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Abstract: This paper proposes an optimal path type classification scheme for the three-point Dubins
problem. It allows us to directly extract the shortest path type from a Dubins set, evaluating only
the relative initial and final configurations with the via point position using a suitable partition of
the Cartesian plane. Two alternative approaches are proposed to address the problem: an analytical
approach and a heuristic one. The latter is revealed to be much faster from a computational point of
view. The proposed classification logic makes the path planning for the three-point Dubins problem
much more effective and suitable for real-time applications. Numerical examples are provided to
show the efficiency of the proposed strategy.
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1. Introduction

The technological advances of recent years opened up astonishing possibilities for
research. From virtual reality to artificial intelligence and self-driving cars, the promise of a
future world where such technologies permeate human society is exciting, and it drives the
research in these fields with a renewed and powerful thrust. Among the most fascinating
topics, the goal of designing mobile devices that are autonomously able to safely handle
human mobility is advancing every day to reality.

In this latter scenario, and other similar ones, a central theme is the autonomy of a
device for decision-making, ensuring that robots are able to find feasible paths in various
environments, avoiding obstacles and minimizing travel time or energy consumption.
For this reason, the challenging problem of safe and autonomous navigation surged as
a central topic in robotics and autonomous systems. Overall, path planning is a founda-
tional aspect of robotic vehicle that impacts the performance, safety, and effectiveness of
robotic systems across a wide range of applications [1]. In recent years, there has been an
impressive surge of research from the AI community (see, e.g., the overview papers [2,3]
and references therein).

One key aspect of path planning is producing feasible reference paths for robots,
namely, paths that are compliant with robots’ kinematics so that the robots are able to track
the paths without jumps or errors.

A fundamental kinematic model that has been extensively explored in path planning
applications is the ‘Dubins vehicles’ [4]. Basically, it refers to a point moving in the plane at a
constant forward speed and bounded curvature, while the Dubins path refers to the shortest
path between two poses of a Dubins vehicle [4]. It is well suited to represent the movement
of vehicles that do not require hard braking, slowdown, or stopping; common examples are
airplanes or marine crafts. For these reasons, since the milestone contribution by Dubins [5],
the Dubins vehicle has been constantly studied over the years, as witnessed by the works
in [6–9]. In these works, Dubins paths are obtained through necessary optimality conditions
derived by exploiting the theoretical framework based on Pontryagin’s Maximum Principle.
However, this approach results in solutions that are computationally demanding and not
readily applicable to real-time applications. A significant contribution to overcome this
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issue is the work in [10], where the computational complexity is reduced by selecting the
optimal path type based only on the initial and final poses (namely, position and orientation)
in the Cartesian plane. In recent years, the application of machine learning techniques to
the Dubins path planning problem has also been explored [11,12]. Other research areas
that have emerged over the years are related to the generalizations of the Dubins problem
through N points, as the Dubins Traveling Salesman Problem (DTSP) [13–16].

Several contributions on this subject [17] have shown that when the order of via points
is fixed, the solution of the DTSP can be decomposed at each step in sub-problems, known
as the three-point Dubins problem (3PDP), namely the path planning problem for a Dubins
vehicle with an intermediate via point [18–20].

The three-point Dubins problem leads to efficient navigation solutions in different
application domains including air, ground, and marine environments. In the field of Un-
manned Aerial Vehicles (UAVs), solving the 3PDP is essential for optimizing flight paths
when navigating through constrained environments or for executing complex missions.
This can be particularly important in surveillance, reconnaissance, and delivery opera-
tions [21]. Even drones used in precision agriculture often need to navigate specific via
points. In [22], for example, a variation of the Traveling Salesman Problem (TSP) solver,
which is an extension of the 3PDP, is proposed to investigate optimal trajectories in order
to visit a specific number of plants that require intervention. Aircraft, especially those with
limited maneuverability, may encounter the 3PDP during specific flight scenarios [23], such
as air-to-air refueling or navigating airspace restrictions. Efficient path planning is crucial
for ensuring safe and precise movements in these situations.

In scenarios where search and rescue missions involve aerial or ground vehicles with
Dubins motion constraints, solving the 3PDP with fast algorithms can be a key tool for
safe and length-optimal reference path generation. Indeed, these applications often require
real-time path planning to reach a target location with an intermediate point, optimizing
the trajectory for a quick and effective response [24]. Moreover, Dubins vehicles, such
as autonomous cars and ground robots, encounter the 3PDP when planning paths that
involve navigating obstacles or following specific via points. Solving this problem is vital
for ensuring safe and efficient transportation in urban environments or other constrained
spaces [25,26]. In automated warehouses, multiple robots may need to navigate through
narrow aisles and around obstacles while efficiently reaching intermediate points for
picking or restocking purposes. Solving the 3PDP is a relevant basis for optimizing the
movement of robotic vehicles in such environments [27].

Also, autonomous underwater vehicles (AUVs) face challenges in path planning,
especially when they need to travel from one point to another with an intermediate via
point. The solution of the 3PDP and its extension, Multiple Traveling Sales Person (MTSP),
can be applied to optimize their trajectories and conserve energy during underwater
missions [28].

In summary, the significance of solving the three-point Dubins problem (shortened to
3PDP hereafter) lies in its potential to enhance the performance, safety, and efficiency of var-
ious autonomous systems operating in diverse real-world applications. This has motivated
recent studies on developing increasingly faster and more efficient methods to address
the 3PDP [17,18,29]. The solution proposed in [17] is based on inversive geometry. Two
methods are presented: an “Approximate Method” that, while computationally efficient,
provides an approximate optimal heading at the via-point, and an “Iterative Method” that
recursively converges to the exact heading by iterative corrections, thus achieving greater
accuracy at the cost of increased computational resources. A significant contribution is
found in the work of [18], which utilizes the Pontryagin principle and optimality crite-
ria. This research offers a solution encompassing all possible cases. The method requires
solving polynomial equations, ensuring an accurate/exact solution by construction. A
promising solution was proposed recently [29]; it is based on novel methodologies related
to optimal properties of conic sections. The solution can be computed either graphically
or analytically by utilizing the matrix description of conic sections. It provides solutions
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with an adequate level of accuracy as well as a reduced computational effort. Overall,
any existing approach to the 3PDP, despite its peculiar methodology, selects the minimum
length path through an exhaustive search among all possible path type combinations. This
is detrimental to the run time, and it is a significant drawback for these methodologies
when dealing with the applications described above. The main goal of this paper is to
remove this bottleneck, thus extending the classification rules from [10] to the 3PDP. This
would allow for the direct determination of the optimal path type based on the initial and
final poses and the intermediate via point only. As a result, the results of this paper can be
applied in conjunction with any algorithm to obtain solutions in real-time applications.

2. Problem Formulation

In the following subsections, we introduce the logical framework of the problem, and
we briefly summarize some classical results that are the basis of our analysis, together with
the notation that we adopt along the paper.

2.1. Notation and Preliminary Results

Consider a vehicle whose motion is described by
ẋ = cos θ,
ẏ = sin θ,
θ̇ = u,
||u|| ≤ Ω;

(1)

where Ω is a bound on the maximal curvature. A feasible path is a curve in the plane that
is viable for the Dubins vehicle, namely, a curve satisfying (1), whose maximum curvature
along the path is bounded by Ω.

The state vector q = (P, θ) is the pose or configuration of the vehicle, where P = (x, y)
is the position of the vehicle in the Euclidean plane, and θ ∈ [0, 2π) its orientation (see
Figure 1a); the control u sets the angular speed, within the range defined by the bound Ω.
Associated to each configuration, we draw two circles of radius Ω−1, each lying on one
side of position P (denoted Cl for the left circle and Cr for the right circle, and their centers cl
and cr, respectively), each corresponding to the sharpest turn.

Given an initial configuration qi = (Pi, θi) and a final configuration q f = (P f , θ f ),
without loss of generality (as in [10]), it is possible to set Pi = (0, 0) and P f = (d, 0), with d
the Euclidean distance between them, as depicted in Figure 1b.
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Figure 1. (a) Graphical interpretation of the left and right centers for an initial configuration
qi = (Pi, θi). (b) Initial and final configurations.
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Consider two such circles Cab , with a ∈ A = {i, f } (namely, “initial” or “final”) and
b ∈ B = {r, l} (i.e., “right” or “left”); it is possible to identify four different common
tangent lines, i.e., two cross tangents and two external ones (see, e.g., Figure 2). We denote
all possible common tangent lines between an initial and a final circle as rts

cd, with c, d ∈ B,
t ∈ {c, e}, and s ∈ {+,−} (where c and e stand for “cross” and “external”; + and − for
“superior” and “inferior”).
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Figure 2. Representation of the common tangents between the circles Cir and C fl
: rc+

rl , superior cross
tangent; rc−

rl , inferior cross tangent; re+
rl , superior external tangent; and re−

rl , inferior external tangent.

Consider a line r in the Cartesian plane described by all the points P = (x, y) satisfying
y = mrx + qr, (see Figure 3); r divides the Cartesian plane into two half-planes. A point
P = (xP, yP) is in the upper half-plane if yP > mrxP + qr, and it is shortly denoted by P > r.
The point P is said to be in the lower half-plane if yP < mrxP + qr, denoted hereafter by
P < r.

Finally, each directed line ro with unit vector vro divides the Cartesian plane into two
half-planes; the one on its right is shortly denoted as πr

ro , and the other on its left denoted
as πl

ro . If vro points to the right, then πl
ro coincides with the upper half-plane.
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Figure 3. Notation for the position of a point with respect to a line r and an oriented line (curve) ro.
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2.2. Preliminary Results

One fundamental topic within this framework is the shortest path problem, which con-
sists in finding the shortest curve among the viable ones connecting an initial configuration
qi = (Pi, θi) to a final configuration q f = (P f , θ f ) for a Dubins car. This problem was firstly
introduced and solved by L.E. Dubins [5] by showing that an optimal path is constructed
by combining at most three segments, which can be either a straight line (denoted as S) or
a circular arc of maximum curvature (denoted as C).

A circular path C can have a right or left turning direction, and hereafter, it is denoted
by R or L, respectively. As a consequence, the minimum length path can be found by a
direct search among six possible combinations given by the {LSL, RSR, RSL, LSR, RLR,
LRL} cases, or part of them. If the distance between the initial and final points is sufficiently
large, more than 4Ω−1, CCC paths are never optimal, and the analysis can be restricted to
the occurrence of CSC paths. Moreover, CCC paths are inconvenient in practice since small
variations on the terminal configurations produce large variations of solutions, namely, the
recalculation of a reference path may produce a completely different reference path, with
possible serious drawbacks on a mission execution.

For these reasons, in this paper, we propose an algorithm that seeks the solution type
of the optimal-length Dubins path restricted to a search among the four combinations
{LSL, RSR, RSL, LSR}. When Pv is far more than 4Ω−1 both from Pi and P f , the path type
solution is optimal. In general, for most of the practical applications, such path type is the
most reasonable choice.

The three-point Dubins problem (3PDP) is as follows. For any assigned triple (qi, Pv,
q f ), namely, the initial configuration qi = (Pi, θi), the final configuration q f = (P f , θ f ),
and a pre-assigned via point Pv far from Pi and P f more than 4Ω−1, find the shortest curve
of (1) connecting Pi, Pv, and P f , with tangent direction θi at Pi and θ f at P f , among all the
curves in the plane with curvature bounded by Ω.

According to Bellman’s principle for optimality, the solution of the optimal path for a
Dubins vehicle between three consecutive configurations can be obtained by concatenating
two optimal Dubins paths:

1. The path between the initial configuration qi = (Pi, θi) and the via point configuration
qv = (Pv, θv) with length denoted as L1, and

2. The path between the via point configuration qv = (Pv, θv) and the final configuration
q f = (P f , θ f ) with length denoted as L2.

In this paper, we deduce the classification rules for selecting the type of the optimal
path for those points Pv of the plane far from Pi and Pv more than 4Ω−1, so that each of
the elementary optimal Dubins path must be of type CSC; thus, the solution is made of
three elementary motions: left or right turn both along a circle of radius Ω−1, straight line
motion, and left or right turn both along a circle of radius Ω−1. Hereafter, we denote as t, p,
and q the length of its basic elements referring to the initial turn, the straight line segment,
and the final turn, and we add the subscript 1 or 2 to refer to the path between Pi to Pv and
from Pv to P f , respectively; see Figure 4.

We can, therefore, state that the optimal-length path through three consecutive points
satisfying the long distance hypothesis is the concatenation of two Dubins paths of type
CSC; hence, the solution of the 3PDP must be of type CSC − CSC. If such hypothesis is not
satisfied, however, one may use a sub-optimal solution of type CSC − CSC, thus a priori
avoiding CCC curves (which can be optimal, but notwithstanding, inconvenient).

An important result, conjectured in [19], and then proved in [17,30], is related to the
optimality conditions for a shortest path of type CSC − CSC:

Lemma 1. Given (qi, q f , Pv); in a shortest path of type CSC-CSC, the line segment between Pv
and the center of the circle associated with the optimal heading bisects the angle between the line
segment p1 and p2.
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Fig. 1. A sketch of LSL � LSL path.

satisfies the long distance hypothesis, find the shortest curve
of (1) connecting P i, P v and P f with tangent direction ✓i

at P i and ✓f at P f among all the curves in the plane with
curvature bounded by ⌦.
In order to set the problem properly, we start with some
useful remarks. According to the Bellman’s principle for
optimality, the solution of the optimal path for a Dubins
vehicle between three consecutive configurations can be
obtained by concatenating two optimal Dubins paths:

1) the path between the initial configuration qi = (P i, ✓i)
and the via point configuration qv = (P v, ✓v) with
length denoted as L1, and

2) the path between the via point configuration qv =
(P v, ✓v) and the final configuration qf = (P f , ✓f )
with length denoted as L2.

It is important to note that the orientation angle at the via
point ✓v is not specified a priori, so that the value of ✓v of the
optimal path needs to satisfy the length optimality criterion
given by:

✓⇤v = argmin
✓v2[0,2⇡)

(L1(✓v) + L2(✓v)). (2)

It is worth noting that under the long distance assumption,
an optimal Dubins subpath is made of three elementary
motions: an initial turn a circle of radius ⌦�1 (either to the
left or to the right), a straight line motion S, a final turn along
a circle of radius ⌦�1 Let S denote a straight line motion and
C any circular one; according to this notation, any optimal
subpath must be of type CSC. In the following we denote
as t, p and q the length of its constituent segments referring
to (resp.) the initial turn, the straight line and the final turn,
and we add the subscript 1 or 2 to refer resp. to the path
between P i to P v and from P v to P f , for instance see Fig.
1. According to this notation, we can state that the optimal-
length path through three consecutive points satisfying the

long distance assumption is obtained by concatenating two
Dubins paths of type CSC, hence the the solution of the
Problem 1 must be of a type CSC � CSC.

Moreover, from [9] and [10], we know that in the optimal
solution of 3PDP the two arcs incident to the via point must
have the same turning direction. This allows to deduce the
following result:

Corollary 1: The optimal solution of the Problem 1 under
the long distance assumption must be of a type in T =
{RSR � RSR, LSR � RSR, RSR � RSL, LSR � RSL
, LSL � LSL, RSL � LSL, LSL � LSR, RSL � LSR}.
As a consequence, the optimal-length path through three
consecutive points under the long distance assumption (that
is obtained by concatenating two Dubins paths of type CSC)
can be found by direct search among the eight possible
combinations belonging to T .

Though this problem has been widely afforded in the
last years, yet most of the existing approaches do not have
analytical solutions for all path types, but require to solve
a set of nonlinear transcendental equations [9] (which is
computationally demanding) or to repeat iterative steps [10]
(so a certain amount of time is needed to let them converge),
and it limits their use in real-time implementation. As for
example, in dynamic situations (e.g., changing environments,
...) it is critical to obtain a fast or real-time solution for
constant replanning.

In this paper we propose a shortest path classification
based on a partition of the Cartesian plane which allows
to significantly reduce the number of potential path types.
In most cases it allows to directly derive the optimal path
type allowing to solve only one Dubins path problem. This
makes the problem solvable with a shorter execution time
and makes the strategy suitable for on-line application.

III. PARTITION OF THE CARTESIAN PLANE AND
CLASSIFICATION RULES

In this Section, we introduce the partition rules of the
Cartesian plane which is the basic block of the proposed
strategy. Note that a complete path type classification re-
quires to identify three optimal turning directions, that is the
curvature at initial, final, and via point. In the following,
without loss of generality (as in [8]), we assume that the
initial and final points are P i = (0, 0) and P f = (d, 0),
with d the euclidean distance between them as depicted in
Fig. 2; our goal is to build a partition of the Cartesian plane
as in Fig.3.

A. Curvature at the initial point

As a first step, draw a straight line starting from P i with
orientation ✓i, and denote it as �i, according to Fig. 3. If the
via point P v is on the left of �i, it is evident that the first
turning direction is on the left, while if P v is on the right
with respect �i then the optimal path type has a right turn
as first turn. An example is illustrated in Fig. 4, where two
different cases are plotted, and it is clearly seen that the first
turn is a left turn in case of a via point on the left of �i,
while if P v is on the right then the first turn is to the right.

Figure 4. A sketch of an LSL − LSL path.

Denote by vi and v f the vectors parallel to the initial and final line segments of path
CSC − CSC, (p1 and p2 in Figures 4 and 5), and with vv the vector connecting the center of
the circle associated with the optimal heading at the via point Pv. Define vθv as the vector
parallel to the optimal heading at the via point, hence orthogonal to vv by construction, as
shown in Figure 5.

Denoting by v the vector bisecting the angle between vi and v f , the optimality condi-
tion of Lemma 1 can be equivalently rewritten as follows:

v⊤vθv = 0. (2)

0 2 4 6 8 10

-2

-1

0

1

2

3

4

5

6

Figure 5. The vectors vi, v f , vv, and vθv for an RSR − RSR path.

Moreover, since two arcs incident on the via point must have the same turning direc-
tion, the following holds:

Corollary 1. The optimal solution of the 3PDP when Pv is far more than 4Ω−1 from both Pi and
Pv must be of a type in T = {RSR − RSR, LSR − RSR, RSR − RSL, LSR − RSL, LSL − LSL,
RSL − LSL, LSL − LSR, RSL − LSR}, where any circular arc may possibly be of zero length.

As a consequence, the optimal-length path through three consecutive points can be
found by direct search among the eight possible combinations in T .
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2.3. A Classification Approach for a Fast Solution

In this paper, we propose a classification based on a partition of the Cartesian plane
which allows us to drastically reduce the number of potential path types.

Indeed, in order to solve the 3PDP, one should calculate the lengths of all path types
in T and then select the shortest one of the computed paths. This requires one to compute
the optimal orientation angle at the via point θv (not specified a priori) for each path type,
given by the following length optimality criterion:

θ∗v = arg minθv∈[0,2π)(L1(θv) + L2(θv)). (3)

The problem addressed in this paper can be formulated as follows.

Problem 1. Given the 3PDP, find a simple logical procedure to select the optimal path type among
the combinations given in T without any explicit length computation.

Inspired by the classification rules derived in [10], in this paper we extend this strategy
to the 3PDP: given a 3PDP problem, find a simple logical procedure to select the optimal
path type among those in T without any explicit length computation.

3. Classification Rules

Our goal is to build a partition of the Cartesian plane as the one illustrated in Figure 6,
which represents a partition for the classification of a 3PDP with distance d = 15 between
the initial and final points, and initial and final orientation, θi and θ f on quadrant I. Referring
to this partition, given any via point Pv, it is possible to immediately deduce the optimal
path type by simply identifying the region to which it belongs. Consider the via point
Pv = (−10, 15) in Figure 6: it lies in the region classified as LSR − RSL. Indeed, by
computing the optimal path type with the conventional methods available in the literature,
the resulting path reported in Figure 6 is actually an LSR − RSL path type.

In general, to build a complete path type classification, we need to select the optimal
turning directions on the three points of interest, i.e., the curvature at the initial point Cinitial ,
the curvature at the final point C f inal , and the curvature at the via point CviaPoint.

-20 -10 0 10 20 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

RSR-RSL

RSR-RSR

LSR-RSL

RSL-LSR

LSL-LSL

RSL-LSL

LSL-LSR

Figure 6. Classification of CSC − CSC paths with θi and θ f on quadrant I: example of partition.
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3.1. Curvature at the Initial Point

As a first step, draw a straight line starting from Pi with orientation θi, and denote it
as λi, as in Figure 6. A first simple intuitive idea that we explore is that, if the via point Pv
is on the left of λi, then the first turning direction is necessarily on the left, while if Pv is on
the right with respect to λi, then the optimal path turn is on the right (see Figure 7).

-5 0 5 10 15

-2

0

2

4

6

8

10

12

14

16 Optimal Path

Figure 7. Optimal paths with Pv on the right and on the left of the straight line λi.

However, a deeper insight into this point shows that there are some points close to
λi that do not follow the above logic, and the reason is subtle. Without loss of generality,
consider the example reported in Figure 8 where the via point Pv is on the right and near
λi. In such a case, the optimal path type has the first turn on the left instead of on the right.

0 5 10 15

0

2

4

6

8

10

12

Optimal Path

Figure 8. The example with Pv is on the right of λi and first turn on the left.

It is possible to clarify the reason for this phenomenon, which is the following. The
orientation at Pv requires a right turn, so if the initial turning point (Pvq1

in Figure 8) is on
the opposite side of Pv with respect to λi, then the initial turn is on the left.

In order to correctly identify and manage this phenomenon, two different approaches
can be adopted: an analytical approach and a heuristic one.
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3.1.1. Analytical Approach

As an illustrative example, we still consider a case with θi and θ f on quadrant I as in
Figure 8.

The analytical approach exploits the optimal condition, Equation (2). Following this
approach, the main goal is to derive the exact boundary, denoted as Ii hereafter, between
paths that differ in curvature at the initial point, i.e., RSR − RSL and LSR − RSL for the
example under investigation. Analytically, the boundary of the two regions RSR − RSL
and LSR − RSL is defined by those points Pv for which the RSR − RSL and LSR − RSL
paths have the same lengths, i.e.,

L1RSR(θv) + L2RSL(θv) = L1LSR(θv) + L2RSL(θv). (4)

From a geometrical point of view, given that the second elementary Dubins paths
between the via point and the final configuration are the same (RSL type of length L2RSL ),
the two types of paths RSR − RSL and LSR − RSL have the same lengths when the
length of the straight line segment p1 associated to the first elementary Dubins path is the
same, namely,

L1RSR(θv) = L1LSR(θv).

For the RSR path, the segment p1 is given by the common external tangent re+
rr

between the circles Cir and Cvr ; while for the LSR path, the segment p1 is given by the
common cross tangent rc−

lr between the circles Cil and Cvr (see tangents in the Figure 9). As
a consequence, the optimality condition in Equation (4) is as follows:

re+
rr ≡ rc−

lr . (5)

This happens when the circle Cvr is tangential to the line λi; in this case, the point
Pvq1

∈ λi. As a consequence, the first arc t1 has zero length (i.e., t1 = 0) and the two paths
collapse in a path of type SR − RSL. Refer to Figure 9 for a clear geometric representation
of the optimality condition.
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Figure 9. Geometric representation of the optimality condition in (5).

In order to actually find the locus of via points that correspond to such an optimal
SR − RSL path type, the optimality condition given by Lemma 1 for the SR − RSL path
should be verified, that is

v⊤vθv = 0, (6)

where
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v = evi + ev f , (7)

evi =
cvr − cir
|cvr − cir |

= [cos(θi) sin(θi)]
⊤, (8)

ev f = R(γ)
cvr − c fl

|cvr − c fl
| , with γ = sin−1

(
2Ω−1

|cvr − c fl
|

)
, (9)

vθv = [−(yv − yvr ), (xv − xvr )]
⊤, (10)

and R(γ) ∈ R2 is the standard rotation matrix. We also recall that in the intersection domain,
the first arc vanishes, i.e., t1 = 0, the direction of evi coincides with the initial orientation θi,
and the first elementary Dubins path reduces to an SR-type path (see Figure 10).

Figure 10. Optimal SR − RSL path (t1 = 0).

As a result, the centers cvr = (xvr , yvr ) lie on the line λr′
i , which is a line parallel to λi

and distant Ω−1 to its right, so that the optimal right via point circle Cvr is a circle passing
through the via point and tangent to the line λi. The versor ev f identifies the direction of
the cross tangent of the circles Cvr and C fl

. Hence, the points of the curve Ii can be obtained
by adding at each center cvr the versor ev (i.e., the versor in the direction of v = evi + ev f )
multiplied by Ω−1.

Summarizing, from an analytical point of view, we have one Equation (6) with two
variables: xvr and yvr . We can solve it by taking one variable as a parameter. The analytical
result is a curve Ii that admits as asymptote the line λr′

i (see Figure 11).
Figure 11a,b show the curve Ii, i.e., the frontier between the regions RSR − RSL and

LSR − RSL for θi and θ f on quadrant I, for different values of the maximum turning radius:
Ω−1 = 1 and Ω−1 = 2, respectively. At this point, we can formulate the classification rules
for identifying the curvature at the initial point Cinitial as given in Algorithm 1.

Algorithm 1 Initial curvature-analytical approach

Require: qi, q f , Pv
Ensure: Cinitial

compute curve Ii from Equation (6)
if Pv ∈ πr

Ii
then

Cinitial = R
else

Cinitial = L
end if
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Figure 11. Frontier between RSR − RSL and LSR − RSL for θi and θ f on quadrant I: (a) radius of the
limiting circle Ω−1 = 1, (b) radius of the limiting circle Ω−1 = 2.

It is worth noting that the derivation of the exact curve Ii could be demanding from a
computational point of view (it requires solving nonlinear equations), so when the available
computational load is limited, it could be preferable to resort to a heuristic approach—
which is simpler, more efficient, and practical—as detailed below.

3.1.2. Heuristic Approach

A heuristic solution to determine the initial curvature for points close to λi is still based
on the fact that the boundary is associated with paths having Pvq1

∈ λi (hence, the first
arc of zero length t1 = 0 for the example under investigation). As a result, the maximum
distance between the point Pv on the frontier and the line λi is 2Ω−1. It is obtained by
imposing that the optimal circle at the via point is tangential to the line λi, or equivalently,
for the example under investigation, the first arc of zero length, i.e., t1 = 0. This allows us
to consider a region between λi and the line λr

i (λr
i being a line parallel to λi on its right and

distant 2Ω−1) where the investigation should consider two types of potentially optimal
paths (either starting with L turn or R turn). This region is highlighted in gray in Figure 11a.
A practical way to manage the points in this region is to test both possibilities, which is
simpler and less demanding.

The above result is still valid for θi on quadrant II, whereas symmetric considerations
hold for θi on quadrants III and IV. In the latter cases, the region that requires us to test
both possibilities is the area between λi and the line λl

i , namely, a line parallel to λi on its
left and distant 2Ω−1 (see Figure 12).

Figure 12. Example of optimal path with θi on quadrant III where Pv is on the left of λi but the
optimal initial turn is right.
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The resulting classification rules for identifying the curvature at the initial point are
summarized in Algorithm 2. The output of the algorithm is the turning direction at the
initial point: “R” for a right turn, “L” for a left turn, and “C” for a generic curvature on
the left or on the right (that is, when both should be tested). It is worth noticing that
in the boundary between the quadrants QI-QIV and QI I-QI I I (i.e., θi ∈ {0, π}), a more
conservative region is considered, that is, the union of the candidate regions associated
with both cases.

Algorithm 2 Initial curvature-heuristic approach

Require: qi, Pv
Ensure: Cinitial

Cinitial = C
if θi ∈ (0, π) (θi ∈ {QI , QI I}) then

if Pv ∈ πl
λi

then
Cinitial = L

else if Pv ∈ πr
λr

i
then

Cinitial = R
end if

else if θi ∈ (π, 2π) (θi ∈ {QI I I , QIV}) then
if Pv ∈ πl

λl
i

then

Cinitial = L
else if Pv ∈ πr

λi
then

Cinitial = R
end if

else if θi ∈ {0, π} then
if Pv ∈ πl

λl
i

then

Cinitial = L
else if Pv ∈ πr

λr
i

then
Cinitial = R

end if
end if

3.2. Curvature at the Final Point

Similar considerations hold for the optimal turning direction at the final point. Draw
the line λ f passing through P f = (x f , y f ) with orientation θ f . If the via point Pv is on the
left of λ f , then the last turning direction is on the left, while if Pv is on its right, the optimal
path type is associated with a right last turn. An example is illustrated in Figure 13.

0 5 10 15 20

-5

0

5

10
Optimal Path

Figure 13. Example of optimal paths where Pv is on the right and on the left of the straight line λ f .
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Also, in this case, if the via point Pv lies in the neighborhood of λ f , an analogous
phenomenon to the one described in Section 3.1 happens.

Consider Figure 14a where the via point Pv is near λ f and on its left. In such a case,
the optimal path type has the last turn on the right (instead of on the left). Again, it is
possible to manage this phenomenon by adopting an analytical approach or a heuristic one.

(a) (b)

Figure 14. (a) Example of a situation with θ f on quadrant I. (b) Example of situation with θ f on
quadrant IV.

3.2.1. Analytical Approach

As an illustrative example, we still take a case with θi and θ f on quadrant I as shown
in Figure 6. We can resort to an analytical approach, similar to the one presented in the
previous section, to derive the exact frontier that differs for a curvature at the final point,
e.g., RSL − LSL and RSL − LSR for the example at hand. This partition domain is given by
the via points where the two types of paths have the same length. Similar to the case of the
initial turning direction, such a condition is satisfied when the turning operation at Pv has
its end point Pvt2 on the line λ f , i.e., Pvt2 ∈ λ f , so that the two paths collapse in a path of
type RSL − LS, and the last arc q2 has zero length (i.e., q2 = 0). In order to actually find the
locus of via points corresponding to such an optimal RSL − LS path type, the optimality
condition given by Lemma 1 for the RSL − LS path is as follows:

v⊤vθv = 0, (11)

where
v = evi + ev f (12)

evi = R(γ)
cvr − cir
|cvr − cir |

, with γ = sin−1 2Ω−1

|cvr − cir |
, (13)

ev f =
cvr − c fl

|cvr − c fl
| = [cos(θ f ) sin(θ f )]

⊤, (14)

vθv = [−(yv − yvr ), (xv − xvr )]
⊤. (15)

Again, in the intersection domain, the last arc vanishes, i.e., q2 = 0, so that the direction
of ev f coincides with the final orientation θ f . As a result, the centers cvl = (xvl , yvl ) lie on

the line λl′
f , namely, a line parallel to λ f on its left and distant Ω−1, so that the optimal left

via point circle Cvl is a circle passing through the via point and tangent to the line λ f .
Therefore, from an analytical point of view, Equation (11) with the two variables xvl

and yvl provides the solution. The analytical result is a curve I f that admits as asymptote
the line λl′

f . The classification rules for identifying the curvature at the final point C f inal are
given in Algorithm 3.
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Algorithm 3 Final curvature-analytical approach

Require: qi, q f , Pv
Ensure: C f inal

compute curve I f from Equation (11)
if Pv ∈ πr

I f
then

C f inal = R
else

C f inal = L
end if

3.2.2. Heuristic Approach

The heuristic solution to determine the final curvature for points close to λ f is based
on the fact that the boundary is associated with paths having the point Pvt2

∈ λ f (hence,
the last arc of zero length q2 = 0 for the example under investigation). As a consequence,
the maximum distance between the point Pv on the frontier and the line λ f is 2Ω−1. Again,
it is possible to consider a region between λ f and the line λl

f parallel to λ f on its left and

distant 2Ω−1, so that a way to manage the points in this region is to test both possibilities.
This region is highlighted in gray in Figure 14a. Outside this region, the curvature can be
immediately obtained following a simple classification rule.

This result is valid for θ f ∈ {QI , QI I}, whereas when the final orientation θ f ∈
{QI I I , QIV}, symmetric considerations hold, so the line λr

f parallel to λ f on its right should
be considered, as shown in Figure 14b. The resulting classification rules for identifying the
curvature at the final point are summarized in Algorithm 4.

3.3. Curvature at the via Point

In this subsection, we complete the classification scheme with the identification of the
turning direction at the via point. We separately consider the cases of paths with “zero” and
“non-zero” curvature at the via point.

3.3.1. Paths with Zero Curvature at the via Point

We start with the consideration that paths with zero curvature at the via point Pv are all
and only those having the via point Pv on the length-optimal Dubins path between Pi and
P f (see, for example, the light blue line in Figure 15). We denote such an oriented segment
(starting from the initial optimal circle and ending at the final optimal circle) as λ0 from now
on (its orientation is defined as positive from Pi to P f ). The importance of the segment λ0 is
that all the via points on the left of λ0 (Pv ∈ πl

λ0
) are associated with paths with a right-turn

direction at the via point CviaPoint = R (hence of type CSR − RSC), and those on the right
(Pv ∈ πr

λ0
) are paths with a left-turn direction at CviaPoint = L, i.e., CSL − LSC paths.

In order to derive the conditions to identify paths with zero curvature at the via
point, we start from the property of the three-point Dubins path provided in Lemma 1; see
Figure 5.

According to Lemma 1, for a shortest path of type CSC − CSC, the bisector v between
vi and v f is collinear with vv (see Figure 5) and consequently orthogonal to vθv , leading to
the optimality condition v⊤vθv = 0.

The condition of zero curvature at the via point is verified when the bisector v is the
null vector, i.e., v = 0, which is when

vi = −v f .

In this condition, vi and v f lie on the common tangent between the circles associated
with the optimal initial and final turns.
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Figure 15. The vectors vi and v f for a path with zero curvature at the via point.

Algorithm 4 Final curvature-heuristic approach

Require: q f , Pv
Ensure: C f inal

C f inal = C
if θ f ∈ (0, π) (θ f ∈ {QI , QI I}) then

if Pv ∈ πl
λl

f
then

C f inal = L
else if Pv ∈ πr

λ f
then

C f inal = R
end if

else if θ f ∈ (π, 2π) (θ f ∈ {QI I I , QIV}) then
if Pv ∈ πl

λ f
then

C f inal = L
else if Pv ∈ πr

λr
f

then

C f inal = R
end if

else if θ f ∈ {0, π} then
if Pv ∈ πl

λl
f

then

C f inal = L
else if Pv ∈ πr

λr
f

then

C f inal = R
end if

end if

3.3.2. Paths with Non-Zero Curvature at the via Point

As for paths with non-zero curvature at the via point, it is possible to derive a condition
useful to identify regions that differ only for the curvature at the via point. Indeed, the
boundary of these regions is made of all points Pv for which the two types of path have the
same length. In order to exploit such idea, consider again the example of a partition of the
Cartesian plane in Figure 16.



Machines 2024, 12, 659 16 of 22

Figure 16. Example of plane partitioning for classification. Three different regions are highlighted in
the Cartesian plane.

Note that there are distinct areas where the optimal path type has a different curvature
at the via point. It is useful to define an appropriate notation to separate these areas:

• Pv ∈ Region 1: boundary RSR − RSR/RSL − LSR denoted as I1
• Pv ∈ Region 0: boundary RSR − RSL/RSL − LSL denoted as I0
• Pv ∈ Region 2: boundary LSR − RSL/LSL − LSL denoted as I2

In the following subsection, we derive the exact frontier between paths with different
curvatures at the via point, either referring to an analytical one or to the heuristic one.

3.3.3. Derivation of the Boundary between Domains with Different Curvatures at the
via Point

Consider the boundary RSR − RSR/RSL − LSR first. A clear representation of this
case is illustrated in Figure 17 where θi and θ f are on quadrant I.

The RSR − RSR and RSL − LSR path types associated with the via point Pv in
Figure 17 have the same length; they differ only in the curvature at the via point. The
optimal direction θR

v associated with the RSR − RSR path type and θL
v associated with the

RSL − LSR path type have opposite directions, so that

θR
v = θL

v + π. (16)

Therefore, they are both orthogonal to the vector vv, having denoted with vv the vector
connecting the center of the circle associated with the optimal heading and the via point Pv.

In order to analytically derive the partition boundary between the RSR − RSR and
RSL − LSR path types, the first condition to be verified is that the two types of paths should
have the same length, so we have the following:

L1RSR−RSR(θ
R
v ) + L2RSR−RSR(θ

R
v ) = L1RSL−LSR(θ

L
v ) + L2RSL−LSR(θ

L
v ),

which results in the following equation:√
(xir − xvr)2 + (yir − yvr)2 +

√
(xvr − x f r)2 + (yvr − y f r)2

=
√
(xir − xvl)2 + (yir − yvl)2 −

( 2
Ω
)2

+
√
(xvl − x f r)2 + (yvl − y f r)2 −

( 2
Ω
)2

. (17)
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Figure 17. Example of paths with equal lengths for a case with θi and θ f on quadrant I, and Pv on
rc+

rr : (a) RSR − RSR path type, (b) RSL − LSR path type.

From the optimality condition (Lemma 1) for the RSR − RSR and RSL − LSR paths,
the following condition must be verified:

(eR
i + eR

f )
⊤vθR

v
= 0, (18)

(eL
i + eL

f )
⊤vθL

v
= 0 (19)

where the superscripts R and L denote that the versor ei or e f refers to the path with right
and left curvatures at the via point, respectively. This leads to a system of three equations
(Equations (17)–(19)) with four variables (Pv = (xv, yv), θR

v , θL
v ):

eR
i =

cvr − cir
|cvr − cir|

(20)

eR
f =

cvr − c f r

|cvr − c f r|
(21)

vθR
v

= [−(yv − yvr), (xv − xvr)]
⊤ (22)

eL
i = R(γi)

cvl − cir
|cvl − cir|

with γi = sin−1
(

2Ω−1

|cvl − cir|

)
(23)

eL
f = R(γ f )

cvl − c f r

|cvl − c f r|
with γ f = sin−1

(
2Ω−1

|cvl − c f r|

)
(24)

vθL
v

= [−(yv − yvl), (xv − xvl)]
⊤ (25)

cvr = [xv + Ω−1 sin(θR
v ), yv − Ω−1 cos(θR

v )]
⊤ (26)

cvl = [xv − Ω−1 sin(θL
v ), yv + Ω−1 cos(θL

v )]
⊤. (27)
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The analytical result, obtained solving the above system of equations, is a curve
I1 quite close to the common tangent (superior cross tangent) rc+

rr between the circles
associated with the optimal initial and final turns as shown in Figure 18.

The classification rule for identifying the curvature at the via point Cviapoint related to
the considered boundary is given in Algorithm 5.
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13.5 14 14.5 15

-4

-3.5
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Figure 18. Curve I1: frontier between RSR − RSR and RSL − LSR path types computed numerically
by exploiting Equations (16) and (17).

Alternatively, following a heuristic approach, the solution can be sought considering
an approximation of this boundary given by rc+

rr . The resulting classification rules are
summarized in Algorithm 6.

Algorithm 5 Via point curvature-analytical approach—example in Figure 17—Pv ∈ Region 1

Require: qi, q f , Pv
Ensure: Cviapoint

compute curve I1 from Equations (17)–(19)
if Pv ∈ πl

I1
then

Cviapoint = R
else

Cviapoint = L
end if

Algorithm 6 Via point curvature-heuristic approach—example in Figure 17—Pv ∈ Region 1

Require: qi, q f , Pv
Ensure: Cviapoint

Cviapoint = C
if Pv ∈ πl

rc+
rr

l then

Cviapoint = R
else if Pv ∈ πr

rc+
rr

r then
Cviapoint = L

end if

More generally, by following the described approach to derive each boundary, one can
verify that each boundary can be approximated by an appropriate common tangent line.
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For the sake of completeness, the complete scenario that occurs when θi and θ f are on
quadrant I (see, for example, Figure 19), resorting to a heuristic approach (i.e., to a proper
approximation of each boundary), is summarized in Algorithms 7 and 8.

For the sake of brevity, the general schema that occurs for heading at initial and final
points within any of the four quadrants is not detailed here. However, any case can be
derived by analogously following the detailed case afforded so far.

Algorithm 7 Via point curvature-heuristic approach—{θi, θ f } ∈ QI-Pv ∈ Region 1

CviaPoint = C
if mre+

rl
> mλ f then

if Pv > re+
rl then

CviaPoint = R
else if λ f < Pv < re+

rl then
CviaPoint = L

else if rc+
rr < Pv < λ f then

CviaPoint = R
else if Pv < rc+

rr then
CviaPoint = L

end if
else

if Pv > rc+
rr then

CviaPoint = R
else

CviaPoint = L
end if

end if

Algorithm 8 Via point curvature-heuristic approach—{θi, θ f } ∈ QI-Pv ∈ Region 2

CviaPoint = C
if mre+

rl
< mλi then

if Pv > rc+
ll || re−

rl < Pv < λi then
CviaPoint = R

else
CviaPoint = L

end if
else

if Pv > rc+
ll then

CviaPoint = R
else if re+

rl < Pv < rc+
ll then

CviaPoint = L
else if re−

rl < Pv < re+
rl then

CviaPoint = R
else if Pv > re−

rl then
CviaPoint = L

end if
end if
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Figure 19. Illustrative example: qi = (0, 0, 50°) and q f = (10, 0, 35°).

4. An Illustrative Example

In this section, we provide a simple example to illustrate how the proposed classi-
fication rules work, demonstrating the functionality of the proposed algorithms. Let us
consider the following initial and final configurations: qi(0, 0, 50°), q f (10, 0, 35°), a maximal
curvature Ω = 1, and the via point Pv = (−10, 15) (see Figure 19).

The optimal path type has the form “CinitialSCviaPoint −CviaPointSC f inal”; thus, we need
to identify the curvature at the initial point, at the final point, and at the via point. We can
rely on the heuristic approach—more practical with respect to the analytical counterpart.
Applying Algorithm 2 since θi ∈ QI and Pv ∈ πl

λi
, we immediately deduce that Cinitial = L.

Similarly, by applying Algorithm 4 since θi ∈ QI and Pv ∈ πl
λl

f
, we immediately deduce

that C f inal = L. With reference to the curvature at the via point, since the initial and final
configurations are both in the first quadrant, and the via point is on Region 2, we can apply
Algorithm 8. This allows us to deduce that CviaPoint = R. Thus, we can directly deduce the
optimal path type without making any calculations.

Following a conventional approach, the optimal solution would be found by searching
among the eight candidate paths: {RSR−RSR, LSR−RSR, RSR−RSL, LSR−RSL, LSL−
LSL, RSL − LSL, LSL − LSR, RSL − LSR} using any of the existing methods in the litera-
ture, such as those presented in references [17,18,29]. By applying one of these methods,
the lengths of the eight candidate paths would be calculated and compared to determine
the optimal path.

5. Numerical Results

In this section, we evaluate the performance of the proposed method. We conducted
an experiment on random tuples (qi, Pv, q f ). The points Pi, Pv, and P f were randomly
selected in a 10 × 10 environment with the minimum distance between any pair of points
equal to 4Ω−1, being Ω = 1. For each tuple, we applied the shortest path synthesis to
identify the (potentially) optimal path types. Then, we solved only the three-point Dubins
path problem for the specific path type identified. This can be performed by resorting to any
of the methods in the literature, such as [17,18,29]. Here, the approach based on analytic
geometry tools proposed in [29] was considered. For the sake of clarity of exposition, we
denote it as the Geometry-Based Method (GBM) hereafter. The results of this numerical
experiment are evaluated in terms of execution time.

Here, TGBM represents the execution time for solving the 3PDP using the GBM, while
TCL refers to the execution time when applying the GBM exclusively to the optimal path
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types identified by the proposed classification rules. We can define the average factor of
improvement I over M runs for a given method with respect to the GBM as follows:

I =
1
M

M

∑
j=1

TGBM(j)
TCL(j)

(28)

The simulation results confirm the benefits of including the shortest path synthesis
into the three-point Dubins path planning. Indeed, as shown in Table 1, it reduced the
required computational cost by half, resulting in a doubled improvement factor compared
to a method that is already characterized for its fast computational time, as highlighted
in [29]. Thus, the proposed classification rules speed up the planning algorithm, making it
much more efficient with respect to the counterpart that does not use the classification.

Table 1. The average factor of improvement in runtime on M = 30 instances with the use of the
proposed classification rules over the Geometry-Based method.

Improvement (I)
Classification 1.96

From a computational point of view, Table 1 provides the average factor of improve-
ment in runtime on M = 30 instances using the GBM with the use of the proposed classifica-
tion rules. The algorithms were coded in MATLAB® (version R2020b) on an Apple Laptop
with a 3.1 GHz Intel Core i7 processor, 16 GB RAM, running a MAC OS X Version 10.15.7
operating system. Also, note that the MATLAB implementations of the planning algorithms
were not specifically optimized for execution time. Of course, by using dedicated hardware
and a suitably optimized code, the execution time can be significantly less. So, the proposed
classification strategy can be readily exploited in real-time applications because of its ability
to reduce the computational effort of three-point Dubins path planning algorithms.

6. Conclusions

In this paper, we present a shortest path-type classification between an initial and a
final configuration passing through an intermediate via point for a Dubins vehicle. The
proposed methodology allows us to select the optimal path type without any calculations;
hence, it is suitable to be used in real-time applications. The proposed strategy is described
through the explanation of a simple worked example. Future research will include the
extension of the approach to a time-varying and multi-robot scenario, as well as the use of
the algorithm in practice.
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