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ABSTRACT Fleet management plays a central role in several application contexts such as distribution
planning, mail delivery, garbage collection, salt gritting, field service routing. Since road congestion has a
big impact on driving times, fleet management can be enhanced by taking into account data on current traffic
conditions. Today, most carriers gather high-quality historical traffic data by using global position system
information. These data serve as an input for defining time-dependent travel times, i.e. travel times changing
according to traffic conditions throughout the day. Given a fixed-size fleet of vehicles and a graph with arc
traversal times varying over time, Time-Dependent Vehicle Routing Problems aim to select the best routes
while minimizing the travelling costs. The basic version with only one route is usually referred to as the
Time-Dependent Travelling Salesman Problem. The main goal of this work is to define tight upper bounds
for this problem by reusing the information gained when solving instances with similar features. This is
customary in distribution management, where vehicle routes have to be generated over and over again with
similar input data. To this aim, the authors devise an upper bounding technique based on the solution of
a classical (and simpler) time-independent Asymmetric Travelling Salesman Problem, where the constant
arc costs are suitably defined by the combined use of a Linear Program and a mix of unsupervised and
supervised Machine Learning techniques. The effectiveness of this approach has been assessed through a
computational campaign on the real travel time functions of two European cities: Paris and London. The
overall average gap between the proposed heuristic and the best-known solutions is about 0.001%. For 31
instances, new best solutions have been obtained.

INDEX TERMS machine learning, path ranking invariance, time-dependent routing, travelling salesman
problem

I. INTRODUCTION

The purpose of this article is to present a Machine Learning
(ML) enhanced upper-bound for the Time-Dependent Trav-
elling Salesman Problem (TDTSP), defined as follows. Let
G := (V ∪ {0}, A, τ) denote a time-dependent directed
complete graph, where V = {1, . . . , n} is the set of cus-
tomers, vertex 0 is the depot and A := {(i, j) : i ∈ V, j ∈
V }
⋃
{(0, i) : i ∈ V }

⋃
{(i, 0) : i ∈ V } is the set of arcs.

With each arc (i, j) ∈ A is associated a travel time function
τij(t), representing the travel time of (i, j) if the vehicle
leaves node i at time t. The TDTSP amounts to determine
a least duration tour visiting each customer once, with the
vehicle leaving the depot at time 0.

In recent years there has been a flourishing of scholarly
works in time-dependent routing. In routing problems, travel
time is a non linear function of average travel speed, which
may vary exogenously or endogenously. Today, most carriers
gather high-quality historical traffic data by using global
position system information. These data serve as an input
for defining travel times modelling travel speed changes
due to exogenous events, like traffic congestion and weather
conditions. On the other hand, in routing problems travel
speeds may also vary endogenously whenever the decision
maker can prescribe the vehicles’ speeds, e.g. in order to take
into account energy consumption [1] or CO2 emissions [2].
The present contribution deals with time-dependent routing
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problems where time-varying travel time aims to model traf-
fic conditions throughout the day. In the following, it has been
presented a brief review of contributions related to TDTSP.
For a complete survey see [3]. Reference [4] represented the
first one to address the TDTSP and devised a Mixed Inte-
ger Programming (MIP) model. An approximate dynamic
programming algorithm was proposed in [5], whereas two
heuristics has been developed in [6]. A simulated annealing
heuristic was proposed in [7] and some metaheuristics were
proposed in [8]. In [9] the authors exploited some properties
of the TDTSP, in order to develop a lower and upper bound-
ing algorithm. Moreover the authors proposed a MIP model
for which they devised valid inequalities. The separation
procedures for the proposed inequalities were then embedded
into a branch-and-cut algorithm that solved instances with
up to 40 vertices. In [10], some properties of the problem
are derived as well as a branch-and-bound algorithm. The
computational campaign showed that the proposed approach
outperforms the branch-and-cut procedure by [9]. Reference
[11] proposed a Constraint Programming solution approach.
This algorithm, thanks to new global constraints, was able
to solve instances with up to 30 customers. Recently, a
parameterized family of lower bounds has been proposed
by [12], where the setting of parameters are carried out by
fitting the traffic data. The performance of lower bounding
mechanism was evaluated by embedding it in a branch-and-
bound procedure. The computational campaign showed that
it was possible to determine the optimal solution for a larger
number of instances than [10]. Several contributions studied
a variant of TDTSP with Time Windows (TDTSPTW). The
approach proposed in [13] is based on a transformation of
the TDTSPTW into an Asymmetric Generalized TSP and
then into an Asymmetric Graphical TSP, solved by a known
exact algorithm for the Mixed General Routing Problem.
Contribution [14] aims to extend results provided in [9] to
deal with time windows. The authors demonstrated that a
lower bound and an upper bound for the original TDTSPTW
can be derived from the optimal solution of an Asymmetric
TSPTW with suitably defined travel times and time windows.
The proposed bounds are integrated into an exact branch-
and-bound algorithm. A new formulation and branch-and-
cut algorithm is devised in [15]. Reference [16] proposed a
solution approach relying on a dynamic discretization dis-
covery framework, which is based on integer programming
formulations defined on (partially) time expanded networks.
Reference [17] deals with a heuristic solution algorithm for
the TDTSPTW, named Iterated Maximum Large Neighbor-
hood Search. The algorithm starts from a given solution,
which tries to improve iteratively by applying destroy and
repair operators. Some customers are then randomly shifted
during a perturbation phase. Other contributions examine
other variants of the TDTSP. In [18] exact and approximate
algorithms are proposed for the Moving-Target TSP, where a
set of targets, moving at constant speed, has to be intercepted
in minimum time by a pursuer. Reference [19] addressed
the Robust TSP with Interval Data, where travel times cor-

respond to ranges of possible values. Finally, it is worth
noting that there are contributions dealing with a scheduling
problem referred to as TDTSP. Given a single machine and a
set of jobs, it aims to determine a sequence of jobs, where the
processing times are position-dependent. Such contributions
are not relevant for the present contribution.

The contribution of this paper also lies at the boundary
between machine learning and combinatorial optimization.
Following the classification introduced in [20], there are
different algorithmic structures, where learning components
and OR algorithms can be laid out. It is worth noting that
solving the TSP through ML is not new. Several contributions
follows the end-to-end learning algorithmic structure, i.e.
determine approximate TSP solution in a pure data-driven
fashion by training the ML model to output solutions directly
from the input instance. Reference [21] tackles Euclidean
TSP with deep learning and introduces the pointer network
wherein an encoder, namely a recurrent neural network, is
used to parse nodes in the input graph and produces an
encoding (a vector of activations) for each of them. Then a
decoder predicts a policy for prescribing the next possible
move so that to sample a permutation of visited cities. This
method makes it possible to use the network over different
input graph sizes. The authors train the model through super-
vised learning with precomputed TSP solutions as targets. A
similar model is used in [22] and trained with reinforcement
learning using the negative tour length as a reward signal.
The authors discuss some limitations of supervised learning,
such as the need to determine optimal TSP solutions (the
targets), that in turn, may be ill-defined when those solutions
are not optimal, or when there are multiple solutions. The
reference [23] devised a three-step procedure, starting with
a semantic feature extraction from the MIP model of the
TSP. The extracted features are then exploited to derive
a neighborhood design mechanisms. Finally an automatic
configuration phase finds the proper mix of such mechanisms
taking into account the instance distribution. The contribution
[24] provides a comparative analysis of ML-based heuristics
for the classical (time-invariant) Travelling Salesman Prob-
lem. To the best of these authors’knowledge, contribution
[25] is the only attempt to use ML to solve a time-dependent
routing problem. In particular, the authors showed how to
embed ML techniques in a simple constructive heuristic
for the TDTSP. Computational results of [25] demonstrated
that the proposed algorithmic approach is promising in real-
time settings, where speed updates and/or arrivals of new
requests may lead to re-optimization of the planned route.
As thoroughly discussed in Section VI, the upper bounding
procedure outperforms the heuristic proposed in [25], in
those non-real-time settings where it is considered reasonable
to wait half a minute to obtain high quality TDTSP solutions.
Following the classification of [20], the algorithmic struc-
ture adopted in this contribution is refereed to as learning
to configure algorithms, where machine learning is used
to augment an operation research algorithm with valuable
pieces of information. In particular, it is proposed an upper
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bounding technique inspired by the new findings of the recent
paper [26], where the authors studied a property of time-
dependent graphs, dubbed path ranking invariance. Given
a time-dependent graph if the ordering of its paths (w.r.t.
travel time) is independent of the start travel time, then the
graph is path ranking invariant. The authors showed that,
when a graph is path ranking invariant, a relevant class of
time-dependent vehicle routing problems (with continuous
piecewise travel times), including the TDTSP, can be solved
by determining the optimal solution of their (simpler) time-
independent counterpart. The authors demonstrated that the
ranking invariance property can be checked by solving a
(large) Linear Programming (LP) problem. If the ranking
invariance check fails, they proved that a tight lower bound
can be derived from the obtained LP solution.

This paper shows how the new findings of [26] can be
further generalized for determining tight upper bounds for
the TDTSP, with time-dependent travel times satisfying the
FIFO property, but not (necessarily) continuous-piecewise
linear. The main idea is to determine a heuristic solution by
solving the TDTSP on an auxiliary time dependent graph,
which satisfies the path ranking invariant property. The travel
time functions of the auxiliary graph are determined by
generalizing the LP-based approach proposed in [26]. In
order to obtain a fast computation of the auxiliary travel
time functions, the predictive component of a supervised
ML technique has been exploited. Indeed, the ultimate goal
is the fast computation of tight upper bounds, in those
settings, customary in distribution management, in which
similar instances are solved over and over again. As stated
in [20], a company does not care about solving all possible
TSPs, but only theirs. Therefore, instead of starting every
time from scratch in the definition of the auxiliary graph,
a learning mechanism has been inserted in such a way the
upper bounding procedure can take advantage from previous
runs on other (similar) instances. To this aim, the LP-based
approach of [26] is boosted with a mix of supervised and
unsupervised techniques.

The main contributions can be summarized as follows.

• An upper bounding procedure is proposed based on a
combinatorial relaxation of the TDTSP, where time-
dependent travel times satisfy the FIFO property, but are
not (necessarily) continuous-piecewise linear.

• It is devised an automatic procedure for determining the
parameters of the combinatorial relaxation, based on the
combined use of a Linear Program and a mix of super-
vised and unsupervised Machine Learning techniques.

• It is generated a set of problem instances based on a
real road network to show how the proposed heuristic
approach can learn from past data to solve the TDTSP
in an efficient and effective manner.

The paper is organized as follows. Section II provides a
problem definition and some background information on the
study area. Section III gives an overview of the whole solving
method. Section IV introduces a parameterized family of

upper bounds computed by solving the TDTSP on suitably
defined auxiliary time-dependent graphs. Such family of
upper bounds gives rise to an optimization problem aiming to
determine the parameter providing the best (minimum) upper
bounds. Section V proposes a ML-based heuristic approach
for solving such optimization problem. Section VI discusses
computational experiments on instances derived from the
graphs of two European cities (London and Paris). Finally,
Section VII draws some conclusions.

II. PROBLEM DEFINITION AND BACKGROUNDS
Let [0, T ] denote the time interval associated to a single
working day. Without loss of generality it is supposed that
the travel time functions are constant in the long run, that is
τij(t) := τij(T ) with t ≥ T . Furthermore, it is assumed that
first-in-first-out (FIFO) property holds for the traversal time
τij(t), i.e., leaving the vertex i later implies arriving later at
vertex j. For the sake of notational convenience, τ(i, j, t) is
also used to designate τij(t).

For any given path pk := (i0, i1, . . . , ik), the correspond-
ing duration z(pk, t) can be computed recursively as:

z(pk, t) := z(pk−1, t) + τik−1ik(z(pk−1, t)), (1)

with the initialization z(p0, t) := t. Therefore, a compact
formulation of the TDTSP is :

min
p∈P

z(p, 0).

where P denotes the set of Hamiltonian tours on the time
dependent graph G := (V ∪ {0}, A, τ). Algorithms devel-
oped for the classical time-invariant TSP requires essential
structural modifications in order to take into account time-
varying travel times. Although time-dependent travel times
have an impact on the ranking of solutions, they pose a
difficulty for checking feasibility of solutions, only for those
variants of TDTSP where it is required the fulfillment of
time windows. Therefore, a quite natural way of defining
a heuristic solution approach is to determine the optimal
solution of a classical Asymmetric TSP (ATSP), defined on
a graph Gc = (V ∪ {0}, A, c) where c : A → R+ is
a time-invariant (dummy) cost function. The main issue in
this approach is how to determine a time-invariant (dummy)
cost function that mimics in an effective manner the solutions
ranking of the original TDTSP. In this respect, it can be
proved that there always exists a time-invariant (dummy) cost
function such that a least duration route of TDTSP is also a
least cost solution of the TSP defined on the time-invariant
graph Gc, which motivates the following definition.

Definition 1 (Valid cost function). A time-invariant cost
function c : A → R+ is valid for the TDTSP defined
on G = (V ∪ {0}, A, τ), if the least duration solution
p∗ = min

p∈P
z(p, 0) corresponds to a least cost solution of the
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time-invariant ATSP defined on Gc = (V ∪ {0}, A, c), that
is:

arg min
p∈P

∑
(i,j)∈P

c(i, j) = arg min
p∈P

z(p).

Given a cost function valid for an instance of the TDTSP,
the least duration solution p∗ can be determined by exploiting
algorithms developed for (classical) time invariant ATSP. In
[26] the authors studied the relationship between the concept
of valid cost function and a property of time-dependent
graphs called path ranking invariance.

Definition 2 (Path ranking invariance). A time-dependent
graph G is path ranking invariant, if for any pair of paths p′

and p′′ of G holds either:

z(p′, t) ≥ z(p′′, t) ∀t ≥ 0,

or
z(p′′, t) ≥ z(p′, t) ∀t ≥ 0.

Since travel time functions are constant in the long run, if
a time-dependent graph G = (V ∪ {0}, A, τ) is path ranking
invariant then a valid cost function is c(i, j) = τij(T ).

A. THE AUXILIARY GRAPH
The proposed heuristic algorithm is based on the definition
of an auxiliary path ranking invariant graph G = (V ∪
{0}, A, τ) where each τ ij(t) is an approximation of τij(t),
with (i, j) ∈ A. Each continuous piecewise linear function
τ ij(t) is generated by the travel time model proposed in
[27] (IGP model for short), in which each arc (i, j) ∈ A
is characterized by a constant stepwise speed function vij(t)
and a length Lij . It is supposed that the horizon is partitioned
into H subintervals [Th, Th+1] (h = 0, . . . ,H − 1), with
T0 = 0 and TH = T . Furthermore, it is assumed that all
arcs of the auxiliary graphG share a common speed function,
such that

vij(t) = vh,

with t ∈ [Th, Th+1], h = 0, . . . ,H − 1 and (i, j) ∈ A.
According to the IGP model, given a start time t the travel
time value τ ij(t) is computed by the following iterative
procedure.

Algorithm 1 Computing the travel time τ ij(t)

1: q ← h : th ≤ t ≤ th+1

2: `← Lij ;
3: t′ ← t+ `/vq;
4: while t′ > Tq+1 do
5: `← `− vq(Tq+1 − t);
6: t← Tq+1;
7: t′ ← t+ `/vq+1;
8: q ← q + 1

9: return t′ − t

In the IGP model the speed of a vehicle is not a constant
over the entire length of arc (i, j) ∈ A but it changes

when the boundary between two consecutive time periods
is crossed. Since the travel speed is a constant stepwise
function, equality (2) represents a compact formulation of
the relationship between the input parameters and the output
value of the IGP model.

Lij =

∫ t+τ ij(t)

t

v(µ)dµ. (2)

z(pk, t) denotes the duration of a path pk on the time-
dependent graph G, with t representing the start travel time,
that is

z(pk, t) = z(pk−1, t) + τ ik−1ik
(z(pk−1, t)), (3)

with the initialization z(p0, t) = t.

Proposition 1. ([26] ) The time dependent graph G = (V ∪
{0}, A, τ) is path ranking invariant.

Proof. It is worth noting that from (2) it follows that given a
path p it happens that:∑

(i,j)∈p

Lij =

∫ t+z(p,t)

t

v(µ)dµ,

where the notation (i, j) ∈ p means that the arc (i, j) ∈ A
is traversed by the path p. This implies that if a path p′ is
shorter than a path p′′ then p′ is also quicker than p′′ for any
start time t ∈ [0, T ]:∑

(i,j)∈p′
Lij ≤

∑
(i,j)∈p′′

Lij ⇔ z(p′, t) ≤ z(p′′, t),

which proves the thesis.

The main implication of Proposition 1 is that an upper
bound on the TDTSP defined on the original graph G can
be obtained by solving a classical time invariant ATSP with
cost coefficients c(i, j) = τ ij(T ). Clearly the quality of the
obtained upper bound is correlated with the fitting deviation
between the original travel time function τ and its approx-
imation τ . Minimizing such fitting deviation is the main
idea underlying the family of parameterized upper bounds
presented in the following sections.

III. PROBLEM-SOLVING METHOD
As illustrated in the previous section, given an instance of
the TDTSP defined on G and the corresponding valid cost
function, the optimal solution can be determined by solving a
(classic) time-invariant ATSP. As stated in [26], the valid cost
function is unknown and inaccessible except for path-ranking
invariant graphs. The main goal is to construct an approxima-
tor of the valid cost function by combining machine learning
and operations research (OR) algorithms, according to the
learning to configure paradigm [20]. The basic underlying
idea is to approximate the valid cost function with the valid
cost function of an auxiliary (path-ranking invariant) graph.
Algorithm 2 reports a general description of the proposed
approach. The main components are an Artificial Neural
Network (ANN), a Linear Program and an ATSP solver.
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Artificial Neural Network. During a preprocessing step,
the territory (and accordingly the customers) is partitioned in
K zones using an unsupervised learning technique. A dataset
of similar TDTSP instances (previously solved to optimality)
is the training set of the ANN. Given the cardinalities of
the set of customers for each zone, the ANN is trained to
estimate the vector ZETA consisting of the mean expected
arrival time at each zone in an optimal solution. Algorithm
2 receives as input the time-dependent graph G augmented
with the coordinates of the K zones. The procedure starts
with extracting from the time-dependent graph G the cus-
tomer distribution n w.r.t. the set of K zones (Algorithm 2
- line 2). Then the ANN estimates the ZETA values of the
TDTSP instance to be solved (Algorithm 2 - line 3). The
estimated ZETAs are then exploited to determine the set Λ
of time instants, then provided as input to the linear program
(Algorithm 2 - line 4).

Linear Program. The approximated valid cost function
cΛ corresponds to the valid cost function of an auxiliary
(time-dependent) graph GΛ, where the travel time functions
are determined by solving the linear program LP (G,Λ), i.e.
the linear problem (7)-(14) defined on G and Λ (Algorithm
2 - line 5). The LP problem minimizes the expected fitting
deviation between the original travel time functions τ and the
auxiliary ones τΛ. In particular the fitting deviations refers to
the set of time instants Λ generated from the neighbourhoods
of the ZETA values determined by the ANN. The intuition is
that, by taking a snapshot around the optimal arrival times (of
similar instances previously solved), there is a good chance
that the auxiliary graph mimics the arc ranking associated to
the original (unknown and inaccessible) valid cost function.

ATSP solver. The heuristic solution p∗
Λ

is determined
by solving the TDTSP on the time-dependent (path-ranking
invariant) graphGΛ. Therefore the sequence of customers p∗

Λ
is determined by solving an ATSP instance with the same
number of customers of the TDTSP instance, and the distance
matrix filled with the values of the approximated valid cost
function cΛ (Algorithm 2 - lines 6-7).
The output of Algorithm 2 is the sequence of customers
determined by the ATSP solver along with its duration w.r.t.
the original travel time functions. Subsequent sections will
provide all required insights following a bottom-up approach.

Algorithm 2 Problem-solving method
1: function RUN(G)
2: n←Extract customer distribution of G
3: ZETA←ANN(n)
4: Generate the set Λ from ZETA
5: GΛ ← Solve to optimality LP (G,Λ)
6: cΛ ← τΛ(T )
7: p∗

Λ
←Solve ATSP(cΛ)

8: zΛ ← evaluate p∗
Λ

w.r.t. G
9: return zΛ,p∗

Λ

IV. A FAMILY OF PARAMETERIZED UPPER BOUNDS
The bounding procedure is based on the combinatorial re-
laxations for TDTSP proposed in Reference [26], where
(original) travel times are required to be piecewise linear.
This section discusses how such approach can be generalized
to account for time-dependent travel times τ not (necessar-
ily) continuous piecewise linear. To this aim it is defined a
family of parameterized upper bounds zΛ, where parameters
Λ constitute an ordered set of time instants. Given set Λ,
upper bound zΛ is determined by solving the TDTSP on an
auxiliary path ranking invariant graph GΛ = (V,A, τΛ). The
travel time function τΛ is an approximation of the original
travel function τ . In particular τΛ is generated by the IGP
model and satisfies relationship (2). Recall that the IGP
parameters are: the set of speed breakpoints, the speed values
and the length of the arcs. The given upper-bound parameter
Λ is used to model the set of IGP speed breakpoints, i.e.
Λ = {T0, . . . , TH}, with H = |Λ| − 1 (Algorithm 2 - line
4). Then speed values and length of arcs are prescribed by a
linear program, which aims to minimize the fitting deviation
between the original τ and its parameterized approximation
τΛ (Algorithm 2 - line 5). The main idea underlying the linear
program is that the equalities (2) imply that the travel time
functions τ and τΛ are perfect fit if the following relationship
holds for each arc (i, j) ∈ A and time instant t ∈ T :

Lij −
∫ t+τij(t)

t

v(µ)dµ = 0. (4)

The objective function aims to minimize a fitting deviation
given by the violations of equality constraints (4). Due to
the continuous time nature of (4), a surrogate of the fitting
deviation is defined by evaluating (4) only for time instants
belonging to a set Λij , that is:

Lij −
∫ Th+τij(Th)

Th

v(µ)dµ = 0, (5)

with h = 0, . . . , |Λij |−1 and (i, j) ∈ A. The set Λ is defined
as the union set of Λij , with (i, j) ∈ A, i.e. Λ =

⋃
(i,j)∈A

Λij .

Let aijkh define the coefficient representing time spent on
arc (i, j) during period h when departing at Tk, that is:

aijkh =
{

min(Th+1 − Th,max(0, Tk + τij(Tk) − Th)) k ≤ h
0 otherwise

with (i, j) ∈ A, h, k = 0, . . . , |Λij | − 1.
Since v(t) is constant stepwise, relationship (5) can be

expressed by the following linear equality:

|Λij |−1∑
h=0

aijkh · vh = Lij + sijk, (6)

where the free-sign variable sijk models the violation of the
right-hand-side of (5) with respect to Lij , with (i, j) ∈ A,
k = 0, . . . , |Λij | − 1. The proposed linear program deter-
mines a speed function v(t) and the corresponding right-
hand-sides of (6), which is denoted with xijk: since it rep-
resents a length it is required that xijk ≥ 0, with (i, j) ∈ A,
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k = 0, . . . , |Λij |−1. The maximum fitting deviation between
the original travel time function τ(i, j, t) and τΛ(i, j, t) is
modelled as

ζij = max
k∈[0,...,|Λij |−1]

xijk − min
k∈[0,...,|Λij |−1]

xijk,

with (i, j) ∈ A. Quantity ζΛ =
∑

(i,j)∈A
ζij represents an

approximated measure of the total fitting deviation associ-
ated to the auxiliary graph GΛ. The auxiliary graph GΛ is
determined in such a way that the corresponding travel time
function τΛ minimizes the value of ζΛ. To this aim, it is for-
mulated the following linear program (7)-(14), where xij and
xij model, respectively, the minimum and maximum value of
the variables xijk, with (i, j) ∈ A and k = 0, . . . , |Λij | − 1.
A solution of such linear programming model also prescribes
the parameters of a stepwise function y(t). In particular,

y(t) = yh,

that is during the h− th time interval y(t) assumes the value
prescribed by the continuous variable yh, with t ∈ [th, th+1]
and h = 0, . . . , |Λ| − 1.

ζ∗Λ := min
∑

(i,j)∈A

xij − xij (7)

s.t.
|Λij |−1∑
h=0

aijkh · yh = xijk k = 0, . . . , |Λij | − 1 (i, j) ∈ A

(8)
xij ≤ xijk k = 0, . . . , |Λij | − 1, (i, j) ∈ A (9)

xij ≥ xijk k = 0, . . . , |Λij | − 1, (i, j) ∈ A (10)
xijk ≥ 0, k = 0, . . . , |Λij | − 1, (i, j) ∈ A (11)
xij ≥ 0 (i, j) ∈ A (12)

xij ≥ 0 (i, j) ∈ A (13)
yh ≥ ρ h = 0, . . . , |Λ| − 1 (14)

Objective function (7) aims to determine a step function
y∗(t) that minimizes the total maximum fitting deviation
between the original travel time function τ and its approxi-
mation τΛ. Constraints (8) state the relationship between y(t)
and x variables. Constraints (9) and (10) model the relation-
ship between xij , xij and continuous variables xijk. Con-
straints (11), (12), (13) and (14) describe the non-negative
conditions on the decision variables. In particular, constraints
(14) cut off the trivial (pointless) solution y(t) = 0 for t ≥ 0.
Let y∗(t) and x∗ denote, respectively, the step function and
the x values associated with the optimal solution of the linear
program (7)-(14). Moreover, x̃∗ij denotes the average of the
x values associated to arc (i, j) ∈ A in the optimal solution,
that is:

x̃∗ij =

|Λij |−1∑
h=0

x∗ijh
|Λij |

.

It is observed that the linear program does not directly
prescribe the IGP parameter Lij , with (i, j) ∈ A. Indeed,
according to (6) it follows that:

x∗ijk = Lij + sijk,

where, recal that, sijk quantifies the violation of equality (5),
with (i, j) ∈ A and k = 0, . . . , |Λij | − 1. Since Lij denotes
the IGP length associated with τΛ, from (6) it follows that∫ tk+τ(i,j,tk)

tk

v(µ)dµ−
∫ tk+τΛ(i,j,tk)

tk

v(µ)dµ = sijk,

that is the lower the absolute value of equality (5) violation
(i.e. |sijk|), the lower the absolute error made by approximat-
ing τ(i, j, tk) with τΛ(i, j, tk), with tk ∈ Λij and (i, j) ∈ A.
Since x̃∗ij minimizes the mean squared violation of equality
(5), i.e.

x̃∗ij = arg min
Lij

|Λij |−1∑
k=0

(x∗ijk − Lij)2

|Λij |
,

such travel time approximation errors are (heuristically) min-
imized by generating the travel time function τΛ(i, j, t) with
the following IGP input parameters:

v(t) = y∗(t), Lij = x̃∗ij ,

with (i, j) ∈ A. Finally, remind that the travel time function
τΛ(i, j, t) satisfies relationship (2), and, therefore, the auxil-
iary graph is path ranking invariant. Summing up, given a set
of time instants Λ =

⋃
(i,j)∈A

Λij and a time dependent graph

G, the proposed upper bounding procedure is made up three
main steps.
• STEP 1. Compute the optimal solution of the linear pro-

gram (7)-(14). Set the travel speed function v(t) equal
to y∗(t). Similarly set Lij to x̃∗ij for each (i, j) ∈ A
(Algorithm 2 - line 5).

• STEP 2. Determine the optimal solution p∗
Λ

of the
following time-independent ATSP (Algorithm 2 - lines
6-7):

min
p∈P

∑
(i,j)∈p

τΛ(i, j, T ).

• STEP 3. Determine upper bound zΛ as the duration of
p∗

Λ
evaluated w.r.t. the original travel time function τ

that is (Algorithm 2 - line 8):

zΛ = z(p∗
Λ
, 0)

Finally, it is worth noting that in order to find the least
upper bound, the following optimization problem has to be
solved:

min
Λ
zΛ, (15)

where zΛ is evaluated according to the proposed three-steps
procedure. A simple heuristic for solving (15) is to set each
Λij equal to a discretization D of the planning horizon.
In this case, the three-steps procedure computing the upper
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bound zD is referred as PL-enhanced heuristic (PL-HTSP
for short). The main drawback of the PL-HTSP heuristic
is that the computation of a tight upper bound value zD
might require the solution of a large Linear Program. Next
section shows a machine learning based heuristic for solving
(15) aiming to overcome this drawback. In particular, the
predictive capabilities of machine learning is exploited in
order to carefully select Λ as a (quite small) subset of time
instants in D. In this case, the three-steps upper bounding
procedure computing zΛ is referred to as MLPL-enhanced
heuristic (MLPL-HTSP for short).

V. LEARNING TO ENHANCE UPPER BOUNDS
This section proposes a learning mechanism for determining
set Λ (deepening the above Algorithm 2 - line 4). Then upper
bound zΛ is computed according to the three-steps upper
bounding procedure illustrated in the previous section. As
stated in Section I, the goal is to determine “good” upper
bounds, by reusing the information gained when solving
instances with similar features. To this aim, instead of starting
every time from scratch in the definition of the auxiliary
graph GΛ, a learning mechanism is devised so that the upper
bounding procedure can benefit from previous runs on other
instances with similar features.

The idea of bounds based on an auxiliary path ranking

FIGURE 1. Comparing the τ functions determined by, respectively, the
approximation procedure and [26].

invariant graph is inspired by [26], where the authors devised
a family of parameterized combinatorial relaxations for the
TDTSP. They proposed a procedure to determine auxiliary
travel times which are “good” lower approximations of the
original ones. Then a lower (dual) bound is determined by
solving the TDTSP on the less congested auxiliary graph.
This research work is aimed to devise a procedure for de-
termining an upper (primal) bound by solving a TDTSP on
an auxiliary path ranking invariant graph. As shown in the
example reported in Fig. 1, by applying this approach, the
aim is to get a travel time approximation that fits the original
τ better than the lower approximation determined by [26].
In particular this paper proposes a mechanism for learning
the relationship between set Λ and the optimal solutions of
the TDTSP defined on the original time-dependent graph G.
First of all, it is observed that there exists a finite and discrete

set Λ∗, consisting of all (feasible) arrival times: if t belongs
to Λ∗, then there exists on G a feasible tour p ∈ P with t
corresponding to the arrival time at a node i ∈ V . That such
set Λ∗ exists is based on the observation that there is a finite
number of feasible tours.

Remark 1. If ζ∗Λ∗ = 0, then for each arc (i, j) ∈ A and time
instants t ∈ Λ∗, it follows that:

τΛ∗(i, j, t) = τ(i, j, t)

and therefore, upper bound zΛ∗ is optimal, that is zΛ∗ =
min
p∈P

z(p, 0).

The main limit of the sufficient optimality condition stated
in Remark 1 is that determining the entire Λ∗ is computa-
tionally challenging. To overcome this drawback, the pre-
dictive capabilities of supervised ML techniques have been
exploited, in order to determine a set Λ such that the arrival
times associated to optimal solutions have a good chance of
being included in Λ. Let fi denote a prediction (obtained
through a supervised ML method) of the expected time of
arrival (ETA) at customer i in an optimal solution. It is
observed that the ranking among arcs might deeply change
during the planning horizon on the original graph G. On the
other hand, the path ranking invariance of the auxiliary graph
GΛ holds for any pair of paths, each one consisting of at
least one arc. This also implies an arc ranking invariance on
GΛ. The intuition is that, by taking a snapshot around the
optimal arrival times (of similar instances previously solved),
there is a good chance of embedding in the auxiliary graph
GΛ the arc ranking associated to the set of quickest tours
of the original graph. For this purpose, the maximum fitting
deviation between the original travel time function τ(i, j, t)
and τΛ(i, j, t) is minimized for each arc (i, j) ∈ A in the
time interval [fi − εi, fi + εi], where εi > 0 represents the
mean absolute error associated to fi, with i ∈ V .
In particular, letD define a discretization of the time horizon.
Then for each node i, a subset Si of D is selected as follows:

Si = {t ∈ [fi − εi, fi + εi] ∧ t ∈ D}

In the definition of the approximation travel time τΛ, all arcs
(i, j) ∈ A outgoing the node i ∈ V share a common set Λij
corresponding to the set Si, i.e. Λij = Si. Therefore in the
MLPL-HTSP, the travel time τΛ is determined by solving the
linear program (7)-(14), where the role of Λij is played by the
subset Si in the constraints (8)-(11), with i = 1, . . . , n.

A. ETA ESTIMATION
Given a training instance, the exact algorithm devised by
[10] has been used in order to obtain the optimal arrival
times at the customers. The estimation of ETA for each
customer i in an optimal solution for a new instance has
been obtained through an artificial neural network (ANN).
Multilayer Perceptron Regressor (MPR) is the chosen ANN
reference implementation with at least three layers: one layer
composed by input nodes, one or more for hidden nodes
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and one for output nodes ([28]). A nonlinear activation
function was used by all nodes not belonging to the input
layer. The ANN has K nodes in the input layer and K
nodes in the output layer. K also represents the number of
zones in which the territory (and accordingly customers) has
been partitioned using an unsupervised learning technique. In
the computational campaign, K-means algorithm has been
used to aggregate the customers belonging to instances of
the training set into K clusters which minimizes within-
cluster variances ([29]). ANN inputs are the number nk k =
1, . . . ,K of customers in each zone (namely, the customers
distribution as pointed out in Algorithm 2 - line 2); whilst
ANN outputs are ZETAk k = 1, . . . ,K the mean zone ETA
(Algorithm 2 - line 3). Lower K implies a high variability of
ETA values in a zone. In contrast, larger K corresponds to
more accurate predictions, but the training set should be very
huge. A preliminary experimentation allowed the definition
of an optimal K value.

VI. COMPUTATIONAL EXPERIMENTS
The quality of the proposed upper bounding procedure was
empirically assessed through a computational campaign.

The branch-and-bound scheme proposed in [10] enhanced
with the lower bound proposed in [26] has been used to
solve every training instance, imposing a time limit of an
hour. The Asymmetric TSP subproblems have been solved by
means of [30]. The linear program (7)-(14) was solved with
IBM ILOG CPLEX 12.10. The machine learning component
of the MLPL-HTSP algorithm was implemented in Python
(version 3.7). The MPR and K-means implementations were
taken from scikit-learn machine learning library. All experi-
mentation have been conducted on a Linux machine with 4
cores at 2.67 GHz and 8 GB of RAM installed. Instances are
based on the real travel time functions of Paris and London
[25] (available at https://tdrouting.com/instances.zip).

A. PARAMETER TUNING
A preliminary tuning phase permitted to select the most
appropriate combination of parameters. The Paris dataset is
composed by 600 instances, whereas London one counts 700
instances; all instances have 50 customers each. For both
cities, the full dataset has been splitted into a training set
composed by 90% of the instances, and a validation set with
the remaining 10%. The ANN with the best performance
in terms of strength of caught interconnections has the fol-
lowing parameters: hyperbolic-tangent as activation function,
five neurons in a single hidden layer, LBFGS optimizer with
constant learning rate. With respect to customer partitioning,
Table 1 and Table 2 reports the ANN mean errors (in minutes)
for each zone. In particular, the best results in terms of coef-
ficient of determination (R2) have been obtained considering
8 clusters for the London instances and 6 zones for the Paris
instances. It is worth noting that the R2 score (= 0.53 for
London and = 0.60 for Paris) indicates a medium effect size.
Parameter εi has been set equal to the mean absolute error
of the zone, which the customer i ∈ V belongs to. A 5-

minutes time unit has been considered for the discretization
D of the planning horizon. Finally, ρ has been set equal to
1/ min

h=0,...,|Λ|−1
(Th+1 − Th).

TABLE 1. ANN mean errors on the London instances

Zone Mean error Mean absolute error Standard error
1 7.68 36.78 55.16
2 -4.61 29.23 37.19
3 8.32 26.94 35.51
4 -1.93 27.34 36.87
5 -2.68 28.78 46.21
6 8.69 56.68 69.21
7 2.54 24.60 32.31
8 6.68 54.00 64.84

Average 3.09 35.54 47.16

TABLE 2. ANN mean errors on Paris instances

Zone Mean error Mean absolute error Standard error
1 -1.02 18.55 23.74
2 2.40 15.29 20.14
3 0.74 19.69 24.30
4 -2.78 28.85 36.53
5 5.53 44.65 52.49
6 1.33 24.00 29.55

Average 1.03 25.17 31.13

B. COMPUTATIONAL RESULTS
As illustrated in the previous section, the predictive capabil-
ities of the ML-techniques have been exploited for the fast
computation of two Λ sets, associated to London and Paris
respectively. Then the two testsets were solved by the MLPL-
HTSP algorithm. The computational results are presented in
Tables 5 - Table 6, under the following headings:
• the name of the test instance,
• the objective value BK in minutes of the best-known

solution determined by the exact algorithm proposed in
[10] enhanced with the lower bound proposed in [26],
with a time limit of 1 hour;

• the objective value zΛ in minutes of the MLPL-HTSP
solution;

• the deviation DEV of zΛ w.r.t. BK in percentage,
computed as:

DEV =
zΛ −BK
BK

;

• Time in seconds spent to determine zΛ.
The new best-known solution for zΛ are shown in bold.

The average running times are 18.28 seconds for the London
instances and 12.46 seconds for Paris instances. The aver-
age percentage deviation between MLPL-HTSP result and
the best-known solution is 0.23% for the London instances
and −0.18% for the Paris instances. In the worst case, the
percentage deviation is 2.15% and in 31 cases a new best-
known solution is found. For 38 instances, the MLPL-HTSP
heuristic also obtains the best known solution, whilst for
100 out of 140 instances the absolute value |BK − zΛ|
is less or equal than 1 minute, which is the smallest time
unit meaningful in real vehicle routing problems inside large
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cities.
The impact of both the linear program (7)-(14) and the

machine learning algorithm have been also examined. To
this end, a baseline heuristic HTSP has been devised, where
the auxiliary graph G is time-independent, with the constant
value associated to each arc (i, j) ∈ A set equal to max

t∈[0,T ]
τij ,

for each (i, j) ∈ A. Table 3 and Table 4 report results
for all three heuristics: column headings are self explana-
tory. Results associated to the PL-HTSP highlight that the
computation of the approximation τΛ provides a remarkable
increase of both the solution quality and the computing time
w.r.t. the baseline heuristic HTSP. It is by leveraging the
machine learning that the MLPL-HTSP heuristic obtains
both solution quality improvement and a reduction (by an
order of magnitude) of the computing time w.r.t. the PL-
HTSP heuristic. Moreover it is observed that the MLPL-
HTSP heuristic provides remarkable improvements in terms
of both worst case and best case, i.e. the maximum and
minimum values of DEV in Table 3. As far as the computing
time is concerned, Table 4 shows that MLPL-HTSP repre-
sents a good tradeoff between the baseline algorithm and the
PL-HTSP. Indeed, the maximum computing time of MLPL-
HTSP is remarkably lower than the minimum time of PL-
HTSP, whilst the minimum computing time of MLPL-HTSP
is only few seconds above the maximum time of HTSP. It is
worth noting that the upper bounding procedure consistently
outperforms the ML heuristic proposed in [25], by providing
an average saving on route duration equal to 49 minutes for
the London instances and 30 minutes for the Paris instances.

The provided results clearly show which high quality
performance are achieved by the MLPL-HTSP algorithm for
instances that correspond to realistic travel time functions.

TABLE 3. Impact of approximation τ and the machine learning algorithm on
solution quality

Testset Heuristic Avg DEV% min DEV max DEV
London HTSP 1.42% 0.00 16.44
London PL-HTSP 0.35% -0.90 8.36
London MLPL-HTSP 0.23% -0.49 8.16

Paris HTSP 0.72% -9.45 11.04
Paris PL-HTSP -0.14% -13.13 13.13
Paris MLPL-HTSP -0.18% -12.52 3.93

TABLE 4. Impact of approximation τ and the machine learning algorithm on
computing time

Testset Heuristic Avg Time min Time max Time
London HTSP 1.26 0.08 7.18
London PL-HTSP 128.52 91.72 195.34
London MLPL-HTSP 18.28 14.95 26.40

Paris HTSP 1.94 0.06 10.90
Paris PL-HTSP 83.12 57.11 105.93
Paris MLPL-HTSP 12.46 8.73 37.47

VII. CONCLUSIONS
The main contribution of this paper is an algorithm that
learns from past data to solve the TDTSP in an efficient
and effective manner. Computational results on two Euro-
pean cities show that the average gap with the best-known

TABLE 5. MLPL-HTSP results on London test instances

Instance BK zΛ DEV% time
10_I_1 407.59 407.59 0.00% 17.90
10_I_10 379.27 387.43 2.15% 18.44
10_I_11 400.62 403.28 0.66% 21.28
10_I_12 401.17 402.09 0.23% 19.73
10_I_13 463.42 463.42 0.00% 24.86
10_I_14 399.75 399.77 0.01% 21.40
10_I_15 415.50 418.84 0.80% 18.34
10_I_16 401.62 401.81 0.05% 16.84
10_I_17 402.36 402.36 0.00% 15.60
10_I_19 436.13 436.13 0.00% 18.80
10_I_2 372.64 372.31 -0.09% 15.25
10_I_20 422.78 425.09 0.55% 17.53
10_I_23 400.79 400.82 0.01% 18.75
10_I_24 411.51 413.28 0.43% 18.93
10_I_25 404.39 404.64 0.06% 17.52
10_I_26 409.90 410.32 0.10% 18.72
10_I_27 420.02 420.02 0.00% 19.97
10_I_28 419.80 421.90 0.50% 19.94
10_I_29 408.59 409.82 0.30% 20.94
10_I_30 395.66 396.32 0.17% 15.70
10_I_31 409.23 411.73 0.61% 24.82
10_I_32 398.56 398.07 -0.12% 15.58
10_I_33 345.61 350.94 1.54% 17.12
10_I_34 353.48 353.52 0.01% 18.41
10_I_36 394.61 394.61 0.00% 15.91
10_I_37 416.03 416.59 0.13% 16.02
10_I_38 453.65 453.79 0.03% 19.90
10_I_39 426.38 426.49 0.03% 17.30
10_I_40 416.32 417.37 0.25% 18.13
10_I_41 398.48 398.48 0.00% 16.61
10_I_5 393.85 395.13 0.32% 19.25
10_I_6 399.36 399.36 0.00% 15.70
10_I_7 388.38 388.69 0.08% 19.75
10_I_9 369.03 369.79 0.21% 18.84
1_I_2 388.70 390.75 0.53% 18.53
1_I_26 419.04 419.04 0.00% 16.68
1_I_27 378.45 378.45 0.00% 16.43
1_I_28 393.14 394.52 0.35% 16.37
1_I_29 393.51 394.14 0.16% 23.73
1_I_3 396.82 399.36 0.64% 15.48
1_I_30 387.16 387.16 0.00% 15.33
1_I_31 363.90 363.90 0.00% 14.95
1_I_32 408.21 408.21 0.00% 17.31
1_I_33 414.32 415.26 0.23% 21.69
1_I_34 365.65 365.94 0.08% 15.65
1_I_35 412.53 412.53 0.00% 19.08
1_I_36 369.79 374.14 1.18% 19.30
1_I_37 410.90 410.91 0.00% 16.71
1_I_39 406.39 407.94 0.38% 22.43
1_I_4 402.54 402.65 0.03% 26.40
1_I_40 396.62 396.62 0.00% 15.03
1_I_42 408.81 408.81 0.00% 20.21
1_I_44 373.48 374.71 0.33% 21.97
1_I_45 367.21 367.26 0.01% 15.16
1_I_46 404.26 404.59 0.08% 17.55
1_I_47 402.02 402.61 0.15% 18.54
1_I_48 393.13 394.97 0.47% 16.31
1_I_49 381.64 381.64 0.00% 16.16
1_I_5 333.64 335.85 0.66% 15.96
1_I_50 372.23 372.62 0.10% 16.18
1_I_51 417.30 417.74 0.11% 18.47
1_I_53 405.22 405.22 0.00% 16.08

solutions is only 0.001% and the average computation time is
15 seconds. Furthermore, new best solutions have been pro-
duced for several test instances. This is achieved by solving
a time-invariant Asymmetric TSP, where the arc (constant)
costs are properly defined by the combined use of an LP-
based approach and a mix of unsupervised and supervised
ML techniques. In particular, a feedforward ANN has been
trained on past instances solved to (near-)optimality, and
its ETA predictions have been exploited. Future research
could investigate the definition of new features for the neural
network as well as exploit the use of deep learning methods
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[31]. Another noteworthy research goal concerns the study
of a more efficient algorithm for (approximately) minimizing
the fitting deviation between the travel time function τ and its
approximation τΛ. Finally, future attempts could be aimed at
the adaptation of the ideas introduced in this paper to other
routing problems.
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TABLE 6. MLPL-HTSP results on Paris test instances

Instance BK zΛ DEV% time
0_I_0 289.26 289.26 0.00% 15.59
0_I_1 282.15 282.23 0.03% 11.54
0_I_10 291.04 291.09 0.02% 9.98
0_I_100 285.31 285.31 0.00% 10.04
0_I_101 286.66 274.14 -4.37% 18.64
0_I_102 273.71 273.88 0.06% 9.55
0_I_103 297.27 297.27 0.00% 11.36
0_I_104 289.87 290.07 0.07% 9.83
0_I_105 309.26 309.40 0.05% 9.75
0_I_106 286.73 286.82 0.03% 9.45
0_I_107 295.62 295.91 0.10% 10.71
0_I_108 279.18 278.58 -0.21% 9.67
0_I_109 287.85 287.85 0.00% 15.48
0_I_11 310.77 310.77 0.00% 11.61
0_I_110 274.52 278.46 1.44% 10.69
0_I_111 301.50 300.51 -0.33% 14.62
0_I_112 306.67 305.80 -0.28% 15.94
0_I_113 303.81 306.41 0.86% 14.32
0_I_114 298.17 296.57 -0.54% 14.69
0_I_115 293.19 294.04 0.29% 10.71
0_I_116 288.90 288.90 0.00% 24.52
0_I_117 300.82 297.73 -1.03% 10.92
0_I_118 275.94 275.98 0.01% 10.36
0_I_119 274.69 274.69 0.00% 9.65
0_I_12 301.23 302.65 0.47% 12.61
0_I_120 295.00 295.08 0.03% 11.40
0_I_121 289.19 289.31 0.04% 10.39
0_I_122 283.25 281.89 -0.48% 17.13
0_I_123 312.11 312.12 0.00% 11.90
0_I_124 300.24 298.42 -0.61% 14.63
0_I_125 285.50 285.64 0.05% 9.42
0_I_126 296.42 297.22 0.27% 21.34
0_I_127 299.22 299.25 0.01% 10.28
0_I_128 285.49 285.64 0.05% 15.82
0_I_129 282.04 282.04 0.00% 9.48
0_I_13 287.11 287.11 0.00% 13.10
0_I_130 315.47 314.00 -0.47% 15.41
0_I_131 271.56 271.57 0.00% 9.94
0_I_132 259.81 259.75 -0.02% 14.29
0_I_133 280.81 280.81 0.00% 11.74
0_I_134 287.89 288.53 0.22% 37.47
0_I_135 305.73 304.78 -0.31% 11.78
0_I_136 283.76 283.43 -0.12% 10.25
0_I_137 279.85 279.47 -0.14% 10.86
0_I_138 275.06 275.06 0.00% 9.10
0_I_139 300.82 300.41 -0.14% 11.04
0_I_14 277.91 274.31 -1.30% 9.31
0_I_140 295.50 294.39 -0.38% 10.12
0_I_141 300.23 298.68 -0.52% 13.27
0_I_142 285.36 281.75 -1.27% 11.91
0_I_143 287.65 287.65 0.00% 10.39
0_I_144 277.19 276.35 -0.30% 9.32
0_I_145 254.78 255.08 0.12% 8.79
0_I_146 288.52 288.62 0.03% 12.47
0_I_147 295.02 292.48 -0.86% 11.59
0_I_148 276.02 276.24 0.08% 8.73
0_I_149 289.43 289.69 0.09% 9.88
0_I_15 299.90 299.90 0.00% 10.92
0_I_150 290.86 289.40 -0.50% 11.92
0_I_151 283.60 283.77 0.06% 11.90
0_I_152 293.53 287.85 -1.94% 10.88
0_I_153 273.22 273.22 0.00% 10.88
0_I_154 289.59 288.51 -0.37% 10.20
0_I_155 318.15 318.15 0.00% 10.41
0_I_156 278.43 278.69 0.09% 9.34
0_I_157 292.37 288.54 -1.31% 11.95
0_I_159 292.76 294.04 0.44% 12.60
0_I_16 304.56 301.95 -0.86% 20.07
0_I_160 281.17 281.40 0.08% 12.63
0_I_161 305.14 305.14 0.00% 11.13
0_I_162 335.01 334.37 -0.19% 10.93
0_I_163 289.14 287.52 -0.56% 15.06
0_I_164 272.99 272.87 -0.04% 10.77
0_I_165 290.55 290.73 0.06% 10.09
0_I_166 308.36 308.57 0.07% 12.85
0_I_168 304.05 304.05 0.00% 9.78
0_I_169 280.77 280.90 0.05% 9.83
0_I_17 309.58 309.05 -0.17% 22.79
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