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Simple Summary: The biodiversity and ecological status assessment of transitional water ecosystems
by benthic macroinvertebrates investigation could use DNA barcode tools for more rapid and efficient
outputs. The principal limits of this application are the incompleteness of DNA barcode databases,
the identification of optimal primers set, and the gap in the species sequences. The influence of the
incompleteness of DNA barcode libraries on species diversity indices, ecological indicators, and
ecological status assessment in transitional waters of the southeast Mediterranean were analysed,
underlying the importance to implement DNA barcode libraries and to put an effort toward specific
species at a local level.

Abstract: The ecological assessment of European aquatic ecosystems is regulated under the frame-
work directives on strategy for water and marine environments. Benthic macroinvertebrates are
the most used biological quality element for ecological assessment of rivers, coastal-marines, and
transitional waters. The morphological identification of benthic macroinvertebrates is the current
tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives.
The main current limits of DNA-based applications include the incompleteness of species recorded
in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the
incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and
ecological assessment in transitional waters of the southeast Mediterranean, taking into account the
availability of commonly sequenced and deposited genomic regions for listed species. The ecological
quality status assigned through the potential application of both approaches to the analysed tran-
sitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic
distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work
highlights the importance to expand the barcode databases and to analyse, at the regional level, the
gaps in the DNA barcodes.

Keywords: benthic macroinvertebrates; DNA-based methods; incomplete DNA barcode reference

libraries; Mediterranean transitional waters; ecological status assessment; biomonitoring programs
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1. Introduction

A key global challenge in the 21st century is to maintain the supply of clean water
and other aquatic ecosystem services without affecting the supporting biodiversity and
ecosystem processes that underpin their sustainability. Accordingly, extensive national and
international regulations have been adopted to protect aquatic ecosystems and water re-
sources, including the Water Framework Directive (EC, 2000, Directive 2000/60/EC-WFD),
the Marine Strategy Framework Directive (EC, 2008, Directive 2008/56/EC-MSFD), the
Swiss Water Protection Ordinance (WPO, Swiss Federal Council 1998), the Clean Water Act
(CWA, 1972) of the US Environmental Protection Agency, and the United Nations Conven-
tion on the Law of the Sea (UNCLOS, 1982). All of these regulations aim to protect aquatic
ecosystems and restore altered ecosystems at least to the category of “good status”, which
is defined as a condition slightly altered by anthropogenic activities [1]. The WFD indicates
specific biological quality elements (BQEs), such as fish, benthic macroinvertebrates, and
phytoplanktonic benthos to assess the ecological quality status (EQS). To evaluate these
elements, the directive requires the development and validation of tools mainly based on
taxonomic identification and composition, abundance, and species sensitivity [2-8]. They
also include descriptors based on the individual body size [9-12], functional rates, such as
the decomposition of dead organic matter [13-21], and ecosystem thermodynamics [22].

Among biological quality elements, the benthic macroinvertebrates are effective bi-
ological indicators that respond to environmental changes of aquatic ecosystems [23,24].
Their main characteristics as bio-indicators include poor mobility, high number of species
and functional groups, long life-cycles, and their important role in aquatic trophic net-
works [25-28]. However, the main weaknesses in the use of benthic macroinvertebrates
are the time-consuming process of taxonomic identification and possible misidentifica-
tions [29-31]. In recent years, DNA-based taxon identification has been emerging as a tool
that could improve the accuracy and efficiency of biomonitoring, including the assessment
of benthic macroinvertebrate communities [32-38]. The advantages of DNA-based tools
include the identification of immature stages that lack recognizable features and the greater
resolution at species level, especially for macroinvertebrates that present a high diversity,
in comparison with other groups of species.

The DNA-based method uses specific genomic sequences or “barcodes” that uniquely
identify the species [39-41]. For animals, the most commonly used and reliable barcode
regions belong to the mitochondrial cytochrome c oxidase subunit I gene (COI) and rDNA
genes [1,39,42-44]. Public database repositories, such as BOLD Systems and NCBI GenBanlk,
currently hold a wide range of species based on the reference sequence. However, the use
of DNA barcoding currently finds its weaknesses in the incompleteness of these databases
and in the primers bias [35,45,46]. Concerning the gap in the taxonomic coverage of the
DNA-reference libraries, an example is that only about 48% of benthic macroinvertebrate
species included in the most recent AZTI’s Marine Biotic Index list (AMBI list) present at
least one DNA barcode sequence in the reference libraries. Another example underlining
the gap in the taxonomic coverage of the DNA-reference libraries is that, for the marine
benthic macroinvertebrates of the AMBI list, the three most represented phyla (Annelida,
Mollusca, and Arthropoda, which represent about 85% of the total species considered in the
list) are moderately represented in the DNA barcode reference libraries (from 40 to 50%).
On the contrary, a few groups constituted by Nemertea, Sipuncula, and Echinodermata are
more represented (at least 65%) in the reference libraries [45]. Concerning the primers bias,
the application of DNA metabarcoding ideally requires the identification of primer pairs
that are useful for the detection of all taxa present in an environmental sample [35].

The aim of this research is to evaluate the current potential applicability of DNA-
based tools in the assessment of the ecological status of transitional water ecosystems at a
regional scale, taking into account the gaps in the barcode databases and the availability
of useful primers sets. We used a checklist of benthic macroinvertebrates collected in two
seasons from ten southeast Mediterranean transitional waters (Apulia, Italy) to compare
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and to correlate species diversity, ecological indicators, and assessment scores calculated
for morphologically identified taxa and for taxa available in the reference libraries.

2. Materials and Methods
2.1. Benthic Macroinvertebrates Database

For this study, the species checklist of the Apulia Regional Environmental Protection
Agency (ARPA-Puglia, Italy) published in 2011 was acquired, consisting of a checklist of
benthic macroinvertebrate species from the transitional waters of the Apulia region in the
southeast of Italy. An overall number of ten transitional water ecosystems was considered
(Figure 1), namely: Laguna di Lesina (1); Lago Varano (2); Vasche Evaporanti, Lago Salpi
(3); Torre Guaceto (4); Punta della Contessa (5); Cesine (6); Alimini Grande (7); Baia di Porto
Cesareo (8); Mar Piccolo-Primo Seno (9); Mar Piccolo-Secondo Seno (10). A total of fifteen
sampling sites were investigated, three in the Laguna di Lesina (1a, 1b, 1c), three in the
Lago di Varano (2a, 2b, 2c), two in the Alimini Grande (7a, 7b), and one in each of the other
transitional water ecosystems. The data analysed refer to the samplings carried out during
the fall of 2010 and the spring of 2011. Each species was defined by its presence or absence
in the sampled transitional aquatic ecosystems (Supplementary Table S1). Taxon names
of each reported species were verified using both the European platform EU-NOMEN
(http:/ /www.eu-nomen.eu) (accessed on 15 March 2021) and the worldwide platform
WORMS (http:/ /www.marinespecies.org) (accessed on 15 March 2021). The data matrix
was updated to the most recent and accepted taxonomy. DNA barcode libraries (BOLD
systems, http:/ /www.boldsystems.org (accessed on 22 March 2021); Ranasignham and
Hebert 2007; and NCBI GenBank, https://www.ncbi.nlm.nih.gov/genbank (accessed on
22 March 2021)) were examined in order to produce a reduced database containing all the
barcoded species that were needed for our analysis.

2.2. Descriptors, Ecological Indicators, and Correlations between Morphological and
Reduced Databases

The species richness and the Shannon diversity index were calculated for both
databases. Two ecological indicators, AMBI and M-AMBI, were estimated using the
AZTI-AMBI software v6.0 (http:/ /ambi.azti.es, access on 24 March 2021), which was used
to assess the ecological quality status of transitional water ecosystems by classifying them
into five quality categories (High, Good, Moderate, Poor, and Bad). Correlation tests
between ecological indicators of morphological and molecular data were carried out to
compare the results.

2.3. Species Delimitation Analysis

COI sequences of the taxa listed in Table S1 were downloaded from BOLD Systems
and NCBI using PrimerMiner 0.3b [47-49]. We only omitted taxa where the species was
not specified or was not present in the database, giving a total of 38 taxa. For each of them,
we aligned the sequences of all the accessions available in the databases to generate one
consensus sequence, with the only exceptions of Nereis falsa, Eunice vittate, and Actinia
fragacea where only one accession was found. These consensus sequences were then
aligned to construct a maximum likelihood tree (ML) in RAxml (Randomized Axelerated
Maximum Likelihood), using the general time reversible + gamma (GTR+G) model [50]
and a neighbor-joining (NJ) bootstrap method with the Kimura-2-parameter model in
MEGAX. Both trees were then used as constraint trees for species delimitation with bPTP,
the Bayesian implementation of the Poisson Tree Processes (PTP) model with a 100,000
MCMC generation and a 1% burn-in [51].
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Figure 1. Map of the transitional aquatic ecosystems sampled in the Apulia region (South-East Italy). The numbers on the

map correspond to the following ecosystems and sampling sites of each transitional water ecosystem: Laguna di Lesina-1a,

1b, 1c; Lago Varano-2a, 2b, 2c; Vasche Evaporanti, Lago Salpi-3; Torre Guaceto-4; Punta della Contessa-5; Cesine-6; Alimini

Grande-7a, 7b; Baia di Porto Cesareo-8; Mar Piccolo-Primo Seno-9; Mar Piccolo-Secondo Seno-10.

3. Results
3.1. Presence of Target Species in DNA Barcode Libraries

We examined a total number of 82 benthic macroinvertebrate species within six phyla
from ten Apulian transitional water sites (Figure 1 and Table S1) that were reported in the
ARPA-Puglia checklist. Among these, only 53 species, corresponding to the 64% of the
benthic macroinvertebrates checklist, presented at least one DNA barcode sequence within
the BOLD or NCBI GenBank reference libraries. For the remaining 29 species, (36%), a DNA
barcode was not available in the reference libraries. The phyla that show a relevant gap in
the reference libraries were Mollusca (45%), Annelida (28%), and Arthropoda (21%). These
species were also characterized by a reduced occurrence and low density. In particular,
the highest number of species without a DNA barcode was found in two of the sampled
transitional water ecosystems: Lago di Varano and Mar Piccolo-Secondo Seno.

3.2. Species Richness

The species richness, being the simplest descriptor of the biodiversity of the ecological
communities, which can also be assessed from the metabarcoding data [1], was calculated
for morphological and reduced databases, as reported in Figure 2. In the fall, the percentage
of species with DNA barcodes ranged from 40% in Alimini Grande (sampling site 7a) to
100% in Torre Guaceto and Punta della Contessa (sampling sites 4 and 5, respectively); 13
of the 15 percentage values obtained by comparing the morphological and the reduced
databases were lower than 75%. In the spring, the percentage of species with a DNA



Biology 2021, 10, 1092

50f16

barcode ranged from 43% in Mar Piccolo-Secondo Seno (sampling site 10) to 100% in
Vasche Evaporanti Lago Salpi, Torre Guaceto, and Punta della Contessa (sampling sites 3, 4
and 5, respectively); 8 of the 15 percentage values obtained comparing the morphological
and the reduced databases were lower than 75%. In each season, species-richness values
based on both the morphological and the sequence data were directly and significantly
correlated (p < 0.001; Figure 3).

18 -
Fall B Morphological database
15 - ® Reduced database

12 A

Species richness
o

6 -
3 4
0 -
la 1b 1c 2a 2b 2¢ 3 4 5 6 7a 7b 8 9 10
Sampling site
18 -

Spring ® Morphological database

® Reduced database

Species richness

la 1b 1c 2a 2b 2¢ 3 4 S5 6 7a 7b 8 9 10
Sampling site
Figure 2. Variation of species richness in the sampling sites of the Apulia transitional waters where

the benthic macroinvertebrates were collected during the fall of 2010 and the spring of 2011. Vertical
bars indicate the standard error.
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Figure 3. Correlation analysis between the species richness values calculated in the fall and spring sampling periods from

both morphological and reduced database.

3.3. Shannon Diversity Index

The Shannon diversity index takes into account the distribution of individuals among
the species and was calculated for both databases. The values obtained from the morpho-
logical database were higher than those obtained from the reduced database according to
the higher number of species recognized in the first one (Figure 4). Only in a few sampling
sites, the index was similar or higher in the reduced database than in the morphological
one. In both seasons, the Shannon diversity index values from both databases were directly
and significantly correlated (p < 0.001; Figure 5).

3.4. AMBI

According to the morphological database, the AMBI indicator was lower in the fall
season than in the spring season. The lowest AMBI values in the fall were recorded in
Torre Guaceto (sampling site 4), whereas in the spring, the lowest values were recorded in
Alimini Grande (sampling site 7b) (Figure 6). The maximum AMBI index was recorded in
the Lago di Varano (sampling site 2¢) in the fall and at Punta della Contessa in the spring
(sampling site 5) (Figure 6). The reduced database showed higher AMBI values than the
morphological ones in both seasons (Figure 6). In each season, the AMBI values calculated
from morphological and reduced databases were directly and significantly correlated
(p < 0.001; Figure 7).

3.5. M-AMBI

The M-AMBI indicator values were higher in the morphological database than in the
reduced database in both seasons and similar between databases (Figure 8). In each season,
the M-AMBI indicators from both databases were directly and significantly correlated
(p < 0.001; Figure 9).

3.6. Comparison of Ecological Quality Status Assignment to the Transitional Water Ecosystems
Using Morphological and DNA Barcode Databases

Using M-AMBI values, we assigned an ecological quality class to each sampling
site, for each season (fall and spring), and for each reference database (morphological
and DNA barcode database) (Table 1). After 30 comparisons between the morphological
and barcode data, eight sites presented quality class divergences. Therefore, in 27% of
the sites, the classification of the EQS obtained through the traditional approach differs
from that assigned through a potential application of the DNA barcode approach. It
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is important to underline that the distance between the quality classifications assigned
through both approaches differs on a single quality class. In addition, among the eight
cases of divergence, the classification result based on the barcode database exceeds only in
an instance (sampling site: 9): the one obtained from the morphological approach. This
analysis and the linear relationship of the results from both approaches support the great
potential of the application of DNA metabarcoding in biomonitoring programs, confirming
the importance of populating the databases with barcode sequences.

4 -
Fall ® Morphological database

iy ® Reduced database
5 34
2
=
-
D
=
£ 24
=
=]
=
=
=
»n 1 -

0 -

la 1b 1¢ 2a 2b 2¢ 3 4 5 6 7a 7 8 9 10
Sampling site
4 - .
Spring ® Morphological database
® Reduced database

Shannon index diversity
N

la 1b 1c 2a 2b 2¢ 3 4 S 6 7a 7 8 9 10

Sampling site

Figure 4. Variation of Shannon index in the sampling sites of the Apulia region transitional waters where the benthic
macroinvertebrates were collected during the fall of 2010 and the spring of 2011. Vertical bars indicate the standard error.
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Figure 5. Correlation analysis between the Shannon index diversity values calculated in the fall and

spring sampling periods from the morphological and reduced databases.
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Figure 6. Variation of AMBI in the sampling sites of the Apulia region transitional waters where the
benthic macroinvertebrates were collected during the fall of 2010 and the spring of 2011. Vertical bars
indicate the standard error.
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Figure 7. Correlation analysis between AMBI indicator values calculated in the fall and spring sampling period from the

morphological and reduced databases.

3.7. Primers and DNA-Barcoded Region Analysis

A fundamental condition to perform a metabarcoding analysis is to identify a primer
pair or primer set that anneals and amplifies the DNA of all of the species represented
in the environmental sample. We checked the information of the primers used for all the
listed and barcoded species in the BOLD Systems database. A primer pair is reported for
39 of the 53 barcoded species (74%), and, among these, 32 (82%) were amplified using
LCO1490/HCO2198 or degenerated /modified LCO1490/HCO2198 primers (Supplemen-
tary Table S2). For the other 14 barcoded species, we verified the alignment by CLUSTALW
multi-alignment with degenerated LCO1490/HCO2198 primers, and we obtained a match
for eight species. This analysis outlines the importance of updating the databases with the
primers used for the amplification of the DNA-barcoded region and the importance of the
local/regional analysis to set the metabarcoding experiments in relation to the expected
specific pool of species.

3.8. Interspecific Genetic Distance Analysis

To deepen the efficiency of the application of DNA metabarcoding, we analysed the
sequences of the species present in the list to establish the interspecific genetic distances.
Comparing the species delimitation results between the maximum likelihood and the
neighbor-joining method (Figure 10, Tables S3 and S4), we can see that the first separates
92% of the species taken into account and exhibits Bayesian support values above 0.7 in
41%, while NJ separates 87% of the species with Bayesian support values above 0.7% in 27%.
Both methods clustered together Actinia equina with Actinia fragacea and Musculista senhousia
with Mytilaster minimus, but they were able to distinguish between Dardanus arrosor and
Dardanus calidus, and Gibbula umbilicaris and Gibbula varia. Interestingly, Cerastoderma edule
and Cerastoderma glaucum are two separate species in NJ (support value = 1.000) while
they are together in ML (support value = 0.506) and, in turn, Branchiomma bairdii and
Branchiomma boholense are one species in NJ (0.504) and two separate ones in ML (0.342).
In addition, Lekanesphaera hookeri clusters with Sphaeroma serratum in NJ (0.281) and with
Cymodoce truncate in ML (0.336).
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Figure 8. Variation of M-AMBI in the in the sampling sites of the Apulia region transitional waters where the benthic
macroinvertebrates were collected during the fall of 2010 and the spring of 2011. Vertical bars indicate the standard error.
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Table 1. Ecological quality classes of M-AMBI calculated for each lagoon/station of Apulian transitional water ecosystems,
as shown in Figure 1, in the fall and spring, using both the morphological and DNA-barcode data.

Lagoon/Sampling Site Fall Spring

Morphological Database Reduced Database Morphological Database Reduced Database
Ta Moderate
1b
1Ic
2a
2b
2¢
3
4

Moderate Moderate
Moderate Moderate
Moderate

=g o Y 3l o o

Eunice vittata
Pachygrapsus marmoratus
Liocarcinus depurator
Dardanus calidus
Diogenes pugilator
Sphaeroma serratum
Gibbula umbilicaris
Cyclope neritrea
Hydrobia ventrosa
Capitella capitata
-[ Branchiomma bairdii
Branchiomma boholense
Corbula gibba
Ostrea edulis
Musculista senhousia
Mytilaster minimus
r Actinia equina
L Actinia fragacea
Platynereis dumerilii
Paracentrotus lividus
Cearastoderma edule
Cerastoderma glaucum
Clibanarius erythropus
Nereis falsa
Ficopomatus enigmatica
Modiolus barbatus
Nassarius reticulatus
Loripes lacteus
Gibbula varia
Naineris laevigata
Hexaplex trunculus
Abra alba
Gammarus aequicauda
Paracerceis sculpta
Cymodoce truncata
Lekanesphaera hookeri
Dardanus arrosor
Idotea balthica

| |
050

Figure 10. Phylogenetic analysis of consensus COI sequences available in BOLD Systems. Tree
generated under the maximum likelihood criterion using the general time reversible and gamma
model in RAXML. The tree is drawn to scale with branch lengths measured in number of substitutions
per site.
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4. Discussion

The strength of genetic identification methods to assess species biodiversity depends
decisively on the completeness of the reference sequence databases. Taxa lacking barcodes
in the databases cannot be identified through DNA-based approaches. Many studies show
a discrepancy between molecular and morphological datasets, both in terms of species
presence and abundance [45-48].

In the case study proposed in this work, the three phyla with the highest species
richness (Mollusca, Arthropoda, and Annelida), covering 93% of total species in the list,
present 58%, 73%, and 65% of barcoded species, respectively. The results of the analysis of
DNA barcode reference libraries confirm the presence of gaps in the sampled species data
coverage, comparing the Apulia Regional Environmental Protection Agency checklist with
the sequences available in the BOLD Systems and GenBank, which has revealed a gap in
DNA barcode sequences coverage of 42.3% [46]. Additionally, Leite et al. highlighted a
lack of representative barcodes for many marine macroinvertebrate species belonging to
dominant faunal groups [48].

Our results, in terms of ecological descriptors (species richness and Shannon index
diversity), highlighted how the current process of identification and analysis of sampled
species biodiversity through the innovative DNA barcoding approach underestimates
the real biodiversity of transitional water ecosystems. Also, this trend is amplified in
the transitional aquatic ecosystems where the species richness, calculated through the
morphological approach, is higher [28].

In addition, 27% of the analysed transitional water ecosystems differed in the eco-
logical quality status assigned through the potential application of both approaches. This
confirms the importance of expanding barcode databases and defining useful primers sets
for molecular identification at the regional level.

As proof of concept, we tried to discriminate the species present in this study solely by
analysing the genetic variation of publicly available COI sequences. We took a phylogeny-
based species delimitation approach by comparing two different methods: neighbor-joining
and maximum likelihood. The first method finds the best tree in the dataset with a clus-
tering algorithm, while the second considers a set of all the possible trees and selects the
best based on the highest log-likelihood (InL) tree [52]. Both methods produced a similar
number of species with NJ separating 33 out of 38 species and ML separating 34 out of 38
species, but they differently designated some of the clusters. With NJ being a rapid and
computationally less demanding method, it is often used to quickly separate species based
on pairwise distances [53], but its accuracy decreases when applied to a large dataset, short
sequences, or an unequal rate of substitution [54,55]. For these reasons, ML is increasingly
used in barcoding studies [56—61] and can give a deeper resolution in terms of molecular
evolution, particularly when considering a heterogeneous or previously uncharacterized
dataset. This is also shown in this study where the ML approach shows higher supporting
values in species delimitation. However, it is important to underline that the present
analysis was obtained by building a consensus sequence from a different number of se-
quenced accessions found in several parts of the world. This may explain why, even though
the species delimitation mostly matches our expectation, many of the reported species
delimitation have low support values. In addition, molecular barcoding is often based
on the amplification of a small fragment of a conserved gene, which may underestimate
genetic variation and divergence time [62], and thus, incorrectly assign different species
to the same cluster. We, therefore, demonstrated the importance of not only generating
NGS data at a local/regional level, but also of populating reference libraries with several
barcoding genes in order to fine-tune and effectively apply molecular biomonitoring.
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5. Conclusions

DNA-based methods for assessing an ecosystem’s health are an innovative tool but
require further standardization and improvement processes. This work, focused on the
transitional aquatic ecosystems of the southeast Mediterranean, underlines both the impor-
tance of upgrading global DNA barcode databases and the validity of local databases for a
more suitable identification of primer sets. In addition, the interspecific genetic distances
analysis is relevant to verify the percentage of species potentially identified in a DNA
metabarcoding study; the species with similar sequences require the analysis of other gene
markers or species-specific primers for amplification of the barcoded genomic region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10111092/s1, Table S1: List of taxa identified in the transitional aquatic ecosystems of
Apulia (South-East Italy) for biomonitoring purposes (ARPA, 2011), Table S2: List of barcoded species
and primers pair reported in the BOLD Systems database, Table S3: bPTP species delimitation based
on a maximum likelihood constraint tree generated in RAxml., Table S4: bPTP species delimitation
based on a Neighbor/joining constraint tree generated in MEGAX.
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