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3 Modeling carbon-based smart materials

3.1 Introduction

Smart materials show changes in their properties in a predictable manner upon ap-
plication of external stimuli, such as chemical, electrical, thermal, mechanical,
magnetic and light ones. Our knowledge about smart materials exists from the era
of Roman Empire: there are several evidences that building materials used at that
time, mainly mixtures of several compounds including limestone, had self-healing
capabilities, since they were able to repair cracks by the simple action of rainwater
[1]. Modern smart materials are opening up new opportunities in several fields, for
instance, healthcare, defense, waste management and packaging. In fact, these ma-
terials are widely used in applications such as sensors, actuators, robots, artificial
muscles and drug delivery. Smart materials can be classified based on their re-
sponses to the external stimuli, that is, shape memory, piezoelectric, photorespon-
sive, electroresponsive, magnetoresponsive and thermochromic materials.

Shape memory materials have the unique capability of remembering their origi-
nal shape after deformation, thereby returning to it upon application of external
stimuli such as thermal, mechanical or magnetic variations [2, 3]. These materials
have found application in automobiles, aircraft, biomedical devices, robots, civil
structures and textiles [3–8]. Shape memory materials can be made out of alloys,
ceramics, polymers, hybrid materials or gels. The first shape memory material dates
back to 1932, when Arne Ölander first discovered a solid cadmium–gold alloy that,
when deformed in a cold state, returned to its original shape upon heating [9].
Nickel–titanium (NiTi) was then a popular shape memory alloy (SMA) discovered
by Buehler et al. [10] in 1963, which spread the use of SMA to the first industrial
applications. NiTi alloys are preferable in most applications due to their good duc-
tility, corrosion resistance, mechanical stability and biocompatibility [11, 12]. In re-
cent years, carbon-based shape memory polymers attracted attention due to their
capability of handling high strain and temperature, their lower density and recov-
ery temperature and their flexibility and recyclability [13–15]. All these superior
properties make them interesting shape memory materials, particularly for aero-
space and biomedical fields.
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For example, Zhang et al. [16] fabricated multistimuli-responsive shape memory
materials based on polymer composites reinforced by graphene nanoplatelets (GNPs),
which could be triggered by electrical and infrared stimuli. Figure 3.1 shows the shape
memory mechanism actuated by photothermal effect: after a deformation at low tem-
perature (Shape 2), the original shape of the GNP-based polymeric material (Shape 1)
can be recovered upon exposure to infrared radiation [16]. Recently, carbon-based
shape memory polymer nanocomposites seem promising candidates for electrical ac-
tuators. In fact, polymer nanocomposites filled with carbon nanotubes (CNTs) have
shown low electrical resistivity while fast thermal response to applied voltage. These
composites can be tailored to specific actuation requests, since a desired shape recov-
ery can be attained by printing CNTs with a specified pattern throughout the poly-
meric matrix [17].

Piezoelectric materials are capable of converting mechanical deformation into elec-
tricity, and vice versa [18, 19]. These materials are widely used as sensors, actuators,
structural health detectors and energy generators [19–22]. Particularly, there is a
growing demand of wearable sensors for monitoring physiological and biomechani-
cal signals in sports and medical applications. However, bulky batteries are cur-
rently needed to power these sensors; therefore, smart garments generating their
own power by human body motion would be highly beneficial (see Figure 3.2). This
requirement can be, for instance, fulfilled by polymeric fiber-based piezoelectric
generators, which are flexible and durable as well [23–25].
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Figure 3.1: Schematic illustration of infrared radiation-actuated shape memory effect of GNP-based
polymer blend. Reproduced from Ref. [16] with permission from the Royal Society of Chemistry.

34 Rajat Srivastava et al.



Zhong et al. [24] fabricated a piezoelectric fiber using cotton threads coated with
CNTs and dipped into an aqueous suspension of polytetrafluoroethylene. This carbon-
based polymeric piezoelectric fiber utilizes the biomechanical energy from human mo-
tion to generate electrical energy, with an average power output of⁓0.1 μW/cm2, which
would be enough to energize wearable sensors or smart shirts (see Figure 3.3).

Photoresponsive materials show changes in their physical and chemical behav-
ior when exposed to light. Usages of these smart materials include anticounterfeit-
ing applications [27], chemical sensors [28], optical switches [29], flexible rewritable
optical memories [30] and toys (e.g., doll whose skin get tanned under the sun [31]).
The most widely used photoactive agents are azobenzene, spiropyrans, spirooxa-
zines, diarylethenes and fulgides, which are summarily depicted in Figure 3.4.

Recently, Renuka et al. [29] developed an optical switch using multiwalled
CNTs (MWCNTs) and azo-based chromophores (Figure 3.5). The electrical conduc-
tion of the composite is controlled by azo-based system, which shrinks when ex-
posed to UV irradiation (cis isomer), thereby increasing the electrical conduction,
because of the reduced tunneling barriers through the MWCNTs. The conduction
drops down again when UV irradiation stops, because azo molecules return to their
trans isomer configuration.

Figure 3.2: Sketch showing power generation from human movement using fiber-based piezoelectric
generator. Reproduced from Refs. [23, 26] with permission from the Royal Society of Chemistry.
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Lately, electroactive polymers (EAPs) are gaining interest because of their unique
property to change geometrical/structural properties in response to the application
of an electric field. Due to this capability, EAPs can be employed in artificial
muscles, sensors, robots, biomedical devices and energy storage systems [33, 34].
Magnetoresponsive materials, instead, can be shaped upon the application of a mag-
netic field. Magnetoresponsive fluids, for instance, can be used to construct dampers
with adaptive response and thus enhanced suppression of vibrations. These can be
fitted to buildings and bridges to mitigate the detrimental effect of strong winds or
earthquakes. Among other applications, magnetoresponsive materials can be used
also in nanomedicine [35, 36]. Finally, thermochromic materials change color in re-
sponse to different temperatures. They have been used, for example, in bath plugs
that change their color when water is too hot.

Carbon-based polymer nanocomposites seem to be among the most promising
candidates for the development of smart materials. However, significant efforts are
still needed to design smart materials with specific thermal, mechanical and electri-
cal properties. Since these properties derive by mechanisms coupled from nano- to
macroscale, multiphysics simulations could support a more rational research of
smart materials with tailored properties. For example, the overall piezoelectric re-
sponse of carbon-based polymeric smart materials is influenced by several mecha-
nisms, including tunneling of electrons and formation of percolating networks of
carbon fillers in the polymer composite [37–39], and should therefore be addressed
by linking atomistic to mesoscopic models. In the following sections, the atomistic,

Figure 3.3: Schematic diagram of a smart shirt. Reprinted from Ref. [24] with permission from
American Chemical Society.
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Figure 3.4: Chemical structure of photoresponsive molecules [32].
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Figure 3.5: Schematic diagram of an optical switch based on MWCNT/azo composite. Reprinted
from Ref. [29] with permission from American Chemical Society.
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mesoscopic and macroscopic simulation tools that allow to explore the main properties
of nanocomposites are extensively presented, and future perspectives of advanced
modeling of carbon-based smart materials are discussed.

3.2 Multiphysics modeling

A better understanding of the thermophysical behavior of carbon-based polymer
nanocomposites at different length- and timescales could ease the discovery of novel
smart materials, and could be facilitated by proper material modeling approaches
[40–47]. Advanced modeling approaches to the properties of nanocomposites are
based on linking and/or coupling various model types that are applicable at different
length- and timescales (see Figure 3.6).

This situation is ubiquitous in many sectors, where modeling can support the effec-
tive development of advanced materials, but the heterogeneity of modeling techni-
ques may prevent to highlight the computational synergies. For this reason, the
European Commission published a Review of Materials Modelling (RoMM), now in
its sixth edition [48], which provides a classification of materials modeling that en-
ables a coherent description of model types and a standardized documentation of
modeling data (called “MODA”) of materials. Furthermore, the RoMM contains sev-
eral examples of MODA documentation applied to a compendium of applications
from EU H2020 LEIT NMBP Materials projects. Based on the above review, the
European Materials Modelling Council (EMMC, http://www.emmc.info) proposed a
CEN Workshop Agreement about “Materials modelling – terminology, classification
and metadata” [49], endorsed by more than 15 European organizations with the ob-
jective of standardization of terminology, classification and documentation of materials

Figure 3.6: Schematic diagram of advanced modeling of polymer nanocomposite across
multiple scales.
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modeling and simulation. Moreover, the EMMC already proposed a European Materials
Modelling Ontology (EMMO) [50]. The EMMO aims at addressing the granularity levels
of materials modeling (atomistic, electronic, mesoscopic and continuum), which do
not really depend on the scale they are applied to. This is why multiscale modeling is
somehow confusing and it would be better to talk about multiphysics modeling.

In particular, at atomistic/molecular level, molecular dynamics (MD) simula-
tions allow understanding the behavior of the constitutive elements of nanocompo-
sites (such as carbon fillers and polymer matrices) and, most importantly, their
interaction at the interface [51]. The structural and interfacial characteristics of the
constitutive elements of nanocomposites at molecular level are successively em-
ployed in coarser modeling descriptions (mesoscopic models). The mesoscopic
structure of a smart composite is modeled by a representative volume element
(RVE) of the material, and the properties computed at mesoscale can be finally
homogenized to evaluate the effective thermophysical properties at macroscopic
(continuum) level.

3.2.1 Atomistic models

Thermophysical properties of carbon-based nanocomposite materials are mainly
governed by the interaction between nanofillers and surrounding matrix at molecu-
lar level. MD simulations are typically the most adequate tool to study such atomis-
tic phenomena. In this section, the process of building the molecular geometry of
nanocomposite is first discussed; then, the MD protocols for assessing thermal, me-
chanical and electrical properties are described, and main results from the litera-
ture are presented.

Building the atomistic setup

While the atomistic structure of carbon nanofillers (e.g., nanotubes, nanoplatelets
and nanoribbons) can be conveniently generated by tools available in the literature
[52–54], one of the major challenges in simulating polymer-based nanocomposites at
the molecular level is to accurately describe the structure of polymeric matrix. Curing
is a chemical reaction that happens between the components of thermosetting plas-
tics (e.g., epoxy resins), namely the resin and hardener, which result in a final cross-
linked (cured) structure. MD methods possess an inherent advantage over continuum
approaches, since they are able to accurately simulate the mechanisms underlying
curing reaction. Schulz and Frisch [55] first attempted to model curing procedure at
the molecular level. They employed a lattice Monte Carlo simulation method to un-
derstand the reaction kinetics of curing process in terms of degree of polymerization
and molecular weight distribution. Later works also included topological information
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of polymer networks in the description of curing process, therefore allowing the sim-
ulation of thermomechanical properties of epoxy resins by MD simulations [56–64].

Protocols for simulating the curing process and creating the atomistic setup
of epoxy resins can be classified into two groups: (1) single-step methods, where
all the potential chemical bonds between reactive sites within a specified cut-off
distance are formed at once; (2) multistep approaches, where reactive pairs within
a spatial distance are cross-linked together and the resulting structure relaxed by
MD, iteratively, until the desired curing degree is met. Generally, single-step ap-
proaches lead to large artificial strains in the cured structure; whereas, multistep
methods – even though they are more computationally expensive – provide struc-
tures closer to real curing reactions, since they operate through intermediate MD
relaxations.

Jang et al. [64] compared the performance of these two approaches on a system
consisting of bisphenol A diglycidyl ether (DGEBA) epoxy and poly(oxypropylene)
diamine (POP) curing agent. In the single-step method, a Monte Carlo algorithm
was adopted to allocate cross-linking bonds. For the multistep algorithm, an initial
cut-off radius of 10 Å was assigned, and covalent bonds between all pairs of poten-
tially reactive atoms within the cut-off radius generated. After that, the partially
cured system was relaxed in the NPT and NVE ensembles, respectively. In addition,
the partial charges of atoms were adjusted to neutralize the net charge in the sys-
tem. Finally, in the case that no reactive pairs remained within the current cut-off
radius, the reaction cut-off radius was increased iteratively. The thermal (thermal
expansion, heat capacity and glass transition temperature), structural (dihedral
angle distributions, radial distribution functions, minimum inter-nitrogen contour
length distributions and fragment molecular weight distribution) and mechanical
(Youngʼs modulus) properties of the systems cured by either single- or multistep ap-
proach were then compared. Results showed that the fragment molecular weight
distribution was different in the two cases, since fewer and larger fragments were
obtained with the single-step approach; nevertheless, the other properties had no
significant dependency on the choice of cross-linking method.

Thermal properties

Thermal conductivity
The thermal conductivity (λ) of nanostructured materials can be estimated by either
equilibrium MD (EMD) or nonequilibrium MD (NEMD) simulations. It is noteworthy
to mention that EMD simulations are best to study homogeneous systems, whereas
NEMD techniques are more suitable for heterogeneous systems [65]. Green-Kubo
formulation underlies EMD simulations, since it relates λ with the fluctuations of
thermal current via the fluctuation-dissipation theorem [66, 67]:
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λ= 1
VkBT2

ð∞
0
hJðtÞJð0Þidt, (3:1)

where kB is the Boltzmann constant, T and V are the temperature and volume of the
system, respectively. In addition, JðtÞ is the heat current vector at time t and
hJðtÞJð0Þi is the heat current autocorrelation function. In terms of MD entities, the
heat current vector is commonly defined as

JðtÞ= d
dt

XN
i=1

Eiri, (3:2)

being ri and Ei the position and total energy of atom i, respectively. Ei can be com-
puted by summing up kinetic and potential energies of the atom, namely

Ei =
1
2
mijvij2 + 1

2

XN
j≠i

UpðrijÞ, (3:3)

where mi and vi indicate mass and velocity of atom i, respectively. UpðrijÞ is the
total potential energy of atom i, which depends on the type of bonded and non-
bonded interaction potentials used in the simulations and rij is the distance be-
tween atoms i and j.

For example, Kumar et al. [68] used EMD to study the correlation between λ of
cross-linked epoxies (DGEBA resin, 4,4′-diaminodiphenyl sulfone - DDS hardener)
and temperature. Results demonstrate that the inclusion of long-range Coulomb in-
teraction corrections leads to a better agreement between modeling and experimental
results. Sirk et al. [69], instead, employed MD simulations to study the effect of epoxy
composition on its thermal, structural and volumetric properties. Different cross-
linked networks including DGEBA resin and various mixtures of flexible (POP) and
stiff (MCA, 4,4′-Methylenebis(cyclohexylamine)) curing agents were built. They
found out that the flexibility of cross-linker has considerable impact on the thermal
and volumetric characteristics of the cross-linked network, especially at temperatures
close to glass transition. Fasanella and Sundararaghavan [70] adopted the EMD ap-
proach to study the effect of temperature and functionalization on λ of DGEBA + DDS
epoxy, possibly reinforced by single-walled CNTs (SWCNTs). In particular, the ther-
mal conductivity was computed both perpendicularly and along the main axis of the
nanotube. Results showed that, for what concerns the direction perpendicular to the
CNT axis, the λ of pristine SWCNT/epoxy nanocomposites is lower than the neat
epoxy one, whereas an improved thermal performance is shown for functionalized
SWCNT/epoxy nanocomposites (see Figure 3.7). In addition, a significant enhance-
ment in the λ along nanotube axis has been observed in the case of pristine SWCNT/
epoxy in comparison to both neat epoxy and functionalized SWCNT/epoxy nanocom-
posite (see the inset in Figure 3.7).
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NEMD methods for computing thermal conductivity of nanostructured materi-
als are based on Fourierʼs law. For example, the thermal conductivity of an isotropic
system with temperature gradient along z direction can be found as [71]

λz = −
qz

dT=dz
, (3:4)

where qz =Qz=A is the specific heat flux, namely, the heat flux Qz transferred
through the surface A along the direction z. In addition, dT=dz is the steady-state
temperature gradient along z-axis. The temperature profile throughout the simula-
tion domain can be computed after dividing the box into N slabs (depending on the
system size) along the desired direction. Equation (3.4) can be exploited in nonequi-
librium simulations to compute λ according to two possible approaches.

The first approach is typically called NEMD (see an example in Figure 3.8), where
a temperature gradient is imposed across the extremities of computational system.
This is achieved by a proper design of regions with either high (red atoms in
Figure 3.8) or low (blue atoms in Figure 3.8) controlled temperature. To sustain the
temperature gradient during the simulation, energy is constantly supplied and ex-
tracted from the high- and the low-temperature regions by thermostats, respectively.
Such addition or extraction of energy in the hot or cold regions is generally carried
out by modifying the kinetic energy of atoms through a velocity rescaling procedure.
The instantaneous local kinetic temperature (Ti) in each slab can be computed as
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Figure 3.7: Average thermal conductivity in the temperature range of 220–420 K in the
perpendicular and axial directions with respect to the nanotube axis for different simulated
nanocomposites. Adapted with permission from Springer Nature [70].
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Ti =
1

3NikB

XNi
k=1

mkjvkj2, (3:5)

where Ni is the number of atoms in the ith slab and mk the mass of the kth atom.
The energy exchange between hot and cold regions at steady state causes a specific
thermal flux (qz) through the system, which can be calculated as

qz =
Qz

2A
= 1
2AΔt

1
2

XNB
k=1

mkðjvk, j2 − jvkj2Þ
� �

, (3:6)

where NB is the number of atoms in the thermostated region. Besides, vk and v
,
k rep-

resent the atomic velocities in the thermosetted regions (hot or cold regions) before
and after rescaling, respectively. Note that, in the considered geometry (Figure 3.8),
the heat flux in eq. (3.6) is divided by 2 due to the symmetrical simulation box.

The second approach is named as reverse NEMD (RNEMD), and it was originally
conceived by Müller-Plathe [72]. The main difference between RNEMD and NEMD
methods is that the former generates nonequilibrium conditions through the compu-
tational domain by fixing heat flux (which gives rise to temperature gradient), while
the latter by fixing the temperature gradient (which gives rise to heat flux). In
case of RNEMD, the heat flux is induced by interchanging the atomic velocities
between hot and cold regions. In the hot region, the coldest atom is selected and
its velocity (vcold, red region in Figure 3.8) is exchanged with the velocity of hottest

Figure 3.8: Specification of hot and cold baths for computing the thermal conductivity of
a carbon-based nanocomposite by NEMD simulations.
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atom in the cold region (vhot, blue regions in Figure 3.8). This process eventually
leads to an artificial specific heat flux (qz) flowing from cold to hot regions. All velocity
interchange procedure (i.e., transfers) follows the total energy conservation law; there-
fore, at steady state, equal amount of energy per area and time is induced from hot to
cold regions via heat conduction, namely

qz =
1

2AΔt
X

transfers

m
2
ðjvhotj2 − jvcoldj2Þ. (3:7)

The most significant advantage of RNEMD over classical NEMD is the fact that heat
flux, which is a slowly converging quantity with respect to temperature, is fixed
from the beginning of simulation. Therefore, in general, RNEMD approaches pro-
vide faster convergence of λ computation with respect to classical NEMD ones.

Interestingly, Varshney et al. [73] evaluated the thermal conductivity of a cross-
linked network of EPON-862 and curing agent W (diethyltoluenediamine, DETDA)
using both EMD and NEMD approaches. In the case of EMD, a cubic simulation box
(53.6× 53.6× 53.6 Å3) was employed; in the case of NEMD, a thin slab with large as-
pect ratio along the heat flow direction (21.4× 21.4× 373.3 Å3) was considered instead.
The results obtained by both methods were in good agreement with experiments,
even though EMD led to a slight overestimation of λ. Mortazavi et al. [74] employed
NEMD to estimate the thermal conduction in graphene-reinforced nanocomposites.
In their study, epoxy consisted of DGEBA resin and DETA (diethylenetriamine) or
DDS curing agents. They found that the thermal conductivity of a single-layer gra-
phene immersed in the epoxy matrix at atmospheric pressure and room temperature
decreases by around 30% with respect to the value of pristine graphene, while the
type of hardener has no considerable effect. Furthermore, they also investigated the
impact of pressure and epoxy-graphene covalent bonds on λ of graphene: no signifi-
cant change in the λ of graphene was observed by increasing the pressure up to 14
GPa, while the formation of 5% covalent bonds led to 65% reduction in the thermal
conductivity of graphene. Clearly, such methodologies can be successfully adopted
in a large variety of polymeric matrices: for example, Alaghemandi et al. [75] used
RNEMD to investigate the λ of SWCNT–polyamide (PA) nanocomposites along both
parallel and perpendicular directions with respect to the nanotube axis, finding a good
agreement with experiments [76, 77].

Thermal boundary resistance

The thermal boundary resistance, also known as Kapitza resistance or interfacial ther-
mal resistance (Rk) [78], at filler–filler and filler–matrix interfaces is one of the most
significant bottlenecks in the overall thermal conduction through polymer nanocom-
posites [79, 80]. This thermal resistance arises mainly from the weak van der Waals
interactions between adjacent fillers, and between fillers and the surrounding matrix.
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Such weak interactions considerably hinder the specific heat flux (q) across the inter-
face due to phonon scattering, which in turn results in a localized interfacial tempera-
ture jump (ΔT). The inverse of thermal boundary resistance, also known as thermal
boundary conductance, Gk = 1=Rk, is defined as

Gk =
q
ΔT . (3:8)

MD simulations are typically used to investigate thermal boundary resistance, since
it arises from atomistic details of interfaces. Generally, two NEMD approaches have
been used in the literature to study interfacial thermal properties of nanocompo-
sites [81].

In the first approach, the simulated system is divided into multiple slabs ac-
cording to the geometrical characteristics of the box. On the one side, a constant
heat flux is added to the atoms of nanofiller (heat source); on the other side, a con-
stant heat flux is removed from the outermost region of the computational domain
occupied by the matrix (heat sink). This thermal power could be extracted or intro-
duced by means of a velocity rescaling procedure, which must conserve the total
linear momentum of the system. As an example, this method was adopted to com-
pute the thermal boundary resistance between the CNT and octane liquid depicted
in Figure 3.9. In those simulations [81], the continuous addition (CNT) and extraction
(outermost region occupied by octane) of a constant heat flux leads to a steady-state
temperature profile throughout the system, where the average temperature in each

Figure 3.9: Schematic of division of carbon nanotube/octane system into concentric cylindrical
slabs to investigate thermal interfacial effects. Reprinted from Ref. [81] with the permission of AIP
Publishing.
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slab can be computed by eq. (3.5). An example of temperature profile measured in
this system is shown in Figure 3.10: the average temperature of the CNT is around
575 K, while the liquid temperature ranges from 320 K (close to the CNT surface)
down to 300 K (heat sink). The significant temperature drop at the nanotube–octane
interface proves the existence of Kapitza resistance, which is then computed by
eq. (3.8) since both q and ΔT can be extracted from simulations.

In the second approach, the whole system is first equilibrated at the initial tempera-
ture Tð0Þ; after that, the filler is heated up to a predetermined temperature Tf ð0Þ=
Tð0Þ+ΔTð0Þ, while the matrix temperature is kept constant at the TmðtÞ=Tð0Þ value.
Such a temperature gradient can be determined by a proper distribution of thermo-
stats in the computational domain. The system is then allowed to relax without any
heat source or sink. As depicted in Figure 3.11, the temperature difference between
the filler and the surrounding matrix ðΔTðtÞ=Tf ðtÞ− TmðtÞÞ tends to decay exponen-
tially with time according to the Newtonʼs law of cooling, namely

ΔTðtÞ=ΔTð0Þ exp −
t
τ

� �
. (3:9)

If the conduction resistance of the filler is considerably lower than the matrix one
(which is typically the case of carbon nanofillers), the characteristic decay time (τ)
can be related to the area of filler–matrix interface (Aint), the filler heat capacity (c)
and the (Rk) at filler–matrix interface as [82]
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Figure 3.10: Relation between the temperature gradient and distance from the center of CNT at
constant heat flow (see configuration in Figure 3.9). Reprinted from Ref. [81] with the permission of
AIP Publishing.
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Rk =
Aintτ
c

. (3:10)

Due to the paramount importance of heat transfer across nanoscale interfaces on
the effective thermal properties of nanocomposites, several researches have used
MD simulations to achieve a mechanistic understanding of the parameters that
could affect thermal boundary resistance, such as curing degree of polymeric ma-
trix, surface functionalization of fillers and presence of covalent or noncovalent
bonds between fillers and the surrounding matrix [83–100].

As an example, Varshney et al. [83] analyzed by MD simulations a nanocomposite
made of epoxy polymer (EPON-862/DETDA) reinforced with SWCNTs. They reported a
20% enhancement in the Gk at filler–matrix interface by increasing the curing degree
of epoxy. Such behavior was explained by the increased structural rigidity and non-
bonded interactions of the cured epoxies, since the curing process generates a denser
matrix structure. Huang et al. [94], instead, investigated the impact of covalent bonds
(cross-links) between SWCNT and PEK (poly ether ketone) on the thermal boundary
conductance at their interface. Considering a simulation domain similar to the one in
Figure 3.9, the number of cross-links between SWCNT and PEK was changed in the
range 0–80 (0%− 6.25% functionalization degree), and the Gk was then computed in
each case. Results in Figure 3.12 show that the temperature jump at CNT–PEK interface
decreases with the number of cross-links; thus, Gk increases from 23.58 (no cross-
links) to 236.44 MW/m2 K (80 cross-links). Finally, Wang et al. [89] employed RNEMD
to determine how different surface functionalizations of graphene could affect the
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Figure 3.11: Instantaneously heated nanotube at a desired temperature is allowed to relax without
heat source or sink, then (a) the temperature of the CNT, (b) liquid temperature and (c) difference
between the temperature of CNT and liquid as a function of time are shown (see configuration in
Figure 3.9). Reprinted from Ref. [81] with the permission of AIP Publishing.
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interfacial thermal resistance at graphene–polymer interface. To this aim, various types
of covalent (butyl, carboxyl and hydroxyl) and noncovalent (1-pyrenebutyl, 1-pyrenebu-
tyric acid and 1-pyrenebutylamine) functional groups were considered at different cov-
erages, namely, the ratio between the number of functional groups to the total number
of carbon atoms in the graphene sheet. Furthermore, the effect of isotope doping and
acetylenic linkage in graphene was also assessed. Simulation results for covalent and
noncovalent functionalizations are reported in Figures 3.13 and 3.14, respectively. It is
noteworthy to mention that the thermal boundary resistance values in these figures are
normalized using the value of Rk in the case of no functionalization on graphene, that
is, Rk0 = ð0.713±0.036Þ× 10− 8 m2 K/W. While both increasing covalent and noncova-
lent functionalizations led to Rk decrease, no significant effects were instead ob-
served with isotope doping or acetylenic linkages in the graphene filler [89].

Mechanical properties

MD simulations are also useful to compute mechanical properties of composite ma-
terials, such as the elastic moduli and the whole stress–strain response of a nano-
metric specimen [101, 102]. Discrepancies between MD and experimental results
may be due to the faster strain rate simulated, the effect of dislocations at higher
scales, the local high variability of temperature and the possible unwanted residual
stresses from cross-link process [103].
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In general, the elastic properties of a material along one specific direction can be
quantified by the Youngʼs modulus (Em) as

σ =Emε, (3:11)
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where the stress (σ) is a measure of the average force applied over an equiva-
lent area (F A= ), and the strain (ε) is the ratio of deformation with respect to the ini-
tial length (see Figure 3.15). Such relation can be generalized to three-dimensional
space to relate all the components of the stress and strain tensors (generalized
Hookeʼs law):

σij =C′ijkl εkl, (3:12)

where C′ijkl are the components of the fourth-order stiffness tensor of the considered
material. Note that the C′ tensor is symmetric (σij =σji and thus C′ijkl =C′jikl, similarly
for the strain tensor), and that the Voigtʼs notation [104] is typically adopted to sim-
plify eq. (3.12):

σi =C′ijεj, (3:13)

with i, j= 1, 2, . . ., 6. Therefore, for any linearly elastic material, the stiffness matrix
can be written as

C′=

C′11 C′12 C′13 C′14 C′15 C′16
C′21 C′22 C′23 C′24 C′25 C′26
C′31 C′32 C′33 C′34 C′35 C′36
C′41 C′42 C′43 C′44 C′45 C′46
C′51 C′52 C′53 C′54 C′55 C′56
C′61 C′62 C′63 C′64 C′65 C′66

2
6666666664

3
7777777775

(3:14)

MD simulations can be used to apply a deformation ε =[ε11 ε22 ε33 2ε23 2ε13 2ε12] = [ε1
ε2 ε3 ε4 ε5 ε6] to a representative unit cell of the material under investigation, and
then to measure the respective residual stress in each direction [105]. Given these
values, eq. (3.13) allows then to obtain the 6 × 6 elastic stiffness matrix (C′) of the
simulated material.

y yy

x

z x x

x
εx εxy

Δx

Δx= =

Δx

y
Δx

Figure 3.15: Longitudinal and shear deformation of a simple volume of material.
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The expression of C′ is simpler in materials characterized by symmetry, since
some of its coefficients are equal to zero. For example, the elastic stiffness tensor of
orthotropic materials can be reduced to

C′=

C′11 C′12 C′13 0 0 0

C′21 C′22 C′23 0 0 0

C′31 C′32 C′33 0 0 0

0 0 0 C′44 0 0

0 0 0 0 C′55 0

0 0 0 0 0 C′66

2
6666666664

3
7777777775

(3:15)

namely to nine different stiffness coefficients (C′12 =C′21, C′13 =C′31, C′23 =C′32). Instead,
the elastic properties of homogeneous isotropic linear elastic materials are deter-
mined by two moduli only, namely λm and μm:

μm = 1
3
ðC′44 +C′55 +C′66Þ (3:16)

and

λm = 1
3
ðC′11 +C′22 +C′33Þ− 2

3
ðC′44 +C′55 +C′66Þ, (3:17)

and thus

λm + 2μm = 1
3
ðC′11 +C′22 +C′33Þ.

In this case, the elastic stiffness tensor simplifies to [103]

C′=

λm + 2μm λm λm 0 0 0

λm λm + 2μm λm 0 0 0

λm λm λm + 2μm 0 0 0

0 0 0 μm 0 0

0 0 0 0 μm 0

0 0 0 0 0 μm

2
6666666664

3
7777777775

(3:18)

Once λm and μm are determined, the following relations for homogeneous isotropic
linear elastic materials hold:

Gm =μm (3:19)

Km = λm + 2
3
μm (3:20)
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ν= λm
2ðλm +μmÞ

(3:21)

Em = μm
3λm + 2μm
λm + μm

, (3:22)

where Gm is the shear modulus, which regards forces parallel to one surface of the
material; Km is the bulk modulus, which regards the isobaric compression of the
material; ν is the Poissonʼs ratio, which relates the expansion of the material in one
direction while it is compressed in another; Em represents the Youngʼs modulus,
which is a measure of the linear elastic stiffness of the material.

MD can be also used to mimic the experimental tensile test of nanomaterials.
Typically, the system is first equilibrated; then, a small strain is applied along one
longitudinal direction of the computational box with a ramped function of time
(see Figure 3.16), and the resulting strain measured [106, 107].

Electrical properties

Polymeric materials are typically characterized by very low (or no) electrical con-
ductivity; however, the insertion of carbon fillers – such as graphene sheets, CNTs
or carbon fibers (CFs) – can improve the electrical properties of the resulting poly-
mer nanocomposites.

A limited volume fraction of CFs has been observed to significantly improve
electrical conductivity of polymer nanocomposites [108, 109]. This is due to the for-
mation of continuous conductive networks of CFs in the polymer matrix, thus al-
lowing a transition from nonconductive to conductive electrical properties. The
percolation threshold is the critical volume fraction of conductive fillers in the
nanocomposite above which conductive pathways in the system always occur. This
threshold determines the transition from electrical insulating to conducting behav-
ior, and it is therefore the crucial figure of merit to understand the electrical features
of nanocomposites. Furthermore, researchers have reported that the conductive be-
havior of nanocomposites depends on the spatial distribution of CFs as well. On the
one hand, high volume fractions of fibers poorly dispersed in the polymer matrix
may lead to fiber agglomeration, which possibly results in electrical conductivity en-
hancement (but degraded mechanical properties). On the other hand, spatially uniform

y

X

Z

Figure 3.16: Longitudinal deformation of a simulation box.
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distributions of fibers at low volume fractions are unfavorable for the electrical conduc-
tance of nanocomposites.

Molecular simulation is an efficient tool to study the electrical properties and
percolation mechanism in nanocomposites, since it allows determining whether
CFs are forming conductive networks within the polymeric matrix or not. According
to the electric tunneling theory, two carbon fillers can be considered as electrically
connected to each other if their shortest distance is less than a critical gap, which is
known as tunneling distance. The electrical resistance offered by the thin (i.e., less
than the tunneling distance) insulating polymer matrix between the conductive fi-
bers is therefore known as tunneling resistance.

The generalized formula for electric tunnel effect through a potential barrier be-
tween electrodes separated by a thin insulating film was derived by Simmons in
1963 [110]. Hence, if the thickness of insulating film between the conductive fibers
is treated as uniform, the curvature of fibers is neglected, the potential barrier is
taken as rectangular and the image forces are included, the current density (j, con-
sidered in A/cm2) flowing through the thin film of polymer matrix between the fi-
bers is given as [110]

j= 6.2× 1010

Δs2 ½ϕ expð− 1.025Δsϕ1=2Þ

−ðϕ+UÞ expð− 1.025Δsðϕ+UÞ1=2Þ�, (3:23)

where

ϕ=ϕ0 − ðU=2sÞðs1 + s2Þ− 5.75
κΔs ln

s2ðs− s1Þ
s1ðs− s2Þ , (3:24)

s is the thickness of the insulating polymer film (in Å), Δs= ðs2 − s1Þ is the difference
of the limits of barrier at Fermi level (in Å), κ is the dielectric constant of insulating
polymer film, U is the voltage across the insulating polymer film (in V) and ϕ0 is
the height of potential barrier (or work function) (in V). If U <ϕ0, then

s1 = 6=κϕ0

s2 = s½1− 46=ð3ϕ0κs+ 20− 2UκsÞ�+ 6=κϕ0. (3:25)

Moreover, the voltage across the insulating polymer film can be calculated as

U = e=C= es
Acκε0

, (3:26)

where e, C, Ac and ε0 are electron charge, capacitance, area of the insulating film in
contact and permittivity of free space, respectively. The electric tunneling resis-
tance can be finally computed as
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Rtunnel =
U
j Ac

. (3:27)

Li et al. [111] performed Monte Carlo simulations to understand the effect of tunnel-
ing resistance between CNTs on the electrical conductivity of the whole polymer
nanocomposite. Their results indicate that the tunneling resistance increases with
the thickness of insulating polymer film (see Figure 3.17). They also reported that
the conductivity of nanocomposites drops below 10−12 S/m, namely the nanocom-
posite behaves as an electrical insulator, when the tunneling resistance is larger
than 1019 Ω. The thickness of polymeric film corresponding to this Ω value is found
to be 1.8 nm, which is then considered as the maximum tunneling distance.

Hu et al. [112] studied the effect of CNT aspect ratio on the electrical properties of
nanocomposites by means of three-dimensional statistical percolation modeling.
They reported that the higher aspect ratio of CNTs leads to larger aggregates of fillers
in the nanocomposite, which ease the creation of paths with high electrical conduc-
tivity. As a result, both lower percolation threshold and higher electrical conductivity
of nanocomposites are reported for larger aspect ratio of fillers [112]. Furthermore, the
electrical percolation threshold is found to be significantly influenced by the inter-
tube van der Waals interaction and tunneling resistance for nanocomposites with
low CNT aspect ratio (i.e., length/diameter ratio <200), whereas negligible effects are
observed with high aspect ratio [113].

Researchers agree that the tunneling resistance, which shows values several orders
of magnitude larger than the intrinsic resistance of carbon fillers, plays a dominating
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role in controlling the electrical behavior of nanocomposites [111–114]. Thus, to en-
hance computational efficiency and simulate larger domains, the intrinsic resistance of
nanofillers is often neglected in simulations of nanocomposites with well-dispersed
fillers [114].

3.2.2 Mesoscopic models

Thermal properties

The most popular approaches to study effective thermal properties of composites at
mesoscale are off-lattice Monte Carlo, dissipative particle dynamics (DPD) and lat-
tice Boltzmann method (LBM).

Duong and coworkers [115] developed an off-lattice Monte Carlo simulation ap-
proach to investigate the effective thermal conductivity (λeff ) of CNT-reinforced
nanocomposites, taking into account also the thermal boundary resistance (Rk) at
CNT–matrix interface. In their model, heat transfer comes from the random motion
of a large number of discrete thermal walkers. The proposed model has been widely
utilized to investigate the impact of fibers distribution, morphology, volume frac-
tion as well as Rk value at fiber–matrix interface on the λeff of nanocomposites
[116–119], nanofluids [120, 121] and aerogels [122] based on CNTs, with a good capa-
bility to reproduce experiments. Kui et al. [123] modified Duongʼs model to evaluate
the thermal properties of composite materials reinforced by graphene sheets. Later,
Gong et al. [124–127] extended the initial model to evaluate the thermal conductivity
of multiphase composite materials as well. As an example, they studied the λeff of a
polymer composite consisting of polyether ether ketone (PEEK) matrix reinforced
by SWCNT fibers and tungsten disulfide (WS2) nanoparticles [125]. They explored
the impact of interfacial thermal resistance at CNT–PEEK and WS2–PEEK interfaces,
CNT morphology (i.e., diameter and aspect ratio of SWCNTs) and SWCNT orienta-
tion (i.e., random, parallel or perpendicular to heat flux) on the effective thermal
conductivity of composites. According to their findings, λeff increases with SWCNT
concentration, while it decreases with larger Kapitza resistances at the different
interfaces. Regarding SWCNT orientation, fibers parallel and perpendicular to the
heat flux direction show the best and the worst effect on the overall thermal perfor-
mance, respectively. They also reported that SWCNTs with higher aspect ratio and
smaller diameter generate higher thermal conductivity enhancements at given
mass fraction of fillers.

In DPD, the simulated particles (beads) represent whole molecules or fluid re-
gions [128]. For instance, Zhou et al. [129] coupled DPD and smoothed particle hy-
drodynamics (SPH) to study, at mesoscopic level, the λeff of polymer composites
reinforced by CNTs. This numerical model was used to investigate the impact of dif-
ferent parameters, such as filler dispersion, volume fraction, length and matrix
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characteristics, on λeff of nanocomposites. Their results show that λeff changes
quadratically with the volume fraction of fillers, with both random and aligned dis-
tributions of fibers.

LBM is another method that can be used to study the thermal properties of com-
posite materials at mesoscopic level. The most significant advantage of LBM is the
easy implementation of different interparticle interactions and complex boundary con-
ditions [130]. Wang and coworkers [131] developed a three-dimensional LBM model to
calculate the thermal conductivity of composites reinforced by CFs, in good agreement
with experimental evidence. Chiavazzo and Asinari [132], instead, computed through
LBM the λeff of composites made of polypropylene polymer (matrix) and graphite par-
ticles (fillers). Fang et al. proposed a multiple relaxation time LBM to predict numeri-
cally the λeff of anisotropic heterogeneous materials, such as polymers reinforced by
braiding yarns [133]. The model has been afterward applied to compute longitudinal
and perpendicular λeff of computational domains with different volume fractions of
fillers, considering the interfacial thermal resistance between components as well.

Mechanical properties

Atomistic simulation methods are well established for computing the interfacial
properties of polymer composites at the molecular level (nanoscale). However, the
considerable computational resources required limit the maximum length- and
timescale of feasible simulations [134, 135]. While sophisticated strategies for speed-
ing up complex MD simulations of systems that undergo significant configuration
changes have been recently suggested on the basis of the equation-free method
[136, 137], coarse-grained (CG) models have been specifically developed to simulate
polymers [138–140] and carbon fillers (CNTs and graphene) [141, 142].

CG MD overcomes the complexity of atomistic simulations by reducing the degrees
of freedom of particle–particle interactions, so that larger length- and timescales (from
nanoscale to mesoscale) can be afforded [138, 143]. For the development of CG molecu-
lar models, chemically connected atoms are grouped together to form superatoms or
CG beads that contain sufficient information to reproduce the chemical features of the
molecular structure (see, for instance, Figure 3.18) [139]. Moreover, several methods
have been proposed to parametrize the force field among CG beads starting from their
respective atomistic details [134, 138, 139]. Arash et al. [143, 144] developed a CG model
of CNT/polymer systems, with the aim to compute the mechanical behavior of polymer
nanocomposites. Their results confirm that CNT reinforcement significantly enhances
the Youngʼs modulus of the composite, and that CG models provide comparable accu-
racy and lower computational cost than atomistic simulations. Later, Mousavi et al.
[145] introduced nonbonded interactions between polymer chains, CNTs and polymer
matrix in the CG model to investigate the influence of cross-linking, weight fraction
and distribution of CNTs on the elastic properties of polymer nanocomposites.
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The effect of dispersion, alignment and morphology of nanofillers on the proper-
ties of polymer composites can be studied by DPD as well. Zhou et al. [146] studied
the dispersion and alignment of CNTs using DPD simulations. Numerical experiments
demonstrated that CNTs tend to align themselves in the polymer matrix with increas-
ing nanotube length and volume fraction, especially in well-dispersed systems.
Instead, a DPD study on graphene/PMMA (Poly(methyl methacrylate)) composite
showed that, while pristine graphene and PMMA are immiscible, high concentrations
of graphene functionalizations lead to better filler dispersions in the PMMA matrix
[147]. Furthermore, when the volume fraction of fillers is larger, graphene needs to be
functionalized more to reach good dispersion. Similar results were obtained by Lin
et al. [148], who reported better dispersions of covalently functionalized graphene fill-
ers in PMMA matrix compared to nonfunctionalized ones.

Electrical properties

The RVE concept is also applicable to predict the mesoscale electrical properties of
nanocomposites. The electrical conductivity of carbon-based polymer nanocompo-
sites mainly depends on [149–151]:
– the intrinsic electrical conductance of CFs;
– the normal transport through conductive networks of carbon fillers in contact

with each other within the polymeric matrix;
– the hopping transport due to the tunneling of electrons between CFs separated

by polymer matrix of thickness less than the tunneling distance.

Figure 3.18: Coarse-grained model of polystyrene (red and gray beads) from atomistic details
(white and cyan sticks). Reprinted from Ref. [139] with permission of American Chemical Society.
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To compute the electrical conductivity of nanocomposites at mesoscale, CFs should
be first randomly distributed within a RVE of polymer nanocomposite. These simu-
lations typically assume that fibers have low electrical resistance and thus act as
conductors, whereas polymeric matrix is considered as a highly resistive material
with low electrical conduction. Therefore, the most conductive path for a given com-
posite is the one minimizing the relative distance between CFs [151, 152]. Different al-
gorithms are available to find the shortest path in a given configuration (e.g., Dijkstra
algorithm [153]), which can be thus employed to calculate the electrical conductivity
of the simulated nanocomposites at mesoscale. This procedure is typically repeated
over different random distributions of fibers in the matrix to reduce statistical fluctua-
tions in terms of composite conductivity.

In a cuboid RVE with dimensions ðLx, Ly, LzÞ containing randomly distributed
fibers in a polymer matrix [154], each fiber can be modeled as a line segment in
spherical coordinates (see Figure 3.19):

xei = xsi + li sin θi cos’i,
yei = ysi + li sin θi sin’i,
zei = zsi + li cos θi, (3:28)

where i is the index of the ith fiber, ðxsi , ysi , zsi Þ and ðxei , yei , zei Þ are the start and end
point coordinates of the fiber. The length, polar and azimuthal angle of the ith fiber
are denoted as li, θi and ’i, respectively.

The start point coordinates, the polar angles and the azimuthal angles of each
fiber can be generated randomly as

xsi = Lx ξ , ysi = Ly ξ , zsi = Lz ξ

θi = 2π ξ , ’i = cos− 1ð2ξ − 1Þ (3:29)
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Figure 3.19: Fiber modeled as a line segment in spherical coordinates.
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where ξ is an uniformly generated random number in the range [0, 1]. To better rep-
resent experimental variability, the simulated length of fibers can follow a Weibull
distribution [155]. It should be noted that the end points of fibers might initially lie
outside the RVE cuboid: in that case, periodic boundary conditions are applied to
relocate them inside the cuboid.

The electrical conductivity of nanocomposites can be estimated once the series
of resistances in the percolating network is computed, including both intrinsic re-
sistance of fibers (Rij) and their contact resistance (Rcontact). According to the Drude
model, the Rij of a fiber ði, jÞ with lij length, D diameter and σfibere intrinsic electrical
conductivity (see Figure 3.20) can be calculated as [154]

Rij =
4lij

σfibere πD2
. (3:30)

Considering a marginal effect of temperature, the contact resistance Rcontact between
two fibers can be instead estimated as [150]

Rcontact =
h

2e2Mτp
, (3:31)

being h the Planck constant, e the electron charge, M the number of conduction chan-
nels and τp the transmission probability for the electron to tunnel through the polymer
layer between fibers. According to Bao et al. [150], the transmission probability τp can
be estimated by the Wentzel–Kramers–Brillouin approximation [156] as follows:

τp =
exp − dvdW

dtunnel

� �
0≤d≤D+dvdW

exp − d−D
dtunnel

� �
D+dvdW ≤ d≤D+dcut

8><
>: (3:32)
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Rtunnel
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Figure 3.20: Network of electrical resistors in the RVE of a nanocomposite reinforced by nanofillers,
for example, CNTs. Reprinted from Ref. [151] with permission from Elsevier.
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where d is the minimum distance between adjacent fibers, dvdW is the van der
Waals separation distance and dtunnel is the tunneling length. The latter can be de-
scribed as [150]

dtunnel =
�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8meΔE
p , (3:33)

where �h = h/2π is the reduced Planck constant, me the mass of electron and ΔE the
energy barrier. Note that in eq. (3.32), tunneling effects are neglected if the thick-
ness of polymer matrix between contiguous fibers is larger than dcut, namely, the
considered cut-off distance.

Bao et al. [150] studied the effect of CNT alignment in polymer matrix on the critical
percolation threshold, and their results revealed that the maximum electrical conduc-
tivity is obtained in nanocomposites with partially aligned CNTs. Similarly, Monte Carlo
simulations by Zeng et al. [157] reported a clear dependence of the electrical percolation
threshold on CNT length, waviness, distribution anisotropy and volume fraction.
Improved three-dimensional percolating network theories can also be used to under-
stand how the deformation of CNTs at crossed nanotube junctions influences the elec-
trical conductivity of nanocomposites [158]. In detail, the study by Gong and colleagues
[158] suggests that CNT deformation at crossed nanotube junctions determines a large
increase in the intrinsic resistance of the nanotube while only a limited decrease in the
CNT–CNT contact resistance, therefore, leading to enhanced overall resistance at the
junction. Furthermore, numerical simulations based on the Dijkstra algorithm showed
that increased contents of MWCNTs in polymer nanocomposites result in higher electri-
cal conductivities, in good quantitative agreement with experiments (see Figure 3.21)
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Figure 3.21: Simulation and experimental results of electrical conductivity of CNT-based polymer
composites as a function of weight percentage of MWCNTs. Reprinted from Ref. [152] with
permission from Elsevier.
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[152]. Finally, Rahatekar et al. [159] performed DPD simulations to explore the influ-
ence of aspect ratio and fiber alignment on the electrical percolation threshold of
nanocomposites.

3.2.3 Continuum models

Thermal properties

The effective thermal conductivity (λeff ) of polymer nanocomposites at macroscale
can be predicted by two approaches, namely analytical or simulation ones. Analytical
models, for example, effective medium approximation, generally provide quick evalua-
tions of the properties of composites, but cannot take into account neither the interac-
tions between adjacent inclusions nor the actual morphology of composite. Further
details on the analytical models for effective thermal conductivity of nanocomposites
can be found in a recent review article by Zhai et al. [160].

Due to the current improvement of computational tools and numerical algo-
rithms, finite element method (FEM) has been increasingly utilized to compute the
thermal conductivity of composite materials at continuum level. FEM calculates the
λeff of nanocomposites by solving numerically the Fourierʼs law for conduction at
steady state, and this procedure is – in principle – capable to consider different
morphologies (e.g., fiber distribution) of the composite material by proper meshing
strategies. FEM simulations of composites are typically limited to an RVE of the sys-
tem. The RVE is built in such a manner that the smallest constituent that can influ-
ence the first-order macroscopic behavior of the system is consistent with the
simulated length scale; then, the results obtained from the RVE are extended to de-
velop a full-scale model. For example, Figure 3.22 depicts 3D cubic RVEs of compo-
sites with different inclusions, namely cylindrical, platelet-like and spherical fillers.
The major drawback of FEM in comparison with analytical approaches remains the
high computational cost, as well as the modeling complexity given by systems in-
cluding fibers with high volume fraction or aspect ratio.

Ramani and Vaidynathan [162] carried out an automated finite element analysis
to compute λeff of composite materials. The employed FEM model allowed to study
the effect of various parameters, such as fiber aspect ratio, volume fraction, disper-
sion, orientation and fiber–matrix interfacial thermal resistance on the resulting
thermal behavior of composites. Numerical results were compared to analytical
models and experiments, finding a good agreement especially at high volume frac-
tions. Ahmed and Masud [163] employed FEM to study the effect of geometrical pa-
rameters on the λeff of polymer composites reinforced by MWCNTs. Their study
revealed that the λ of nanocomposites increases with the aspect ratio of nanotubes,
whereas interface thermal resistances do not have a prime contribution in lowering
the thermal conductivity at the macroscopic scale. Instead, Li et al. [164] quantified
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the influence of SWCNT–matrix interfacial thermal resistance (RCNT−m) on λeff of
SWCNT/polymer composites. Their results showed that the λeff of composite can be
lower than the one of pristine polymer matrix if RCNT−m is greater than a critical value.

Mechanical properties

The FEM can be used to understand the macroscale mechanical properties of nano-
composites, for example, the elastic moduli. At molecular level, the RVE of a ge-
neric nanocomposite is a heterogeneous medium consisting of polymer matrix,
carbon nanofibers and interface region. However, at continuum level, such hetero-
geneous RVE should be homogenized to compute the effective material properties
through micromechanical analyses (see Figure 3.23). Notice that the homogeniza-
tion procedure of RVEs to calculate the effective elastic moduli of nanocomposites
is equivalent to average the mechanical properties of heterogeneous nanocompo-
sites [165].

The constituents of the RVE can then be assumed as isotropically symmetric
within the nanocomposite [166], and the constitutive relation given by the general-
ized Hookeʼs law:

Figure 3.22: Temperature fields in 3D representative volume elements of different composites
simulated by FEM method. Reprinted from Ref. [161] with permission from Elsevier.
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σij =C′ijkl εkl, i, j, k, l= 1, 2, 3 (3:34)

being C′ijkl the elastic stiffness tensor of the RVE, σij and εkl the stress and strain ten-
sors, respectively. The effective stiffness coefficient ðC′ eijklÞ of the homogenized multi-
constituent nanocomposite can thus be written as

�σij =C′
e

ijkl �εkl, (3:35)

being �σij and �εkl the stress and strain tensors averaged over the RVE volume ðVRVEÞ,
respectively, that is:

�σij =
1

VRVE

Z
VRVE

σijdV, (3:36)

�εkl =
1

VRVE

Z
VRVE

εkldV. (3:37)

The effective elastic moduli of nanocomposite are finally calculated using the aver-
aged stress and strain tensors as follows:

C′
e

ijkl =
�σij
�εkl

, i= j= k= l ðYoung’s modulusÞ (3:38)

C′
e

ijkl =
�σij
2�εkl

, ði= kÞ≠ðj= lÞ ðShear modulusÞ (3:39)

Instead, the Poisson’s ratio of nanocomposite is computed as

νij = −
�εjj
�εii

. (3:40)
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Figure 3.23: Homogenization of a representative volume element of nanocomposite, which
includes the nanofiller (CNT), the CNT/epoxy interface and part of the surrounding epoxy matrix
into a representative, homogeneous fiber of the composite to be considered for micromechanical
analysis. Adapted from Ref. [166] with permission from Elsevier.
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Odegard et al. [167] proposed a method to transform the discrete molecular struc-
tures of nanotube fillers, polymer matrix and CNT/polymer interface at nanoscale
into an equivalent continuum model of composite. Liu and Chen [168] computed
the effective mechanical properties of CNT-reinforced composites using a nanoscale
RVE and the FEM. They showed that the stiffness of composite increases several
times with volume fractions of CNT nanofillers up to 5%. Instead, an equivalent
continuum modeling study by Huang and Rodrigue [169] found that both aspect
ratio and length of CNT fillers have a significant influence on the mechanical prop-
erties of polypropylene-based composites. In a similar study, Kumar and Srivastava
[170] reported that the elastic stiffness of polymer matrix was improved by carbon-
based filler reinforcements. This study also concluded that graphene reinforce-
ments provided the best in-plane stiffness properties of nanocomposite, whereas
CNTs the best out-of-plane ones. Finally, a continuum simulation using multiscale
homogenization procedure was applied by Golestanian and Gahruei [171] to under-
stand the effect of CNT waviness on the elastic properties of CNT-reinforced polymer
composites. The simulation study revealed that wavier CNTs reduce elastic modulus
of nanocomposite along the longitudinal direction, while they increase elastic mod-
ulus along the transverse one.

Electrical properties

The effective electrical properties of nanocomposites at the micro- and macroscale
are substantially affected by phenomena at molecular level, such as tunneling
mechanism and formation of conductive networks.

In case of a 1D conductor with l length and Ac cross section, the effective electri-
cal conductivity of composite (σe) can be computed by measuring the electric current
(I) flowing through the computational domain, given a certain electric potential (U),
that is

σe =
Il

AcU
. (3:41)

Instead, in case of 3D anisotropic materials, a more general expression should be
considered:

j=σeE, (3:42)

where j being the current density vector, E= −∇U the electric field vector under
electrostatic conditions and σe the effective conductivity tensor. Typically, FEM anal-
ysis with micromechanical corrections is adopted to compute effective electrical prop-
erties of nanocomposites at continuum level as, for example, depicted in Figure 3.24.
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Seidel and Lagoudas [173] developed a micromechanical model to estimate the
electrical properties of CNT–polymer nanocomposites. They reported that the large
increment in the σe of MWCNT-based nanocomposites at low nanotube concentra-
tions is mainly due to formation of conductive networks, whereas in SWCNT-based
nanocomposites, both electron hopping and conductive network formation play a rel-
evant role [173, 174]. The macroscale piezoresistive properties of CNT–polymer com-
posites along both transverse and axial directions were studied instead by Ren and
Seidel [37], considering both electric tunneling and inherent piezoresistivity of CNT in
the selected RVEs. In that study, the macroscale piezoresistive response of different
mesoscale CNT dispersion scenarios in the nanocomposite was predicted using
computational micromechanic techniques based on the finite element analysis. The
authors found that the electric tunneling mechanism dominates the overall piezore-
sistive properties of CNT–polymer composites along both transverse and axial direc-
tions, whereas the inherent piezoresistivity contribution is more evident along the
axial direction rather than along the transverse one [37]. The influence of electric
tunneling was found to be negligible in composites with well-dispersed distributions
of CNTs, where the intertube distance was larger than the tunneling distance; con-
versely, agglomerated CNT dispersions eased electric tunneling mechanism.

0 0

50
50

100

150
0

50

100

150

100

150

Figure 3.24: Electrical potential within a nanocomposite evaluated by FEM analysis. Reprinted from
Ref. [172] with permission from Elsevier.
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3.3 Perspectives

The idea to combine different materials to develop an engineered material having
unique capabilities, distinct from their constituent materials, is very fascinating,
and it has been well known by long time. Nowadays, the possibilities offered by
materials processing and, sometimes, nanotechnology have revamped the empha-
sis on composite materials. In particular, carbon-based composites have already
proved to provide remarkable improvements in terms of stiffness, durability, strength
and lightweight characteristics in some industrial sectors, for example, automotive.

In spite of the previous successes, some industrial challenges remain for compos-
ite materials. According to a recent commentary by Materials Today [175], mass pro-
duction of composites is a key aspect that must still be developed before composites
will prove to be useful for many new applications. The lack of mass production/auto-
mation techniques sometimes reveals the lack of knowledge of the composite
manufacturing process, which forces to rely on try and error in developing new prod-
ucts [175]. Clearly, this approach, which is still dominant in many applications, can-
not be properly standardized. Hence, the lack of standardization, design standards
and good technical support/backup from suppliers tends to reduce the composite ac-
ceptance in an industrial context [175]. Composite materials without a warranty are
not well accepted by engineers, who have to deal with high-fidelity standards in the
design and production of complex products. Things become even worse in case of
recycling CFs, as envisioned by circular economy. End-of-life fiber-reinforced compo-
sites are particularly challenging for implementing circular economy, even though
some large-scale demonstration has been already funded by the European
Commission [176]. All the above factors significantly increase the price of carbon-
based composites with regard to their competitors, namely steel, concrete and ther-
moplastics, and this induces a loss of market share [175]. Price reduction can hardly
be achieved by combining raw materials, because this intrinsically requires some ad-
ditional processing costs. However, one promising alternative option consists in in-
creasing the value chain by adding new functionalities for composite materials. This
leads to the so-called smart materials (see Table 3.1 and references therein). Materials
with self-sensing and structural health monitoring capabilities, devices with fast trig-
gering shape memory, thermally driven actuators and high-performance all-solid-state
supercapacitors are good examples of this strategy. On the other hand, this strategy
leads necessarily to even more scientific challenges, because high precision and repro-
ducibility of the arrangement of CFs into the composites are required.

The previous discussion reveals that the exploitation of carbon-based compo-
sites requires addressing many scientific challenges, which could benefit from sys-
tematic and state-of-the-art materials modeling. Essentially, modeling should
address two main issues: (i) elucidating the atomistic details of interface between
CF and polymer and (ii) taking into account properly the extreme variability in the
CF orientation within the composite.
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The first issue is very well known and is also largely explored from the experi-
mental point of view. For example, CF-reinforced thermoplastic composites gained
recent interest due to ease of production and recycling compared to that of thermo-
set composites, but surface treatments are used to increase the concentration of
surface functional groups and hence the fiber–polymer interfacial adhesion
[177]. Similarly, different methods of preparation for thermoset composites rely
on functionalizing the interface between various nanofillers and epoxy, which is
typically characterized by several experimental techniques [178]. Remarkably,
nowadays both experimental and modeling techniques are used in order to in-
vestigate the relationships between interfacial characteristics and composite
properties, for example, with regard to the advantages and disadvantages of co-
valent and noncovalent functionalization of CFs [179].

The second issue where materials modeling can provide some useful insights is
due to the extreme variability in the microscopic structure of composites. Different
arrangements of CFs within the composite, shape and orientation of the CF aggre-
gates and dynamics response of the microstructure due to the applied loads are just
examples of phenomena that require modeling at scales much larger than that of
individual fiber. This may appear simply as a geometrical problem, but it leads im-
mediately to (i) a significant increase in the computational demand and to (ii) a prob-
lem of model reduction in postprocessing the modeling results. The second problem is

Table 3.1: Modeling methods for computing thermophysical properties of carbon-based
nanocomposites of interest as smart materials. PDMS is polydimethylsiloxane; PVDF is
polyvinylidene fluoride.

Material Modeling
method

Properties Applications as smart
material

CNT/PDMS composite FEM Structural, mechanical
and thermal properties

Thermally driven actuator
[]

CNT/polymer composite Multiphysics
modeling

Electromechanical
properties

Strain sensor []

CNT/polymer Percolation
network model

Electrical conductivity High accuracy sensor
[, ]

PVDF/carbon fiber
composite

Multiphysics
micromechanics
and FEM

Mechanical and
piezoelectric
properties

Self-sensing and structural
health monitoring []

CNT sponge/shape
memory polymer
nanocomposite

FEM Electrical properties Fast triggering shape
memory material []

Graphene oxide (GO)/
reduced GO/water

Quantum/MD
simulations

Capacitance High-performance all-solid-
state supercapacitors []
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particularly severe, because it may hinder the opportunity to use materials modeling
for increasing the understanding of composites under realistic conditions. In fact, un-
derstanding requires squeezing a large amount of information in very simple design
guidelines. Moreover, this second problem has an indirect effect on the first problem
about affordable computational demand as well. In fact, the possibility to develop
simple interpolation models, which can summarize the outcome of more complex
models, is essential for any coupling and/or linking strategy. Concerning the latter
point, analytical simplified models, which can describe the transfer of energy, me-
chanical stresses and electricity between neighboring fibers, are highly desirable for
developing reliable predictions about percolating networks within the composites.
Nowadays, machine learning techniques and artificial intelligence offer solutions for
developing analytical interpolating functions, which can be tuned on underlying de-
tailed models and are suitable as input for up-scaled models for predicting macro-
scopic properties of the materials. These analytical functions keep some insights into
the investigated phenomena and, at the same time, are very fast and transferable in
up-scaled models, which can describe large portions of the material under investiga-
tion. This is a clear advantage with regard to previous techniques based on neural net-
works. Hence, we envision a huge impact of such techniques in dealing with realistic
simulations of carbon-based composites for engineering applications.

Finally, last but not least, carbon-based composites still raise some concerns in
terms of their toxicity, particularly when nanofibers are involved. These concerns
are about the manufacturing processes of composites, the release of nanoparticles
during operation and the end-of-life waste management. Clearly, the fact that some
nanofibers, for example, CNTs, are similar in shape and size to asbestos raises fur-
ther concern [180]. Even though materials modeling may help in assessing some
guidelines and in clarifying some scenarios, quantitative and predictive computa-
tional nanotoxicology is still far from being mainstream. However, it represents a
very interesting approach, which is currently under development in many different
fields for assessing preliminarily the impact of new nanotechnologies, and we envi-
sion that also carbon-based composites will benefit from it.
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