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Abstract: A dual soft-templating method was developed to produce highly crystalline and meso-
porous TiO2-SiO2 nanocomposites. Pluronic F127 as the structure-directing agent and pure cellulose
as the surface area modifier were used as the templating media. While Pluronic F127 served as
the sacrificing media for generating a mesoporous structure in an acidic pH, cellulose templating
helped to increase the specific surface area without affecting the mesoporosity of the TiO2-SiO2 nanos-
tructures. Calcination at elevated temperature removed all the organics and formed pure inorganic
TiO2-SiO2 composites as revealed by TGA and FTIR analyses. An optimum amount of SiO2 insertion
in the TiO2 matrix increased the thermal stability of the crystalline anatase phase. BET surface area
measurement along with low angle XRD revealed the formation of a mesoporous structure in the
composites. The photocatalytic activity was evaluated by the degradation of Rhodamine B, Methylene
Blue, and 4-Nitrophenol as the model pollutants under solar light irradiation, where the superior
photo-degradation activity of Pluronic F127/cellulose templated TiO2-SiO2 was observed compared
to pure Pluronic templated composite and commercial Evonik P25 TiO2. The higher photocatalytic
activity was achieved due to the higher thermal stability of the nanocrystalline anatase phase, the
mesoporosity, and the higher specific surface area.

Keywords: TiO2-SiO2; mesoporous; F127; high surface area; solar photocatalysis; dye degradation

1. Introduction

Water contamination from the wastewater released by the textile industries, pharma-
ceutical plants, and agrochemical and leather processing factories is one of the biggest
concerns among the various forms of environmental pollution [1,2]. A large number of
organic dyes are currently used for various purposes, e.g., Rhodamine B and Methylene
Blue as colorants and 4-Nitrophenol for manufacturing drugs and pesticides. Most of them
are highly water soluble and non-biodegradable, and therefore difficult to separate by
filtering processes. Among the various degradation techniques, photocatalytic mineraliza-
tion is one of the best environmental-friendly techniques, since other chemical/biological
processes can produce secondary byproducts [3]. Titanium dioxide (TiO2) with a stable
anatase crystalline phase is considered to be one of the best photocatalyst materials, which
is widely used in the photodecomposition of organic pollutants, wastewater treatment, and
environmental remediations [1,4–7]. A higher photocatalytic activity, long term photo and
chemical stability, low toxicity, and relatively lower cost make it an excellent candidate in
heterogeneous photocatalysis [8,9]. The basic principle of photocatalysis in TiO2 relies on
the formation of excitons (electron-hole pairs) generated by the excitation of the absorbed
photon energy that is greater than the band gap energy of TiO2 (3.0–3.2 eV) and their
migration to the catalyst surface. These photogenerated excitons may take place in the
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redox reactions where superoxide radical anions (O2
•−) and hydroxyl radicals (OH•) are

produced in the presence of oxygen and water, and later on in the process end up with the
mineralization of the organic species adsorbed on TiO2 surfaces [10–12]. The photocatalytic
efficiency of TiO2 depends on several factors such as crystalline phase, particle size, specific
surface area, and porosity [13]. The high crystallinity in TiO2 enhances the generation and
migration of the photogenerated excitons, whereas its higher surface area and mesoporosity
help to enhance its reactivity by means of increasing the active sites [10,14]. Moreover, the
higher surface area along with mesoscale porosity could trap the contaminants/molecules
into their porous and well-connected network, which could initiate the photocatalytic
reaction process very quickly.

The soft-templating route wherein non-ionic (such as triblock copolymers, Pluronic
F127, P123) [15] or ionic (such as CTAB) [16] surfactants are used as the scarifying media
for regular pore generation is the most popular way to synthesize mesoporous metal oxide
nanomaterials. After burning out these surfactants at a certain temperature, the mesoporous
structure is retained by the synthesized oxide nanomaterial. The mesoporous nanocrys-
talline TiO2, either in powder form or thin film, synthesized following this route has been
reported [17–19]. However, due to the prolonged calcination process at elevated temper-
atures, which are necessary to obtain the mesoporous structure, TiO2 often suffers from
the anatase to rutile phase transformation (due to thermal instability of the anatase phase)
that hinders its photocatalytic activity [18,20–22]. This could be avoided by incorporating
silica (SiO2) into the titania matrices [14,23–25]. Silica insertion into the TiO2 nanostructure
not only increases the thermal stability of the highly photoactive anatase phase but also
helps to prevent the mesoporous structure from collapsing [2,26–28]. Introducing cellulose
matrix as the second templating media to the triblock copolymer-TiO2-SiO2 composite
could further enhance the specific surface area and support the mesoporous structure with
a higher degree of dispersibility in aqueous media that would enhance the photocatalytic
efficiency [29]. Due to the 3D web-like nanofibrous structure of cellulose, there has been
significant interest in synthesizing cellulose-TiO2 nanocomposites, either by the immobiliza-
tion of TiO2 on cellulose or by using as template [29–33]. However, most of the preparation
methods need either multistep stages or take a prolonged period to obtain the composite
mesoporous nanostructure. In this work, we have demonstrated a quick procedure to
anchor the TiO2-SiO2-triblock copolymer composite on a cellulose (commercial filter paper)
matrix and obtain pure inorganic TiO2-SiO2 mesoporous nanostructure after burning out
the cellulose template and the copolymer as well. In this unique templating method, the
triblock copolymer acts as the structure-directing and mesopore-generating agent, whereas
the SiO2 counterpart fixes the thermal stability of the anatase phase and the mesostructure,
and finally the cellulose templating enhances the specific surface area and porosity. The
obtained TiO2-SiO2 nanocomposites showed excellent thermal stability of the anatase phase
and a higher photocatalytic efficiency as compared to the commercial P25 TiO2.

2. Materials and Methods
2.1. Preparation of the Photocatalyst

All the reagents involved in the catalyst synthesis were used as received without
making any further modifications. Triblock copolymer Pluronic F127 (EO106 PO70 EO106,
average molecular weight 12.6 kDa, Sigma-Aldrich, Saint Louis, MO, USA), titanium
tetraisopropoxide (Ti(OiPr)4, TTIP, 97%), tetraethoxysilane (Si(OC2H5)4, TEOS, 97%, Sigma-
Aldrich, Saint Louis, MO, USA), hydrochloric acid (HCl, 37–38%, J.T. Baker), and Whatman
filter paper (qualitative, grade 595) were used as the reagents. Commercial P25 TiO2
nanopowder was purchased from Evonik Resource Efficiency GmbH (Hanau-Wolfgang,
Hesse, Germany). First, TiO2-SiO2 composites with different TiO2/SiO2 weight ratios were
synthesized according to our previous work with a little modification [34]. As in a typical
synthesis of TS82, the required amount of F127 (0.012 M of oxides) was dissolved in 600 g
of 2 M HCl and 150 g of water with vigorous stirring. After obtaining a clear solution,
TEOS was added drop wise followed by stirring for 1 h and then TTIP was slowly added
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to the mixture followed by overnight stirring for a hydrolysis-condensation reaction. Then,
the mixed sol was transferred to a polypropylene bottle and kept in an oven at 80 ◦C for
48 h. Then, the solid precipitate was separated and dried to form the xerogel, followed by
calcination at 550 ◦C for 6 h with a heating and cooling rate of 1 ◦C/min to remove the
organic contents. It is to be noted that the highest photocatalytic efficiency was achieved
with the TS82 sample [35] (Figure S3, Table S2), so only this composition was chosen to
prepare the cellulose-TiO2/SiO2 nanocomposite, which is denoted as TS82C throughout
this article. To obtain this, the filter papers were cut into pieces and impregnated during
the hydrolysis–condensation process and followed the procedure as described above with
the similar heating cycle. After removal of all organics, thin flakes of TS82C with bright
white colour were obtained.

2.2. Characterizations

Crystalline phases of the nanocomposite powder samples were characterized by wide
angle (10–80◦ 2θ) X-ray diffraction (XRD) spectrometry performed on a Rigaku Ultima
X-ray diffractometer using CuKα radiation (λ = 1.5406 Å) operating at 40 kV/30 mA with
a step size of 0.02◦. The low angle (0.3–10◦ 2θ) XRD pattern (GIXRD) was collected with
a Rigaku SmartLab diffractometer operating at 9 kW. Thermogravimetric analysis (TGA)
was carried out with a Mettler thermo-analyzer (Mettler Toledo, Star system) at a heating
rate of 5 ◦C/min in an air atmosphere. FTIR spectra of the obtained composite was carried
out with a JASCO FTIR-6300 over the range of 4000–400 cm−1 with a resolution of 4 cm−1

and accumulating 256 scans for each measurement adopting the KBr disc method. Raman
spectral measurements (FT-Raman) of the powders were performed on a JASCO RFT-6000
Raman attachment by using a 1064 nm CW 500 mW laser source and spectral resolution of
4 cm−1. Surface area and porosity of the samples were measured from nitrogen adsorption–
desorption isotherms at liquid nitrogen temperature (77 K) by using a Quantachrome
NOVA 2200e surface area and pore size analyzer. Before each measurement, the powder
samples were degassed overnight at 423 K under nitrogen flow. The specific surface area
was calculated by the multipoint BET (Brunauer–Emmett–Teller) equation from the N2
adsorption branch of the isotherm in the relative pressure range of 0.05–0.35. The pore
size distribution was calculated using the Barret–Joyner–Halenda (BJH) method from
the desorption branch of the isotherm. FESEM measurements were performed with a
Zeiss Sigma VP (Carl Zeiss, Jena, Germany) field emission scanning electron microscope.
Transmission electron microscopic (TEM) analyses were performed with a JEOL JEM-1011
transmission electron microscope operating at 100 kV and equipped with a 7.1-megapixel
CCD camera (Orius SC1000, Gatan, Pleasanton, CA, USA). The TEM micrographs were
processed with Gatan’s Digital Micrograph (DM) software. Average particle size was
determined by counting 50 particles from two different micrographs.

2.3. Photocatalytic Experimental Set Up

Photocatalytic efficiency of the synthesized nanocomposites was tested by observing
the degradation of rhodamine B (RhB), methylene blue (MB), and 4-Nitrophenol (4NP)
aqueous solution under solar light irradiation (A single 300 W tungsten lamp with spectral
irradiance of 13.6 W/m2 and 41.4 W/m2 in the wavelength range of 315–400 nm and
380–780 nm, respectively). The distance from the bottom of the lamp to the upper level
of the dye solution was maintained at about 30 cm. In each case, prior to the solar light
exposure, the composite powder samples (1 g/L) were dispersed in respective aqueous
solutions of the dye molecules (200 mL, 15 × 10−6 M) and stirring was continued for 18 h
in dark conditions to ensure the adsorption–desorption equilibrium. Then, they were
kept under solar light irradiation and stirred constantly, and aliquot amounts (1 mL) of
the irradiated solutions were extracted at 5 min intervals. Photocatalytic decomposition
was monitored by measuring the absorption band of the respective dye solutions with an
Agilent Cary 5000 series UV-Visible spectrophotometer. In all cases, prior to the optical
measurement, the catalysts were separated from the solution by high-speed centrifugation.
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3. Results and Discussion
3.1. Thermogravimetric Analyses and FTIR

The thermal decomposition behavior of the cellulose-titania/silica composite was
investigated by thermogravimetric analysis (TGA), which is presented in Figure 1a. The
TGA curve shows a gradual weight loss with an increasing calcination temperature. A
small weight loss (3.45%) below 110 ◦C is seen at the first step, which is due to the loss of
some volatile species such as water, ethanol/propanol, and HCl [19,36]. Then, an 18.8%
weight loss was observed in the temperature range of 200–254 ◦C, which stems from the
decomposition of the F127 template [20,37]. The steep decrease (weight loss 49.61%) up to
340 ◦C could be due to the carbonization of the cellulose template [30,32,38]. The weight
loss (13.64%) at the final step from 340–420 ◦C could be attributed to the decomposition
of some residual hydroxyl group or oxidation of the carbonaceous species and possibly
the transformation of amorphous titania to anatase phase [19,38]. After that, no changes in
weight loss were observed, indicating the complete removal of both the templates and high
temperature stability of the nanocomposite. As we have performed thermal treatment at
550 ◦C, no organic residue was present in our sample.
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The elimination of the organic templates from the composite sample after the calcina-
tion and determination of the structural information of TiO2-SiO2 was further supported
by FTIR measurement. The FTIR spectra of the as prepared composite and after calcination
at 550 ◦C are shown in Figure 1b. The as prepared sample (curve 1) shows a strong band
around 3400 cm–1 due to the stretching vibration of hydroxyl groups coming from both the
cellulose and TiO2/SiO2 matrices [30,37,39]. Other bands appeared at 2886, 1240–1490, 1158,
and 1056 cm−1 could be assigned to CH, CH/COO/CH2/CH3, CO, and CO vibrations
of the cellulose template [40,41]. It is noteworthy that the Si–O–Si asymmetric stretching
band at 1086 cm–1 is superimposed by the strong C–O–C stretching vibration at 1110 cm–1

arising from the Pluronic template [42,43]. All the bands related to the organic species
are indicated in Figure 1b. After annealing at 550 ◦C, all the bands related to the organic
species disappeared, confirming their decomposition from the composite. At this stage,
a new wide band centered at 668 cm–1 arose, which can be assigned to the characteristic
stretching vibration of Ti–O–Ti coming from TiO2 [39,44,45]. Another band at 465 cm–1

could be due to the Si–O–Si/Ti–O–Ti network of the composite. The strong appearance
of the inorganic framework (Si/Ti–O–Si/Ti) at the lower wavenumber indicates the high
degree of condensation in the inorganic network after the heat treatment [37].

3.2. Nanocrystalline Phase Composition and Mesoporosity

The crystalline nature and corresponding phase composition of the mixed nanocom-
posite was investigated using the powder XRD diffraction method and is shown in Figure 2a.
All the diffraction peaks are assigned with their respective ‘hkl’ parameters and were in-
dexed as 25.32◦ (101), 36.98◦ (103), 37.84◦ (004), 38.56◦ (112), 48.05◦ (200), 53.98◦ (105),
55.12◦ (211), 62.79◦ (204), 68.84◦ (116), 70.31◦ (220), 75.15◦ (215), and 76.06◦ (301), which cor-
respond to their pure anatase crystalline phases [45–47] (JCPDS No 84-1286). The average
crystalline size calculated from XRD (Using Scherrer’s formula, considering the strongest
diffraction peak related to the 101 plane) was found to be 15.4 nm. The inset of Figure 2
shows the low-angle XRD pattern of the heat-treated sample where a strong reflection
appears along with two other weaker reflections in the 2θ range of 0.5–2.5◦ with d spacings
of 139.6, 98.07, and 68.96 Å. These peaks have d spacing ratios of ~

√
2:
√

4:
√

8, which can be
indexed as (110), (200), and (220) reflections, respectively, corresponding to the cubic Im3m
space group [43,48,49] with the lattice constant a = 197.4 Å. These data confirm the forma-
tion of SBA-16 type cubic mesoporous structures in our samples, which are expected when
Pluronic F127 (EO106PO70EO106) triblock copolymer is used as a structure-directing agent.

The result obtained in the XRD regarding the acquisition of a pure anatase crystalline
phase is further supported by the Raman spectral measurement of the TS82C powder
sample heat treated at 550 ◦C, shown in Figure 2b. The spectrum shows strong and well-
resolved bands at 150, 201, 401, 516, 520 (superimposed with 516 cm−1 band), and 643 cm−1,
which can be attributed to the six characteristic Raman-active modes of anatase crystalline
phase with the symmetries of Eg, Eg, B1g, A1g/B1g, and Eg, respectively [46,48,50]. No other
bands were observed, due to either the rutile or brookite crystalline phases [45].

The mesoporosity of the calcined TiO2/SiO2 nanocomposites was investigated by
Brunauer–Emmett–Teller (BET) surface area measurements. The N2 adsorption–desorption
isotherms along with BJH pore-size distribution of calcined TS82 and TS82C are presented
in Figure 3. The data for the commercial P25 TiO2 powder is also shown for comparison.
The full sets of data corresponding to the BET characterization of the mixed oxides with
varying TiO2/SiO2 ratios are provided as Supporting Information (Figure S1, Table S1). All
the plots show a type IV N2 sorption isotherm, which is characteristic of the mesoporous
structure [44,51–53]. Interestingly, the pure silica sample (Figure S1, sample TS01) displayed
a more prominent H1 type hysteresis with a steep slope at a higher relative pressure due
to capillary condensation in the mesopores, reflecting the formation of highly ordered
mesopores and interparticle voids between the primary particles [52,54]. However, when
increasing the amount of TiO2 the hysteresis loop became wider, which is believed to be
due to the presence of heterogeneous mesopores. This is evidenced by the multimodal
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appearance and broadening of the BJH pore size distribution with the increasing amount
of TiO2 content (Figure S1, plot b). The pore size increased from 3.42 to 16.72 nm for
the TS01 (SiO2) and TS10 (TiO2) samples, respectively. Consequently, the specific surface
area also decreased from 553.31 (TS01) to 53.97 m2g−1 (TS10) with the increasing wt% of
TiO2 (Table S1), which can be explained by the expansion of the pore size along with an
increasing crystal size (Wide angle XRD analyses showed crystal size of 15.74 nm for TS73
and 17.55 nm for TS10) [52]. Now, if we compare BET analyses between TS82 and TS82C,
the advantage of cellulose templating can be directly evaluated. TS82 displayed a specific
surface area of 165.93 m2g−1, whereas for TS82C it was 186.82 m2g−1. Any significant
changes in pore size distribution or pore volume were not noticed as reported in Table 1. So,
the cellulose templating acted as the enhancer of the surface area of the composite, which
in fact increased the photocatalytic efficiency (discussed later).
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Figure 2. (a) Powder XRD pattern of the TS82C nanocomposite annealed at 550 ◦C. The inset shows
low angle XRD pattern, where the hkl planes of the corresponding diffraction peaks along with the
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inset) of TS82, TS82C nanocomposite calcined at 550 ◦C and P25 commercial (Evonik) TiO2 powder.

Table 1. BET surface area parameters of the respective samples.

Sample a SBET (m2g–1) b Dav (nm) c V (cm3g–1)
d Wxrd e Dxrd

WA WR

TS82C 186.82 3.84 0.41 1.0 0 15.40
TS82 165.93 3.78 0.38 1.0 0 15.99
P25 38.25 7.61 0.17 0.84 0.16 22.16

a Specific surface area derived from the adsorption isotherm (P/P0, 0.10−0.35). b, c Average pore diameter and pore
volume calculated using BJH method from the desorption isotherm. d Anatase (WA) and rutile (WR) crystalline
phase composition obtained from xrd analyses: WA = [1 + 1.26 (IR110/IA101)]−1; WR = [1 + 0.8 (IA101/IR110)]−1,
IA101 and IR110 represents the integrated intensity of anatase (101 plane) and rutile (110 plane) diffraction peaks,
respectively. e Average crystallite size estimated from the Scherrer’s equation, Dxrd = kλ/βCosθ, where k is
the shape factor (0.9), λ is the X-ray radiation wavelength (0.154 nm), β is the full width at half maxima of the
corresponding Bragg angle (θ).

3.3. Microstructural Characterizations

The surface morphology of the TS82C composite was characterized by FESEM anal-
yses, which is presented in Figure S2. The sample before calcination showed small sized
nanoparticle formations grown along the cellulose microfibril’s surface (Figure S2a,b),
whereas after calcination the fibrous assembly disappeared leaving a porous structure
where TiO2 nanoparticles with an average size of 20–30 nm are distinctly visible (Figure S2c,d).
To further analyze the microscopic particle structure and the arrangement of TiO2/SiO2,
TEM measurements were performed on the calcined TS82C composite. Figure 4a shows
the low magnification bright field image of TS82C, where two different contrasts are clearly
distinguishable. Spherical TiO2 nanoparticles with average size of about 20 nm could be
identified from the dark contrast, whereas the lighter contrast corresponds to the amor-
phous silica support, forming a core-shell-like assembly, which is similar to the microscopic
structure of TiO2@SiO2 composite reported by Yuan et al. [55]. So, it can be concluded that
the nanocrystalline TiO2 particles are well dispersed into the surrounding mesoporous
silica matrix, which also prevents the aggregation of TiO2 particles thus contributing to a
higher surface area. Figure 4b,c show the high resolution images, where highly crystalline
TiO2 particles with an anatase phase are observed. This is also supported by the formation
of high contrast diffraction rings presented in Figure 4d that closely matched the lattice
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parameters obtained from the XRD result (Table 2). It is also noteworthy to observe some
pores with diameter ranging from 3 to 4 nm (Figure 4b) that resemble the mesoporous
structure of the TS82C nanocomposite supported by the BET measurements (Table 1),
where an average pore diameter of 3.84 nm was observed.
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diffraction (SAED) pattern taken from image (c). The lattice spacing of the respective rings numbered
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Table 2. Lattice parameters of the nanocrystalline TS82C calculated from SAED (Figure 4d) and XRD
pattern (Figure 2a).

Diffraction Ring Number a Lattice Spacing (d, Å) Miller Indices (hkl) b dXRD (Å)

1 3.50 101 3.51
2 2.34 004 2.36
3 1.87 200 1.89
4 1.68 105 1.69
5 1.47 204 1.47
6 1.34 220 1.33
7 1.26 215 1.27

a Calculated using the camera equation, d = λL/R, where λ is the wavelength of accelerated electron, L is the
camera constant, and R is the radius of the corresponding diffraction ring. b Interplanar spacings obtained from
2θ values of the X-ray diffractogram (Figure 2).
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3.4. Photocatalytic Activity

The photocatalytic activity of the TiO2/SiO2 composite samples was evaluated by the
decomposition of three kinds of model pollutants, namely rhodamine B (RhB), Methylene
blue (MB), and 4-Nitrophenol (4NP). Although RhB and MB dyes have been extensively
studied as model pollutants that are commonly used in textile industries, Buriak et al. [56]
suggested the inclusion of phenols as the model pollutant to compare the photodegra-
dation efficiencies as the complete photodegradation of phenolic compounds is quite a
difficult task. In fact, it is demonstrated that the reaction rate constant is much lower for
4NP (K value 0.025 min−1) compared to RhB (K value 0.082 min−1) and MB (K value
0.188 min−1). The reaction parameters along with the half-life time are reported in Table 3.
Degradation tests following the similar conditions were also performed with commercial
P25 TiO2 powder to compare the results. Figure 5a1,b1,c1 show the degradation kinetics
of RhB, MB, and 4NP, respectively. The evolution of the optical absorption spectra un-
der light illumination of each pollutant performed with TS82C and P25 is shown in the
(Supporting Information Figures S4–S6). It is clearly observed that in each case, the kinetic
rate of dye degradation for TS82C is much higher than P25 TiO2, which is well pronounced
for its very high photocatalytic nature. It is also noteworthy that the degradation efficiency
of TS82C is much higher in case of MB with a rate constant of 0.188 min−1, and the lowest
calculated half-life time of 3.68 min that might be due to the higher adsorption of MB
on TS82C surfaces that triggers the photocatalytic activity by providing more active sites
(Figure S5). As shown in Figures S4–S6, it is observed that the adsorption capacity of TS82C
is much higher for RhB and MB dye molecules, whereas there is minimal adsorption for
the 4NP dye molecules. This can be explained by the electrostatic interaction between the
catalyst surface and the dye molecules. Having many hydroxyl groups present on the
TS82C surface (evidenced from the FTIR spectra, Figure 1b) we can assume that in a near
neutral environment, it would display surface negativity [57], thus attracting and trapping
the cationic dye molecules into the porous network and consequently increasing the pho-
todegradation efficiency. On the other hand, under identical experimental conditions, 4NP
shows a tendency to exist in an anionic form [57], thus repelling the negatively charged
TS82C surface showing poor adsorption and hence a lower photodegradation efficiency.

Table 3. Kinetic parameters of Rhodamine B, Methylene Blue and 4-Nitrophenol obtained from the
photodegradation experiments performed with TS82C and P25 TiO2.

Sample
Rhodamine B Methylene Blue 4-Nitrophenol

aK b t1/2
c R2 aK b t1/2

c R2 aK b t1/2
c R2

TS82C 0.082 8.45 0.98 0.188 3.68 0.97 0.025 27.72 0.88
P25 0.045 15.40 0.99 0.023 30.13 0.99 0.008 86.64 0.97

a Reaction rate constant, min−1. b Half-life time of the respective organic dyes in minute calculated using the
relation t1/2 = ln2/K, where K is the apparent reaction rate constant. c Coefficient of determination.

The reusability of the TS82C is reported in Figure 6, where three consecutive runs
were performed using RhB, MB, and 4NP dyes. Although RhB and MB showed good
consistency (4.8% and 12.2% less efficiency for 2nd and 3rd consecutive runs in case of RhB;
3.2% and 5.3% less efficiency for 2nd and 3rd runs in case of MB), a much lower efficiency
was observed for 4NP with an increasing no. of runs (12% and 28% less efficiency for 2nd
and 3rd run, respectively). A comparative study on the photocatalytic efficiency of various
TiO2/SiO2 nanostructures is reported in Table S3. Although photocatalytic efficiency
depends on various factors, such as light intensity, illumination, emitting wavelength,
catalyst doses, dye concentration etc., Table S3 suggests that TS82C could perform well
compared to those reported by the other researchers, particularly in solar photocatalysis.
Despite having a lower reaction rate constant for 4NP compared to RhB and MB, TS82C
shows a better performance than that reported for 4NP photodegradation [3,58]. Previous
works on photocatalytic dye degradation suggest that the entrapment of the semiconductor
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photocatalysts in amorphous silica matrix enhance the photoactivity [55]. Therefore, we
can assume that the mesoporous nature and high surface area of TS82C play the key roles in
photodegradation process. This is also evidenced from the much higher photodegradation
efficiency of MB, where a higher adsorption was observed (Figure S5). Additionally, the
stable anatase crystalline phase in TS82C provides a longer lifetime to the photogenerated
electron-hole pairs and favors the adsorption site of the superoxide anions, which also
contribute to the photocatalysis. The photogenerated charge carrier separation scenario
within the TS82C nanocomposite was verified by the photoluminescence (PL) study and the
PL spectra of TS82C and P25 TiO2, as shown in Figure S7, where a relatively lower intensity
of the PL spectra is observed for TS82C compared to P25 TiO2. The lower PL signal suggests
that the photogenerated electrons are trapped within the porous TS82C nanocomposite and
transferred to the photocatalytic system, contributing to a higher photocatalytic efficiency.
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4. Conclusions

We have successfully synthesized cellulose and Pluronic F127 templated mesoporous
TiO2/SiO2 nanocomposites with a higher specific surface area and higher thermal stability
of the nanocrystalline anatase phase. An optimum level of silica incorporation (20% by
weight) improved the anatase nanocrystalline phase stability, where cellulose/F127 soft-
templating increased the mesoporosity while preserving the higher surface area. All the
templating media were removed by thermal decomposition at 550 ◦C, as seen from the
TGA/FTIR spectra; thus, a pure TiO2/SiO2 nanocomposite was obtained. The highly crys-
talline spherical TiO2 particles were dispersed in a mesoporous silica structure as revealed
by TEM analyses. The composite sample showed much higher photocatalytic efficiency
than TiO2/SiO2 without the cellulose templating, and so did the standard reference catalyst
P25 TiO2. The photodegradation efficiency was tested against RhB, MB, and 4NP dyes
under solar light irradiation. It could be said that the higher photocatalytic efficiency
was achieved due to (i) the higher specific surface area, (ii) the formation of mesoporous
structure, and (iii) the highly stable nanocrystalline anatase phase. The composite sample
was not only effective against the commonly used dyes (RhB, MB), but also successfully de-
composed nitro-aromatic compound (4NP), for which additional co-catalysts are required
in the case of photodegradation. Since natural cellulose was used as a second templating,
the catalyst powders could be prepared in large scale and eventually extended to synthe-
size other semiconductor photocatalysts and could find applications in water remediation
technology and solar photocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12070770/s1, Table S1. Physicochemical properties of the
TiO2/SiO2 composites; Figure S1. (a) N2 adsorption–desorption isotherms and (b) pore size distribu-
tion plots of composite powders with different TiO2/SiO2 weight ratios; Figure S2. FESEM images of
TS82C, (a, b) As prepared composite after drying, (c, d) after calcination at 550 ◦C; Figure S3. Photo-
catalytic degradation of RhB dye (15 × 10−6 M) with different TiO2/SiO2 photocatalysts; Table S2.
Parameters of RhB dye degradation kinetics with different TiO2/SiO2 composites; Figure S4. Optical
absorption spectra of RhB dye (15× 10−6 M) with solar light exposure time performed with (a) TS82C
and (b) P25 photocatalysts. The adsorption–desorption equilibrium was determined after stirring
of 18 h at the dark; Figure S5. Optical absorption spectra of MB dye (15 × 10−6 M) with solar light
exposure time performed with (a) TS82C and (b) P25 photocatalysts. The adsorption–desorption
equilibrium was determined after stirring of 18 h in dark; Figure S6. Optical absorption spectra of
4NP compound (15 × 10−6 M) with solar light exposure time performed with (a) TS82C and (b) P25
photocatalysts. The adsorption–desorption equilibrium was determined after stirring of 18 h in dark;
Figure S7. Photoluminescence (PL) spectra of TS82C nanocomposite (Red line) and P25 TiO2 (Black
line) measured on Horiba JOBIN YVON Fluoromax-P PL spectrophotometer using 365 nm as the
excitation wavelength; Table S3. Comparative study of the photocatalytic activity with different
TiO2/SiO2 photocatalysts [59–66].
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