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The symmetric 2-(v, k, λ) designs with k > λ (λ− 3) /2 admit-
ting a flag-transitive point-imprimitive automorphism group 
are completely classified: they are the known 2-designs with 
parameters (16, 6, 2), (45, 12, 3), (15, 8, 4) or (96, 20, 4).
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1. Introduction and main result

A 2-(v, k, λ) design D is a pair (P, B) with a set P of v points and a set B of blocks 
such that each block is a k-subset of P and each two distinct points are contained in λ
blocks. We say D is non-trivial if 2 < k < v, and symmetric if v = b. All 2-(v, k, λ) designs 
in this paper are assumed to be non-trivial. An automorphism of D is a permutation 
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of the point set which preserves the block set. The set of all automorphisms of D with 
the composition of permutations forms a group, denoted by Aut(D). For a subgroup G
of Aut(D), G is said to be point-primitive if G acts primitively on P, and said to be 
point-imprimitive otherwise. Further, G is said to be point-quasiprimitive if each of its 
non-trivial normal subgroups of G acts transitively on P. Quasiprimitivity is a much 
weaker property than primitivity (see [30]). In this setting, we also say that D is either 
point-primitive or point-imprimitive, or point-quasiprimitive, respectively. A flag of D
is a pair (x, B) where x is a point and B is a block containing x. If G � Aut(D) acts 
transitively on the set of flags of D, then we say that G is flag-transitive and that D is 
a flag-transitive design.

In 1987, Davies [8] proved that in a flag-transitive and point-imprimitive 2-(v, k, λ)
design, the block size is bounded for a given value of the parameter λ, where λ � 2
by a result of Higman-McLaughlin [15] dating back to 1961. In 2005, O’Reilly Regueiro 
[29] obtained an explicit upper bound. Later that year, Praeger and Zhou [32] improved 
that upper bound and gave a complete list of feasible parameters. In 2020, Mandić 
and Šubasić [24] classified the flag-transitive point-imprimitive symmetric 2-designs with 
λ � 10 except for two possible numerical cases. The classification of the flag-transitive 
point-imprimitive symmetric 2-designs with λ � 10 is completed in Theorem 1.2 of the 
present paper by showing that the two cases remained open in [24] cannot occur.

Recently, Montinaro [27] has classified the symmetric 2-(v, k, λ) designs with k >

λ (λ− 3) /2 and such that a block of the 2-design intersects a block of imprimitivity in 
at least 3 points. In this paper, we complete the work started in [27] by classifying D
with k > λ (λ− 3) /2 regardless the intersection size of a block of D with a block of 
imprimitivity. More precisely, our result is the following.

Theorem 1.1. Let D = (P,B) be a symmetric 2-(v, k, λ) design admitting a flag-
transitive, point-imprimitive automorphism group. If k > λ(λ − 3)/2, then one of the 
following holds:

(1) D is isomorphic to one of the two 2-(16, 6, 2) designs.
(2) D is isomorphic to the 2-(45, 12, 3) design.
(3) D is isomorphic to the 2-(15, 8, 4) design.
(4) D is isomorphic to one of the four 2-(96, 20, 4) designs.

In 1945, Hussain [16] and in 1946 Nandi [28] independently proved the existence of 
three symmetric 2-(16, 6, 2) designs. In 2005, O’Reilly Regueiro [29] proved that ex-
actly two of them are flag-transitive and point-imprimitive. In the same paper O’Reilly 
Regueiro constructed a 2-(15, 8, 4) design. Such 2-design was proved to be unique by 
Praeger and Zhou [32] in 2006. One year later, Praeger [31] constructed and proved 
that there is exactly one flag-transitive and point-imprimitive 2-(45, 12, 3) design. Fi-
nally, in 2009, Law, Praeger and Reichard [21] proved there are four flag-transitive and 
point-imprimitive 2-(96, 20, 4) designs.
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As mentioned above, we prove the following result which is the completion of the 
classification of the flag-transitive 2-designs with λ � 10 started in [24].

Theorem 1.2. Let D = (P,B) be a symmetric 2-(v, k, λ) design admitting a flag-
transitive, point-imprimitive automorphism group G. If λ � 10, then

(1) D is isomorphic to one of the two 2-(16, 6, 2) designs.
(2) D is isomorphic to the 2-(45, 12, 3) design.
(3) D is isomorphic to the 2-(15, 8, 4) design.
(4) D is isomorphic to one of the four 2-(96, 20, 4) designs.

1.1. Notation

Throughout the paper any partition of the point set of D invariant under the point-
imprimitive automorphism group G is denoted by Σ, any element of Σ by Δ. The 
pointwise stabilizers of Σ and Δ are denoted by G(Σ) and G(Δ), respectively. These 
groups are normal in G and in GΔ, respectively, hence we may consider the quotient 
groups G/G(Σ) and GΔ/G(Δ), which are denoted by GΣ and GΔ

Δ, respectively.

1.2. Outline of the proof

We start by strengthening the classification result obtained in [24]. Indeed, in [24]
it is proven that, if λ � 10 then D is known except for two numerical values for the 
parameters for D. The two exceptions are ruled out here in Theorem 1.2. Subsequently, 
we focus on the case λ > 10. In Proposition 2.4 it is shown that GΣ acts primitively 
on Σ by using the results contained in [27]. Then, it is proven in Theorem 3.1 that, 
either G acts point-quasiprimitively on D, or G(Σ) �= 1, GΣ is almost simple and D has 
parameters (2a+2(2a−1−1)2, 2 (2a − 1)

(
2a−1 − 1

)
, 2(2a−1−1)) where a � 4. Afterwards, 

by combining the O’Nan-Scott theorem for quasiprimitive groups achieved in [30] with 
an adaptation of the techniques developed by [41], in Theorem 4.1 we show that GΣ is 
almost simple also in the quasiprimitive case. Moreover, if L is the preimage in G of 
Soc(GΣ) and Δ ∈ Σ, in Proposition 5.3, Corollary 5.4 and Theorem 5.5 it is proven 
that, either G(Σ) = 1, LΔ is contained in a semilinear 1-dimensional group and |L| �
4 
∣∣LΔ

Δ
∣∣2 |Out(L)|2, or G(Σ) = 1, LΔ is a non-solvable 2-transitive permutation group of 

degree |Δ| and |L| � |LΔ|2, or G(Σ) �= 1 and a quotient of LΣ
Δ is isomorphic either to 

SLa(2), or to A7 for a = 4. In particular, in each case LΣ
Δ is a large subgroup of LΣ. 

Finally, we use all the above mentioned constraints on LΣ and on LΣ
Δ together with the 

results contained in [3] and [22] to precisely determine the admissible pairs (LΣ, LΣ
Δ)

and from these to prove that there are no examples of D for λ > 10. At this point, our 
classification result follows from Theorem 1.2.
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2. Preliminary reductions

It is well known that, if D is a symmetric 2-(v, k, λ) design, then r = k, b = v and 
k(k − 1) = (v − 1)λ (for instance, see [9]). Moreover, the following fact holds:

Lemma 2.1. If D admits a flag-transitive automorphism group G and x is any point of 
D, then 

∣∣yGx
∣∣λ = k

∣∣B ∩ yGx
∣∣ for any point y of D, with y �= x, and for any block B of 

D incident with x.

Proof. Let x, y be points of D, y �= x, and B be any block of D incident with x. 
Since (yGx , BGx) is a tactical configuration by [9, 1.2.6], it follows that 

∣∣yGx
∣∣λ =

k
∣∣B ∩ yGx

∣∣. �
The following theorem, which is a summary of [27] and some of the results contained 

in [32], is our starting point.

Theorem 2.2. Let D = (P, B) be a symmetric 2-design admitting a flag-transitive, point-
imprimitive automorphism group G that leaves invariant a non-trivial partition Σ =
{Δ1, ...,Δd} of P such that |Δi| = c for each i = 1, ..., d. Then the following hold:

I. There is a constant � such that, for each B ∈ B and Δi ∈ Σ, the size |B ∩ Δi| is 
either 0 or �.

II. There is a constant θ such that, for each B ∈ B and Δi ∈ Σ with |B ∩ Δi| > 0, the 
number of blocks of D whose intersection set with Δi coincides with B ∩ Δi is θ.

III. If � = 2, then GΔi

Δi
acts 2-transitively on Δi for each i = 1, ..., d.

IV. If � � 3, then Di =
(

Δi, (B ∩ Δi)G
Δi
Δi

)
is a flag-transitive non-trivial 2-(c, �, λ/θ)

design for each i = 1, ..., d.

Moreover, if k > λ(λ − 3)/2 then one of the following holds:

V. � = 2 and one of the following holds:

1. D is a symmetric 2-(λ2(λ + 2), λ(λ + 1), λ) design and (c, d) =
(
λ + 2, λ2).

2. D is a symmetric 2-
((

λ+2
2

) (
λ2−2λ+2

2

)
, λ2

2 , λ
)

design, (c, d) =
(

λ+2
2 , λ2−2λ+2

2

)
, 

and either λ ≡ 0 (mod 4), or λ = 2w2, where w is odd, w � 3, and 2(w2 − 1)
is a square.

VI. � � 3 and one of the following holds:

1. D is isomorphic to the 2-(45, 12, 3) design of [31, Construction 4.2].
2. D is isomorphic to one of the four 2-(96, 20, 4) designs constructed in [21].
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Proof. Apart from III, each case is an immediate consequence of [27,32]. In case III, 
let (x, y), (x′, y′) be any two pairs of points of Δ and let B, B′ any two blocks of D
containing x, y and x′, y′, respectively. Then there is α in G mapping the flag (x, B) onto 
the flag (x′, B′) since G acts flag-transitively on D. Then α ∈ GΔ since Δ is a block of 
imprimitivity for G. Therefore, {x, y}α = (Δ ∩ B)α = Δ ∩ B′ = {x′, y′} since � = 2, 
hence yα = y′ since xα = x′. Thus GΔ, and hence GΔ

Δ, acts 2-transitively on Δ. �
We are going to focus on case (V) of the previous theorem. Throughout the paper, a 

2-design as in case (V.1) or (V.2) of Theorem 2.2 will be simply called a 2-design of type 
1 or 2, respectively.

Let Δ ∈ Σ and x ∈ Δ. Since G(Σ) � GΔ and G(Δ) � Gx, it is immediate to verify 
that (GΣ)Δ = (GΔ)Σ and that 

(
GΔ

Δ
)
x

= (Gx)Δ. Hence, in the sequel (GΣ)Δ and 
(
GΔ

Δ
)
x

will simply be denoted by GΣ
Δ and GΔ

x , respectively. Moreover, the following holds:

GΣ
Δ

GΣ
(Δ)

∼= GΔ

G(Δ)G(Σ)
∼=

GΔ
Δ

GΔ
(Σ)

. (2.1)

A further reduction is the provided by Theorem 1.2, which is proven below.

Proof of Theorem 1.2. This result is proven in [24, Theorem 1] with the following 
possible exceptions of (v, k, λ, c, d) = (288, 42, 6, 8, 36) or (891, 90, 9, 81, 11). Note that 
k > λ(λ − 3)/2 in both exceptional cases. Actually, the latter does not correspond to 
any case of Theorem 2.2(V–VI), and hence it cannot occur. The former corresponds to 
Theorem 2.2(V.1) for λ = 6. Also, if Δ ∈ Σ then GΔ

Δ
∼= AGL1(8), AΓL1(8), A8, S8, 

PSL2(7) or PGL2(7) by [18, Lists (A) and (B)] since GΔ
Δ acts 2-transitively on Δ.

Assume that u divides the order of G(Σ), where u is an odd prime, and let ψ be a 
u-element of G(Σ). Then ψ fixes at least a point on each Δ ∈ Σ since |Δ| = 8. Thus ψ
preserves at least two distinct blocks of D by [20, Theorem 3.1], say B1 and B2. Actually, 
ψ fixes B1 and B2 pointwise since any of these intersects each element of Σ in 0 or 2
points and ψ ∈ G(Σ). Hence, ψ fixes at least 2 · 42 − 6 points of D, but this contradicts 
[20, Corollary 3.7]. Thus, 

∣∣G(Σ)
∣∣ = 2i with i � 0.

Assume that w divides the order of G(Δ), where w is an odd prime, w � 7, and let 
φ be a w-element of G(Δ). Then φ fixes the 6 blocks incident with any pair of distinct 
points of Δ. Therefore, φ fixes at least 6 ·

(8
2
)

points of D by [20, Theorem 3.1], and we 
again reach a contradiction by [20, Corollary 3.7]. Thus, G(Δ) is a {2, 3, 5}-group.

Any Sylow 7-subgroup of G is of order 7 since |Σ| = 36, GΔ
Δ is one of the groups 

listed above and the order of G(Δ) is coprime to 7. Then, by [12, Table B.4] one of the 
following holds:

(1) A9 � GΣ � S9 and S7 � GΣ
Δ � S7 × Z2;

(2) PSL2(8) � GΣ � PΓL2(8) and D14 � GΣ
Δ � F42;
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(3) PSU3(3) � GΣ � PΓU3(3) and PSL2(7) � GΣ
Δ � PGL2(7);

(4) GΣ ∼= Sp6(2) and GΣ
Δ
∼= S8.

Since GΔ
Δ is one of the 2-transitive groups listed above, (1) is immediately ruled out 

by (2.1). In (2) the group GΔ is solvable since GΣ
Δ is solvable and G(Σ) is a 2-group. 

Thus GΔ
Δ is solvable and hence it is isomorphic to AGL1(8) or AΓL1(8). Moreover, a 

quotient group of GΔ
Δ must contain a subgroup isomorphic to D14 by (2.1) since G(Δ)

is a {2, 3, 5}-group, but this is clearly impossible. It follows that only (3) and (4) are 
admissible.

Let X denote PSL2(7) or A8 in cases (3) or (4), respectively. It follows from (2.1) that 
GΣ

(Δ) = 1 and X � GΔ
Δ/GΔ

(Σ) since G(Δ) is a {2, 3, 5}-group and GΣ
Δ contains a subgroup 

isomorphic to X. Thus, G(Δ) � G(Σ). If G(Δ) �= G(Σ), then X ∼= Soc(GΔ
Δ) � GΔ

(Σ)
since GΔ

(Σ) � GΔ
Δ and GΔ

Δ acts 2-transitively on Δ, whereas GΔ
(Σ) is a 2-group. Thus, 

G(Δ) = G(Σ) = 1 since G acts transitively on Σ and G(Σ) � G.
Assume that case (3) occurs. Let x and B be a point and a block of D, respectively, 

and let Δ ∈ Σ be such that x ∈ Δ. Then F21 � Gx � F42 by [7] since G acts transitively 
on the 288 points of D. Actually, Gx = F42 since |Gx| = |GB |, GB acts transitively 
on B and k = 42. This forces GΔ ∼= PGL2(7) and G ∼= PΓU3(3). Moreover, Gx is the 
stabilizer of a block of D, that we may assume to be B, since PΓU3(3) has a unique 
conjugacy class of subgroups isomorphic to F42 by [7]. Hence Gx = GB , and x /∈ B since 
GB acts transitively on B. Further, GB < GΔ since x ∈ Δ.

Let B(Σ) be the set of elements of Σ intersecting B in a non-empty set. Then GB

acts transitively on B(Σ) and |B(Σ)| = 21 since GB acts transitively on B. Now, G
acts on Σ as a rank 3 group and the non-trivial GΔ-orbits on Σ \ {Δ} have length 14
and 21 by [17, Theorem 1.1]. Therefore, B(Σ) = (Δ′)GB = (Δ′)GΔ , where Δ′ ∈ B(Σ), 
since GB < GΔ, GB acts transitively on B(Σ) and |B(Σ)| = 21. Thus C(Σ) = B(Σ) if 
C ∈ BGΔ , and hence the number η of elements C of B such that C(Σ) = B(Σ) is at 
least |GΔ : GB | = 8.

The set R = {(C, C ′) ∈ B × B : C(Σ) = C ′(Σ)} is an equivalence relation on B. 
Hence, let BΣ be the quotient set defined by R, and for any block C of D denote by CΣ

the equivalence class containing C. The previous argument shows that η =
∣∣CΣ

∣∣ � 8. 
Finally, consider I = {(Δ, CΣ) ∈ Σ × BΣ : Δ ∈ C(Σ)}. Then the incidence structure 
DΣ =

(
Σ,BΣ, I

)
is a 2-(36, 21, 96/η) design with η � 8 admitting G as flag-transitive 

automorphism group by [6, Proposition 2.3]. Actually, η = 8, 12 or 24 since the replication 
number of DΣ is 7·96

4η . If η = 12 or 24, then 
∣∣BΣ

∣∣ = 12 or 24, respectively, but this is 
impossible since G does not have transitive permutation representations of such degrees 
by [7]. Thus η = 8, and hence DΣ is symmetric. However, this case is excluded by [10]
since G acts on Σ as a rank 3 group.

Finally, assume that (4) occurs. Then G ∼= Sp6(2), and hence Gx
∼= GB

∼= S7, where 
x and B are a point and a block of D, respectively, by [7]. Actually, Gx is the stabilizer 
of a block of D, that we may assume to be B, since Sp6(2) has unique conjugacy class of 
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subgroups isomorphic to S7 by [7]. Hence Gx = GB , and x /∈ B since GB acts transitively 
on B.

Let Δ ∈ Σ be such that x ∈ Δ. Then GB preserves Δ since Gx = GB , and B∩Δ = ∅
since GB acts transitively on the 21 elements of Σ intersecting B in a non-empty set. 
Therefore, GΔ,Δ′,B contains a Sylow 5-subgroup of G, where Δ′ is any element of Σ such 
that Δ′ ∩B �= ∅. Consequently, GΔ,Δ′ contains a Sylow 5-subgroup of G. However, this 
is impossible since G acts 2-transitively on Σ and |Σ| = 36. This completes the proof. �
2.1. Hypotheses

On the basis of Theorem 1.2, in the sequel we may assume D is a symmetric 2-(v, k, λ)
design of type 1 or 2 with λ > 10.

Lemma 2.3. If G preserves a further partition Σ′ of the point set of D in d′ blocks of 
imprimitivity of size c′, then d′ = d, c′ = c and one of the following holds:

(1) Σ = Σ′;
(2) |Δ ∩ Δ′| � 1 for each Δ ∈ Σ, Δ′ ∈ Σ′.

Proof. Suppose there is a G-invariant partition Σ′ of the point set of D. Let B any 
block of D and let Δ′ ∈ Σ′. If |B ∩ Δ′| � 3 then (v, k, λ) = (45, 12, 3), (96, 20, 4) by [27, 
Theorem 1.1], whereas λ > 10 by our assumptions. Thus, |B ∩ Δ′| = 2.

If D is of different type with respect to Σ and to Σ′, then k = λ(λ + 1) = λ2/2, which 
does not have positive integer solutions. Therefore D is of the same type with respect to 
Σ and to Σ′, and hence d′ = d and c′ = c.

Let Δ ∈ Σ such that Δ ∩ Δ′ �= ∅. If |Δ ∩ Δ′| > 1 for some Δ, Δ′ ∈ Σ, then Δ = Δ′

since G induces a 2-transitive group on Δ, and |Δ| = |Δ′|. Therefore, Σ = Σ′. �
Proposition 2.4. GΣ acts primitively on Σ. Moreover, one of the following holds:

(1) G(Σ) �= 1 and Soc(GΔ
Δ) � GΔ

(Σ);
(2) G(Σ) = 1 and G acts point-quasiprimitively on D.

Proof. It follows from Lemma 2.3 and [12, Theorem 1.5A] that GΣ acts primitively on 
Σ.

Assume that G(Σ) �= 1. If there is Δ′ ∈ Σ such that G(Σ) � G(Δ′), then G(Σ) � G(Δ′′)
for each Δ′′ ∈ Σ, and hence G(Σ) = 1 since G(Σ) � G and G acts transitively on Σ, 
which is a contradiction. Thus, G(Σ) � G(Δ) for each Δ ∈ Σ. Then 1 �= GΔ

(Σ) � GΔ
Δ, 

and hence Soc(GΔ
Δ) � GΔ

(Σ) by [12, Theorem 4.3B] since GΔ
Δ is 2-transitive on Δ by 

Theorem 2.2(III).
Assume that G(Σ) = 1. Let N �= 1 be any normal subgroup of G. Then N = G since 

GΣ acts primitively on Σ. Therefore, G acts point-quasiprimitively on D. �
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Lemma 2.5. Let γ ∈ G, γ �= 1. Then one of the following holds:

(1) D is of type 1 and |Fix(γ)| � (λ + 2)λ;
(2) D is of type 2 and |Fix(γ)| � λ2/2 +

√
λ2/2 − λ.

Proof. Let Δ ∈ Σ and γ ∈ G, γ �= 1. It follows from by [20, Corollary 3.7] that

|Fix(γ)| � λ

k −
√
k − λ

· |Δ| · |Σ| , (2.2)

where λ
k−

√
k−λ

· |Δ| · |Σ| is either (λ + 1)λ or λ2/2 +
√
λ2/2 − λ according to whether D

is of type 1 or 2, respectively. �
Corollary 2.6. The following hold:

(1) If D is of type 1, each prime divisor of 
∣∣G(Δ)

∣∣ divides λ(λ − 1).
(2) If D is of type 2, each prime divisor of 

∣∣G(Δ)
∣∣ divides λ(λ − 1)(λ − 2)(λ − 3).

Proof. Let γ be w-element of G(Δ), where w is a prime such that w � λ. Since γ fixes 
Δ pointwise, γ fixes at least μ � 1 of the λ blocks of D incident with any two distinct 
points of Δ, where μ ≡ λ (mod w). Clearly, these μ fixed blocks are pairwise distinct.

If D is of type 1, then γ fixes at least μ (λ+2)(λ+1)
2 blocks of D, and hence |Fix(γ)| �

μ (λ+2)(λ+1)
2 . Therefore μ = 1 by Lemma 2.5(1), and the assertion (1) follows.

If D is of type 2, then γ fixes at least μλ
4
(
λ
2 + 1

)
blocks of D, and hence |Fix(γ)| �

μλ
4
(
λ
2 + 1

)
. Therefore μ � 3 by Lemma 2.5(2), and the assertion (2) follows. �

Lemma 2.7. Let x be any point of D, then G(Σ),x lies in a Sylow 2-subgroup of G(Σ).

Proof. Let x be any point of D and let ϕ be any w-element of G(Σ),x, where w is an odd 
prime. Then ϕ fixes at least a block B of D by [20, Theorem 3.1]. Since B intersects each 
element of Σ in 0 or 2 points, and since ϕ is a w-element of G(Σ), it follows that ϕ fixes 
B pointwise. Therefore, ϕ fixes at least k points of D. Then ϕ fixes at least k blocks of 
D again by [20, Theorem 3.1]. Let B′ be further block fixed by ϕ. We may repeat the 
previous argument with B′ in the role of B thus obtaining ϕ fixing B′ pointwise. Then 
ϕ fixes at least 2k − λ points of D, as |B ∩B′| = λ. Thus |Fix(ϕ)| � 2k − λ and hence 
|Fix(ϕ)| is greater than or equal to λ(2λ +1) or λ2−λ according to whether D is of type 
1 or 2, respectively. However, this contradicts Lemma 2.5 since λ > 2. �
Lemma 2.8. If G(Σ) �= 1 and v is odd, then the following hold:

(1) G(Σ) ∼= Soc(GΔ
Δ) is an elementary abelian p-group, p an odd prime, acting regularly 

on Δ;
(2) GΣ � GLa(p) with pa = |Δ| and Δ ∈ Σ.
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Proof. Assume that G(Σ),x �= 1, where x is any point of D. Then G(Σ),x is a Sylow 
2-subgroup of G(Σ) by Lemma 2.7 since v is odd. Denote G(Σ),x simply by S. Then S
fixes the same number t � 1 of points in each Δ ∈ Σ since |Δ| is odd and S is a Sylow 
2-subgroup of G(Σ). Therefore, |Fix(S)| = t |Σ|. Now, if α is any non-trivial element of 
S then |Fix(α)| � t |Σ|, and hence t = 1 by Lemma 2.5. Thus S fixes a unique point on 
each Δ.

Suppose that |S| � 4. Let B be any block of D preserved by S and let Δ′ be such that 
|B ∩ Δ′| = 2. Then there is a subgroup S0 of S of index at most 2 fixing y and y′, where 
{y, y′} = B ∩ Δ′. Then S0 � G(Σ),y ∩G(Σ),y′ , where G(Σ),y and G(Σ),y′ are two distinct 
Sylow 2-subgroups of G(Σ) since each of these fixes a unique point in Δ′. Suppose there 
is a point z of D such that z ∈ Fix(G(Σ),y) ∩Fix(G(Σ),y′). The 

〈
G(Σ),y, G(Σ),y′

〉
� G(Σ),z

and hence G(Σ),y = G(Σ),y′ = G(Σ),z since G(Σ),z is a Sylow 2-subgroup of G(Σ) by 
Lemma 2.7. Then G(Σ),y fixes also y′ in Δ′ with y′ �= y, and we reach a contradiction 
since t = 1. Thus Fix(G(Σ),y) ∩ Fix(G(Σ),y′) = ∅, and hence |Fix(S0)| � 2 |Σ| since 
S0 � G(Σ),y∩G(Σ),y′ . Now, if we use the above argument this time with α ∈ S0, α �= 1, we 
reach a contradiction. Therefore |S| = 2. Also, G(Σ) = O(G(Σ)).S by Proposition 2.4(1), 
where O(G(Σ)) is the largest normal subgroup of odd order in the group G(Σ), and 
|Fix(S)| = |Σ|.

Let Λ =
{
Fix(S)γ : γ ∈ G(Σ)

}
. Since S = G(Σ),x is a Sylow 2-subgroup of G(Σ), 

G(Σ) � G and G acts point-transitively on D, it follows that Λ is a G-invariant partition 
of the point set of D in |Δ| blocks each of size |Σ|. Then |Σ| = |Δ| by Lemma 2.3(2), 
and hence λ = 2, but this contradicts our assumptions.

Assume that G(Σ),x = 1. Then G(Σ) = O(G(Σ)). Moreover, Soc(GΔ
Δ) � GΔ

(Σ)
∼= G(Σ)

by Proposition 2.4(1). Then G(Σ) ∼= Soc(GΔ
Δ) is an elementary abelian p-group for some 

odd prime p since G(Σ) acts regularly on Δ and |Δ| is odd. Hence, G(Σ) � CG(G(Σ)) � G. 
If CG(G(Σ)) �= G(Σ), then G = CG(G(Σ)) since GΣ is primitive on Σ by Proposition 2.4. 
This implies G(Σ) � Z(G) and hence Gx � G(Δ) for any x ∈ Δ. This is a contradiction 
since GΔ

Δ is 2-transitive on Δ. Therefore CG(G(Σ)) = G(Σ) = Soc(GΔ
Δ), and hence 

GΣ � Aut(G(Σ)) ∼= GLa(p). �
3. Further reductions

The aim of this section is to prove the following reduction result:

Theorem 3.1. One of the following holds:

(1) G(Σ) = 1 and G acts point-quasiprimitively on D.
(2) G(Σ) is a non-trivial self-centralizing elementary abelian 2-subgroup of G and the 

following hold:

(a) D is a symmetric 2-(2a+2(2a−1 − 1)2, 2 (2a − 1)
(
2a−1 − 1

)
, 2(2a−1 − 1)) design 

for a � 4;
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(b) Either GΔ
x
∼= SLa(2) for a � 4, or GΔ

x
∼= A7 and a = 4.

(c) GΣ is almost simple.

Its proof is structured as follows. Case (1) is an immediate consequence of Proposi-
tion 2.4(2), whereas the proof of (2) relies mainly on Corollary 2.6 and the O’Nan Scott 
theorem applied to GΣ for v even, and on Corollary 2.6 and [4, Theorem 3.1] for v odd.

3.1. Designs of type 1 and point-quasiprimitivity

Lemma 3.2. Let D be of type 1. If G(Σ) �= 1 and v is even, then the following hold:

(1) D is a symmetric 2-(2a+2(2a−1 − 1)2, 2 (2a − 1)
(
2a−1 − 1

)
, 2(2a−1 − 1)) design, a �

4;
(2) G(Σ) is a non-trivial self-centralizing elementary abelian 2-subgroup of G. Also, 

GΣ
Δ/GΣ

(Δ)
∼= GΔ

x and one of the following holds:

(a) GΔ
x
∼= SLa(2);

(b) GΔ
x
∼= A7 and a = 4.

Proof. Assume that D is of type 1, G(Σ) �= 1 and v is even. Since Soc(GΔ
Δ) � GΔ

(Σ) by 

Proposition 2.4(1), it follows that Soc(GΔ
Δ)x � GΔ

(Σ),x, where x ∈ Δ. Hence, Soc(GΔ
Δ)x

is either trivial, or a 2-group by Lemma 2.7. If GΔ
Δ is almost simple, then Soc(GΔ

Δ) acts 
2-transitively on Δ with Soc(GΔ

Δ)x a 2-group. However, this is impossible by [18, List 
(A)]. Therefore, GΔ

Δ is of affine type, and hence |Δ| = 2a since v = λ2(λ + 2) is even. 
Then λ = 2(2a−1−1) and so |Σ| = 22(2a−1−1)2, where a � 4 since λ > 10. In particular, 
D is a symmetric 2-design with parameters as in (1). Moreover, by [18, List (B)] one of 
the following holds:

(i) GΔ
x � ΓL1(2a);

(ii) SLa/h(2h) � GΔ
x � ΓLa/h(2h) with a/h > 1;

(iii) Spa/h(2h) � GΔ
x � ΓSpa/h(2h) with a/h > 1 and a/h even,

(iv) G2(2a/6) � GΔ
x � (Z2a/6−1 ×G2(2a/6)) : Za/6 with a ≡ 0 (mod 6).

(v) GΔ
x
∼= A6 or A7 and |Δ| = 24.

Since Gx is transitive on the λ(λ + 1) blocks incident with x, it follows that 
2 
(
2a−1 − 1

)
(2a − 1) | |Gx|. Suppose that there is a prime u dividing λ/2 = 2a−1 −1 but 

not dividing of the order of GΔ
x . Hence, u divides the order of G(Δ). Let U be a Sylow 

u-subgroup of G(Δ), then U is a Sylow u-subgroup of Gx. Further, Gx = NGx
(U)G(Δ)

by the Frattini argument.
Let y ∈ Fix(U) \ {x} and let Δ′ be the element of Σ containing y. Then U � Gy, 

and actually U � G(Δ′) since Gx and Gy are G-conjugate (clearly, Δ = Δ′ is possible). 
Thus Fix(U) is a disjoint union of some elements of Σ since this one is a partition of 
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the point set of D, and hence |Fix(U)| = t(λ + 2) for some t � 1 since each element 
in Σ has size λ + 2. Actually, t � 2 since |Σ| = λ2 and u | λ/2. Also, U is a Sylow 
u-subgroup of G(Δ∪Δ′). Thus, Gx,y = NGx,y

(U)G(Δ∪Δ′) again by the Frattini argument 
since G(Δ∪Δ′) � Gx,y. Then

|Gx : Gx,y| =
∣∣NGx

(U) : NGx,y
(U)

∣∣ · ∣∣G(Δ) : G(Δ∪Δ′)
∣∣∣∣∣NG(Δ)(U) : NG(Δ∪Δ′)(U)

∣∣∣ ,

and hence λ + 1 |
∣∣NGx

(U) : NGx,y
(U)

∣∣ since λ + 1 | |Gx : Gx,y| by Lemma 2.1 and (
λ + 1,

∣∣G(Δ)
∣∣) = 1 by Corollary 2.6, being v = λ2(λ +2) even. Therefore λ +1 |

∣∣yNGx (U)
∣∣

and yNGx (U) ⊆ Fix(U) \ {x}. Since Fix(U) \ {x} is a disjoint union of NGx
(U)-orbits, it 

follows that λ + 1 | |Fix(U)| − 1. Therefore, λ + 1 | t − 1 since |Fix(U)| = t(λ + 2). So 
|Fix(ζ)| � |Fix(U)| � (λ + 2)2 for any non-trivial element ζ ∈ U since t � 2, but this 
contradicts Lemma 2.5(1). Thus, each prime divisor of 2a−1 − 1 divides 

∣∣GΔ
x

∣∣. Clearly, 
GΔ

x
∼= SL7(2) for a = 7. If a �= 7, then 2a−1 − 1 admits a primitive prime divisor by [42]. 

At this point, it is easy to check that the unique admissible cases are GΔ
x
∼= SLa(2) for 

a � 4, or GΔ
x
∼= A7 and a = 4 by using [19, Proposition 5.2.15].

The fact that the two possibilities for GΔ
x are simple groups together with Propo-

sition 2.4(1) imply that either GΔ
(Σ) = GΔ

Δ, or GΔ
(Σ) = Soc(GΔ

Δ). The former yields 
GΔ = G(Σ)G(Δ), and hence λ + 1 |

∣∣G(Σ),x
∣∣ since 

(
λ + 1,

∣∣G(Δ)
∣∣) = 1 by Corol-

lary 2.6 since v is even. However, this contradicts Lemma 2.7 since λ + 1 is odd. Thus 
GΔ

(Σ) = Soc(GΔ
Δ), and hence GΣ

Δ
GΣ

(Δ)

∼= GΔ
Δ

GΔ
(Σ)

∼= GΔ
x by (2.1). Since G(Σ)

G(Σ)∩G(Δ)
∼= Soc(GΔ

Δ)
is an elementary abelian 2-group, we have that Φ(G(Σ)) � G(Σ) ∩G(Δ) for each Δ ∈ Σ. 
Thus Φ(G(Σ)) fixes each point of D, hence Φ(G(Σ)) = 1, and so G(Σ) is an elementary 
abelian 2-group.

If CG(G(Σ)) �= G(Σ), then G = CG(G(Σ)) since GΣ is primitive on Σ by Proposition 2.4. 
Thus G(Σ) is a subgroup of Z(G) acting transitively on each Δ, and hence Gx � G(Δ)
for any x ∈ Δ. However, this is a contradiction since GΔ

Δ is 2-transitive on Δ. Therefore 
CG(G(Σ)) = G(Σ), and we obtain (2). �
3.2. Minimal degree of the non-trivial primitive permutation representations of a group

For any group Γ define

P (Γ) = min{c : Γ has a non-trivial permutation representation of degree c}.

Note that, P (Γ) is the index of the largest proper subgroup of Γ, which necessarily is 
maximal in Γ, hence P (Γ) is the minimal degree of the non-trivial primitive permutation 
representations of Γ. More information on P (Γ) can be found in [19, Section 5.2].

Theorem 3.3. If D is of type 1 and v is even, then Theorem 3.1 holds.
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Proof. Assume that D is of type 1. The assertion follows from Proposition 2.4(2) for 
G(Σ) = 1. Hence, assume that G(Σ) �= 1. Since GΣ acts primitively on Σ again by 
Proposition 2.4 and |Σ| = 22(2a−1 − 1)2 with a � 4 by Lemma 3.2, it follows from the 
O’Nan-Scott theorem (e.g. see [12, Theorem 4.1A]) that one of the following holds:

(i) Soc(GΣ) is non-abelian simple.
(ii) Soc(GΣ) ∼= T 2, where T is a non-abelian simple group such that |T | = 22(2a−1−1)2.
(iii) Soc(GΣ) ∼= T 2 and there is a non-abelian almost simple group Q with socle T

acting primitively on a set Θ of size 2(2a−1−1) such that Σ = Θ2 and GΣ � Q 	Z2.

Assume that (ii) holds. Then T � GΣ
Δ � Aut(T ) × Z2, and hence GΣ

Δ/T is solvable. 
Therefore 

∣∣GΔ
x

∣∣ | |T | since GΣ
Δ/GΣ

(Δ)
∼= GΔ

x with GΔ
x isomorphic either to SLa(2), or to 

A7 for a = 4 by Lemma 3.2(2). However, this is impossible since 
∣∣GΔ

x

∣∣ � 22(2a−1 − 1)2, 
and (ii) is excluded.

Assume that (iii) holds. Since GΣ
Δ/GΣ

(Δ)
∼= GΔ

x by Lemma 3.2(2), then λ + 1 = 2a − 1
divides the order of GΣ

Δ. If a = 6 then λ = 2 · 31, |Σ| = 22312 and GΔ
x

∼= SL6(2). Since 
λ(λ + 1) | |GΔ|, it follows that 313 | |G|. On the other hand, GΣ � Q 	Z2, where Soc(Q)
is isomorphic to one of the groups A62 or PSL2(61) by [12, Table B.2], and hence 31
divides the order of G(Σ), which is not the case by Lemma 3.2(2). Thus a �= 6, and hence 
there is a primitive prime divisor z of λ + 1 = 2a − 1 by [42]. If z | |GΔ,Δ1 | for some 
Δ1 ∈ Σ \{Δ}, it follows that there is a z-element ϕ of GΔ,Δ1 fixing a point x in Δ and x′

in Δ1. Therefore, it fixes at least one of the λ = 2(2a−1 − 1) blocks incident with x and 
x′, say B. Hence, ϕ fixes a further element in B ∩ Δ. Thus, ϕ ∈ G(Δ) by [14, Theorem 
3.5] since GΔ

Δ is of affine type. However, this is impossible by Corollary 2.6(1) since 

z | λ + 1. Then z � |GΔ,Δ1 | and hence z |
∣∣∣GΣ

Δ : GΣ
Δ,Δ′

∣∣∣ for each Δ′ ∈ Σ \ {Δ} since G(Σ)

is a 2-group by Lemma 3.2(2). Actually, z |
∣∣∣GΣ

Δ : GΣ
(Δ)G

Σ
Δ,Δ′

∣∣∣ again by Corollary 2.6(1), 

hence z |
∣∣∣GΣ

Δ/GΣ
(Δ) : GΣ

(Δ)G
Σ
Δ,Δ′/GΣ

(Δ)

∣∣∣. Thus

P (GΔ
x ) �

∣∣∣GΣ
Δ/GΣ

(Δ) : GΣ
(Δ)G

Σ
Δ,Δ′/GΣ

(Δ)

∣∣∣ �
∣∣GΣ

Δ : GΣ
Δ,Δ′

∣∣

since GΣ
Δ/GΣ

(Δ)
∼= GΔ

x by Lemma 3.2(2), where P (GΔ
x ) is the minimal degree of the 

non-trivial primitive permutation representations of GΔ
x . We may choose Δ′ ∈ Σ \ {Δ}

such that

P (GΔ
x ) �

∣∣GΣ
Δ : GΣ

Δ,Δ′
∣∣ � 22(2a−1 − 1)

s− 1 ,

where s denotes the rank of Q on Θ since GΣ � Q 	 S2 and Σ = Θ2. If a �= 4, then 
P (GΔ

x ) = 2a − 1 by [19, Theorem 5.2.2], hence s = 2. Then Q acts 2-transitively on 
the set Θ, with |Θ| = 2(2a−1 − 1), and hence Q 	 Z2 acts as a primitive rank 3 group 
on Σ = Θ2. Moreover, the (Q 	 Z2)Δ-orbits on Σ \ {Δ} are two of length |Θ| − 1, one 
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of (|Θ| − 1)2. Each of these orbits is a union of GΣ
Δ-orbits, and since the length of each 

GΣ
Δ-orbit distinct from {Δ} is divisible by z, then z | |Θ| − 1. So z | 2a − 3, whereas z

is a divisor of 2a − 1. Therefore a = 4, s = 2, 3, 4 and GΔ
x

∼= Am with m = 7, 8 since 
SL4(2) ∼= A8.

Suppose that s = 3 or 4. Then 
∣∣∣GΣ

Δ : GΣ
Δ,Δ′

∣∣∣ � 28
s−1 � 14, and hence 

∣∣∣GΣ
Δ : GΣ

Δ,Δ′

∣∣∣ = m

by [7]. Then m | |Σ| − 1 with m = 7, 8, and we reach a contradiction since |Σ| − 1 =
3 · 5 · 13. Thus s = 2, and hence Q acts 2-transitively on Θ. As above, Q 	 Z2 acts as a 
primitive rank 3 group on Σ = Θ2, and the (Q 	 Z2)Δ-orbits on Σ \{Δ} are two of length 
13 and one of length 132. None of these lengths is divisible by z = 5, and so this case is 
excluded. Thus only (i) occurs, which is the assertion. �
Remark 3.4. If D is of type 1 with v even and G(Σ) �= 1, it follows from Lemma 3.2(2) 
and Theorem 3.3 that GΣ is an almost simple subgroup of GLa+t(2), where |Δ| = 2a
with Δ ∈ Σ, 

∣∣G(Σ)
∣∣ = 2a+t and 

∣∣G(Σ) ∩G(Δ)
∣∣ = 2t. However, it is not easy to fully 

exploit the previous property because it is not easy to control the order of G(Σ) ∩G(Δ)
in this case. This motivates our choice of an alternative proof in which the embedding 
of GΣ in GLa+t(2) is partially considered.

3.3. Primitive prime divisors

A divisor s of qe − 1 that is coprime to each qi − 1 for i < e is said to be a primitive 
divisor, and we call the largest primitive divisor Φ∗

e(q) of qe − 1 the primitive part of 
qe − 1. One should note that Φ∗

e(q) is strongly related to cyclotomy in that it is equal to 
the quotient of the cyclotomic number Φe(q) and (n, Φe(q)) when e > 2. Also, Φ∗

e(q) > 1
for e > 2 and (q, e) �= (2, 6) by Zsigmondy’s Theorem (for instance, see [33, P1.7]).

Theorem 3.5. If D is of type 1 and v is odd, then G acts point-quasiprimitively on D.

Proof. Assume that D is of type 1. Recall that G(Σ) is an elementary abelian p-group 
acting regularly on Δ, p is and odd prime and GΣ � GLa(p) by Lemma 2.8. Thus 
λ + 2 = |Δ| = pa, a � 1, and hence λ = pa − 2. Therefore, (pa − 1)(pa − 2) divides |Gx|, 
and hence |G|, as k | |Gx|. Also, (pa − 1)(pa − 2)3 |

∣∣GΣ
∣∣ since |Σ| = (pa − 2)2.

If a = 2 then (p2−1)(p2−2)3 |
∣∣GΣ

∣∣ with GΣ � GL2(p), which is a contradiction. Thus 
a > 2, and hence Φ∗

a(p) > 1 by [42] since p is odd. Then GΣ is an irreducible subgroup 
of GLa(p) by [14, Theorem 3.5(iv)]. For each divisor m of a the group ΓLa/m(pm) has a 
natural irreducible action. We may choose m to be maximal such that GΣ � ΓLa/m(pm). 
Set KΣ = GΣ∩GLa/m(pm). Then Φ∗

a(p)
(pa−2)3

((pa−2)3,d) |
∣∣KΣ

∣∣ by [19, Proposition 5.2.15.(ii)]. 
Easy computations show that the order of GLa/m(pm) and hence, 

∣∣KΣ
∣∣ is not divisible 

by paΦ∗
a(p)

(pa−2)
((pa−2),d) for (d/m, pm) = (3, 52), (4, 3), (6, 3), (6, 5), (9, 3). So, these cases 

are excluded. Thus, bearing in mind the maximality of m and the fact that p is odd, 
[4, Theorem 3.1] implies that KΣ contains a normal subgroup isomorphic to one of 
the groups SLa/m(pm), Spa/m(pm), Ω− (pm), or SUa/m(pm/2) with a/m odd. Since 
a/m
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∣∣GΣ : GΣ
Δ
∣∣ = λ2, and λ = pa − 2 with p odd, it follows that GΣ

Δ is a maximal parabolic 
subgroup of GΣ by Proposition 2.4 and [34, Theorem 1.6]. Also, Φ∗

a(p) |
∣∣GΣ

Δ
∣∣ since 

(Φ∗
a(p), pa − 2) = 1, but this contradicts [14, Theorem 3.5(iv)] applied to GΣ

Δ. Thus 
G(Σ) = 1, and hence G acts point-quasiprimitively on D by Proposition 2.4(2). �
3.4. Designs of type 2 and point-quasiprimitivity

Lemma 3.6. If D is of type 2 and λ = 2w2, where w is odd, w � 3 and 2(w2 − 1) is a 
square, then G acts point-quasiprimitively on D.

Proof. Suppose that D is of type 2 with λ = 2w2, where w is odd, w � 3 and 2(w2 − 1)
is a square. Then |Δ| = λ/2 + 1 = w2 + 1 is even. If Soc(GΔ

Δ) is an elementary abelian 
2-group, then w2 + 1 = 2s for some s � 1. However, it has no integer solutions for [33, 
B1.1]. Thus Soc(GΔ

Δ) is non-abelian simple, and hence Soc(GΔ
Δ) is isomorphic to one of 

the groups Aw2+1, PSLa(s) with w2 + 1 = sa−1
s−1 , a � 2 and (d, s) �= (2, 2), (2, 3), or 

PSU3(w2/3) by [18, List (A)] since |Δ| = w2 + 1. Moreover, in the second case one has 
w2 = s sa−1−1

s−1 , and so s is an even power of an odd prime. Therefore 
(

w
s1/2

)2 = sa−1−1
s−1 , 

and hence a = 2 by [33, A7.1, A8.1 and B1.1]. Thus s = w2 and Soc(GΔ
Δ) ∼= PSL2(w2).

Note that, w2 −1 �= 2t with t � 1. Indeed, if it is not so, then t = w = 3 by [33, B1.1], 
and hence (λ, |Δ| , |Σ|) = (18, 10, 145) and Soc(GΔ

Δ) ∼= A6 and Soc(GΣ) ∼= A145 by [12, 
Table B.4]. Then A144 � GΣ

Δ � S144 but this contradicts (2.1) since GΔ
Δ � PΓL2(9). 

Thus, in each case Soc(GΔ
Δ) contains an element of order an odd prime divisor of w2 − 1

fixing at least two points on Δ.
If G(Σ) �= 1 then Soc(GΔ

Δ) � GΔ
(Σ) by Proposition 2.4(1). Now, let η ∈ G(Σ) be an 

element of order an odd prime divisor of w2 − 1, which exists by the previous argument. 
Then, for each Δ ∈ Σ either η ∈ G(Δ), or η induces an element of GΔ

(Σ) fixing at 
least two points of Δ. Therefore |Fix(η)| � 2 |Σ| = λ2 − 2λ + 2, but this contradicts 
Lemma 2.5(2) since λ > 10. Thus G(Σ) = 1, and hence G acts point-quasiprimitively on 
D by Proposition 2.4(2). �
Theorem 3.7. If D is of type 2, then G acts point-quasiprimitively on D.

Proof. Suppose that D is of type 2. If λ = 2w2, where w is odd, w � 3, and 2(w2 − 1)
is a square, the assertion follows from Lemma 3.6. Thus, we may assume that λ ≡ 0
(mod 4) by Theorem 2.2. Hence, v is odd.

Suppose that G(Σ) �= 1. Let Δ ∈ Σ, then there is an odd prime p such that G(Σ) ∼=
Soc(GΔ

Δ) is an elementary abelian p-group acting regularly on Δ and GΣ � GLa(p) with 
pa = |Δ| by Lemma 2.8 since v is odd. Then λ = 2(pa − 1) and k = λ2/2 = 2(pa − 1)2. 
Then (pa − 1)2 | |GB |, where B is any block of D, since GB acts transitively on B. Then 
(pa − 1)2 divides 

∣∣GΣ
∣∣ since 

∣∣G(Σ)
∣∣ = pa. Now, we may proceed as in Theorem 3.5 and 

we see that no admissible groups arise in this case as well. Thus G(Σ) = 1, and hence G
acts point-quasiprimitively on D by Proposition 2.4(2). �
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Proof of Theorem 3.1. The assertion follows from Theorems 3.3 and 3.5 for D of type 
1, from Theorem 3.7 for D of type 2. �
4. Reduction to the almost simple case

In this section, we analyze the case where G acts point-quasiprimitively on D. In this 
case G = GΣ. The main tool used to tackle this case is the O’Nan-Scott theorem for 
quasiprimitive groups which is proven in [30] and is reported below for reader’s con-
venience. We investigate each of the seven possibilities for GΣ provided in the above 
mentioned theorem by adapting the techniques developed in [41], and we show that 
Soc(GΣ) is a non-abelian simple group. As we will see, this fact together with the con-
clusions of Theorem 3.1 yields the following result.

Theorem 4.1. GΣ is an almost simple group acting primitively on Σ. Moreover, one of 
the following holds:

(1) G(Σ) = 1 and G acts point-quasiprimitively on D.
(2) G(Σ) is a self-centralizing elementary abelian 2-subgroup of G. Also, the following 

hold:

(a) D is a symmetric 2-(2a+2(2a−1 − 1)2, 2 (2a − 1)
(
2a−1 − 1

)
, 2(2a−1 − 1)) design 

with a � 4;
(b) GΣ

Δ/GΣ
(Δ)

∼= GΔ
x and either GΔ

x
∼= SLa(2) with a � 4, or GΔ

x
∼= A7 and a = 4.

We only need to prove that GΣ is almost simple, the remaining parts of Theorem 4.1
have been already proven in Theorem 3.1

4.1. Types of quasiprimitive groups

In the sequel we denote Soc(G) simply by L. Then L ∼= Th with h � 1, where T is a 
simple group. Let x ∈ P. By [30, Theorem 1], one of the following holds:

I. Affine groups. Here T ∼= Zp for some prime p, and L is the unique minimal normal 
subgroup of G and is regular on P of size ph. The set P can be identified with 
L ∼= Zh

p so that G � AGLh(p) with L the translation group and Gx = G ∩GLh(p)
acting irreducibly on L. Moreover, G acts primitively on P.

II. Almost simple groups. Here h = 1, T is a non-abelian simple group, T � G �
Aut(T ) and G = TGx.

III. In this case L ∼= Th with h � 2 and T is a non-abelian simple group. We 
distinguish three types:
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III(a). Simple diagonal action. Define

W = {(α1, ..., αh) · π : αi ∈ Aut(T ), π ∈ Sh, αi ≡ αj (mod Inn(T )) for all i, j} ,

where π ∈ Sh just permutes the components αi naturally. With the usual mul-
tiplication, W is a group with socle L ∼= Th, and W = L.(Out(T ) × Sh). The 
action of W on P is defined by setting

Wx = {(α, ..., α) · π : α ∈ Aut(T ), π ∈ Sh} .

Thus Wx
∼= Aut(T ) × Sh, Lx

∼= T and |P| = |T |h−1.
For 1 � i � h let Ti be the subgroup of L consisting of the h-tuples with 1
in all but the i-th component, so that Ti

∼= T and L ∼= T1 × · · · × Th. Put 
T = {T1, ..., Th}, so that W acts on T . We say that subgroup G of W is of type 
III(a) if L � G and, letting P the permutation group of GT , one of the following 
holds:

(i) P is transitive on T ;
(ii) h = 2 and P = 1.

We have Gx � Aut(T ) × P and G � L.(Out(T ) × P ). Moreover, in case (i) L is 
the unique minimal normal subgroup of G and G is primitive on P if and only 
if P is primitive on T . In case (ii) G has two minimal normal subgroups T1 and 
T2, both regular on P, and G is primitive on P.

III(b). Product action. Let H be a quasiprimitive permutation group on a set Γ of type 
II or III(a). For l > 1, let W = H 	 Sl, and take W to act Λ = Γl in its natural 
product action. Then for y ∈ Γ and z = (y, ..., y) ∈ Λ we have Wz = Hy 	 Sl and 
|Λ| = |Γ|l. If K is the socle H, then the socle L of W is Kl.
Now W acts naturally on the l factors in Kl, and we say that a subgroup G of 
W is of type III(b) if L � G, G acts transitively on these l factors, and one of 
the following holds:

(i) H is of type II, K = T , h = l, and L is the unique minimal normal subgroup 
G; further Λ is a G-invariant partition of P and, for x in the part z ∈ Λ, 
Lz = Th

y < L and for some non-trivial normal subgroup R of Ty, Lx is a 
subdirect product of Rk, that is Lx projects surjectively on each of the direct 
factors R.

(ii) H is of type III(a), P = Λ, K ∼= Th/l with h/l � 2, and both G and H have 
m minimal normal subgroups where m � 2. If m = 2 then each of the two 
minimal normal subgroups of G is regular on P.

III(c). Twisted wreath action. Here G is a twisted wreath action T 	φP defined as follows. 
Let P have a transitive action on {1, ..., h} and let Q be the stabilizer P1 of the 
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point 1 in this action. We suppose that there is an homomorphism φ : Q →
Aut(T ) such that coreP

(
φ−1(Inn(T ))

)
= ∩x∈Pφ

−1(Inn(T ))x = {1}. Define

L =
{
f : P → T : f(αβ) = f(α)φ(β) for all α ∈ P , β ∈ Q

}
.

Then B is a group under the pointwise multiplication, and L ∼= T l. Let P act on 
L by

f (γ) = f(αγ) for α, γ ∈ P.

Define T 	φ P to be the semidirect product of L by P with this action, and define 
the action on P by setting Gx = P . Then |P| = |T |h, and L is the unique minimal 
normal subgroup of G and acts regularly on P. We say that G is of type III(c).

Theorem 4.2. If D is of type 1, then G is almost simple.

Proof. Suppose that D is of type 1. Case (I) is ruled out since G acts imprimitively on P
by our assumptions. Suppose that G is of type III(a) or III(c). Then (λ +2)λ2 = |P| = |T |j

where T is non-abelian simple and j = h − 1 or h, where h � 2, respectively. Hence, λ
is even.

If j = 1, then h = j + 1 = 2 and hence G acts primitively on P (see III(a)), which 
is a contradiction. Thus j > 1. Note that 

∣∣xTi
∣∣ = |T | since Ti acts semiregularly on 

P, where Ti is the subgroup of L consisting of the h-tuples with 1 in all but the i-th 
component, Ti

∼= T . Moreover, xTi1 ∩ xTi2 = {x} for each i1, i2 such that i1 �= i2. Let 
w ∈ xT1\{x}, then wGx is the disjoint union of wGx∩xTi for 1 � i � h. Therefore 

∣∣wGx
∣∣ =∣∣wGx ∩ xTi

∣∣h since Gx permutes transitively T1, ..., Th. On the other hand λ + 1 |
∣∣wGx

∣∣
by Lemma 2.1, hence λ + 1 |

∣∣wGx ∩ xTi
∣∣h. Therefore, λ + 1 �

∣∣wGx ∩ xTi
∣∣h � |T |h, 

and hence (λ + 2)λ2 = |T |j implies

|T |j � (|T |h− 1)2(|T |h + 1) � |T |3 h3,

and hence j = 2 or 3, or j = 4 and T ∼= A5, as j > 1 and |T | � 60. The latter is 
ruled out since it does not provide integer solutions for (λ + 2)λ2 = |T |4. If j = 3 then 
|T | > λ > |T | − 2 since (λ + 2)λ2 = |T |3, and hence λ = |T | − 1, but this contradicts λ
even. Thus, j = 2. If h = 3 then G acts primitively on P. Indeed, G is as in III(a) and 
Z3 � P � S3. Thus j = h = 2 and G is as in III(c). Moreover, λ + 1 |

∣∣wGx ∩ xT1
∣∣ for 

each w ∈ xT1 \ {x} since λ is even. Then there is θ � 1 such that |T | = θ(λ +1) +1 since ∣∣xT1
∣∣ = |T |. Then λ2(λ + 2) = |T |2 implies

(λ + 1) ((λ + 1)λ− 1) = θ2(λ + 1)2 + 2θ(λ + 1) (4.1)

and hence λ(λ + 1) − 1 = θ2(λ + 1) + 2θ. Then
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θ = (λ + 1)t− 1
2

for some t � 1. If t � 2 then θ > λ, and we reach a contradiction, thus t = 1 and θ = λ/2, 
which yields a contradiction when substituted in (4.1). Therefore, G is not of type III(a) 
or III(c).

Suppose that G is of type III(b.ii). Then Gz � Wz = Hy 	 Sl where z = (y, y, ..., y), 
and denoted by μ the number of Wz-orbits on Δ, we see that μ � 4 by [11, Corollary 
1.9].

Let y1 ∈ Δ, y1 �= y such that 
∣∣yH1 ∣∣ � |Δ|−1

μ−1 , and let z1 = (y1, y, . . . , y). Since 
(Hy,y1 ×Hy × · · · ×Hy) : Sl−1 � Wz,z1 , it results

∣∣∣zGz
1

∣∣∣ �
∣∣∣zWz

1

∣∣∣ � |Hy|l (l!)
|Hy,y1 | |Hy|l−1 ((l − 1)!)

= l
∣∣yH1 ∣∣ � l (|Δ| − 1)

μ− 1 ,

and since λ + 1 |
∣∣∣zGz

1

∣∣∣ by Lemma 2.1, it follows that

λ + 1 � l (|Δ| − 1)
μ− 1 .

Then λ is even since (λ + 2)λ2 = |P| =
(
|T |h/l−1

)l

= |T |h−l with h/l � 2 and l > 1. 
Thus

|T |l(h/l−1)/3 − 1 �
l
(
|T |h/l−1 − 1

)
μ− 1 <

h
(
|T |h/l−1 − 1

)
3 ,

and hence l = 2, 3 since l > 1. If l = 3 then |T |h/3−1
> λ > |T |h/3−1 − 2, and hence 

λ = |T |h/3−1 − 1 with h > 3, whereas λ is even. Thus l = 2. Then λ + 1 | |T |h/2−1 − 1
by Lemma 2.1 since λ is even and (Δ \ {y} × {y}) ∪ ({y} × Δ \ {y}) is union of some 
non-trivial Gz-orbits, being Gz � Hz 	 Sl. Now, we may apply the final argument used 
to rule out III(a) with |T |h/2−1 in the role of |T | to exclude this case as well.

Finally, assume that G is of type III(b.i). Then h = l and Th is the unique minimal 
normal subgroup of G. In this case Σ can be identified with the Cartesian product Γh, 
hence each Δ ∈ Σ corresponds to a unique h-tuple of elements of Γ. Therefore, it results 
that |Σ| = λ2 = |Γ|h. Let y ∈ Γ and Δ = (y, ..., y) ∈ Σ. Then

h⋃
i=1

({y} × · · · × Γi \ {y} × · · · × {y})

is a union of some non-trivial GΔ-orbits and ultimately of some non-trivial Gx-orbits, 
where x ∈ Δ. Then λ +1 | (λ +2)h (|Γ| − 1) by Lemma 2.1. Thus λ +1 | (λ +2)h 

(
λ2/h − 1

)
, 

and hence λ + 1 | h 
(
λ2/h − 1

)
.
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If h = 2 then λ + 1 | 4, whereas λ > 10. Thus h � 3 and hence λ1/3 � λ1−2/h � h. 
Therefore 5h/3 � |T : TΔ|h/3 � h2 since T is a non-abelian simple group and |T : TΔ| =
λ2, and so h � 7. Actually, |T : TΔ|h/2(1−2/h) � h implies h = 3, and hence λ + 1 |
3 
(
λ2/3 − 1

)
which is impossible since λ > 10. This completes the proof. �

Theorem 4.3. If D is of type 2, then G is almost simple.

Proof. If D is of type 2, then v �≡ 0 (mod 4) (see Theorem 2.2). Case (I) is ruled out 
since G acts imprimitively on P by our assumptions. Also v �= |T |j with T a non-abelian 
simple group and j � 1, hence G is not of type III(a) or III(c). Assume that G is of type 
III(b.i). Arguing as in Theorem 4.2 we see that

λ2 − 2λ + 2
2 = |Σ| = |Γ|h and λ + 1 | (λ/2 + 1)h (|Γ| − 1) ,

where h � 2. It follows that λ + 1 | h (|Γ| − 1). Since |Γ|l − 1 = 1
2λ (λ− 2), it follows 

λ + 1 | 3h and hence 2 · 60h � 2 |Γ|h < 9h2, which is impossible for h � 2.
Assume that G is of type III(b.ii). Then

(
λ + 2

2

)(
λ2 − 2λ + 2

2

)
= |P| = |Γ|l , (4.2)

where |Γ| = |T |k/l−1 with k/l � 2, and from (4.2) we derive that v ≡ 0 (mod 4), a 
contradiction. This completes the proof. �
Proof of Theorem 4.1. The assertion immediately follows from Theorems 3.1, 4.2 and 
4.3. �
5. Reduction to the case λ � 10

Let L be the preimage in G of Soc(GΣ). Hence LΣ � GΣ � Aut(LΣ) with LΣ non-
abelian simple by Theorem 4.1. Moreover, G = GΣ and L = LΣ when G(Σ) = 1. The 
first part of this section is devoted to prove that either LΔ

Δ acts 2-transitively on Δ, 
where Δ ∈ Σ, or G(Σ) = 1, Soc(GΔ

Δ) < LΔ
Δ � GΔ

Δ � AΓL1(uh), where uh = |Δ|. Then 

we prove that either 
∣∣LΣ

∣∣ �
∣∣LΣ

Δ
∣∣2, or |L| � 4 

∣∣LΔ
Δ
∣∣2 |Out(L)|2, respectively. As we will 

see, these constraints on LΣ
Δ are combined with the information contained in [3] and [22]

allows us to completely classify D. The analysis of 2-designs of type 1 and 2 is carried 
out in separate sections.

Recall that the minimal degree of the non-trivial primitive permutation representa-
tions of a non-abelian simple group Γ is denoted by P (Γ). It is known that P (A�) = � � 5, 
whereas P (Γ) is determined in [7], [19, Theorem 5.2.2] and in [36–38] according to 
whether Γ is sporadic, classical or exceptional of Lie type, respectively.
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The following technical lemma is useful to show that LΔ
Δ acts 2-transitively on Δ

provided that GΔ
Δ is not a semilinear 1-dimensional group.

Lemma 5.1. If Γ is a non-abelian simple group non-isomorphic to PSL2(q) and such that 
P (Γ) < 2 (|Out(Γ)| + 1) |Out(Γ)|, then one of the following holds:

(1) Γ ∼= A� with � = 7, 8, 9, 10, 11;
(2) Γ ∼= M11;
(3) Γ ∼= PSL3(q) with q = 4, 7, 8, 16;
(4) Γ ∼= PSp4(3);
(5) Γ ∼= PSUn(q) with (n, q) = (3, 5), (3, 8), (4, 3);
(6) Γ ∼= PΩ+

8 (3).

Proof. Assume that Γ ∼= A� with � � 5. Thus, � �= 5, 6 since A5 ∼= PSL2(5) and 
A6 ∼= PSL2(9). Thus 7 � � = P (Γ) < 12, and we obtain (1).

If Γ is sporadic then P (Γ) < 12, and hence Γ ∼= M11 by [7], which is (2).
If Γ is a simple exceptional group of Lie type then P (Γ) is provided in [36–38], and it 

is easy to check that no cases arise.
Finally, suppose that Γ is a simple classical group. Assume that Γ ∼= PSLn(q), where 

q = pf , f � 1, and n � 3. We may also assume that (n, q) �= (4, 8) since PSL4(2) ∼= A8
was analyzed above. Then P (Γ) = qn−1

q−1 by [19, Theorem 5.2.2] since n � 3, and hence

qn − 1
q − 1 < 2(2(n, q − 1)f + 1) · 2(n, q − 1)f . (5.1)

Assume that pf � 2f(f + 1). Then qn−1
q−1 < 4q(q − 1)2 and hence n � 4. Actually, 

(n, q) = (3, 7) by (5.1) since n � 3.
Assume that pf < 2f(f + 1). Then either p = 2 and 2 � f � 6, or p = 3 and f = 1, 2. 

Hence, n = 3 and q = 4, 8, 16 by (5.1) since n � 3 and since PSL3(2) ∼= PSL2(7) cannot 
occur. Thus, we get (3).

We analyze the remaining classical groups by proceeding as in the PSLn(q)-case. 
Hence, one obtains PSp4(2)′, PSp4(3), PSUn(q) with (n, q) = (3, 5), (3, 8), (4, 2), (4, 3), 
or PΩ+

8 (3). Since PSp4(2)′ ∼= PSL2(9) and PSU4(2) ∼= PSp4(3), (4, 2) is excluded 
whereas the remaining cases yield (4), (5) and (6), respectively. �
Lemma 5.2. Let Δ ∈ Σ. If G(Σ) = 1 and Soc(GΔ

Δ) ∼= (Zu)h, where u is an odd prime, 
then uh �= 32, 52, 72, 112, 192, 232, 292, 592 and 34

Proof. Suppose the uh = 32, 52, 72, 112, 192, 232, 292, 592 or 34. Then λ = uh − 2 or 
2(uh − 1) according to whether D is of type i = 1 or 2, respectively. Now, Table 1
contains the admissible pairs (λ, |Σ|)i corresponding to type i, where i = 1, 2.

Let (λ, |Σ|)i be as any of the cases listed in Table 1. If |Σ| is a power of a prime, 
then A|Σ| � G � S|Σ| and A|Σ|−1 � GΔ � S|Σ|−1 with Δ ∈ Σ by [13, Theorem 1] since 
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Table 1
Admissible (λ, |Σ|)i for D of type i = 1, 2.
uh 32 52 72 112 192

(λ, |Σ|)1 (7, 72) (23, 232) (47, 472) (7 · 17, 72 · 172) (17, 172)
(λ, |Σ|)2 (16, 113) (48, 1105) (96, 4513) (7 · 103, 53 · 4877) (240, 134)

uh 232 292 592 34

(λ, |Σ|)1 (17 · 31, 172 · 312) (33, 36) (3 · 19, 32 · 192) (79, 792)
(λ, |Σ|)2 (1056, 556513) (412, 17 · 82913) (24 · 3 · 5 · 29, 101 · 149 · 1609) (160, 12641)

G(Σ) = 1. However, this case is ruled out since Soc(GΔ
Δ) ∼= (Zu)h with u an odd prime. 

Thus |Σ| is not a power of a prime, hence only the following cases are admissible:

(1) uh = 112 and either (λ, |Σ|)1 = (7 · 17, 72 · 172), or (λ, |Σ|)2 = (7 · 103, 53 · 4877);
(2) uh = 232 and (λ, |Σ|)1 = (17 · 31, 172 · 312);
(3) uh = 292 and (λ, |Σ|)2 = (412, 17 · 82913);
(4) uh = 592 and either (λ, |Σ|)1 = (3 · 19, 32 · 192), or (λ, |Σ|)2 = (24 · 3 · 5 · 29, 101 · 149 ·

1609).

Note that, |Σ| is odd in (1)–(4), and G is an almost simple group acting primitively 
on Σ by Theorem 4.1 since G(Σ) = 1. Further, GΔ

Δ is a subgroup of AGL2(u) acting 
2-transitively on Δ by Theorem 2.2(III) since h = 2. However, there are no such G by 
[22, Theorem]. Hence, cases (1)–(4) are ruled out. This completes the proof. �
Proposition 5.3. Let Δ ∈ Σ, then Soc(GΔ

Δ) � LΔ
Δ and G = GxL, where x is any point of 

D. Moreover, one of the following holds:

(1) G(Σ) = 1, Soc(GΔ
Δ) < LΔ

Δ � GΔ
Δ � AΓL1(uh), where uh = |Δ|, and 

∣∣GΔ
Δ : LΔ

Δ
∣∣ |

|Out(L)|.
(2) LΔ

Δ acts 2-transitively on Δ.

Proof. Since LΔ � GΔ and GΔ
Δ acts primitively on Δ, either LΔ = L(Δ), or Soc(GΔ

Δ) �
LΔ

Δ by [12, Theorem 4.3B]. Moreover, G = GΔL since LΣ = Soc(GΣ) and GΣ acts 
primitively on Σ by Theorem 4.1, and hence G/L = GΔL/L ∼= GΔ/LΔ. Also, it results 
that G/G(Σ)L ∼= GΣ/LΣ � Out(LΣ), which is solvable.

Assume that G(Σ) �= 1. Since (G/L)/(G(Σ)L/L) ∼= G/G(Σ)L is solvable and 
G(Σ)L/L ∼= G(Σ)/L(Σ) is a 2-group by Theorem 4.1(2), it follows that G/L is solv-
able. Therefore, GΔ/LΔ and GΔ

Δ/LΔ
Δ
∼= GΔ/G(Δ)LΔ are solvable. Then LΔ

Δ = GΔ
Δ since 

GΔ
Δ
∼= E2a : GΔ

x , where GΔ
x is either SLa(2), or GΔ

x
∼= A7 for a = 4 by Theorem 4.1(2.b), 

and the assertion (2) follows in this case.
Assume that G(Σ) = 1. Then G = GΣ and L = LΣ, and hence GΔ/LΔ is isomorphic 

to a subgroup of Out(L).
If LΔ = L(Δ) then GΔ

Δ = GΔ/G(Δ) ∼= (GΔ/LΔ) / 
(
G(Δ)/LΔ

)
. Therefore GΔ

Δ is iso-
morphic to a quotient group of GΔ/LΔ, and hence Out(L) contains a subgroup with a 
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quotient isomorphic to GΔ
Δ. Then |Δ| (|Δ| − 1) | |Out(L)| since GΔ

Δ acts 2-transitively 
on Δ. Therefore

P (L) � |L : LΔ| = |Σ| � 2 |Δ| (|Δ| − 1) � 2 |Out(L)| , (5.2)

where P (L) is the minimal degree of the non-trivial primitive permutation representa-
tions of L. Then L ∼= PSL2(q) by Lemma 5.1. If q > 11 then q + 1 � 4(2, q − 1) log q
which has no solutions. So q = 4, 5, 7, 8, 9, 11, which are ruled out since their corre-
sponding value of |Δ| does not fulfill |Δ| (|Δ| − 1) | |Out(L)|. Thus LΔ = L(Δ) is ruled 
out. Therefore Soc(GΔ

Δ) � LΔ
Δ, and hence L acts transitively on Δ. Then L acts point-

transitively on D since L acts transitively on Σ. Thus, G = GxL where x is any point 
of D.

Since assertion (2) immediately follows when Soc(GΔ
Δ) is non-abelian simple, we may 

assume that Soc(GΔ
Δ) is an elementary abelian u-group for some prime u. Suppose that 

LΔ
Δ = Soc(GΔ

Δ). Since G/L = GΔL/L ∼= GΔ/LΔ, G/L � Out(L) and GΔ/G(Δ)LΔ ∼=
GΔ

Δ/LΔ
Δ, it follows that GΔ

Δ/LΔ
Δ is isomorphic to a quotient subgroup of Out(L). Thus 

|Δ| − 1 | |Out(L)|. Moreover,

P (L) � |L : LΔ| = |Σ| < 2 |Δ| (|Δ| − 1) � 2 (|Out(L)| + 1) |Out(L)| (5.3)

Then either L ∼= PSL2(q), or L is as in Lemma 5.1. In the latter case L is isomorphic 
neither to A� with 7 � � � 11, nor to M11, PSp4(3) or PSU3(5) since |Δ|−1 � |Out(L)|
(we use this weaker constraint rather than |Δ| − 1 | |Out(L)| in order to apply this 
argument to Theorem 5.5 as well), where |Δ| is λ + 2 or λ/2 + 1 according to whether 
D is of type 1 or 2, respectively, and λ > 10. The unique admissible group among the 
remaining ones listed in Lemma 5.1 is L ∼= PSU4(3) and (|Δ| , |Σ|) = (20, 182) or (38, 362)
by [7] and [5, Tables 8.3–8.4] since |Σ| is not of the form as in Theorem 2.2(V). However, 
both exceptional cases are ruled out since |Δ| > |Out(PSU4(3))|. Thus L ∼= PSL2(q)
and hence |Δ| � (2, q − 1)f . Then f � 3 for q odd and f � 6 for q even since |Δ| is 
λ +2 or λ/2 +1 according to whether D is of type 1 or 2, respectively, and λ > 10. Thus 
P (L) = q + 1, hence (5.3) becomes pf + 1 � 2(2, q − 1)f((2, q − 1)f + 1) � 4f(2f + 1)
which yields q = 26, 33, 34 and D is of type 2 with λ = 12, 12, 16, respectively. Thus 
|Σ| = 61, 61, 113, respectively, but L ∼= PSL2(q) with q = 26, 33, 34 has no such transitive 
permutation degrees. Thus Soc(GΔ

Δ) < LΔ
Δ and 

∣∣GΔ
Δ : LΔ

Δ
∣∣ | |Out(L)|.

If GΔ
Δ �� AΓL1(uh), then GΔ

Δ contains a normal subgroup isomorphic to one of the 
groups SLn(uh/n), Spn(uh/n), G′

2(2h/6) with h ≡ 0 (mod 6), A6 or A7 for (u, h) = (2, 4), 
or SL2(13) for (u, h) = (3, 6) by [18, List(B)] since uh �= 32, 52, 72, 112, 192, 232, 292, 592

and 34 by Lemma 5.2, and LΔ
Δ acts 2-transitively on Δ in these cases. This completes 

the proof. �
Corollary 5.4. If G(Σ) �= 1, then λ = 2(2a−1 − 1), |Σ| = λ2 and a quotient group of LΣ

Δ
is isomorphic either to SLa(2) for a � 4, or to A7 for a = 4.
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Proof. If G(Σ) �= 1, then GΣ
Δ/GΣ

(Δ)
∼= GΔ

x where either GΔ
x
∼= SLa(2) for a � 4, or GΔ

x
∼=

A7 for a = 4 by Theorem 4.1. On the other hand, Gx/Lx
∼= GxL/L = G/L is isomorphic 

to a subgroup of Out(L) as a consequence of Proposition 5.3. Therefore Gx/Lx, and hence 
Gx/G(Δ)Lx, is solvable. Since Gx/G(Δ)Lx

∼= GΔ
x /L

Δ
x and GΔ

x is non-abelian simple, it 
follows that LΔ

x = GΔ
x . Thus LΣ

Δ �� GΣ
(Δ), and hence LΣ

Δ/ 
(
LΣ

Δ ∩GΣ
(Δ)

)
∼= GΣ

Δ/GΣ
(Δ)

∼=
GΔ

x , which is the assertion. �
5.1. Large subgroups

Let X be a finite group. A proper subgroup Y of X is said to be large if the order of 
Y satisfies the bound |X| � |Y |3. More information on large subgroups can be found in 
[3].

Theorem 5.5. Let Δ ∈ Σ, then LΣ
Δ is a large subgroup of LΣ. Moreover, one of the 

following holds:

(1)
∣∣LΣ

∣∣ �
∣∣LΣ

Δ
∣∣2.

(2) G(Σ) = 1, Soc(GΔ
Δ) < LΔ

Δ � GΔ
Δ � AΓL1(uh), where uh = |Δ|. Furthermore, the 

following holds:

(a) LΔ does not act 2-transitively on Δ;
(b) |L| � 4 

∣∣LΔ
Δ
∣∣2 |Out(L)|2;

(c)
∣∣L(Δ)

∣∣ < 2 |Out(L)| < |LΔ|.

Proof. Suppose that G(Σ) = 1. Then G = GΣ and L = LΣ. Assume that LΔ
Δ acts 2-

transitively on Δ. If D is of type 1, then |L : LΔ| = |Σ| � |Δ| (|Δ| − 1) �
∣∣LΔ

Δ
∣∣, and 

hence |L| � |LΔ|2, which is the assertion (1) in this case.
If D is of type 2, then λ2/2 | |Gx| since G acts flag-transitively on D, and hence 

λ2/2 | |Lx| |Out(L)|. On the other hand, |LΔ| =
(
λ
2 + 1

)
λ
2 |Lx,y| since LΔ induces a 

2-transitive group on |Δ|. In particular, |Lx : Lx,y| = λ
2 and so λ | |Lx,y| |Out(L)|. If 

λ | |Out(L)| then P (L) � |L : LΔ| = λ2−2λ+2
2 < |Out(L)|2. Then L ∼= PSL2(q) or L is 

one of the groups listed in Lemma 5.1. Actually, in the latter case only L ∼= PSL3(q)
with (q, λ) = (4, 12), (16, 12), (16, 24) are admissible since λ | |Out(L)| and λ > 10. Then 
|Σ| = 61 or 265, respectively, but none of these divides the order of the corresponding 
L. So these cases are excluded, and hence L ∼= PSL2(q) with q = pf and f � 6 since 
λ | |Out(L)|, λ > 10 and |Out(L)| = (2, pf−1)f . However, pf+1 � |L : LΔ| � 2f2−2f+1
has no admissible solutions for f � 6. Then (|Out(L)| , λ) < λ and hence |Lx,y| � 2 since 
λ | |Lx,y| |Out(L)|. Then |LΔ| �

(
λ
2 + 1

)
λ > |Σ| = |L : LΔ| and we obtain the assertion 

(1) also in this case.
Assume that LΔ

Δ does not act 2-transitively on Δ. Then Soc(GΔ
Δ) < LΔ

Δ and GΔ
Δ

is a 2-transitive subgroup of the semilinear 1-dimensional group by Proposition 5.3. 
Note that, |L : LΔ| = |G : GΔ| � 2 

∣∣GΔ
Δ
∣∣, GΔ/LΔ ∼= GΔL/L = G/L � Out(L) and 
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GΔ/G(Δ)LΔ ∼= GΔ
Δ/LΔ

Δ since GΣ = G and L = Soc(G) is a non-abelian simple group. 
Hence, GΔ

Δ/LΔ
Δ is isomorphic to a quotient group of a subgroup of Out(L). Therefore, 

|L : LΔ| � 2 
∣∣LΔ

Δ
∣∣ |Out(L)|.

Assume that 
∣∣L(Δ)

∣∣ � 2 |Out(L)|. Therefore 2 
∣∣LΔ

Δ
∣∣ |Out(L)| � |LΔ|, hence |L : LΔ| �

|LΔ|, and we still obtain (1).
Assume that 

∣∣L(Δ)
∣∣ < 2 |Out(L)|. Then |L| � 4 

∣∣LΔ
Δ
∣∣2 |Out(L)|2. Suppose that |LΔ| �

|Out(L)|. Then 2 |Δ| � |LΔ| � 2 |Out(L)| since Soc(GΔ
Δ) < LΔ

Δ. Then |Δ| � |Out(L)|, 
and hence P (L) � |L : LΔ| = |Σ| � 2 |Out(L)| (|Out(L)| − 1). Then LΔ is isomorphic 
either to PSL2(q) or to one of the groups listed in Lemma 5.1. However, the same 
argument used in Proposition 5.3 can be also used here to rule out all these groups since 
|Δ| � |Out(L)|. Thus |LΔ| > 2 |Out(L)| and hence |L : LΔ| < |LΔ|2, which means that 
LΔ is a large subgroup of L, and we obtain assertions (2a)–(2c).

Suppose that G(Σ) �= 1. Then λ = 2(2a−1 − 1), |Σ| = λ2 and a quotient group of LΣ
Δ

is isomorphic either to SLa(2) for a � 4, or to A7 for a = 4 by Corollary 5.4. In either 
case one has |Δ| (|Δ| − 1) �

∣∣LΣ
Δ
∣∣ since |Δ| = 2a. Since L(Σ) � LΔ < L and GΣ acts 

primitively on Σ, it follows that 
∣∣LΣ : LΣ

Δ
∣∣ = |L : LΔ| = |Σ| � |Δ| (|Δ| − 1) �

∣∣LΣ
Δ
∣∣, and 

the assertion (1) follows in this case. �
6. Classification of the 2-designs of type 1

In this section we mainly use the constraints on LΣ provided in Proposition 5.3, 
Corollary 5.4 and Theorem 5.5 to prove Theorem 6.1 stated below. It is worth noting 
that, when LΣ is a Lie type simple group we show that LΣ

Δ is a large subgroup of LΣ of 
order divisible by a suitable primitive prime divisor of pζ−1, where ζ is determined in [19, 
Proposition 5.2.16]. We combine these constraints on LΣ

Δ to show that a small number 
of groups listed in [3] are admissible. These groups are then ruled out by exploiting the 
2-transitivity of GΔ

Δ on Δ.

Theorem 6.1. If D is a symmetric 2-
(
(λ + 2)λ2, (λ + 1)λ, λ

)
design admitting a flag-

transitive and point-imprimitive automorphism group, then λ � 10.

We analyze the cases where LΣ is sporadic, alternating, a Lie type simple classical or 
exceptional group separately.

6.1. Novelties

An important tool in carrying out the following analysis is the notion of novelty: a 
maximal subgroup M of an almost simple group A is a novel maximal subgroup (or, 
simply, a novelty) if M∩Soc(A) is non-maximal in Soc(A). More information on novelties 
can be found in [5,19,39].

Lemma 6.2. LΣ is not sporadic.
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Proof. Either LΣ
Δ is maximal in LΣ, or Out(L) ∼= Z2 and GΣ

Δ is a novelty. In the latter 
case, the unique admissible case is GΣ ∼= M12 : Z2 and GΣ

Δ
∼= PGL2(11) since |Σ| is 

a square. Hence, |Σ| = 144 by [39, Table 1] (see also [40] for the cases LΣ ∼= Fi22 or 
Fi′24). Then λ + 2 = 14, and hence G(Σ) = 1 by Theorem 4.1. Since GΔ ∼= PGL2(11)
has no transitive permutation representations of degree 14, the case is ruled out by 
Proposition 5.3. Therefore, LΣ

Δ is maximal in LΣ.
Assume that LΣ ∼= Mi, where i = 11, 12, 22, 23 or 24. Since 

∣∣LΣ : LΣ
Δ
∣∣ = λ2, it follows 

from [19, Table 5.1.C] that, λ2 = 2j13j2 for some j1, j2 � 2. Then λ = 12 and either 
LΣ ∼= M11 and LΣ

Δ
∼= F55, or LΣ ∼= M12 and LΣ

Δ
∼= PSL2(11) by [7]. However, these 

cases are ruled out by Proposition 5.3 since λ + 2 does not divide the order of LΣ
Δ.

Assume that LΣ ∼= Ji, where i = 1, 2, 3 or 4. Then λ2 divides 22, 263252, 2634, or 
22032112, respectively, by [19, Table 5.1.C]. Thus i = 2 and either λ = 10 and LΣ

Δ
∼=

PSU3(3), or λ = 60 and LΣ
Δ

∼= PSL2(7) by [7]. However, in these cases LΣ
Δ does not 

have a 2-transitive permutation representation of degree 12 or 62, respectively, and this 
fact contradicts Proposition 5.3.

Assume that LΣ is isomorphic to one of the groups HS or McL. By [19, Table 5.1.C] λ2

divides 283252 or 263652, respectively. Then either LΣ ∼= HS, LΣ
Δ
∼= M22 and λ = 10, or 

LΣ ∼= McL, LΣ
Δ
∼= M22 and λ = 45. Both these cases are excluded since they contradict 

Proposition 5.3.
It is straightforward to check that the remaining cases are ruled out similarly since 

they do not have a transitive permutation representation of degree λ2 by [7] and [40]. �
Lemma 6.3. If LΣ ∼= A�, � � 5, then LΣ acts primitively on Σ.

Proof. Assume that L ∼= A6. Then A6 ∼= PSL2(9) � G � PΓL2(9), hence G does not 
have a primitive permutation representation of degree λ2 with λ > 10 by [7]. Thus � �= 6
by Theorem 4.1, and hence Out(L) ∼= Z2.

Suppose the contrary of the statement. Then there is a subgroup M of L containing 
LΔ such that LΣ

Δ < MΣ < LΣ with MΣ maximal in LΣ. Let x ∈ Δ, then xM is a union 
of θ elements of Σ, where θ =

∣∣MΣ : LΣ
Δ
∣∣. Therefore 

∣∣xM
∣∣ = θ(λ + 2) with λ2 = μθ

for some μ � 1. Then xM \ {x} is a union of Lx-orbits since Lx < LΔ � M < L. 
Therefore λ+1

η | θ(λ + 2) − 1 by Lemma 2.1, where η = (λ + 1, 2) since Out(L) ∼= Z2. 
Then θ = f λ+1

η + 1 for some f � 1, hence

(
f
λ + 1
η

+ 1
)
μ− 1 = λ2 − 1 (6.1)

and so f λ+1
η μ + μ − 1 = (λ − 1)(λ + 1) which implies λ+1

η | μ − 1. It follows that 
μ = eλ+1

η + 1 for some e � 1. Then (6.1) becomes

ef

(
λ + 1

)2

+ (e + f)
(
λ + 1

)
+ 1 = λ2
η η
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Then ef < η2 = (λ + 1, 2)2, and hence η = 2 and λ is odd. Therefore ef = 3 and 
λ = 15, |Δ| = 17 and |Σ| = 225 since λ > 10. Moreover, G(Σ) = 1 by Theorem 4.1. 
Then LΔ ∼= A224 by [12, Table B.4]. However, this case cannot occur by Proposition 5.3
since A224 has no quotient groups with a transitive permutation representations of degree 
17. �
Lemma 6.4. LΣ is not isomorphic to A�, � � 5.

Proof. Since LΣ
Δ is a large maximal subgroup of LΣ by Theorem 5.5 and Lemma 6.3, and 

since |Σ| = λ2 with λ > 10, only the following cases are admissible by [3, Theorem 2]:

(i) LΣ
Δ
∼= (St × S�−t) ∩A� with 1 � t � �/2;

(ii) LΣ
Δ
∼=

(
St 	 S�/t

)
∩A� with 2 � t � �/2.

Suppose that (i) holds. Then 
(
�
t

)
= λ2, and hence t = 1, 2, or t = 3 and � = 50 by [1, 

Chapter 3].
Assume that t = 1. Since LΣ

Δ
∼= Aλ2−1 with λ > 10, no quotient groups of LΣ

Δ are 
isomorphic to SLa(2) for any a � 4. Also, the minimal degree of the non-trivial transitive 
permutation representations of Aλ2−1 is greater than λ +2. Thus, this case cannot occur 
by Proposition 5.3 and Corollary 5.4.

Assume that t = 2. Then LΣ
Δ

∼= (S2 × S�−2) ∩ A�. Suppose that G(Σ) �= 1. Then 
a quotient group of GΣ

Δ is isomorphic to SLa(2) with a > 4 by Theorem 4.1 since (
�
2
)
�= 142, but this is clearly impossible. Thus G(Σ) = 1, and hence a quotient group of 

LΔ ∼= (S2 × S�−2) ∩ A� must have a 2-transitive permutation representation of degree 
� − 2 = λ + 2 by Proposition 5.3 since λ > 10. However, 

(
λ+4

2
)

= λ2 has no integer 
solutions. Thus, this case is excluded.

Assume t = 3 and � = 50. Then λ + 2 = 142 since λ > 10, and hence G(Σ) = 1 by 
Theorem 4.1. So λ + 2 | |GΔ|, whereas GΔ = (S3 × S47) ∩G, which is a contradiction.

Suppose that (ii) holds. Hence, LΣ
Δ

∼=
(
S�/t 	 St

)
∩ A� where s/t, t > 1. Then |Σ| =

�!
((�/t)!)tt! and A�/t 	At � LΣ

Δ �
(
S�/t 	 St

)
∩L. Easy computations show that � > 25 since 

|Σ| = λ2. Moreover, 
(
A�/t

)t � LΣ
Δ and At � LΣ

Δ/ 
(
A�/t

)t � (Z2)t : St, where (Z2)t is a 

permutation module for At. Thus, by [19, Lemma 5.3.4], LΣ
Δ/ 

(
A�/t

)t is isomorphic to 
one of the following groups:

(1) At, St;
(2) At × Z2, St × Z2;
(3) (Z2)t−1 : At, (Z2)t−1 : St;
(4) (Z2)t : At, (Z2)t : St.

Suppose that G(Σ) �= 1. Then a quotient group of LΣ
Δ is isomorphic either to SLa(2)

for a � 4, or to A7 for a = 4 by Corollary 4.1. Matching such information with (1)–(4) 



80 A. Montinaro / Journal of Algebra 653 (2024) 54–101
one obtains a = 4, t = 7, 8 and λ = 14. Then ((�/t)!)t−1 < �!
((�/t)!)tt! = 196 as shown in 

[25, (3.4)], and hence � = 14, 16. However, |Σ| is not a square for such values of t and �.
Suppose that G(Σ) = 1. Then LΔ/ 

(
A�/t

)t is one of the groups in (1)–(4). Assume 
that LΔ

Δ does not act 2-transitively on Δ. Then Soc(GΔ
Δ) < LΔ

Δ � GΔ
Δ � AΓL1(2h), 

where λ + 2 = 2h and 
∣∣GΔ

Δ : LΔ
Δ
∣∣ � 2 by Proposition 5.3 since � > 6. This forces LΔ

Δ to 
act 2-transitively on Δ, and we reach a contradiction.

Assume that LΔ
Δ acts 2-transitively on Δ. If LΔ

Δ is of affine type then λ + 2 = 2i
with i � t. Therefore ((�/t)!)t−1 < �!

((�/t)!)tt! < 22t and hence �/t = 2, and t > 12 since 

� > 25. However, this is impossible by [18, List (B)] since At � LΔ/ 
(
A�/t

)t. Thus LΔ
Δ is 

almost simple and hence At � LΔ
Δ � St with t � 5 by (1)–(4). Therefore, t = λ + 2 > 12

and 2t−1 � ((�/t)!)t−1 < �!
((�/t)!)tt! < t2, which is a contradiction. This completes the 

proof. �
Lemma 6.5. LΣ � PSL2(q).

Proof. Assume that LΣ ∼= PSL2(q), q = pf , p prime and f � 1. Then q �= 7 since 
PSL2(7) does not have transitive permutation representations of square degree, and 
q �= 9 by Lemma 6.4 since PSL2(9) ∼= A6. Moreover, if q = p, then p |

∣∣LΣ
Δ
∣∣ since ∣∣LΣ : LΣ

Δ
∣∣ = λ2. Thus no novelties occur by [5, Table 8.1], hence LΣ

Δ is maximal in LΣ. 
Moreover, no quotients groups of LΣ

Δ are isomorphic to SLa(2) with a � 4 or to A7 and 
a = 4 for G(Σ) �= 1. Hence G(Σ) = 1 by Corollary 5.4. Thus, LΔ is maximal in L.

Assume that LΔ is isomorphic to any of the groups A4, S4 or A5. Then λ + 2 | |LΔ|, 
hence λ + 2 is not a power of a prime since λ > 10. Thus LΔ is non-solvable and acts 
2-transitively on Δ by Proposition 5.3, hence LΔ ∼= A5 and λ + 2 = 6, whereas λ > 10. 
Thus, these groups are ruled out.

Assume that LΔ is isomorphic to D q±1
(2,q−1)

. Then λ � (q−1)/(2, q−1) since λ +2 | |LΔ|, 

and hence q(q ∓ 1) = |Σ| � (q−1)2
(2,q−1)2 , which has no admissible solutions.

Assume that PSL2(q1/m) � LΔ � PGL2(q1/m). Then LΔ acts 2-transitively on 
Δ by Proposition 5.3. Moreover, λ + 2 = q1/m + 1 since q1/m > 11, being λ > 10. 
Thus λ = q1/m − 1, and hence LΔ must contain a Sylow p-subgroup of L, which is a 
contradiction.

Finally, assume that LΔ ∼= Eq : Z q−1
(q−1,2)

. Then λ2 = q + 1, which has no solutions by 

[33, A5.1] since λ > 10. �
Lemma 6.6. LΣ is not isomorphic to one of the groups PSL3(4), PSU4(2), PSL6(2), 
PSp6(2), PΩ+

8 (2), G2(2)′, 2G2(3)′ or 2F4(2)′.

Proof. Assume that LΣ ∼= PSL3(4). Then 35 |
∣∣LΣ

Δ
∣∣ since 

∣∣LΣ : LΣ
Δ
∣∣ = λ2, but LΣ does 

not contain such a group by [7].
Assume that LΣ ∼= PSU4(2). Then 5 |

∣∣LΣ
Δ
∣∣ since 

∣∣LΣ : LΣ
Δ
∣∣ = λ2, and hence LΣ

Δ
∼= S6

and λ = 6 by [7], whereas λ > 10 by our assumptions.
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Assume that LΣ ∼= PSL6(2). Thus 2 · 5 · 31 |
∣∣LΣ

Δ
∣∣ since 

∣∣LΣ : LΣ
Δ
∣∣ = λ2, and hence 

either LΣ
Δ

∼= SL5(2), or LΣ
Δ

∼= E25 : SL5(2) by [5, Tables 8.24 and 8.25]. However, both 
cases are ruled out since 7 divides 

∣∣LΣ : LΣ
Δ
∣∣ but 72 does not.

Assume that LΣ ∼= PSp6(2). Then Out(LΣ) = 1, LΣ
Δ
∼= S8 and λ = 6 by [7], whereas 

λ > 10.
Assume that LΣ ∼= PΩ+

8 (2). Therefore 21 |
∣∣LΣ

Δ
∣∣ since 

∣∣LΣ : LΣ
Δ
∣∣ = λ2, and hence 

λ2 | 212 · 34 · 52. Then 
∣∣LΣ : LΣ

Δ
∣∣ must be divisible by one among its primitive degrees 

120, 135 or 960 by [7]. Thus 152 divides 
∣∣LΣ : LΣ

Δ
∣∣ in each case, and hence λ = 15j for 

some j � 1. If G(Σ) �= 1 then λ = 15j = 2a − 2 with a � 4 by Theorem 4.1. Easy 
computations show that no admissible cases occur. Therefore G(Σ) = 1, and hence G is a 
subgroup of PΩ+

8 (2).S3. Moreover, the order of G is divisible by (15j)3(15j+2)(15j+1)
since GΔ

Δ acts 2-transitively on Δ, which has size 15j+2, and since G acts flag-transitively 
on D and k = λ(λ + 1). Since no groups occur, this case is excluded.

The case LΣ ∼= G2(2)′ is ruled out in Lemma 6.5 since G2(2)′ ∼= PSL2(8). Also, if 
LΣ ∼= 2G2(3)′ ∼= PSU3(3) then LΣ

Δ
∼= PSL2(7) and |Σ| = 36 by [7]. So λ = 6, whereas 

λ > 10.
Finally, if LΣ ∼= 2F4(2)′ then LΣ

Δ
∼= PSL3(3) : Z2 and |Σ| = 1600 by [7]. Then 

λ = 40 and hence λ + 1 = 41 must divide the order of G by Lemma 2.1. However, this 
is impossible since GΣ �2F4(2) and the order of G(Σ) is either 1 or a power of 2 by 
Theorem 4.1. �
6.2. Primitive prime divisors of the order of a group

Let p be a prime, w a prime distinct from p, and m an integer which is not a power 
of p. Also let Γ be a group which is not a p-group. Then we define

ζp(w) = min {z : z � 1 and pz ≡ 1 (mod w)}

ζp(m) = max {ζp(w) : w prime, w �= p and w | m}

ζp(X) = ζp(|X|).

If LΣ is isomorphic to a simple group of Lie type over GF (q), q = pf , then ζp(LΣ)
is listed in [19, Proposition 5.2.16 and Table 5.2.C]. In the sequel we will denote ζp(LΣ)
simply by ζ. It is worth noting that Φ∗

ζ(p) > 1 by Lemmas 6.5 and 6.6 (the definition of 
primitive part is given just after Remark 3.4).

Lemma 6.7. LΣ
Δ is a large subgroup of LΣ such that 

(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) > 1.

Proof. Suppose that 
(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) = 1. Note that, 

∣∣GΣ
Δ : LΣ

Δ
∣∣ |

∣∣Out(LΣ)
∣∣ since ∣∣LΣ : LΣ

Δ
∣∣ =

∣∣GΣ : GΣ
Δ
∣∣, as GΣ acts primitively on Σ. Thus 

(
Φ∗

ζ(p),
∣∣GΣ

Δ
∣∣) = 1 since (

Φ∗
ζ(p),

∣∣Out(LΣ)
∣∣) = 1 by [19, Proposition 5.2.15(ii)]. Therefore Φ∗

ζ(p) |
∣∣GΣ : GΣ

Δ
∣∣, and 
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hence Φ∗
ζ(p) | λ2 since 

∣∣GΣ : GΣ
Δ
∣∣ = λ2. Then (Φ∗

ζ(p), |Gx|) > 1, where x is any point of 
D, since λ(λ +1) | |Gx| being G flag-transitive on D. Therefore (Φ∗

ζ(p), |GΔ|) > 1, where 
Δ is the element of Σ containing x, and hence (Φ∗

ζ(p), 
∣∣GΣ

Δ
∣∣) > 1 since G(Σ) is either triv-

ial, or a 2-group by Theorem 3.1, and we reach a contradiction. Thus 
(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) > 1. 

Moreover, LΣ
Δ is large by Theorem 5.5. �

Lemma 6.8. LΣ is not isomorphic to an exceptional simple group of Lie type.

Proof. Let M be a subgroup of L such that MΣ is a maximal subgroup of LΣ containing 
LΣ

Δ. Then MΣ is large since LΣ
Δ is so by Lemma 5.5. Therefore MΣ is one of the groups 

classified in [3, Theorem 5]. Moreover, 
(
Φ∗

ζ(p),
∣∣MΣ

∣∣) > 1 by Lemma 6.7.
Assume that MΣ is parabolic. If LΣ is untwisted then MΣ can be obtained by deleting 

the i-th node in the Dynkin diagram of LΣ, and we see that none of these groups is of 
order divisible by a prime factor of Φ∗

ζ(p). Indeed, for instance, consider the Levi factors 
of the maximal parabolic subgroups of LΣ ∼= F4(q), q = pf are of type B3(pf ), C3(pf )
or A1(pf ) × A2(pf ), and none of these has order divisible by a prime factor of Φ∗

12f (p). 
If LΣ is twisted; that is, LΣ is centralized by an automorphism γ of the corresponding 
untwisted group and γ induces a non-trivial symmetry ρ on the Dynkin diagram. In this 
case the MΣ exists only when deleting the resulting subset obtained by deleting the i-th 
node in the Dynkin diagram of corresponding untwisted group is ρ-invariant. The Levi 
factor of MΣ is obtained by taking the fixed points of the automorphism γ on the Levi 
factor of the corresponding untwisted subgroup. Also, in the twisted case the order of 
any maximal subgroups of LΣ is not divisible by a prime factor of Φ∗

ζ(p). Indeed, for 
instance, the Levi factors of the maximal parabolic subgroups of 2E6(q), q = pf , are of 
types 2A5(q), 2D4(q), A1(q) × A2(q2) and A1(q2) × A2(q), and none of these has order 
divisible by a prime factor of Φ∗

18f (p).
Assume that MΣ is not parabolic. Then (LΣ, MΣ) is listed in [3, Table 2]. Since (

Φ∗
ζ(p),

∣∣MΣ
∣∣) > 1, only the groups contained in Table 2 are admissible by [23].

LΣ is not isomorphic to any of the groups G2(3), G2(5) or 2B2(8) since none of these 
has a transitive permutation representation of square degree by [7]. Also, if LΣ ∼= G2(4)
then LΣ

Δ
∼= PSL2(13) again by [7], and hence λ = 480. Then G(Σ) = 1 by Corollary 5.4, 

and hence PSL2(13) � GΔ
Δ � PGL2(13). However, |Δ| = λ + 2 = 482 does not divide 

the order of GΔ
Δ, and we reach a contradiction.

Suppose that 
∣∣MΣ

∣∣2 <
∣∣LΣ

∣∣. Then G(Σ) = 1, LΔ
Δ is solvable, |L| � 4 |Out(L)|2

∣∣LΔ
Δ
∣∣2

and 
∣∣L(Δ)

∣∣ < 2 |Out(L)| by Theorem 5.5. Thus |M |2 < |L| � 4 |Out(L)|2 |LΔ|2, and hence 
|M : LΔ| < 2 |Out(L)|. In the remaining admissible groups of Table 2 the last term of 
the derived series M (∞) of M is non-abelian simple. Let P (M (∞)) be the minimal degree 
of the non-trivial primitive permutation representations of M (∞). If M (∞) �� LΔ, then

P (M (∞)) �
∣∣∣M (∞) : LΔ ∩M (∞)

∣∣∣ � |M : LΔ| < 2 |Out(L)| ,
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Table 2
Admissible (LΣ, MΣ).

LΣ MΣ Conditions
E7(q) (3, q + 1).(2E6(q) × q+1

(3,q+1) ).(3, q + 1).2

E6(q) F4(q)
(q2 + q + 1× 3D4(q)).3

F4(q) 3D4(q).3
2F4(q)

G2(q) SU3(q) : 2
2G2(q) q = 32e+1 > 1
G2(2) q = 5
PSL2(13) q = 3, 4
23.SL3(2) q = 3

2B2(q) 13 : 4 q = 8
3D4(q) G2(q)

and we reach a contradiction by Lemma 5.1. Therefore M (∞) � LΔ, and hence M (∞) �
L(Δ) since LΔ

Δ is solvable. Then P (M (∞)) �
∣∣L(Δ)

∣∣ < 2 |Out(L)| and we again reach a 
contradiction by Lemma 5.1.

Suppose that 
∣∣LΣ

∣∣ �
∣∣MΣ

∣∣2. Then one of the following holds by [23]:

(1) LΣ ∼= E7(q) and LΣ
Δ = MΣ ∼= (3, q + 1).(2E6(q) × (q − 1)/(3, q + 1)).(3, q + 1).2;

(2) LΣ ∼= E6(q) and LΣ
Δ = MΣ ∼= F4(q);

(3) LΣ ∼= F4(q) and LΣ
Δ = MΣ ∼= 3D4(q).Z3;

(4) LΣ ∼= G2(q) and LΣ
Δ = MΣ ∼= SU3(q) : Z2.

Then G(Σ) = 1 by Corollary 5.4. If LΔ
Δ does not act 2-transitively on Δ, then LΔ

Δ is 
solvable by Proposition 5.3, hence 

∣∣L(Δ)
∣∣ < 2 |Out(L)| by Theorem 5.5. However, this is 

impossible in cases (1)–(4). Then LΔ
Δ acts 2-transitively on Δ, and hence only (4) occurs 

with λ + 2 = q3 + 1. Then |Σ| = (q3 − 1)2, whereas LΣ
Δ is a maximal non-parabolic 

subgroup of LΣ. So this case is excluded, and the proof is completed. �
Now, it remains to analyze the case where LΣ is a simple classical group.

Proposition 6.9. LΣ
Δ is a large maximal geometric subgroup of LΣ. Moreover, it results 

that 
(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) > 1.

Proof. Recall that LΣ
Δ is a large subgroup of LΣ such that 

(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) > 1 by 

Lemma 6.7. Let M be a subgroup of L such that MΣ is a maximal subgroup of 
LΣ containing LΣ

Δ, then MΣ is large and 
(
Φ∗

nf (p),
∣∣MΣ

∣∣) > 1. If 
(
LΣ, LΣ

Δ
)

is not (
PΩ+

8 (q), G2(q)
)

and (PSU4(3), A7) then we may use the same argument of [26, Theo-
rem 7.1], with LΣ, LΣ

Δ and MΣ in the role of X, Xx and Y , respectively, to prove that 
MΣ is a geometric subgroup of LΣ.
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Assume that LΣ ∼= PΩ+
8 (q) and LΣ

Δ
∼= G2(q). Then G(Σ) = 1 by Corollary 5.4. If 

LΔ
Δ does not act 2-transitively on Δ, then Soc(GΔ

Δ) < LΔ
Δ � GΔ

Δ � AΓL1(uh), where 
uh = λ + 2. Then λ < f , where q = pf , and hence p2f � |L : LΔ| < f2 a contradiction. 
Thus LΔ

Δ acts 2-transitively on Δ, and hence q = 2. However, this is impossible by 
Lemma 6.6.

Assume that LΣ ∼= PSU4(3) and LΣ
Δ

∼= A7. Then λ = 36, and hence G(Σ) = 1
by Corollary 5.4. Therefore, one obtains G � PΓU4(3). However, this is impossible by 
Lemma 2.1 since λ + 1 = 37 does not divide the order of G. Thus, we have proven that 
MΣ is a geometric subgroup of LΣ containing LΣ

Δ.
If LΣ

Δ �= MΣ, then GΣ
Δ is a novelty, and hence LΣ

Δ is listed in [19, Table 3.5.H] for 
n � 13 and in [5, Section 8] for 3 ≤ n � 12. Now, the candidates for LΣ

Δ must be 
large subgroups of LΣ and their order must have a factor in common with Φ∗

ζ(p). For 
instance, LΣ ∼= PSLn(q), q = pf . Then n > 2 and (n, q) �= (6, 2) by Lemmas 6.5 and 
6.6. Hence ζ = nf by [19, Proposition 5.2.16], and the unique admissible case is when 
LΣ

Δ lies in a maximal member of C1(LΣ). However, this is impossible by [14, Theorem 
3.5(iv)]. Therefore, no novelties occur when LΣ ∼= PSLn(q). The remaining simple groups 
are analyzed similarly, and it is straightforward to check that no novelties which are 
compatible with the constraints on LΣ

Δ. Thus LΣ
Δ = MΣ, which is the assertion. �

Lemma 6.10. LΣ is not isomorphic to PSLn(q).

Proof. Assume that LΣ ∼= PSLn(q). Then n � 3 by Lemma 6.5, and LΣ
Δ is a large 

maximal geometric subgroup of LΣ such that 
(
Φ∗

nf (p),
∣∣LΣ

Δ
∣∣) > 1 by Proposition 6.9

and by [19, Proposition 5.2.16]. Then LΣ
Δ /∈ C1(LΣ) by [14, Theorem 3.5(iv)], and hence 

one of the following holds by [3, Propositions 4.7]:

(i) Soc(LΣ
Δ) is one of the groups PSp′n(q), PSUn(q1/2) and n odd, or PΩ−

n (q);
(ii) LΣ

Δ is a C3-group of type GLn/t(qt), where t = 2, or t = 3 and either q = 2, 3, or 
q = 5 and n is odd.

Assume that (i) holds. Then G(Σ) = 1 by Corollary 5.4. Thus GΣ = G, and hence LΣ
Δ =

LΔ. If LΔ
Δ does not act 2-transitively on Δ, then Soc(GΔ

Δ) < LΔ
Δ � GΔ

Δ � AΓL1(uh), 
where uh = λ +2 by Proposition 5.3. Thus LΔ

Δ is solvable, and λ +2 |
∣∣LΔ

Δ
∣∣ since LΔ

Δ acts 
transitively on Δ. Further, Soc(LΔ) � L(Δ) since Soc(LΔ) is non-abelian simple. Then 
λ + 2 �

∣∣LΔ
Δ
∣∣ � c, where c � 8, c � q − 1 or c � 2 according as Soc(LΔ) is isomorphic 

to one of the groups PSp′n(q), PSUn(q1/2) and n odd, or PΩ−
n (q), respectively, by [19, 

Propositions 4.8.3(II)–4.8.5(II)]. Therefore, Soc(LΣ
Δ) ∼= PSUn(q1/2) and λ � q − 3 since 

λ > 10 by our assumption. Then q2 + q + 1 � P (L) � |Σ| = λ2 � (q − 3)2 by [19, 
Proposition 5.2.1] since L acts transitively on Σ and n � 3, a contradiction. Thus, LΔ

Δ
acts 2-transitively on Δ in (i). Furthermore, (n, q) �= (4, 2), (6, 2) by Lemmas 6.4 and 6.9, 
respectively, and n � 3. Then one of the following holds by [19, Propositions 4.8.3–4.8.5]:
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(1) n > 6, q = 2, LΔ ∼= Spn(2) and λ = 22n−1 ± 2n − 2;
(2) n = 3, Soc(LΔ) ∼= PSU3(q1/2) and λ = q3/2 − 1;
(3) n = 4, Soc(LΔ) ∼= PΩ−

4 (q) ∼= PSL2(q2) and λ = q2 − 1.

Cases (2) and (3) are immediately ruled out since (λ, p) = 1 but LΔ does not contain 
a Sylow p-subgroup of L. In case (1), 2n(n−1)/2−2 must divide the order of a Sylow 
2-subgroup of LΔ which is 2n2/4, and we reach a contradiction since n > 6.

Assume that (ii) holds. Then LΣ
Δ

∼= Za.PSLn/t(qt).Ze.Zt, where a = (q−1,n/t)(qt−1)
(q−1)(q−1,n)

and e = (qt−1,n/t)
(q−1,n/t) by [19, Proposition 4.3.6.(II)], and t = 2, 3. Then G(Σ) = 1 by 

Corollary 5.4. Recall that Soc(GΔ
Δ) � LΔ

Δ by Proposition 5.3.
If GΔ

Δ is of affine type, then LΔ
Δ � Ze.Zt for n > t. Thus λ + 2 � e � n/t, and hence

qn − 1
q − 1 = P (L) � |L : LΔ| = |Σ| � n2/2 (6.2)

by [19, Theorem 5.2.2] since n � 3 and (n, q) �= (4, 2). However, (6.2) has no admissible 
solutions. Thus n = t = 3 since t = 2, 3 and n � 3. Moreover, LΔ ∼= Z q2+q+1

(3,q−1)
.Z3 and 

hence |Σ| = 1
3q

3(q + 1)(q − 1)2. On the other hand, since λ + 2 is a power of prime and 
divides the order of LΔ, it follows that λ � q2 + q − 1 and |Σ| � (q2 + q − 1)2, and we 
reach a contradiction.

If GΔ
Δ is almost simple, then t < n and LΔ

Δ acts 2-transitively on Δ by Proposition 5.3. 
Thus LΔ

Δ
∼= PSLn/t(qt).Ze.Zt and hence either (n/t, qt) = (2, 9) and λ + 2 = 6, or 

λ +2 = qn−1
qt−1 since t = 2, 3. The former contradicts λ > 10, the latter yields λ = qn−2qt+1

qt−1
and hence (λ, p) = 1. Then LΣ

Δ must contain a Sylow p-subgroup of LΣ, which is a 
contradiction. �
Lemma 6.11. LΣ is not isomorphic to PSUn(q).

Proof. Assume that LΣ ∼= PSUn(q). Then n � 3 by Lemma 6.5. Moreover, LΣ
Δ is a large 

maximal geometric subgroup of LΣ such that 
(
Φ∗

ζ(p),
∣∣LΣ

Δ
∣∣) > 1, where ζ is either nf or 

(n − 1)f according to whether n is even or odd, respectively, by Proposition 6.9 and [19, 
Proposition 5.2.16]. Then LΣ

Δ /∈ C1(LΣ) for n odd by [14, Theorem 3.5(iv)], and hence 
one of the following holds by [3, Propositions 4.17]:

(i) LΣ
Δ is a C1-subgroup of LΣ and n is even;

(ii) LΣ
Δ is a C3-subgroup of LΣ of type GUn/3(33) and n is odd.

Assume that (i) holds. Then LΣ
Δ

∼= Z q+1
(q+1,n)

.PSUn−1(q).Z(q+1,n−1) is the stabilizer 
of a non-isotropic point of PGn−1(q2) by [19, Propositions 4.1.4.(II)-4.1.18.(II)]. Also, 
G(Σ) = 1 by Corollary 5.4. If LΔ

Δ does not act 2-transitively on Δ, then Soc(GΔ
Δ) < LΔ

Δ �
GΔ

Δ � AΓL1(uh) with uh = λ + 2 by Proposition 5.3. Then λ � (q + 1, n − 1) − 2 by [19, 
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Proposition 4.1.4.(II)], and hence qn−1 � |L : LΔ| < q, which is impossible for n � 4. 
Then LΔ

Δ acts 2-transitively on Δ, and hence n = 4 and λ2 = q3(q − 1). So q − 1 is a 
square, which is impossible by [33, B1.1].

Assume that (ii) holds. Then LΣ
Δ

∼= Z7.PSUn/3(33).Z(n/3,7).Z3 by [19, Proposition 
4.3.6(II)]. Hence, G(Σ) = 1 by Corollary 5.4. Also, LΔ

Δ is forced to act 2-transitively 
on Δ by Proposition 5.3 since λ > 10. Therefore, n = 9 and λ = 39 − 2. However, 
|L : LΔ| �= λ2 in this case, which is ruled out. �
Lemma 6.12. LΣ is not isomorphic to PSpn(q)′.

Proof. Assume that LΣ ∼= PSpn(q)′. Then n � 4 by Lemma 6.5 since n is even. Also 
(n, q) �= (4, 2) by Lemma 4.2 since PSp4(2)′ ∼= A6. Thus LΣ ∼= PSpn(q). Moreover, 
LΣ

Δ is a large maximal geometric subgroup of LΣ such that 
(
Φ∗

nf (p),
∣∣LΣ

Δ
∣∣) > 1 by 

Proposition 6.9 and [19, Proposition 5.2.16]. Then LΣ
Δ /∈ C1(LΣ) by [14, Theorem 3.5(iv)], 

and hence one of the following holds by [3, Propositions 4.22]:

(i) LΣ
Δ is a C8-subgroup of LΣ;

(ii) LΣ
Δ is a C3-subgroup of LΣ of type Spn/2(q2), Spn/3(q3) or GUn/2(q);

(iii)
(
LΣ, LΣ

Δ
)

is either (PSp4(7), 24.O−
4 (2)), or (PSp4(3), 24.Ω−

4 (2)).

Assume that Case (i) holds. Then LΣ
Δ

∼= Oε
n(q), with ε = ± and q even, by [19, 

Proposition 4.8.6.(II)]. Then λ2 = qn/2

2 (qn/2+ε) since λ2 =
∣∣LΣ : LΣ

Δ
∣∣, and hence qn/2+ε

is a square. Then (n, q) = (6, 2) by [33, B1.1] since n � 4. However, LΣ ∼= PSp6(2) cannot 
occur by Lemma 6.6.

Assume the Case (ii) holds. Then LΣ
Δ is isomorphic to PSpn/t(qt).Zt with t = 2, 3

or to Z(q+1)/2.PGUn/2(q).Z2 with q odd by [19, Propositions 4.3.7(II) and 4.3.10.(II)]. 
Also, in both cases it results G(Σ) = 1 by Corollary 5.4.

If LΔ
Δ does not act 2-transitively on Σ, then Z(q+1)/2.PSUn/2(q) � L(Δ) and 

∣∣LΔ
Δ
∣∣ |

4f(n/2, q + 1) since λ > 10. By [3, Corollary 4.3(ii)–(iii)] we obtain

pf
n2+2n

4 �
∣∣LΣ : LΣ

Δ
∣∣ � 16f2(n/2, q + 1)2,

which has no solutions for q odd and n � 4.
If LΔ

Δ acts 2-transitively on Σ. Then LΣ
Δ is isomorphic to PSp2(qt).Zt with t = 2, 3 or 

to Z(q+1)/2.PGU3(q).Z2 with q odd. Then either λ = qt − 1 with t = 2, 3, or λ = q3 − 1, 
respectively. In each case (λ, q) = 1, and hence LΣ

Δ must contain a Sylow p-subgroup of 
LΣ, which is a contradiction.

Finally, Case (iii) cannot occur since 
∣∣LΣ : LΣ

Δ
∣∣ is a non-square integer. �

Lemma 6.13. LΣ is not isomorphic to simple classical group.
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Proof. In order to prove the assertion we only need to tackle the case LΣ ∼= PΩε
n(q), 

where ε ∈ {◦,±} since the remaining classical groups are ruled out in Lemmas 6.10, 6.11
and 6.12. Hence, assume that LΣ ∼= PΩε

n(q), where ε ∈ {◦,±}. Then n �= 4 by Lemma 6.5. 
Moreover, n �= 5, 6 by Lemmas 6.10, 6.11 and 6.12, since PΩ◦

5(q) ∼= PSp4(q) with q odd, 
PΩ+

6 (q) ∼= PSL4(q) and PΩ−
6 (q) ∼= PSL6(q). Thus, n � 7. Further, (n, q, ε) �= (8, 2, +)

by Lemma 6.6. Finally, LΣ
Δ is a large maximal geometric subgroup of LΣ such that (

Φ∗
ζ(p),

∣∣LΣ
Δ
∣∣) > 1 by Proposition 6.9, where ζ is either nf , (n − 1)f or (n − 2)f by [19, 

Proposition 5.2.16] according to whether ε is −, ◦ or +, respectively. Thus, one of the 
following holds by [3, Proposition 4.23]:

(i) LΣ
Δ is C1-subgroup of LΣ;

(ii) Either (n, q) = (7, 3), (7, 5), or (n, q, ε) = (8, 3, +) and LΣ
Δ is of type O1(q) 	 Sn;

(iii) LΣ
Δ is a C3-subgroup of LΣ. Moreover, its type is either Oε′

n/2(q2) with (ε, ε′) = (−, −)
and n/2 even or (ε, ε′) = (+, ◦) and n/2 odd, or GUn/2(q) with ε = − and n/2 odd 
or ε = + and n/2 even;

(iv) LΣ ∼= PΩ+
8 (3) and LΣ

Δ
∼= 26.Ω+

6 (2).

Assume that (i) holds. Then one of the following cases occurs by [19, Propositions 
4.1.6(II), 4.1.7(II) and 4.1.20(II)]:

(1) LΣ
Δ is the stabilizer in LΣ of a non-singular point of PGn−1(q):

(a) ε = ◦ and LΣ
Δ
∼= Ω−

n−1(q).Z2

(b) ε = + and LΣ
Δ
∼= Ωn−1(q) with q ≡ 1 (mod 4), or q ≡ 3 (mod 4) and n/2 even;

(c) ε = + and LΣ
Δ
∼= Ωn−1(q).Z2 with q ≡ 3 (mod 4) and n/2 odd;

(d) ε = + and LΣ
Δ
∼= Spn−2(q) with q even.

(2) ε = + and LΣ
Δ is the stabilizer in LΣ of a non-singular line of type “−” of PGn−1(q):

(a) LΣ
Δ
∼=

(
Z q+1

(q+1,2)
× Ω−

n−2(q)
)
.Z2 with q even or q ≡ 1 (mod 4);

(b) LΣ
Δ
∼=

(
Z q+1

2
× Ω−

n−2(q)
)
.[4] with q ≡ 3 (mod 4) and n/2 odd;

(c) LΣ
Δ
∼= Z2. 

(
Z q+1

4
× PΩ−

n−2(q)
)
.[4] with q ≡ 3 (mod 4) and n/2 even.

In each case G(Σ) = 1 by Corollary 5.4 since n � 7. Hence, L = LΣ and G = GΣ. 
Moreover, LΔ

Δ acts 2-transitively on Δ by Proposition 5.3 since λ > 10. Then ε = +, 
n � 8, q = 2, LΣ

Δ
∼= Spn−2(2) and λ = 22(n/2−1) ± 2n/2−2 − 2. On the other hand,

∣∣LΣ : LΣ
Δ
∣∣ = λ2 = 2n/2−1

(
2n/2 − 1

)
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and hence 22(22(n/2−1)−1 ± 2n/2−1 − 1)2 = 2n/2−1 (2n/2 − 1
)
, which has no admissible 

integer solutions for n � 8.
Assume that (iii) holds. The possibilities for LΣ

Δ are provided in [19, Propositions 
4.3.16(II), 4.3.18(II) and 4.3.20(II)]. Thus, G(Σ) = 1 by Corollary 5.4. If LΔ

Δ does not 
act 2-transitively on Δ, then Soc(GΔ

Δ) < LΔ
Δ � GΔ

Δ � AΓL1(uh) with uh = λ + 2 by 
Proposition 5.3. Thus, LΔ is forced to be of type GUn/2(q) with 

∣∣LΔ
Δ
∣∣ | (n/2, 2, q)(q +

1, n/2) since λ > 10. Then λ � n − 2 and so q
1
8n(n+2) � |L : LΔ| � (n − 2)2, which has 

no solutions for n � 8. Therefore LΔ
Δ acts 2-transitively on Δ, and hence L ∼= PΩ−

8 (q)
and LΔ ∼= PΩ−

4 (q).Z4 ∼= PSL2(q4).Z4 since n � 8. Thus, λ = q4 −2. If q is odd then LΔ
must contain a Sylow p-subgroup of L since |L : LΔ| = λ2, which is not the case. So, q
is even and |Σ| = q12(q6 − 1)(q2 − 1), which is different from (q4 − 2)2.

Finally, it is easy to check that 
∣∣LΣ : LΣ

Δ
∣∣ is a non-square in (ii) and (iv), hence these 

ones are ruled out. This completes the proof. �
Proof of Theorem 6.1. Since LΣ is almost simple by Theorem 4.1, the assertion follows 
from Lemmas 6.2, 6.4, 6.8 or 6.13. �
7. Classification of the 2-designs of type 2

In this section, we assume that D is of type 2. Recall that G(Σ) = 1 and G is an almost 
simple group acting point-quasiprimitively on D by Theorem 4.1. Thus, G = GΣ and 
L = LΣ where L = Soc(G). Further, constraints for L are provided in Proposition 5.3 and 
Theorem 5.5 which are then combined with the results contained in [3,22]. An important 
restriction is provided in Lemma 7.5 where it is proven that, if L is Lie type simple group, 
either LΔ lies in a maximal parabolic subgroup of L, or LΔ

Δ is a non-solvable group acting 
2-transitively on Δ. We use all this information to prove the following result.

Theorem 7.1. If D is a symmetric 2-
((

λ+2
2

) (
λ2−2λ+2

2

)
, λ2

2 , λ
)

design admitting a flag-
transitive and point-imprimitive automorphism group, then λ � 10.

We analyze the cases where LΣ is sporadic, alternating, exceptional of Lie type or 
classical separately.

Recall by Theorem 2.2 (VI.2)) that, when D is of type 2, either λ ≡ 0 (mod 4) and 
hence |Δ| = λ/2 + 1 is odd, or λ = 2w2 with w odd, w � 3, 2(w2 − 1) a square and 
|Δ| = w2 + 1. In both cases it results that |Δ| �≡ 0 (mod 4).

A preliminary filter in the study of the 2-designs of type 2 is the following lemma.

Lemma 7.2. If D is of type 2, then the following hold:

(1) |Σ| is odd and 2 |Σ| − 1 is a square.
(2) If u is any prime divisor of |Σ|, then u ≡ 1 (mod 4).
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(3) If λ = 2w2, w odd, w � 3 and such that 2(w2 − 1) is a square, then Soc(GΔ
Δ) is 

isomorphic to one of the groups Aw2+1, PSL2(w2), or PSU3(w2/3) and w2 is the 
cube of an integer.

Proof. |Σ| is clearly odd. If λ = 2w2, where w is odd, w � 3, and 2(w2 − 1) = x2 then 
2w4−2w2t +(1 − |Σ|) = 0, whereas if λ = 4t for some t � 1, then 16t2−8t +(2 − 2 |Σ|) =
0. In both cases y2 = 2 |Σ| − 1 for some positive integer y. Therefore, |Σ| = y2+1

2 is odd. 
Moreover, if u is any prime divisor of |Σ| then y2 ≡ −1 (mod u) and hence u ≡ 1
(mod 4). Thus, we obtain (1) and (2).

Finally, (3) follows from the first part of the proof of Lemma 3.6. �
Lemma 7.3. L is not isomorphic to a sporadic group.

Proof. Assume that L is sporadic. Then the possibilities for G, Gx with x any point 
of D, and |Σ| = |G : Gx| are provided in [2]. It is easy to see that 2 |Σ| − 1 is never 
square when |Σ| is any of such degrees. Thus, L cannot be a sporadic simple group by 
Lemma 7.2(2). �
Lemma 7.4. L is not isomorphic to As with s � 5.

Proof. Assume that L ∼= As, where s � 5. Then one of the following holds by [22]:

(1) GΔ ∼= (St × Ss−t) ∩G, 1 � t < s/2;
(2) GΔ ∼= (Ss/t 	 St) ∩G, s/t, t > 1;
(3) GΔ ∼= A7 and |Σ| = 15.

Assume that (1) holds. Then |Σ| =
(
s
t

)
and At × As−t � LΔ � (St × Ss−t) ∩ L. 

Suppose that t � 5. Then s − t > t � 5. Hence, both At and As−t are simple groups. 
Moreover, LΔ

Δ is either At or As−t by Proposition 5.3 since λ > 10. If LΔ
Δ

∼= At then 
either |Δ| = t, or t = 6 and |Δ| = 10, or t = 7, 8 and |Δ| = 15 since t � 5. Actually, 
t = 6 and |Δ| = 10 imply λ = 2w2 = 18 and |Σ| = 145, which is not of the form 

(
s
6
)
, and 

hence it cannot occur. Also, if t = 7, 8 and |Δ| = 15 then 
(
s
t

)
= |Σ| = 365, and we reach 

a contradiction. Thus, λ = 2(t − 1), and hence |Σ| = 2t2 − 6t + 5. Therefore, we have

2t <
(s
t

)t

�
(
s

t

)
= 2t2 − 6t + 5,

which is impossible for t � 5. We reach the same contradiction for LΔ
Δ
∼= As−t.

Assume that 1 � t � 4. If LΔ
Δ is non-solvable, then s − t � 5 and LΔ

Δ
∼= As−t and 

the previous argument rules out this case. Thus LΔ
Δ is solvable, and hence |Δ| = 3 by 

Proposition 5.3 since LΔ � (St × Ss−t)∩L and |Δ| is odd by Lemma 7.2(3). Then λ = 4, 
whereas λ > 10 by our assumptions.
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Assume that (2) holds. Then |Σ| = s!
((s/t)!)t(t!) and As/t 	 At � LΔ �

(
Ss/t 	 St

)
∩ L. 

Moreover, 
(
As/t

)t � LΔ and At � LΔ/ 
(
As/t

)t � (Z2)t : St, where the action of At on 

(Z2)t and on its permutation module are equivalent. Thus LΔ/ 
(
As/t

)t is isomorphic to 
one of the groups At, St, Z2 ×At, Z2 ×St, (Z2)t−1(2) : At, (Z2)t−1(2) : St, (Z2)t : At or 
(Z2)t : St by [19, Lemma 5.3.4]. If t � 4 then LΔ

Δ is solvable, and hence λ/2 +1 = |Δ| = 3
by Proposition 5.3 since |Δ| is odd by Lemma 7.2(3). However, this is impossible since 
λ > 10. Thus t � 5. Also, LΔ

Δ is non-solvable otherwise we reach a contradiction as 
above. Then LΔ

Δ acts 2-transitively on Δ by Proposition 5.3. Therefore LΔ
Δ

∼= At, and 
hence either |Δ| = t for t � 5, or t = 6 and |Δ| = 10, or t = 7, 8 and |Δ| = 15. 
On the other hand, 2t−1 � ((s/t)!)t−1 < s!

((s/t)!)t(t!) < 2t2 as shown in [25, (34)]. Thus 
(t, s) = (3, 6), (5, 10), (7, 14), and hence |Σ| = 15, 945, 135135, which are ruled out since 
they violate Lemma 7.2(1). Then either t = 6, |Δ| = 15 and |Σ| = 41, or t = 7, 8, 
|Δ| = 15 and |Σ| = 365. However, both cases cannot occur since (2t)!

(2)t(t!) > |Σ|.
Finally, (3) is excluded by Lemma 7.2(1) since 2 |Σ| − 1 is not a square. �

Lemma 7.5. Let L be a simple group of Lie type. Then the following hold:

(1) If either p | λ − μ for some μ ∈ {0, 1, 2}, or p | λ − 3 and p �= 5, then LΔ lies in a 
maximal parabolic subgroup of L.

(2) If LΔ does not lie in a maximal parabolic subgroup of L, then LΔ
Δ is a non-solvable 

group acting 2-transitively on Δ.

Proof. Since |Σ| = λ2−2λ+2
2 it is immediate to see that (|Σ| , λ− μ) = 1 for either 

μ = 0, 1, 2, or μ = 3 and p �= 5. In these cases LΔ contains a Sylow p-subgroup of L, 
and hence LΔ lies in a maximal parabolic subgroup of [34, Theorem 1.6] since L is a 
non-abelian simple group acting transitively on Σ, and (1) holds.

Suppose to the contrary that LΔ does not lie in a maximal parabolic subgroup of L and 
that LΔ

Δ is solvable. Then p | |Σ| by [34, Theorem 1.6]. Also p �= 2, 3 by Lemma 7.2(1)–(2), 
and Soc(GΔ

Δ) < LΔ
Δ < GΔ

Δ � AΓL1(uh), where λ2 + 1 = |Δ| = uh for some prime u by 
Proposition 5.3. Also, u is odd since either λ ≡ 0 (mod 4), or λ = 2w2 with w odd and 
w ≥ 3 by Theorem 2.2. Then λ = 2(uh − 1) with h > 1 since λ > 10.

If p = 5 divides λ − 3, then u = p since (|Σ| , |Δ|) = (|Σ| , λ− 3) = (|Δ| , λ− 3) | 5. 
Thus |Σ| = 2 ·52h−6 ·5h +5, and 52 � |Σ| since h > 1. Hence, LΔ contains a subgroup of 
index 5 of a Sylow 5-subgroup of L. It is a straightforward check that none of the groups 
listed in [22] fulfills the previous constraint. So this case is excluded.

If p � λ − μ for each μ ∈ {0, 1, 2, 3}. Then 
(
p,
∣∣L(Δ)

∣∣) = 1 by Corollary 2.6(2) since 
p �= 2, 3. Thus |LΔ|p =

∣∣LΔ
Δ
∣∣
p
, and hence p | λ

2
(
λ
2 + 1

)
h since LΔ

Δ < GΔ
Δ � AΓL1(uh). 

Actually, p � λ
2 by our assumption. If p | λ

2 +1, then p = 5 divides λ −3 since (|Σ| , |Δ|) =
(|Σ| , λ− 3) = (|Δ| , λ− 3) | 5, which we saw being impossible. Therefore, |LΔ|p | h and 
any Sylow p-subgroup of LΔ is cyclic since LΔ

Δ < GΔ
Δ � AΓL1(uh). However, this is 
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impossible by [22]. Thus LΔ
Δ is non-solvable, and hence LΔ

Δ acts 2-transitively on Δ by 
Proposition 5.3. �
Lemma 7.6. L is not a simple exceptional group of Lie type.

Proof. Assume that LΔ is parabolic. Then L ∼= E6(q) and LΔ ∼= [q16].z.(PΩ+
10(q) × (q−

1)/ez).z, where z = (2, q− 1) e e = (3, q− 1) by [22, Table 1]. If LΔ
Δ is solvable, then the 

order of LΔ
Δ must divide (q − 1)/e. So does |Δ|, and hence

q9 − 1
q − 1 · (q8 + q4 + 1) = |Σ| � 2 |Δ|2 � 2(q − 1)2

e2 ,

which is clearly impossible. Thus LΔ
Δ is non-solvable acting 2-transitively on Δ by Propo-

sition 5.3, and this is impossible too.
Assume that LΔ is not parabolic. Then LΔ

Δ is non-solvable acting 2-transitively on Δ
by Lemma 7.5 with |Δ| odd. Also, |L| � |LΔ|2 by Theorem 5.5. All these constraints 
together with [22, Table 1] lead to the following admissible cases:

(1) L ∼= E7 and Soc(LΔ
Δ) ∼= PSL2(q);

(2) L ∼= 3D4(q) and Soc(LΔ
Δ) is isomorphic to one of the groups PSL2(qj) with j = 1

or 3, PSL3(q) or PSU3(q);
(3) L ∼= 2G2(q), q = 32m+1, m � 1, and Soc(LΔ

Δ) ∼= PSL2(q).

The admissible values for |Δ| are q + 1, q2 + 1, q2 + q + 1, q2 + 1, hence q | λ in any 
case since |Δ| = λ/2 + 1. Therefore q is coprime to |Σ| = λ2−2λ+2

2 , and hence LΔ must 
contain a Sylow p-subgroup of L, which is not the case. This completes the proof. �
Lemma 7.7. Let L be a simple group. Then the following cases are admissible:

(1) q is even and LΔ lies in a maximal parabolic subgroup of L;
(2) q is odd and one of the following holds:

(a) LΔ lies in maximal member of C1(L) ∪ C2(L), with LΔ lying in a maximal 
parabolic subgroup of L of type either Pi or Pm,m−i only for L ∼= PSLn(q).

(b) L ∼= PSL2(q) and LΔ is isomorphic to one of the groups Dq±1, A4, S4, A5 or 
PGL2(q1/2).

Proof. G is one of the groups classified by [22] since G acts primitively on Σ and the size 
of this one is odd. Actually, L ∼= X(q), where X(q) denotes any simple classical group 
by Lemmas 7.3, 7.4 and 7.6.

Assume that GΔ = NG(X(q0)) with q = qs0 and q, s odd by [22]. Then LΔ = X(q0)
is maximal in L by [19, Tables H-I] for n � 13 and [5, Section 8.2] for 2 � n � 12. Then 
s = 3 and L ∼= PSLε

m(q), where ε = ± by [3, Propositions 4.7, 4.17, 4.22 and 4.23] since 
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LΔ is a large subgroup of L by Theorem 5.5. Then LΔ ∼= j
(q−ε,n) .PGLε

n(q1/3), where 

j = q−ε

(q1/3−ε, q−ε
(q−ε,n) )

, by [19, Proposition 4.5.3(II)].

Assume that LΔ
Δ does not act 2-transitively on Δ. Then LΔ

Δ is solvable and λ/2 +1 �
(n, q1/3−ε) by Proposition 5.3. Moreover, it results that λ ≡ 0 (mod 4) by Lemma 7.2(3). 
Therefore, qn(8n+3)/18 � |L : LΔ| < 2(n, q1/3 − ε)2, which is impossible for n � 2. Thus 
LΔ

Δ acts 2-transitively on Δ and hence n = 2, 3. Then λ = 2q1/3, 2(q2/3 + q1/3) or 2q
according to whether n = 2, (n, ε) = (3, +) or (n, ε) = (3, −), respectively. Therefore, 
|Σ| is coprime to q and we reach a contradiction by [34, Theorem 1.6] since LΔ is a 
non-parabolic subgroup of L.

Assume that L ∼= Ω7(q) and LΔ ∼= Ω7(2). Then q = 3, 5 since LΔ is a large sub-
group of L, and hence |Σ| = 3159 or 157421875, respectively. However, both contradict 
Lemma 7.2(1) since 2 |Σ| − 1 is not a square.

Assume that L ∼= PΩ+
8 (q), where q is a prime and q ≡ ±3 (mod 8), and either 

LΔ ∼= Ω+
8 (2), or LΔ ∼= 23 · 26 · PSL3(2). In the former case q = 3, 5 since LΔ is a 

Large subgroup of L, and hence |Σ| = 28431 or 51162109375. However, both contradict 
Lemma 7.2(1). Then LΔ ∼= 23 · 26 · PSL3(2), and hence |Σ| = 57572775, but 2 |Σ| − 1 is 
not a square.

Finally, the case L ∼= PSU3(5) and LΔ ∼= PΣL2(9) implies |Σ| = 175, and we again 
reach a contradiction by Lemma 7.2(1). �
Lemma 7.8. L is not isomorphic to PSL2(q).

Proof. Assume that L ∼= PSL2(q) and LΔ is isomorphic to one of the groups Dq±1, A4, 
S4, A5 or PGL2(q1/2). If LΔ ∼= Dq±1 then |Σ| = q(q∓1)

2 and hence 2 |Σ| − 1 = q2 + q + 1
or (q− 1)2 + (q− 1) + 1 must be square by Lemma 7.2(1). However this is impossible by 
[33, A7.1].

If LΔ ∼= PGL2(q1/2) then |Σ| = q1/2(q + 1)/2, and hence 2 |Σ| − 1 = q3/2 + q1/2 − 1. 
Moreover, LΔ

Δ acts 2-transitively on Δ. If it is not so, then λ/2 + 1 � (2, q1/2 − 1) as a 
consequence of Proposition 5.3, whereas λ > 10. Thus, either |Δ| = q1/2+1, or |Δ| = q1/2

and q1/2 = 7, 11 since either λ ≡ 0 (mod 4) and hence |Δ| = λ/2 +1 is odd, or λ = 2w2, 
where w is odd, w � 3, 2(w2 − 1) is a square and |Δ| = w2 + 1. The two numerical cases 
are ruled out since they violate Lemma 7.2(1), whereas the former yields λ = 2q1/2 with 
q odd. Then |Σ| is coprime to q and hence LΔ must contain a Sylow p-subgroup of L, 
which is not the case.

Finally, assume that LΔ ∼= A4, S4 or A5. In the first two cases λ must be divisible by 
4 by Lemma 7.2(3), hence λ/2 + 1 = |Δ| = 3 since |Δ| is odd, and so λ = 4, whereas 
λ > 10. Thus LΔ ∼= A5. The previous argument can be applied to exclude the case λ ≡ 0
(mod 4). Therefore λ = 18, |Δ| = 10 and 145 = |Δ| = q(q2−1)

120 which has no integer 
solutions. �
Lemma 7.9. L is not isomorphic to PSLn(q), n � 2.
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Proof. Assume that L ∼= PSLn(q). Then n � 3 by Lemma 7.8, and hence M ∈ C1(L) ∪
C2(L) by Lemma 7.7.

Assume that LΔ lies in a maximal parabolic subgroup M of L. If LΔ is not of type 
Ph,n−h then LΔ = M by [19, Table 3.5.H] for n � 13 and by [5, Section 8.2] for 3 � n �
12. Also, LΔ is as in [19, Proposition 4.1.17.(II)] and |Σ| =

[
n
h

]
q
, the Gaussian number, 

where h � n/2.
Assume that LΔ

Δ is solvable. Then 
∣∣LΔ

Δ
∣∣ | q−1 by [19, Proposition 4.17.(II)], and hence

1
2q

h(n−h) �
[
n

h

]
q

= |Σ| < 2q2.

Then either n = 3 and h = 1, or (n, h, q) = (4, 1, 2), (4, 2, 2) since |Σ|. The numerical 
cases are immediately ruled by Lemma 7.2(1). Therefore n = 3, |Σ| = q2 + q + 1 and 
hence X2 = q2+(q+1)2, where X2 = 2 |Σ|−1 again by Lemma 7.2(1). Thus (q, q+1, X)
is primitive solution of the Pythagorean equation and hence it is of the form as in [33, 
P3.1]. Easy computations show that q = 3. Then |Σ| = 13 and hence λ = 6, whereas 
λ > 10.

Assume that LΔ
Δ is non-solvable. Then LΔ

Δ acts 2-transitively on Δ by Proposition 5.3. 
Then Soc(LΔ

Δ) is isomorphic to PSLx(q), where x ∈ {h, n− h} and x � 2, by [18, List 
(B)] and again by [19, Proposition 4.17.(II)]. Note that (x, q) �= (2, 5), (2, 9) since λ > 10. 
Moreover, (x, q) �= (2, 7). Indeed, if it is not so, then λ = 12 and hence |Σ| = 121, which 
is impossible by [12, Table B.4] since L ∼= PSLn(7). Thus |Δ| = qx−1

q−1 , λ = 2q qx−1−1
q−1

and hence

8q2x−2 � 2q2
(
qx−1 − 1
q − 1

)2

− 2q q
x−1 − 1
q − 1 + 1 = |Σ| =

[
n

x

]
q

� q
1
2x(2n−x+1)

2q 1
2x(x+1) = 1

2q
x(n−x)

(7.1)
and so 2x(n−x)−2x+2 � qh(n−h)−2x+2 � 16. Then x(n − 2 − x) � 2, and hence x = h = 2
and n = 5 since x � 2 and h � n/2. Also, q = 2, 3, and hence |Σ| = 155 or 1210, 
respectively, but both values of |Σ| contradict Lemma 7.2(1).

Assume that LΔ is of type Ph,n−h, where h < n/2. If LΔ
Δ is solvable, then 

∣∣LΔ
Δ
∣∣ | (q−1)2

by [19, Proposition 4.1.22.(II)]. Also, |Σ| �
[
n
h

]
q

since LΔ lies in a maximal parabolic 
subgroup of type Ph. Hence,

1
2q

h(n−h) �
[
n

h

]
q

� |Σ| < 2(q − 1)4.

Then n � 5 and h = 1 since h < n/2. We actually obtain n = 3 since |Σ| =
(qn−1)(qn−1−1)

(q−1)2 . Hence, 2q3 + (2q + 1)2 = 2 |Σ| − 1 = X2 for some positive odd inte-
ger X by Lemma 7.2(1). Then 2q3 = (X − 2q − 1)(X + 2q + 1) and hence q = 2t, t � 1. 
Then 2s + 2t+1 + 1 = X = 23t+1−s − 2t+1 − 1 for some integer s such that 0 � s � 3t. 
Thus 23t+1−s = 2s + 22(t+1) + 2. If s > 1 then s = 3t, which is clearly impossible. Then 
s = 1 and hence 23t = 22(t+1) +4, which has no integer solutions for t � 1. Thus, LΔ

Δ is a 
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non-solvable group acting 2-transitively on Δ by Proposition 5.3. Then LΔ
Δ is isomorphic 

to PSLx(q), where x ∈ {h,m− h} and x � 2, by [19, Proposition 4.1.22.II] and [18, 
List (B)]. Then the same conclusion of (7.1) holds since |Σ| �

[
m
x

]
q
. Thus n = 5, x = 2

and q = 2, 3. Then |Σ| = 1085 or 7865, respectively, but both values of |Σ| contradict 
Lemma 7.2(1).

Assume that LΔ lies in a maximal member of C2(L). Then q is odd by [22], and LΔ
is of type GLn/t(q) 	 St, where either t = 2, or t = 3 and either q ∈ {5, 9} and n odd, or 
(n, q) = (3, 11) by [3, Proposition 4.7]. Moreover,

LΔ ∼=
[
(q − 1)t−1(q − 1, n/t)

(q − 1, n)

]
.PSLn/t(q)t.

[
(q − 1, n/t)t−1] .St (7.2)

by [19, Proposition 4.2.9.(II)]. In addition, LΔ
Δ is non-solvable and acts 2-transitively on 

Δ by Lemma 7.5. Then t < n by (7.2) and |L| < |LΔ|2 by Theorem 5.5. Hence,

qn
2−2 <

(q − 1)2t−2(q − 1, n/t)2t

(q − 1, n)2 · (q2n2/t−2t) · (t!)2 (7.3)

by (7.2) and [3, Corollary 4.1.(i)]. If t = 3 then qn
2−2 < 36q2n2/3+2 and hence qn

2/3−4 <

36, which has no solutions for q � 3 and n � 6. Thus t = 2, and hence Soc(LΔ
Δ) ∼=

PSLn/2(q) since LΔ
Δ is non-solvable and acts 2-transitively on Δ. Then either |Δ| = 5

and (n, q) = (4, 9), or |Δ| = q and (n, q) = (4, 5), (4, 7), (4, 11), or |Δ| = qn/2−1
q−1 . In each 

case one has q5n � qn(3n−2)/2 � |L : LΔ| = |Σ| � 2 |Δ|2 < 2qn, which is a contradiction. 
This completes the proof. �
Lemma 7.10. L is not isomorphic to PSUn(q).

Proof. Assume that L ∼= PSUn(q). Then n � 3 by Lemma 7.8 since PSU2(q) ∼=
PSL2(q). Moreover, one of the following holds by Lemma 7.7 and by [3, Proposition 
4.17]:

(i) q is even and LΔ lies in a maximal parabolic subgroup of L.
(ii) q is odd and LΔ is a maximal C1-subgroup of L of type GUt(q) ⊥ GUn−t(q);
(iii) q is odd, LΔ is a maximal C2-subgroup of L of type GUn/t(q) 	 St and one of the 

following holds:

(a) t = 2.
(b) t = 3 and (q, z) = (5, 3), (13, 1), where z = (n, q + 1).
(c) t = n = 4 and q = 5.

Suppose that (i) holds. Then LΔ is a maximal parabolic subgroup of L by [19, Table 
3.5.H] for n � 13 and [5, Section 8.2] for 3 � n � 12. If LΔ

Δ does not act 2-transitively 
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on Δ, then LΔ
Δ is solvable by Proposition 5.3. Thus 

∣∣LΔ
Δ
∣∣ | q2 − 1 by [19, Proposition 

4.18.(II)], and hence

(q − 1)qn
2−3 < |L| < 4 |Out(L)|2

∣∣LΔ
Δ
∣∣2 = 16f2(n, q + 1)2(q2 − 1)2

by Theorem 5.5(2b). Thus qn2−6 < 16n2(q + 1), and hence n = 3 and q = 4, 8 since q is 
even. So, |Σ| = 65 and 513, respectively. However, both cases contradict Lemma 7.2(1). 
Thus LΔ

Δ acts 2-transitively on Δ by Proposition 5.3.
Assume that LΔ

Δ is non-solvable. Then either t � 2, PSLt(q2) � LΔ
Δ and |Δ| = q2t−1

q−1 , 
or n = 4, t = 1, PSL2(q) � LΔ

Δ and |Δ| = q + 1, or n − 2t = 3, PSU3(q) � LΔ
Δ and 

|Δ| = q3 + 1 by [19, Proposition 4.1.18(II)] and by [18, List (B)] since q is even. On the 
other hand, by [19, Proposition 4.1.18.(II)] and [3, Lemma 4.1], one obtains

|Σ| =
∏2t+3

i=4
(
qi − (−1)i

)
∏t

j=1 (q2j − 1)
>

q(2t+3)(t+2)−3

q3 + 1 · 1
(q2 − 1)(q4 − 1)qt(t+1)−6 > qt

2+6t. (7.4)

If |Δ| = q2t−1
q−1 , then

2q4t−2 > 2
(
q
q2t−1 − 1
q − 1

)2

− 2
(
q
q2t−1 − 1
q − 1

)
+ 1 = |Σ| > qt

2+6t, (7.5)

and we reach a contradiction.
In the remaining cases, we have λ = 2qi and |Σ| = 2q2i − 2qi + 1 with i = 1, 2. Both 

cases lead to qt
2+6t < |Σ| < 8q4 and hence to a contradiction.

Assume that LΔ
Δ is solvable. As above 

∣∣LΔ
Δ
∣∣ | q2 − 1, hence |Δ| | q2 − 1 by Proposi-

tion 5.3. Then qt
2+6t � |Σ| � 2 |Δ|2 � 2(q2 − 1)2 by (7.4), which is clearly impossible 

for t � 2.
Note that, LΔ is clearly non-parabolic in the remaining cases. Thus p | |Σ|, and hence 

q � 5 by Lemma 7.2(3) since q is odd.
Suppose that (ii) holds. Then LΔ

Δ is non-solvable and acts 2-transitively on Δ by 
Lemma 7.5(2). Then either t = 3 or n − t = 3, and in both cases LΔ ∼= PSU3(q) by [19, 
Proposition 4.1.4.(II)]. Then λ/2 + 1 = q3 + 1 and so λ = 2q3. Then |Σ| = 2q6 − 2q3 + 1, 
whereas p | |Σ|.

Suppose that (iii) holds. Then

LΔ ∼=
[
(q + 1)t−1(q + 1, n/t)

(q + 1, n)

]
.PSUn/t(q)t.

[
(q + 1, n/t)t−1] .St (7.6)

by [19, Proposition 4.2.9.(ii)]. Case (iii.c) implies |Σ| = 5687500 but this contradicts 
Lemma 7.2(1). So, it does not occur. Thus t = 2 or 3. Also LΔ

Δ is non-solvable and acts 
2-transitively on Δ by Lemma 7.5(2). Then t < n by (7.6) since t = 2, 3, and

(q − 1)qn
2−3 < |L| < |LΔ|2 = (q + 1)2t−2(q + 1, n/t)2t (t!)2

2 qn
2/t−t (7.7)
(q + 1, n)
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by Theorem 5.5 and [3, Corollary 4.3(ii)]. If t = 3 then n � 6 since t < n, and hence 
(7.7) implies (q− 1)q2n2/3 < 4(q + 1)4n4/9, which has no admissible solutions for q � 5. 
Then t = 2, n � 4 and q � 5. Also, (7.7) implies (q− 1)qn2/2−1 < 4(q+1)2n2, and again 
no admissible solutions arise. This completes the proof. �
Lemma 7.11. If L is not isomorphic to PSpn(q)′.

Proof. Assume that L ∼= PSpn(q)′. Then n � 4 by Lemma 7.8 and (n, q) �= (4, 2)
by Lemma 7.4 since PSp4(2)′ ∼= A6. Thus L ∼= PSpn(q). By Lemma 7.7, [22] and [3, 
Proposition 4.22] one of the following holds:

(i) LΔ lies in a maximal parabolic subgroup of L and q is even.
(ii) LΔ is a maximal C1-subgroup of L of type Spi(q) ⊥ Spn−i(q) with q odd
(iii) LΔ is a maximal C2-subgroup of L of type Spn/t(q) 	 St, where t = 2, 3, or (n, t) =

(8, 4), or (n, t) = (10, 5) and q = 3.

Suppose that (i) holds. Then LΔ is a maximal parabolic subgroup of L by [19, Table 
3.5.H] for n � 13 and by [5, Section 8.2] for 4 � n � 12. Thus

|Σ| =
t−1∏
i=0

qn−2i − 1
qi+1 − 1 >

1
2q

(n−1)t−3t(t−1)/2

If LΔ
Δ is solvable then 

∣∣LΔ
Δ
∣∣ | (q − 1, t) by [19, Proposition 4.1.19(II)] and hence 

|Δ| | (q − 1, t) by Proposition 5.3. Therefore q(n−1)t−3t(t−1)/2/2 < |Σ| < 2(q − 1, t)2, 
which is clearly impossible.

If LΔ
Δ is non-solvable then LΔ

Δ acts 2-transitively on Δ by Proposition 5.3. Hence, by 
[18, List (B)], one of the following holds:

(I) Soc(LΔ
Δ) ∼= PSLt(q), either t � 2, or t = 1, n = 4 and |Δ| = qt−1

q−1 ;
(II) Soc(LΔ

Δ) ∼= PSpn−t(2), n − t � 6 and |Δ| = 22(n−t)−1 ± 2n−t−1.

Then (I) is ruled out since it implies q(n−1)t−3t(t−1)/2/2 < |Σ| < 2q2t, which is impos-
sible; (II) is ruled out since it contradicts |Δ| �≡ 0 (mod 4).

Suppose that (ii) holds. Then LΔ ∼= Spi(q) ◦ Spn−i(q) by [19, Proposition 4.1.3.(II)]. 
Then LΔ

Δ
∼= PSpj(q) with j ∈ {i, n− i} by Lemma 7.5. Hence, one of the following holds 

(recall that q is odd):

(1) j = 2 and |Δ| = 6 for q = 9, |Δ| = q and q = 5, 7, 11, or |Δ| = q + 1;
(2) j � 6 and |Δ| = 2j−1 ± 2j/2−1.

Actually, in (1) q = 5 and |Δ| = 5 cannot occur since λ > 10, and q �= 7, 9, 11 by 
Lemma 7.2(2). Also (2) is ruled out since it contradicts |Δ| �≡ 0 (mod 4). Thus |Δ| = q+1
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and λ = 2q, hence |Σ| is coprime to q. So, LΔ must contain a Sylow q-subgroup of L, 
which is a contradiction.

Suppose that (iii) holds. Then q | |Σ|, and hence q �= 3 by Lemma 7.2(2). Thus either 
t = 2, 3, or (n, t) = (8, 4). Also, LΔ

Δ is non-solvable and acts 2-transitively on Δ by 
Lemma 7.5(2).

If t = 2, then either n = 4, LΔ
Δ

∼= PSL2(q) and either |Δ| = 5 for q = 5, or 
|Δ| = 6 for q = 9, |Δ| = q for q = 7, 11, or |Δ| = q + 1, or n � 12, LΔ

Δ
∼= PSLn/2(2)

and |Δ| = 2n−1 ± 2n/2−1. However, all these cases are excluded by the same argument 
previously used.

If t = 3, 4, by Theorem 5.5 and by [19, Proposition 4.2.10.(II)] and [3, Corollary 
4.3(iii)], we have

q
n(n+1)

2 /4 < |L| < |LΔ|2 < 22(t−1)qn(n/t+1)(t!)2, (7.8)

which implies q
n(n+1)

2 −n(n+t)
t < 22t(t!)2, and hence t = 3, n = 6 and q = 5 or 13 since 

q ≡ 1 (mod 4) by Lemma 7.2(2). Therefore |Σ| = 44078125 or 3929239732405, but both 
cases contradict Lemma 7.2(1). �
Lemma 7.12. L is not isomorphic to a simple classical group.

Proof. In order to complete the proof we need to tackle the case L ∼= PΩε
n(q) with ε ∈

{±, ◦} since the other simple groups are analyzed in Lemmas 7.9, 7.10 and 7.11. Since L
is non-abelian simple, n > 2 and (n, ε) �= (4, +). Also (n, ε) is neither (3, ◦) for q odd, nor 
(4, −), (6, +) by Lemma 7.9 since in these cases L is isomorphic to PSL2(q), PSL2(q2)
or PSL4(q), respectively. Finally, (n, ε) is neither (4, −), nor (5, ◦) for q odd, otherwise 
L would be isomorphic to PSU4(q) or PSp4(q), respectively, which are excluded in 
Lemmas 7.10 and 7.11, respectively. Thus, n � 7. By [22] and [3, Proposition 4.23] one 
of the following holds:

(1) Either q is even and LΔ lies in a maximal parabolic subgroup, or q is odd and LΔ
is the stabilizer in L of a non-degenerate subspace of PGn−1(q).

(2) LΔ is a C2-subgroup of L of type Oε′

n/t(q) 	 St, where q is odd, and either t = 2, or 
n = t = 7 and q = 5, or 7 � n = t � 13 and q = 3.

Assume that q is even and that LΔ lies in a maximal parabolic subgroup M of type 
Pm. Thus ε = ± and hence n � 8. If (ε, m) �= (+, n/2 − 1), then LΔ = M by [19, Table 
3.5.H] for n � 13 and by [5, Section 8.2] for 7 � n � 12. Nevertheless, in each case 
we have that LΔ ∼= [qy] : GLm(q) × Ωε

n−2m(q), where y = nm − m
2 (3m − 1), by [19, 

Proposition 4.1.20.II]. Therefore,

|Σ| =
[n−1+ε

2
m

] m−1∏ (
q

n−1−ε
2 −i + 1

)
> qm

(
n−1+ε−2m

2 +n−ε−m
2

)
= q

(
n− 3

2m− 1
2
)
m (7.9)
q i=0



98 A. Montinaro / Journal of Algebra 653 (2024) 54–101
by (7.1) (see also [35, Exercise 11.3]).
Assume that LΔ

Δ is solvable. Then 
∣∣LΔ

Δ
∣∣ | q − 1, and hence |Δ| | q − 1. Then 

q
(
n− 3

2m− 1
2
)
m < |Σ| � 2 |Δ|2 = 2(q − 1)2, which is impossible for n � 8.

Assume that LΔ
Δ is non-solvable. Then LΔ

Δ acts 2-transitively on Δ by Proposition 5.3, 
hence one of the following holds by [18]:

(I) Soc(LΔ
Δ) is isomorphic to PSLm(q), m � 2, and either |Δ| = qm−1

q−1 , or |Δ| = 8 for 
(m, q) = (4, 2).

(II) Soc(LΔ
Δ) ∼= Ω−

4 (q) ∼= PSL2(q2), ε = −, n = 2m + 4 and |Δ| = q2 + 1.
(III) Soc(LΔ

Δ) ∼= PSL2(q), ε = +, n = 2m + 4 and |Δ| = q + 1.
(IV) Soc(LΔ

Δ) ∼= PSL4(q), ε = +, n = 2m + 6 and either |Δ| = q4−1
q−1 , or |Δ| = 8 for 

q = 2.

Assume that (I) or (IV) holds. Then |Δ| �= 8 since |Δ| is not divisible by 4. Then 
|Δ| = qe−1

q−1 , where either e = m, or e = 4 and n = 2m + 6 and ε = +. Furthermore, 
m � 2 in both cases since n � 8. Now, |Δ| = λ/2 + 1 and |Σ| = (λ2 − 2λ + 2)/2 imply

|Σ| = 2
(
q
qe−1 − 1
q − 1

)2

− 2
(
q
qe−1 − 1
q − 1

)
+ 1,

and so q
(
n− 3

2m− 1
2
)
m < |Σ| < 2q2e−2.

If e = m and q
(
n− 3

2m− 1
2
)
m−2m+2 < 2 then n � 10 − 8

m , and hence (n, m, ε) = (8, 4, +)
since n is even, n � 8 and m � n/2. Then

2q6 + 4q5 + 6q4 + 2q3 − 2q + 1 = |Σ| =
(
q2 + 1

) (
q3 + 1

)
(q + 1)

If e = 4, n = 2m + 6 and ε = +, then m = 1 and so

2q6 + 4q5 + 6q4 + 2q3 − 2q + 1 = |Σ| = (q4 − 1)(q3 + 1),

which has not integer solutions.
Assume that case (II) or (III) holds. Then n = 2m +4 and |Δ| = qj +1 with j = 2, 1, 

respectively. Then |Σ| < 8q2j . On the other hand, |Σ| > q
(
n− 3

2m− 1
2
)
m by (7.9) since 

n � m/2. Therefore q = 2, n = 8 and either m = 1 or m = 4. However, both cases 
contradict n = 2m + 4. This excludes case (1) for q even.

In the remaining cases, namely (1) and (2) for q odd, it results that p | |Σ| by [34, 
Theorem 1.6]. Also p is odd, and p �= 3 by Lemma 7.2(2). Therefore, in the sequel we 
may assume that q � 5. Then either LΔ is maximal in L, or L ∼= PΩ+

n (5), LΔ is a 
C2-subgroup of L of type O+

2 (5) 	 Sn/2 and GΔ is a novelty by [19, Table 3.5.H–I] or [5, 
Section 8.2] according to whether n � 13 or 7 � n � 12, respectively. In the latter case 
n is forced to be 4 by (2), whereas n � 8. Therefore, LΔ is maximal in L.

Assume that LΔ is the stabilizer in L of a non-degenerate subspace of PGn−1(q), q
odd. Since LΔ

Δ is non-solvable and acts 2-transitively on Δ by Lemma 7.5, one of the 
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following holds by [19, Propositions 4.1.6.(II)] and [18] and since q is odd, q � 5 and 
n � 7:

(i) LΔ preserves a non-degenerate 4-subspace of type + and Soc(LΔ
Δ) ∼= PSL2(q);

(ii) LΔ preserves a non-degenerate 4-subspace of type − and Soc(LΔ
Δ) ∼= PSL2(q2);

(iii) LΔ preserves a non-degenerate 6-subspace of type − and Soc(LΔ
Δ) ∼= PSL4(q).

Assume that (i) or (ii) holds. Then either |Δ| = qj +1, where j = 1 or 2, respectively, 
or j = 1 and |Δ| = q for q = 5, 7, 11 or |Δ| = 6 for q = 9, or j = 2 and |Δ| = 6 for q = 3. 
The first case implies λ = 2qj , therefore |Σ| is coprime to q, whereas LΔ must contain 
a Sylow q-subgroup of L, which is not the case. Also q �= 3, 7, 9, 11 by Lemma 7.2(2). 
Finally, |Δ| = q = 5 cannot occur since λ > 10.

Assume that (iii) holds. Then |Δ| = q4−1
q−1 since q is odd. Then λ = 2q q3−1

q−1 , hence |Σ|
is coprime to q, whereas LΔ must contain a Sylow q-subgroup of L, which is not the 
case. This excludes (1).

Finally, assume that (2) holds. Hence, q is odd. Furthermore, q | |Σ| since LΔ is not 
parabolic. Then p ≡ 1 (mod 4) since by Lemma 7.7(2), and hence p �= 3, 7, 11. Therefore, 
either t = 2, or t = n = 7 and q = 5.

Assume that t = 2. Then n/2 > 1 since n � 8, and hence LΔ cannot be any of the 
groups listed in [19, Proposition 4.2.15(II)]. If n/2 is odd, then LΔ ∼= Ωn/2(q)2.2.2 by [19, 
Proposition 4.2.14(II)]. Then n = 10 and Soc(LΔ

Δ) ∼= Ω5(q) ∼= PSp4(q) since LΔ induces 
a 2-transitive non-solvable group on Δ by Lemma 7.5(2). Thus λ+2

2 = q4−1
q−1 , and hence 

λ = 2q q3−1
q−1 . Then q does not divide |Σ| = λ2−2λ+2

2 since q is odd, a contradiction. Thus, 
n/2 is even. Then ε = (ε′)2 and LΔ is isomorphic to one of the groups 2.(PΩε′

n/2(q))2.4.2, 
(2 × Ωε′

n/2(q)2.2).2, or Ωε′

n/2(q)2.2.2 by [19, Proposition 4.2.11(II)] since q is odd. Then 

either n = 8 and LΔ
Δ

∼= PSL2(qi), i = 1, 2, or n = 12, ε′ = + and LΔ
Δ

∼= PSL6(q) since 
LΔ induces a 2-transitive non-solvable group on Δ by Lemma 7.5(2). Thus λ+2

2 is either 
5, or qi + 1 with i = 1, 2, or q6−1

q−1 since p �= 3, 7, 11. Actually, λ+2
2 �= 5 since λ > 10

by our assumptions. Therefore, either λ = qi, i = 1, 2, or λ = 2q q5−1
q−1 . Then q does not 

divide |Σ| = λ2−2λ+2
2 since q is odd, a contradiction.

Assume that t = n = 7 and q = 5. Then LΔ ∼= 26.A7 by [19, Proposition 4.2.15(II)]. 
So |Σ| = 29752734375, which contradicts Lemma 7.2(1), and hence (2) is ruled out. This 
completes the proof. �

Proof of Theorem 7.1. Since LΣ is almost simple by Theorem 4.1, the assertion follows 
from Lemmas 7.3, 7.4, 7.6 and 7.12. �

Proof of Theorem 1.1. Since λ � 10 by Theorems 6.1 and 7.1, the assertion follows from 
Theorem 1.2. �
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