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SUMMARY

The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we
provide evidence of a domestication effect on the composition and abundance of the plant microbiota.
We focused on the genus Phaseolus, which underwent four independent domestication events within two
species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of
years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community
composition asPhaseolus seeds have been subject to large and consistent phenotypic changes during these
independent domestication events. The seed bacterial communities of representative plant accessions from
subpopulations descended from each domestication event were analyzed under controlled and field condi-
tions. The results showed that independent domestication events led to similar seed bacterial community
signatures in independently domesticated plant populations, which could be partially explained by selection
for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of
plant domestication on seed microbial community composition and abundance and offer avenues for
applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial appli-
cations in agriculture.

INTRODUCTION

Plantmicrobiomes can extend host evolutionary potential,1 play-

ing pivotal roles in plant growth and stress tolerance.2 Evidence

shows that plant microbiomes can enhance drought resilience3

and disease resistance,4–6 making them essential for sustainable

agricultural production.7 Virtually, all vegetables, grains, and

fruits we rely upon come fromdomesticated plants, which genet-

ically and often phenotypically differ from their wild counter-

parts.8 For example, changes in fruit size, reproductive strategy,

flowering time, mineral contents, secondary metabolites, and

seed-shattering are often observed in domesticated plants.8

Because the effect of plant genes extends beyond the individual

plant and influences microbial communities,9 it is logical to hy-

pothesize that changes in plant traits selected during domestica-

tion could also drive changes in microbiota composition.10

Furthermore, as domesticators are likely to select for common

traits, such as increased seed size, palatability, or early maturity,

it is also logical to hypothesize that independent domestication

events for the same plant species, which are focused on the

same plant product (e.g., seeds or fruits), could lead to similar

changes in the plant microbiota, with potential consequences

for plant health and productivity.10 Ultimately, a better under-

standing of domesticated plant microbiomes can foster

microbial applications in agriculture11 through, for example, the

development of more effective microbial bioinoculants.

Recent studies have proved a plant domestication effect on

plant microbiota composition12–15 and have also provided evi-

dence that these changes between wild and domesticated plant

microbial communities could be linked to differences in plant

traits, such as root length16 and plant height.17 However, draw-

ing general conclusions would require studying the microbiota

of plants that have been domesticated independently, ideally

several times. This is challenging as domestication is a process

lasting thousands of years.

Among different domesticated plants, the genus Phaseolus

has a well-defined population structure, and two of its species,

namely Phaseolus vulgaris (common bean) and P. lunatus

(Lima bean), have been domesticated at least twice indepen-

dently,18,19 over two geographical areas in the Americas. As a

result, for each plant species, two gene pools exist (Mesoamer-

ican and Andean gene pools), containing both wild and domes-

ticated accessions. This distinctive feature of four independent

domestication events that have occurred within two congeneric
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species offers the possibility of statistically testing the effect of

domestication on plant microbiota.

To investigate the plant traits associated with members of the

microbial community, one approach is to treat them as quantita-

tive trait loci (QTL).2 Although this approach is paving the way to

disentangling the genetic basis of microbiota assembly, it re-

mains technically challenging on a broad scale (hundreds of

different plant accessions, which require vast genotyping and

phenotyping efforts). Amplicon sequencing using marker genes

(e.g., 16S rRNA) to determine the effect of domestication on mi-

crobiota composition and statistical modeling to disentangle

drivers represents an essential precursor.

For these reasons, we focused on amplicon sequencing of the

Phaseolus bacteriota and selected accessions based on the

population genetic structure of both wild and domesticated

plants,18,20–23 thus ensuring a good representation of the known

genetic diversity within P. vulgaris and P. lunatus.

We selected the seed as the plant compartment for analysis

based on our previously described evolutionary framework,10

which contextualizes host control of the microbiome for domes-

ticated plants as a ‘‘double-leash’’ acting from domesticator to

host and host to microbes. Essentially, our framework, which ex-

pands the framework of Foster et al.,24 predicts that microbiota

assembly in domesticated crops could be highly influenced by

domesticated plant phenotypes. In Phaseolus spp. seeds, multi-

ple traits, including seed size,25,26 chemical,27,28 and mineral

composition29,30 have been targeted by domesticators, leading

to remarkable phenotypic differences.

We investigated whether parallel domestication events, se-

lecting for quantitively measurable seed traits had consistent ef-

fects on seed bacterial community composition and abundance,

an important component of the plant microbiota. We first studied

seed bacterial communities for wild and domesticated plants

grown under controlled environmental conditions and then

examined whether these differences observed under controlled

conditions could also be found in seeds from a wider range of

plant genotypes grown in the field (procured directly from the

CGIAR-CIAT germplasm bank in Colombia). Our results suggest

that domestication consistently influenced plant microbiota

composition and abundance across multiple domestication

events and within plant species. The differences in wild and

domesticated bacterial communities appear to be partially ex-

plained by the selection of common plant traits during

domestication.

RESULTS

Independent domestication events consistently
influence seed bacterial community composition in
greenhouse-grown P. vulgaris

Because both environmental and genetic factors are known to

influence the composition of the seed microbiota, in our first

experiment, we aimed to compare the effect of independent

domestication events on seed bacterial community composition

for wild and domesticated plants grown under controlled condi-

tions. We selected four representative subpopulations,22 one for

each gene pool (Andean and Mesoamerican) and biological sta-

tus (wild or domesticated) of P. vulgaris, namely, AD1 (subpopu-

lation belonging to the domesticated Andean gene pool, AD),

AW1 (subpopulation belonging to the wild Andean gene pool,

AW), M2 (subpopulation belonging to the domesticated Mesoa-

merican gene pool, MD), MW4 (subpopulation belonging to the

wild Mesoamerican gene pool, MW), and four different acces-

sions per subpopulation with seven biological replicates (112 to-

tal plants) and grew them under controlled greenhouse condi-

tions (Figure 1A). The selection of the accessions was based

on previous studies on the population genetic structure of

P. vulgaris22 to avoid genotypically admixed accessions

(Data S1).

Amplicon sequencing results of the V4 hypervariable region of

the 16S rRNA gene yielded high sequencing depth libraries

(>5,000 reads per sample). At the same time, to link microbiota

composition to plant traits, we measured several plant pheno-

types, such as flowering time and seed mineral concentration

as a proxy for domesticated plant phenotypes.31 Previous

studies have already reported a domestication effect on seed

cation concentrations,30,32 and it is a trait that is consistently

measurable.

The seed microbiota of P. vulgaris was characterized by high

prevalence and dominance of Proteobacteria (Figure 1B), in

particular, Pseudomonadaceae (Figure S1A), in agreement with

previous studies.33 To test whether plant domestication influ-

enced seed microbial community composition and abundance,

we applied two independent and different approaches, namely,

model-based multivariate statistics and machine learning.

Using the multivariate statistic approach, we found that the

model that considered subpopulation as an explanatory variable

had the worst performance, as indicated by the highest Akaike

information criterion (AIC) score (Figure 1C). This result suggests

that estimating parameters for each subpopulation (AD-AW-MD-

MW) is statistically futile because the seed bacterial community

composition is similar between plants with the same biological

status (wild or domesticated) regardless of differences in gene

pools (e.g., between AD and MD) as indicated by the lower AIC

of this model.

When linking plant phenotypes to microbiota composition, we

found that the best model based on AIC was the one considering

seed calcium (Ca) concentration (likelihood-ratio test = 6,916,

p = 0.001***) (Figure 1C). We found Ca concentration in domes-

ticated seeds to be statistically lower than in wild-type seeds

(Figure 1D) for both domestication events, supporting the use

of Ca concentration as a proxy for genetically determined traits

that have changed during domestication. Plant domestication

has reduced phenotypic diversity (Figure 1D), leading to both

AD1 and M2 subpopulations having similar Ca concentrations

compared with their wild counterparts. The model accounting

for Ca concentration as an explanatory variable performed better

than the one with biological status, suggesting that the differ-

ences in seed microbial community composition between

MW4 and AW1 subpopulations are stronger than between M2

and AD1.

Most microbial members belonging to the phylum Proteobac-

teria were statistically negatively influenced byCa concentration,

with lower Ca concentration in domesticated seeds being asso-

ciated with an increased abundance of Proteobacterial taxa

(Figure 1E).

Becausemodel selection based on AIC does not consider cor-

relation across taxa, which is only accounted for in the p value of
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the test statistic,34 we further validated these results by applying

Gaussian copula models35 to focus on the extent to which

explanatory variables (Ca concentration and biological status)

would explain co-occurrence patterns (interactions between

bacterial community members and environmental factors).

Again, we found that the best model was the one accounting

for Ca concentration, explaining 31% of the correlations across

taxa compared with 26 % explained by biological status

(Table S1).

To further validate these results, we used a random forest

classifier to predict the biological status (domesticated or

wild) and subpopulations (AW2, AD1, M4, and M2) of

P. vulgaris based on seed microbiota data. The results showed

that the classification accuracy was higher for factor domesti-

cation status (96.6%) than for factor subpopulation (71.4%)

(Figure 1F) in agreement with our multivariate model-based

approach. The lowest classification errors were within AD1

and M4 subpopulations (about 23%), which are at the lower

A

B C

D FE

Figure 1. Parallel domestication events

consistently influence seed bacterial com-

munity composition through domesticated

plant phenotypes in greenhouse-grown

P. vulgaris

(A) Two gene pools of Phaseolus vulgaris exist. One

in the Andes and one in Mesoamerica. Each gene

pool has undergone an independent domestication

event. We selected one subpopulation per biolog-

ical status (domesticated and wild) and domestica-

tion event (Andes and Mesoamerica) and selected

four accessions per subpopulation (Aa, Ab, Ac, and

Ad) with seven biological replicates each (Aa1, Aa2,

.) and grew them in the same soil under green-

house conditions. Seeds were collected at maturity

and extracted directly from the pod under axenic

conditions for seed microbiota analysis.

(B) Bipartite network representing sample/sequence

variant interactions. In the network, node size is

proportional to the number of degrees (number of

connections). In the network, central nodes indicate

the core microbiome, which in this case is mainly

made of Proteobacteria, in particular Pseudomo-

nadaceae (Figure S1A). AD, Andean domesticated;

AW, Andean wild; MD, Mesoamerican domesti-

cated; MW, Mesoamerican wild.

(C) Sum of the AIC values of the multiple generalized

linear models (GLMs) used to explain the seed mi-

crobiota composition. The explanatory variable

used in each model is represented on the y axis. For

all quantitative explanatory variables (e.g., mineral

concentration and flowering time [FT]), two param-

eters are being estimated, namely, intercept

and slope. Explanatory variable biological status

(status) has two levels (wild and domesticated),

whereas the explanatory variable subpopulation

has 4 levels (AD1, AW1, MW4, and M2). The multi-

variate property of the data is accounted for in

the calculation of the p value by the resampling

procedure.

(D) Concentration of calcium (Ca) in plant seeds. AD,

Andean domesticated; AW, Andean wild; MD,

Mesoamerican domesticated; MW, Mesoamerican

wild. The nomenclature of subpopulation names

(e.g., AD1 and M4) follow the nomenclature used in

Rodriguez et al.22 Welch’s t test was used to assess

the statistical significance of differences between

means. Standard deviations in mg kg�1 are 608,

686, 402, and 963 for AD, AW, MD, and MW,

respectively.

(E) Percentage of microbial taxa (0%–100%) that were negatively or positively affected by Ca concentration after filtering sequence variants (SVs) based on 5%

prevalence. RI, relative importance.

(F) Accuracy and confusionmatrix of the random forest classifier (10 times 5-fold cross-validation) for classification task domestication status (2 levels; W, wild; D,

domesticated) and domestication status within domestication event (DS|DE) (4 levels; AD, Andean domesticated; AW, Andean wild; MD, Mesoamerican

domesticated, MW, Mesoamerican wild, which, in this case, also correspond to subpopulation).

See also Data S1A and Table S1 and Figures S1 and S3.
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and upper boundaries of the phenotypic mean for Ca

concentration.

Independent domestication events consistently
influence seed bacterial community composition in
field-grown P. vulgaris

Because our results showed a clear effect of domestication on

the plant microbiota, we investigated whether we could replicate

similar results for seeds collected from plants grown in the field

(at CGIAR-CIAT, Colombia). We sampled all identified subpopu-

lations of P. vulgaris22 (AD1, AW1, AW2, MW3, MW1, MW4, and

M2; we excluded AD2 because only a few accessions belonged

to this subpopulation and were mainly admixed22) and consid-

ered as replicates different accessions belonging to the same

subpopulation (Figure 2A). In total, we analyzed the seed micro-

biota of 70 different plant genotypes. Seed bacterial commu-

nities were characterized by high prevalence of Bacteroidota,

Firmicutes, and Deinococcota (Figure 2B) and low abundance

of Pseudomonadaceae (Figure S1B), in contrast with our previ-

ous experiment. The low relative abundance of Pseudomonada-

ceae is likely to be attributed to the seed drying process, which

was reported to significantly reduce the abundance of Pseudo-

monadaceae (50% to 0.9% reduction in relative abundance) in

seeds,36 which largely agrees with our findings.

As in our previous experiment, the bestmodel according to the

AIC criteria was the one accounting for Ca concentration (LRT =

3,090, p = 0.0009***), surpassing the model accounting for bio-

logical status (wild or domesticated) (Figure 2C). We found

once more that plant domestication had significantly reduced

seed Ca concentration in both domestication events (Figure 2D),

reducing plant phenotypic variation. As per our previous exper-

iment, the majority of the Proteobacterial taxa were negatively

affected by increasing Ca concentration (Figure 2E). The

Gaussian copula models also confirmed that Ca concentration

explained more co-occurrence patterns than biological status,

19%, and 10%, respectively (Table S2).

The random forest classifier further suggests that the compo-

sition of microbial communities in domesticated seeds is

different from the composition of wild-type seeds, independently

of the domestication event (Figure 2F).

The results of both experiments showed that independent

domestication processes induce similar bacterial community-

level changes, statistically driven by plant traits selected during

domestication.

Independent domestication events consistently
influence seed bacterial community composition in
field-grown P. lunatus

To further test whether these results were species specific, we

applied the same conceptual and statistical framework to

P. lunatus and analyzed the seed microbial communities of plant

genotypes belonging to all identified subpopulations for both

domestication events (ADI, WAI, WAII, DMI, DMII, WMI, and

WMII)23 grown at CGIAR-CIAT in Colombia (62 different plant ge-

notypes). Similar to P. vulgaris,P. lunatuswas also domesticated

twice independently in the Andes and Mesoamerica. Seeds of

P. lunatus appeared to be colonized by taxonomically similar mi-

crobes to those found in P. vulgaris seeds, but we also detected

the presence of Rhizobiaceae (Figures 3A and S1C).

P. lunatus seed microbiota were statistically influenced by

domesticated plant phenotypes and, in particular, by seed mag-

nesium (Mg) concentration (LRT = 2,255, p = 0.001***) (Fig-

ure 3B), whichwas themodel with the lowest AIC.Mg concentra-

tion was found to be non-statistically higher in domesticated

seeds compared with wild seeds for both domestication events

(Figure 3C), negatively influencing the majority of Proteobacteria

(Figure 3D). The differences in phenotype means between wild

and domesticated accessions were less pronounced compared

with P. vulgaris, leading to only 11% of the co-variation between

taxa being explained by Mg concentration (Table S4). Nonethe-

less, the seeds of P. lunatus, similar to those of P. vulgaris, have

distinctive bacterial signatures that can be used to accurately

predict if seeds are wild or domesticated (Figure 3F), indicating

a consistent effect of domestication on seed bacterial commu-

nities. The results of the random forest classifier were not

strongly influenced by a slight imbalance (fewer samples in the

AD group) (Figure S2).

Microbial signatures introduced by plant domestication
includemembers of the Proteobacteria, Firmicutes, and
Bacteroidota phyla
The minimum set of microbial members that allowed high accu-

racy in the classification of wild vs. domesticated accessions

mainly belonged to three phyla, namely, Proteobacteria, Firmi-

cutes, and Bacteroidota. In particular, for the first experiment

(greenhouse-grown P. vulgaris [GGPV]), two sequence variants

(SVs) among the pre-selected features by Boruta alone allowed

a classification accuracy of 96.6% (Figure 4). The two SVs,

namely, SV_13 and SV_37, belonged to the Proteobacteria and

Bacteroidota phyla, respectively. Furthermore, certain indicator

taxa, such as the genus Pseudomonas and Anoxibacillus, ap-

peared as important features in all three experiments, suggest-

ing a recurrent differential recruitment of these microbial mem-

bers in the seed microbiome of wild and domesticated plants

(Figure 4).

Changes in bacterial community composition and
abundance driven by plant domestication are reflected
at a microbial functional level
We predicted functional profiles of the bacterial communities of

wild and domesticated plants using Tax4Fun2 and a habitat-

specific reference dataset using 456 plant-associated ge-

nomes37 and found that the bacterial community-level changes

between wild and domesticated plants were reflected at a func-

tional taxonomical level (overall difference in the abundance of

KEGG Orthology database identifiers) in all three experiments.

Permutational analysis of variance (PERMANOVA) was used to

assess whether differences in functional profiles between wild

and domesticated plants were statistically different (PERM-

ANOVA results for GGPV: df = 1, F = 31.707, p = 0.001***. PERM-

ANOVA results for field-grown P. vulgaris: df = 1, F = 1.4623, p =

0.039*. PERMANOVA results for field-grown P. lunatus: df = 1,

F = 1.6096, p = 0.011*). The results suggest that the effect of

plant domestication on microbial communities potentially ex-

tends to functional roles. Differences in functional profiles are

summarized on KEGG pathways and reported in Figure 5. These

included functions associated with cell motility, metabolism, and

signaling molecules.
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DISCUSSION

Our results suggest that plant domestication introduced discern-

ible community-level changes in the seed bacteriota of Phaseo-

lus spp. that are independent of the domestication event. This

appears to be statistically linked to phenotypic changes that

occurred during plant domestication (Figure 6). Our results also

support the conclusion that because wild plants have higher

phenotypic diversity (considering that plant traits are statistically

linked to bacterial community-level changes), differences in bac-

terial community composition among wild plants are likely to be

greater than among domesticated plants (Figure 6).

In our study, we focused on measuring quantitative seed traits

for which a domestication effect was already reported.32 Our re-

sults on seed Ca concentration in wild and domesticated seeds

of P. vulgaris are consistent with previous work that has reported

reduced Ca concentrations in domesticated seeds.32 However,

to the best of our knowledge, no previous studies have

A

B C

D FE

Figure 2. Parallel domestication events

consistently influence seed bacterial commu-

nity composition through domesticated plant

phenotypes in field-grown P. vulgaris

(A) We expanded the previous analysis to select

all P. vulgaris subpopulations. In this case, we

considered as replicates the different plant geno-

types (Aa, Ab, A, .) within each subpopulation,

sampling 70 different genotypes encompassing

most of the P. vulgaris known genetic diversity.

(B) Bipartite network representing sample/sequence

variant interactions. In the network, node size is

proportional to the number of degrees (number of

connections). In the network, central nodes indicate

the core microbiome, which in this case is mainly

made of Deinococcota, Firmicutes, and Bacter-

oidota. AD, Andean domesticated; AW, Andean

wild; MD, Mesoamerican domesticated; MW, Mes-

oamerican wild.

(C) Sum of the AIC values of the multiple general-

ized linear models (GLMs) used to explain the seed

microbiota composition. The explanatory variable

used in each model is represented on the y axis.

For all quantitative explanatory variables (e.g.,

mineral concentration), two parameters are being

estimated, namely, intercept and slope. Explana-

tory variable biological status (status) has two

levels (wild and domesticated), whereas the

explanatory variable DS|DE (domestication status

within domestication event) has four levels (AD,

AW, MD, and MW). Explanatory variable subpop-

ulation has six levels. Collection date and regen-

eration site of the accessions were included as

predictors. However, they were not significant

(p > 0.05; Table S3); thus, the minimum adequate

model included one explanatory variable only. The

multivariate property of the data is accounted for in

the calculation of the p value by the resampling

procedure.

(D) Concentration of calcium (Ca) in plant seeds per

biological status and domestication event. AD, An-

dean domesticated; AW, Andean wild; MD, Meso-

american domesticated; MW, Mesoamerican wild.

The nomenclature of subpopulation names (e.g.,

AD1 and M4) follows the nomenclature used in

Rodriguez et al.22 Welch’s t test was used to assess

the statistical significance of differences between

means. Standard deviations in mg kg�1 are 162,

551, 436, and 880 for AD, AW, MD, and MW,

respectively.

(E) Percentage of microbial taxa (0%–100%) that were negatively or positively affected by Ca concentration after filtering SVs based on 5% prevalence. RI,

relative importance.

(F) Accuracy and confusion matrix of the random forest classifier (10 times 5-fold cross-validation) for classification task domestication status (2 levels; W, wild;

D, domesticated) and domestication status within domestication event (4 levels; AD, Andean domesticated; AW, Andean wild; MD, Mesoamerican domesti-

cated; MW, Mesoamerican wild).

See also Data S1B and Tables S2 and S3 and Figures S1 and S3.

ll
OPEN ACCESS

Current Biology 34, 1–11, February 5, 2024 5

Please cite this article in press as: Soldan et al., Consistent effects of independent domestication events on the plant microbiota, Current Biology
(2024), https://doi.org/10.1016/j.cub.2023.12.056

Article



A B

C D E

Figure 3. Parallel domestication events consistently influence seed bacterial community composition through domesticated plant pheno-

types in field-grown P. lunatus

(A) Bipartite network representing sample/sequence-variant interactions. In the network, node size is proportional to the number of degrees (number of con-

nections). In the network, central nodes indicate the core microbiome. AD, Andean domesticated; AW, Andean wild;MD, Mesoamerican domesticated; MW,

Mesoamerican wild.

(B) Sum of the AIC values of the multiple generalized linear models (GLMs) used to explain the seed microbiota composition. The explanatory variable used in

each model is represented on the y axis. For all quantitative explanatory variables (e.g., mineral concentration), two parameters are being estimated, namely,

intercept and slope. Explanatory variable biological status (status) has two levels (wild and domesticated), whereas the explanatory variable DS|DE (domesti-

cation status within domestication event) has four levels (AD, AW, MD, and MW). Predictor subpopulation has six levels. Collection date and regeneration site of

the accessions were included as predictors. However, they were not significant (p > 0.05; Table S5), thus the minimum adequate model for all three experiments

included one explanatory variable only.

(C) Concentration of magnesium (Mg) in plant seeds per biological status and domestication event. AD, Andean domesticated; AW, Andean wild; MD, Meso-

american domesticated; MW, Mesoamerican wild. The nomenclature of subpopulation names (e.g., ADI and WAII) follow the nomenclature used in Cachón-

Sánchez andMartı́nez-Castillo.23Welch’s t test was used to assess the statistical significance of differences betweenmeans. Standard deviations in mg kg�1 are

151, 184, 155, and 150 for AD, AW, MD, and MW, respectively.

(D) Percentage of microbial taxa (0%–100%) that were negatively or positively affected by Mg concentration after filtering SVs based on 5% prevalence. RI,

relative importance.

(E) Accuracy and confusionmatrix of the random forest classifier (10 times 5-fold cross-validation) for classification task domestication status (2 levels; W, wild; D,

domesticated) and domestication status within domestication event (4 levels; AD, Andean domesticated; AW, Andean wild; MD, Mesoamerican domesticated;

MW, Mesoamerican wild).

See also Data S1C and Tables S4 and S5 and Figures S1–S3.
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investigated differences in seed mineral content between wild

and domesticated accessions of P. lunatus. We cannot know

whether changes in seed mineral content were under direct se-

lection by the domesticator, but genetic determinants of seed

Ca concentration in P. vulgaris have been identified.38 In

P. vulgaris the majority of Ca in the seed has been reported to

be in the seed coat (67%–96% of total seed Ca), and the seed

coat is also moderately high in Mg (16%–28% of total seed

Mg).29,39 High levels of seed coat Ca in P. vulgaris have been re-

ported to correlate with increased Ca2+-pectic polysaccharide

cross-linkage and a ‘‘hard-to-cook’’ phenotype,40,41 which sug-

gests the possibility that selection for improved cooking proper-

ties has contributed to reduced seed Ca in domesticated plants.

However, although Ca has consistently been reported to be

more abundant than Mg in the P. vulgaris seed coat, the reverse

is true for P. lunatus.42 Statistical evidence for a correlation be-

tween domestication status and seed Mg concentrations was

less clear cut, but some studies have found positive associations

of Mg with crop quality.43

Although our goal was not to find a causal relationship be-

tween plant phenotypes and microbial members but to find

evidence of an independent domestication effect on the plant

microbiota via common domesticated plant phenotypes, we

highlight that Ca andMg are important for bacterial spore forma-

tion,44 affect bacterial membrane and cell wall integrity and

Figure 4. Minimal set ofmicrobial taxa can be

used to accurately distinguish wild vs.

domesticated plants

Maximum likelihood phylogenetic tree showing the

indicator taxa selected by the Boruta algorithm for

all three experiments. The Boruta algorithm is em-

ployed to determine the most critical microbial

members that can effectively differentiate between

wild and domesticated plants. Red lines indicate the

sub-selection of the indicator taxa used for the

random forest-based classifier. Branches with

bootstrap values lower than 75% are not shown.

Internal node sizes are proportional to boot-

strapping values (>75%). The microbial features

used in the random forest classifier and that were

pre-selected by the Boruta algorithm identify the

minimal set of microbial members necessary for

classifying samples into wild and domesticated

plants.

antimicrobial resistance, and have been

described to significantly influence the

composition of gut45 and soil microbial

communities.46,47 Additionally, both cat-

ions play significant roles in osmotic stress

regulation,48,49 which is critical for microbi-

al survival in seeds.50

Although we found specific microbial

signatures introduced by the domestica-

tion process, the environment also strongly

influenced plant microbial communities

(Figure S3), in agreement with previous

studies.33,51 Because the plant microbiota

is characterized by low inheritance (vertical

transmission),52 and the environment determines the pool of mi-

croorganisms with whom the plant can interact, when we look at

the consistency of the domestication effect on seed bacterial

communities, we look within experiments and not across. None-

theless, we found shared OTUs between field and GGPV, but

only among wild plants (Figure S3), possibly suggesting lower in-

heritance or heritability for some members of the microbial com-

munities in domesticated plants.

In this study, we set out to test the hypothesis that plant

domestication has influenced the composition of the plant mi-

crobiota by examining multiple and independent domestication

events within two closely related species. Our results provide ev-

idence that the domestication process resulted in detectable

and consistent changes in bacterial community composition

and abundance that are independent of the domestication

events, which correlate with plant traits that are common across

domesticated plants within the same species. This opens up the

possibility of better predicting and possibly modifying the

composition of the domesticated plant microbiota to improve

plant health and productivity.

Here, we focused on seeds, a plant organ that has been

directly subject to selection for agriculturally important traits.

However, the seed is only one compartment that has been

modified through domestication. Further research is needed to

holistically assess whether plant domestication effects are
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plant-compartment dependent and whether changes in seed

bacterial communities are primarily linked to seed phenotypes

or also linked to phenotypic changes in other compartments

through which microorganisms are transmitted to the seed.

This would require applying our experimental design to the

seed, rhizosphere, and phyllosphere at the same time.

In our analyses, we found the strongest statistical relation-

ships between community composition and seed mineral

composition, but it should be emphasized that this is only one

of many traits altered through domestication.10 Therefore,

another important direction for future work will be to examine a

wider range of seed traits and their impact onmicrobiota compo-

sition to determine whether changes in plant traits found to be

statistically associated with certain microbial features lead to

the results predicted by the statistical model.

In previous work, we speculated that changes in plant micro-

biota interactions arising through domestication could include

reduced selection by plants for a beneficial microbiota.10

Although in a limited number of cases, it might be feasible to ‘‘re-

wild’’ the seed microbiome, an equally important approach will

be to screen or engineer microbial groups found to consistently

associate with domesticated plants and seeds for positive host-

to-microbe effects, as bacteria adapted to colonize wild

plants may be non-competitive in domesticated plants. The

latter approach, although challenging at present due to limita-

tions on the release of GMOs in the environment, might become

increasingly feasible with advances in genome editing and

biocontainment.

Overall, our study opens up the possibility that the composi-

tion and abundance of domesticated plant microbiomes could

P. vulgaris greenhouse P. vulgaris field P. lunatus field
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Figure 5. Relative abundance of bacterial metabolic pathways predicted by Tax4Fun2 in wild and domesticated plant samples

Metabolic pathways of bacterial communities in wild and domesticated plants predicted by Tax4Fun2. The asterisks indicate significant differences between wild

and domesticated plants according to post-hoc analyses (significant level: p < 0.05, with false discovery rate adjustment. PERMANOVA results are reported in

the main text).

Figure 6. Conceptual model illustrating how
the domestication effect on the plant bacte-

rial community is leveraged through domesti-

cated plant phenotypes

In this study we found evidence of a statistical

relationship between plant traits selected during

domestication and bacterial community-level

changes. Based on the plant traits measured in this

study, domesticated plants have lower phenotypic

diversity and similar means compared with their wild

counterparts; thus, we can expect that differences in

bacterial community composition among domesti-

cated plants are weaker than among wild plants. We

report three layers of evidence supporting this hy-

pothesis. First, the overall AIC of the generalized

linear models fitted to each SV suggested that using

a plant trait as explanatory variable is statistically better than using a qualitative explanatory variable (biological status). Second, the Gaussian copula models

confirmed the results of the AIC scores, except for P. lunatus where, indeed, phenotypic differences among wild and domesticated plants were weaker than in

P. vulgaris. Lastly, the random forest classifier provided evidence of a microbial signature resulting from the domestication process, which is independent of the

domestication event.
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be consistently predicted within a certain environment and plant

species regardless of the domestication event, opening up

exciting opportunities to foster the development of newmicrobi-

al applications in agriculture.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant accession
Plant genotypes were selected based on previous studies of the population genetic structure of P. vulgaris22 and P. lunatus acces-

sions.18,23 Only accessions belonging to a specific subpopulation were selected for this study, and admixed accessions were

excluded. For the greenhouse experiment, we selected one subpopulation per domestication status and domestication event to

have a balanced design (MW, MD, AW, AD). Within each subpopulation, we selected 4 accessions with 7 replicates each. Thus, a

total of 112 plants were grown in the greenhouse until maturity, but not all replicates cast seeds (Data S1).

Subsequently, we expanded the analysis to consider 70 different plant genotypes of P. vulgaris and 62 of P. lunatus encompassing

all identified subpopulations, using the same selection criteria, that is that accessions had to belong to a subpopulation.22,23 In the

case of P. vulgaris, all accessions selected for the greenhouse experiment were also included in the second experiment with seeds

from plants grown at CGIAR-CIAT. The selected accessions encompass thewide geographical distribution of the genusPhaseolus in

the Americas. Details of the selected accessions and subpopulation genetic cluster can be found in Data S1. Information on plant

phenology was retrieved from CGIAR-CIAT, except for flowering time which was directly recorded for the experiment under

controlled conditions. We highlight that in the original greenhouse experiment, we also included P. lunatus accessions but amalfunc-

tion of the greenhouse heating system caused P. lunatus bloom loss.

Plant growth conditions and processing
For the greenhouse experiment seeds of P. vulgaris were washed in 70% ethanol for 1 minute and rinsed 3 times in sterile water

before performing scarification to ease the germination process. After 3 days, germinating seeds were transferred to 3-liter pots con-

taining 40% Norfolk topsoil (https://www.norfolktopsoil.co.uk/product-category/topsoil-and-compost/), 50% vermiculite and 10%

sand. Pots were arranged according to complete randomization. Accessions were grown at 20–24�C, with artificial light maintained

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

P. vulgaris and P. lunatus accessions, see Data S1 CGIAR-CIAT N/A

Deposited data

Code This study https://doi.org/10.5281/zenodo.8396606

Processed data This study https://doi.org/10.5281/zenodo.8396606

Raw data This study https://www.ebi.ac.uk/ena-PRJEB50018

Software and algorithms

R software N/A https://www.r-project.org/
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for 12 h periods within the 24-h cycle until maturity. After 3 weeks, 3 g per pot of fertiliser Floranid Twin Permanent 16-7-15 (Compost

Expert, Germany) were added. Drip irrigation was applied to maintain the substrate at field capacity.

At maturity, dry pods were collected and stored at room temperature. Shortly after collection, pods were opened under axenic

conditions. Two seeds per pod for a total of 5 pods per plant were used for total DNA extraction, performed 3 months after seed

collection. Seeds were crushed in a sterile mortar with liquid nitrogen, under axenic conditions, and 180 mg was used for total

DNA extraction.

For experiments carried out using seeds directly coming from CGIAR-CIAT, seeds were washed in 70% ethanol for 1 minute. Ten

seeds per sample were processed as described above.

METHOD DETAILS

Seed chemistry
The chemical properties of the seeds were characterized at Forest Research (UK). Approximately 30 seeds were pooled and crushed

in a sterile mortar with liquid nitrogen. Each sample (100 mg) was analyzed for the following elements: calcium, magnesium, potas-

sium, phosphate, zinc, molybdenum, cadmium, aluminum, chrome, copper, nickel and manganese, by using a dual view ICP-OES

(Thermo ICap 6500). Results are reported in mg/kg (Data S1). Welch’s t-test was used to assess the differences in mineral concen-

tration means between wild and domesticated seeds because of unequal variances and normality of the distribution.

Total DNA extraction
Total DNA was extracted with the Quick-DNA Fecal/Soil Microbe Miniprep Kit (https://zymoresearch.eu/collections/quick-dna-

fecal-soil-microbe-kits/products/quick-dna-fecal-soil-microbe-dna-miniprep-kit) (Zymo Research, Irvine, USA) according to the

manufacturer’s instructions.

Sequencing and Bioinformatics
Investigation of microbial communities was based on paired-end amplicon high-throughput sequencing of the 16S rRNA gene.

Amplification was performed with the primers 515F (50-GTGYCAGCMGCCGCGGTAA-30) and 806R (50-GGACTACNVGGGTWTC

TAAT-30).53,54 Protein nucleic acid PCR clamps (5 mM) targeting plastidic (pPNA, 50-GGCTCAACCCTGGACAG-30) and mitochondrial

(mPNA, 50-GGCAAGTGTTCTTCGGA-30) DNA (PNA Bio, Newbury Park, CA, USA) were added to samples, as published previously.55

All 3 libraries were constructedwith the 96Nextera XT Index Kit (Illumina) following themanufacturer’s instructions withminormod-

ifications. Briefly, the first PCR mixture contents were as follows: Platinum Host-Start PCR Master Mix (2X), 12.5 ml; primers, 1 ml of

10 mM for each; template DNA, 5 ml of 2.5 ng/ml; pPNA and mPNA mix, 5 ml of 25 mMmix; and H2O to 25 ml. The PCR conditions were

98�C for 2 min, 33 cycles of 98�C for 15 s, 55�C for 15 s, and 72�C for 17 s, and a final elongation step of 72�C for 2 min. The second

amplification was performed according to 96 Nextera XT Index Kit instructions. Library sequencing was performed using the Illumina

MiSeq platform with 2x300 pair-end sequencing at the Genomics and Bioinformatics Core Facility, Center for Biomedical Research

of la Rioja (Spain). Filter tips were used throughout the library preparation steps alongside controls (water and kit reagents) to detect

possible contaminations.

Primerswere removed from raw sequencing data using cutadapt.56 All further read processing, namely filtering, trimming,merging,

and chimeras removal was done in the dada2 package.57 Bacterial and archaeal taxonomy was assigned with the naive Bayesian

classifier method58 implemented in dada2 to the genus and species level using the SILVA reference database v.138. Both NCs (water

and kit reagents) contained the same contaminants, 3 SVs belonging to the genera Escherichia, Paucibacter, and Microbacterium,

accounting for > 99% of the reads in the negative controls from both experiments with CGIAR-CIAT grown plants. All SVs found in

negative controls (kit reagents) with a relative abundance higher than 0.1% in NC samples were removed from all plant samples. Sub-

sequently, reads belonging to chloroplast andmitochondria were removed. For the first experiment we obtained amean sequencing

depth of 83,860 high-quality bacterial reads per sample while for P. vulgaris and P. lunatus libraries made from CGIAR-CIAT seeds,

we obtained 42,310 and 67,357 bacterial reads per sample respectively. Samples with fewer than 5,000 reads were removed as well

as rare SVs (1% prevalence, abundance threshold 20 reads). The SVs table along with metadata information was handled with the R

package phyloseq.59

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analysis and experimental design
We tested whether independent domestication events led to common changes in the seed microbiota composition induced by

domesticated plant phenotypes. To answer this question we used two approaches, namely model-based and machine learning

applied to 3 independent experiments. The first experiment constituted of accessions grown in the greenhouse (complete random-

ization) until maturity. We grew representative accessions of domesticated and wild subpopulations for both domestication events

(Data S1) to have a balanced design. For the second and third experiments, we expanded the analysis to 70 and 62 plant genotypes

for P. vulgaris and P. lunatus, respectively.
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A model-based approach for multivariate data was developed in the R package mvabund.34 Model-based multivariate statistics

offers several advantages compared to traditional distance-based approaches (e.g. PERMANOVA, ANOSIM, CCA) because it

directly accounts for the mean-variance relationship of the data rather than relying on transformation and standardisation.60

This approach fits a separate generalized linear model to each SVmember of the microbial community, using a common n-dimen-

sional set of explanatory variables. The correlation between taxa is taken into account for the calculation of the p-value using design-

based inference. In practice, the statistical significance of the explanatory variable of the fitted models was assessed with ANOVA

(likelihood ratio tests) using bootstrap iterations via PIT-trap residual resampling, a method that shows low rates of type I errors.

Since the number of bacterial reads per SV does not reliably reflect bacterial abundance, we introduced an offset for sequencing

depth in our model.61 We found the best Generalized Linear Model (GLM model, family: negative binomial) based on the sum of the

AIC over all variables (seed chemistry and plant phenotypes when appropriate) and accounted for the multivariate feature of the data

in the calculation of the p-value with residual resampling. Therefore, our approach was based onmodel selection usingmodel-based

inference and p-value calculation based on design-based inference. Model residuals were checked against fitted values for violation

of assumptions prior to model selection. We acknowledge that AIC would require a correlation to be accounted for in model spec-

ification to properly account for the multivariate property of the data, but this is not possible in the manyglm function. For this reason,

we use AIC as a general guide and further validate the results using Gaussian copula models.35

Most of the GLMs (family negative binomial) have been fitted with one explanatory variable and an offset to account for different

sequencing depths per sample using:

yi � NBðmi; kÞ

EðyiÞ = mi varðyiÞ = mi +
m2
i

k

logðyiÞ = a + bx + log ðoffsetÞ
Where k is the dispersion parameter.62 The offset has been specified as described in Luo et al.61 We automatically included a

quadratic term on quantitative explanatory variables if the model with a quadratic term had an overall lower AIC compared to the

model without a quadratic term. In the first experiment, we fitted 15 models, 13 models accounted for quantitative variables as

explanatory variables (12 related to seed chemistry and 1 to flowering time), and 2 for categorical variables. One categorical variable,

named ‘‘status’’ (two levels) indicates whether a plant genotype is domesticated or wild. The categorical variable subpopulation has 4

levels (1 wild subpopulation per domestication event and 1 domesticated subpopulation per domestication event). We repeated a

similar analysis for the second and third experiments. In these cases, we included an additional covariate called ‘‘DS|DE’’ which

has 4 levels (AD, AW, MD, MW). This is because, for the first experiment, subpopulation corresponded to ‘‘DS|DE’’.

Following the identification of the minimum adequate model based on AIC values, we included as covariates the regeneration site

of the accessions and the collection year (CGIAR-CIAT experiments). For models containing 3 covariates (seed phenotype, regen-

eration site of the accession, collection year) we used 120 bootstrap iterations (120 cores, 1 bootstrap iteration per core). After

removing non-significant explanatory variables, we repeated the bootstrapping procedures performing 1,080 iterations (120 cores,

9 bootstrapping per core). We further tested whether the model with the lowest AIC in each experiment explained more co-occur-

rence patterns than a model accounting for biological status as co-variate. We did so to account for the correlation across taxa, by

applying Gaussian copula models.35 Briefly, we constructed three models per experiment. An intercept-only model, the model with

the lowest AIC (Ca and Mg concentration in the first two and third experiment respectively), and the model with biological status as

explanatory variable. We calculated the proportion of explained co-occurrence patterns as described in Warton63 (the code is avail-

able from GitHub).

A random forest-based classifier with 10 times 5-fold cross-validation was further used to assess whether higher overall accuracy

(acc) was reached when classifying wild vs. domesticated genotypes based on the seed bacterial community (indicating similar ef-

fects of independent domestication events on seed microbiota) than the classification of plant genotypes for each biological status

and domestication event (factor with 4 levels; AW, AD, MW, MD). Microbiota data was converted into relative abundances before

model fitting, to avoid biases introduced by different sequencing depths per sample.

The random forest-based classifier was built using mlr R package.64,65 Good performances of random forest algorithms in micro-

biome studies have been already reported.66,67 Feature selection was performed with the Boruta algorithm with the R package Bor-

uta68 with default parameters. Following the identification of themost important features (themost important SVs for the classification

task), we randomly subsampled them in combination69 and applied random forest with 10 times 5-fold cross-validation resulting in

25,0000 trees. After selecting the model with the highest accuracy, we tuned the hyperparameters (ntree, mtry and nodesize) of the

model with the function tuneParams. To demonstrate that the results of the classifier was not strongly influenced by amoderate class

imbalance, we also randomly selected 7 samples per group (AD, AW, MW, MD) and repeated the analysis (Figure S1).

Overall, our findings were driven by two very different approaches, namely model-based multivariate statistics and machine

learning.Model-basedmultivariate statistics is a powerful approach to gain insight into factors driving community level changeswhile

machine learning was used to identify the minimum set of microbial members responsible for the classification of samples into wild

and domesticated.
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Bipartite network
We clustered SVs of the 3 libraries into OTUs based on 99% similarities with the R package DECIPHER.70 The bipartite network was

computed with the script make_bipartite_network.py in qiime71 and visualized in Gephi.72

Phylogenetic tree
For phylogenetic trees in Figure 4, SV sequences were aligned with MAFFT73 and the phylogenetic trees constructed with RAxML.74

Phylogenetic trees were visualized in iTOL.75

Functional Profiles
The functional profiles of bacterial communities were predicted using Tax4Fun2.37 To increase the accuracy of the predicted func-

tions, as described in Wemheur et al.,37 we built an in-house database using 456 plant-associated genomes. The genomes were

derived fromMidha et al.76 and from the Integrated Microbial Genomes and Microbiomes database (https://img.jgi.doe.gov/) down-

loaded with the following filters: i) Domain=bacteria, ii) host=plant, and iii) high-quality genomes. The functional annotation of these

genomes was performed with the Tax4Fun function assignFunctions.37

PERMANOVA was performed with adonis277 using biological status as an explanatory variable in all three experiments.
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