-wise

multiplication. xt 2 Rd is the input vector and rt 2 Rh; r
stacked machine learning model for the vertical total electron content
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Fig. 8. Architecture of our ELMmodel. There are two hidden layers,
P

represents the linear operator performed on the first hidden layer and U the use of
the activation function (tanh) on the second hidden layer.

Fig. 9. Architecture of our meta-learner model. The CNN, GRU and LSTM outputs are fused and passed as an input to a fully connected neural network.
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Fig. 10. RNN units.
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represents the logistic sigmoid function, ht 2 Rh is the hid-

den vector at time t and ~ht 2 Rh. The computational com-
plexity of this LSTM layer is given as T sh 3d þ 3hþ 3ð Þ,
where T s denotes the number of time steps in the layer that
should be taken into account (since the process is repeated
T s times).
3. Results

In order to evaluate the forecasting performance of the
four models (MLP, CNN, ELM and the STACKED

model), the following metrics are used: R2 (Nagelkerke
et al., 1991; Renaud and Victoria-Feser, 2010), Mean
Absolute Error (MAE) (Willmott and Matsuura, 2005;
Chai and Draxler, 2014) and Root Mean Square Error
(RMSE) (Willmott and Matsuura, 2005; Chai and

Draxler, 2014). R2, MAE and RMSE are defined in Eq.
(24), (27) and (28) respectively:

R2 ¼ 1� SSres

SStot
; ð24Þ

where SSres and SStot are respectively the residual sum of
squares and the total sum of squares. These are defined as

SSres ¼
X
i

yi � ŷið Þ2 ð25Þ

SStot ¼
X
i

yi � �yð Þ2; ð26Þ

where yi and ŷi are the actual and predicted values for the i-
th sample respectively, and �y is denoted as the mean of y.

MAE ¼ 1

N

XN
i

jyi � ŷij ð27Þ
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where yi and ŷi are the actual and predicted values for the i-
th sample respectively, and N is the total number of
samples.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i

yi � ŷið Þ2

N

vuuut
ð28Þ

where yi and ŷi are actual and predicted values for the i-th
sample respectively, and N is the total number of samples.

R2, MAE, and RMSE are evaluated for the four models
by comparing the forecasted (from 1 to 24 hours in
advance) and actual vTEC during the testing period (from
13 September 2017 to 31 December, 2018) at the TSKB
(36.06o N, 140.05o E) GNSS receiver station. The mini-
mum, maximum and mean values of the three statistical
metrics as function of the four models are presented in
Table 3. On average, the models’ performance for vTEC
forecasting is quite satisfactory, and the STACKED model
shows a slight improvement with regard to MLP, CNN,
ELM.

In Fig. 11, R2, MAE, and RMSE are plotted for all the
models under investigation as a function of the forecasting

horizon. For all the models, R2 decreases from 1 to 5 hour
forecasting horizon, then remains constant through out the
rest of the forecasting time. MAE and RMSE confirm this
behaviour by increasing from 1 to 5 hour forecasting hori-
zons, then remain constant for the rest of the forecasting
periods. The STACKED model (black dots) provides the
best performance at 1 hour forecasting horizon with

R2 ¼ 0:956, MAE ¼ 0:1477 TECu and RMSE ¼ 0:210

TECu. The lowest R2 value for the STACKED model is
equal to 0.796, and it is related to the 18th hour forecasting
horizon, with corresponding MAE ¼ 0:314 TECu and
RMSE ¼ 0:451 TECu. The blue dot in Fig. 11 depicts
stacked machine learning model for the vertical total electron content
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Table 3
Descriptive statistics of the evaluation metrics (R2, MAE, RMSE).

Models R2 MAE (TECu) RMSE (TECu)

min max mean min max mean min max mean
STACKED 0.796 0.956 0.816 0.147 0.314 0.296 0.210 0.451 0.426

CNN 0.790 0.951 0.812 0.154 0.320 0.299 0.222 0.458 0.431
MLP 0.786 0.949 0.808 0.158 0.322 0.304 0.227 0.462 0.436
ELM 0.781 0.953 0.803 0.155 0.331 0.312 0.217 0.468 0.441

Fig. 11. R2, MAE and RMSE of MLP, CNN, ELM and STACKED models from 1 to 24 hours of forecasting horizons.
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the CNN model, which ranks second in the performance
evaluation. At the 1 hour forecasting horizon, it achieves

a maximum R2 value equal to 0.951 and the minimum
MAE (0.154 TECu) and RMSE (0.222 TECu). The CNN
worst performance occurs at the 11th hour forecasting

horizon (R2 ¼ 0:790, MAE ¼ 0:320 TECu and RMSE
¼ 0:458 TECu). MLP (red dot) and ELM (green dot) per-
form worse than the STACKED and CNN models. At the
1 hour forecasting horizon MLP and ELM obtain their

maximum R2 value (respectively equal to 0.949 and
0.953), with minimum MAE (respectively equal to 0.158
TECu and 0.155 TECu) and RMSE (respectively equal to
0.227 TECu and 0.217 TECu). MLP and ELM reach their
worst forecasting performance respectively at the 15th and
20th hour forecasting horizons.
15
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Fig. 12 depicts the box and whisker plot representing the

statistical metrics of R2, MAE, and RMSE. All models

exhibit positive skewness for the R2 metric and negative
skewness for the MAE and RMSE metrics. Additionally,
there are three outliers for each of these metrics. Compar-
ing the STACKED model to the other ones under test, the
metrics reveal for the STACKED model a significant skew

in both the positive (with regard to R2) and negative (with
regard to MAE and RMSE) directions. Additionally, the
dispersion of the models is roughly equivalent. The median
value of the STACKED model provides a marginal
improvement in comparison to the MLP, CNN, and
ELM models.

To verify that the results highlighted by R2, MAE and
RMSE are not due to chance alone, we have performed
stacked machine learning model for the vertical total electron content
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the Wilcoxon Signed Rank Sum Test, which is a nonpara-
metric statistical test (Wilcoxon, 1945). The aim is to com-
pare paired groups, computing the differences between
pairs and analyzing the resulting differences to infer if there
is a statistically significant difference or not. This allows
comparing different algorithms for the same task, and to
understand if the results obtained - which show that one
of the algorithms being tested provides better results than
the others - are due to chance (in which case the results
are misleading) or not (which means that the results are
statistically significant).

To implement the Wilcoxon Signed Rank Sum Test, the
null hypothesis is defined as follows: there is no statistically
significant difference between the performance obtained by
the STACKED model and the performance obtained by
the base learners. The research hypothesis states that there
is - indeed - a statistically significant difference. The level of
statistical significance selected for the null hypothesis is
a ¼ 0:05. The test statistics T is then computed as

T ¼ smallerof
X

Rþand
X

R� ð29Þ

where
P

Rþ is the sum of ranks with positive differences
and

P
R� is the sum of ranks with negative differences.
Fig. 12. Descriptive statistics for the performance of MLP, CN
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If the critical value (in our case, this value is 81; it is derived
from the corresponding Wilcoxon signed rank test table) is
greater than the test statistic T or the p-value falls in the
rejection region (i.e. p-value 6 a) we must reject the null
hypothesis and conclude that there is a statistically signifi-
cant improvement of the performance of the STACKED
model with regard to the others. Table 4 reports the values
obtained for all metrics, and allows rejecting the null
hypothesis since the p-values at significance level a ¼ 0:05
are below 0.05 and the test statistics are less than the crit-
ical value (i.e., 81).

Finally, Fig. 13 shows an example of the forecasting
capability of the STACKED model for vTEC over the test
dataset of the TSKB station. The example pertains to the
time frame from September 13 to October 17, 2017, and
involves predicting horizons of 1 hour, 8 hours, 16 hours,
and 24 hours. There were numerous solar flares in Septem-
ber and October 2017 that caused geomagnetic storms
from G1 to G3 magnitudes (https://www.spaceweather-
live.com/en/archive/.html), for which the impacts are seen
on the STACKED model performance in Fig. 13 on
September 27-28, October 6-7 and October 11-15, 2017.
N, ELM and STACKED model on the full test dataset.

stacked machine learning model for the vertical total electron content
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Table 4
Results of the Wilcoxon nonparametric statistical test. The p-values and the test statistic for each comparison are shown (STACKED vs MLP, STACKED
vs CNN and STACKED vs ELM).

Using the statistical metric R2

a ¼ 0:05 STACKED vs MLP STACKED vs CNN STACKED vs ELM
p-value 2:384� 10�7 1:192� 10�6 1:192� 10�7

Test statistic 1:0 5:0 0:0
Using the statistical metric MAE

p-value 1:192� 10�7 3:660� 10�5 1:192� 10�7

Test statistic 0.0 19.0 0.0
Using the statistical metric RMSE

p-value 2:384� 10�7 1:192� 10�6 1:192� 10�7

Test statistic 1.0 5.0 0.0

Fig. 13. Actual and predicted values using the STACKED model on the test dataset from September 13 to October 17, 2017 for forecasting at 1, 8, 16 and
24 hours in advance. The blue rectangular boxes are events on September 27-28, October 6-7 and 11-15, 2017.
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4. Conclusions and future work

In this paper we have assessed the use of ANN models
for vTEC forecasting, with regard to the MLP, CNN and
ELM models. Moreover, we have designed a deep learning
model based on the stacking technique. The primary
advantage of the stacking ensemble technique lies in its
capability of combining independent base learners thereby
reducing their bias leading to a more accurate and robust
predictive model. On the first level of the hierarchy there
are MLP, CNN and ELM models as base learners, whilst
at the second level of the hierarchy there is a meta-
learner model. We have shown that our STACKED model
provides better vTEC forecasting from 1 to 24 hours in
advance. This performance’s improvement is due to a
reduction of the bias associated to the individual base
learners, which is the effect of the stacking technique. The
17
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input to the models includes vTEC and appropriate exter-
nal drivers selected among the helio-geophysical parame-
ters available. These data came with missing values, a
problem that has been fixed by using interpolation. The dif-
ferent timesteps of the external drivers were instead fixed
by constant padding. The best pair of external drivers (de-
pending on the forecasting timescale) have been determined
by using the permutation of feature importance algorithm;
this technique is based on several ML models, since there is
not an optimal one for all the different forecasting hori-
zons. The best external drivers were F10.7 (from 1 to 24
hour of forecasting horizons), BT (at 1 and 24 hours of
forecasting horizons) and AE (from 2 to 23 hours of fore-
casting horizons). The four models being assessed (MLP,
CNN, ELM, STACKED) have been trained, validated
and tested by using vTEC data from the TSKB receiver
(36.06o N, 140.05o E) along 2006 to 2018.
stacked machine learning model for the vertical total electron content
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The development of a single station model allows tuning
the model parameters in order to improve the forecasting
of the peculiar characteristics of the ionospheric variability
over a specific location. Moreover, this simplifies the selec-
tion of the more impacting external drivers that are, in
principle, different for different regions (e.g. latitudinal sec-
tors) especially under disturbed helio-geophysical condi-
tions. Several single station models, evaluated on
properly distributed GNSS station over the globe, can be
combined to obtain an accurate global forecasting includ-
ing local ionospheric features.

The main findings are summarized as follows:

� On average, over the 24 hour forecasting horizons, R2,
MAE and RMSE obtained by the models comparing
forecasted and actual vTEC range from 0.803 to 0.816

TECu for R2; from 0.296 to 0.312 TECu for MAE and
from 0.426 to 0.441 TECu for RMSE;

� Our STACKED model provides better performance

than the others under test. This is confirmed by the R2,
MAE, and RMSE metrics;

� This improvement is statistically significant as shown by
the Wilcoxon Signed-Rank Test. In this test, a signifi-
cance level a ¼ 0:05 has been used and the correspond-
ing p-values of the MLP, CNN and ELM models,
compared to our STACKED model, clearly show rejec-
tion of the null hypothesis (it is worth recalling here that
the null hypothesis has been defined as follows: there is
no statistically significant difference between the perfor-
mance obtained by the STACKED model and the per-
formance obtained by the base learners); therefore, our
STACKED model results are not due to chance, and
are statistically significant.

The stacking ensemble approach seeks to reduce the bias
of MLP, CNN, and ELM, hence improving the perfor-
mance of the STACKED model. Future work will include
a better selection and pre-processing of the external drivers
that are characterized by different sampling (from minutes
to 24 hours as in the case of F10.7) with regard to the
vTEC data, as well as their derivative averaged or lagged
values. Deep knowledge of the model performance will
allow the use of receivers at different latitudes, that, all
together, support investigating the model reliability as a
function of the season, latitude, and space weather events
that may occur.
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