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Abstract
Motivated by possible applications in fault-tolerant routing, we introduce the notion of uniform
mixed equilibria in network congestion games with adversarial link failures, where players need
to route traffic from a source to a destination node. Given an integer ρ ≥ 1, a ρ-uniform mixed
strategy is a mixed strategy in which a player plays exactly ρ edge disjoint paths with uniform
probabilities, so that a ρ-uniform mixed equilibrium is a tuple of ρ-uniform mixed strategies, one
for each player, in which no player can lower her cost by deviating to another ρ-uniform mixed
strategy. For games with weighted players and affine latency functions, we show existence of
ρ-uniform mixed equilibria and provide a tight characterization of their price of anarchy. For
games with unweighted players, instead, we extend the existential guarantee to any class of
latency functions and, restricted to games with affine latencies, we derive a tight characterization
of both the prices of anarchy and stability.
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1 Introduction

Consider n users who need to send an unsplittable amount of traffic from a source to a
destination in a network which is subject to adversarial link failures. In particular, each user
ui is coupled with an adversary ai who, upon knowledge of the mixed strategy adopted by
ui to route her traffic, chooses which links to corrupt. Thus, every pair (ui, ai) is engaged
in a two-player Stackelberg game in which ui is the leader, ai is the follower, and both are
interested in the probability that the path selected by ui as a realization of her mixed strategy
fails: ui wants to minimize it, while ai aims at its maximization1. To make things more

1 We stress that ai is only aware of the mixed strategy chosen by ui and not of its final realization.
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interesting, all users also play an atomic congestion game among themselves, in which each of
them wants to minimize the expected latency of the chosen mixed strategy. We assume that a
user’s priority is to route her traffic at any cost, so that she will be interested in selecting the
mixed strategy of minimum expected latency among those minimizing the failure probability
(of its realization). It is not difficult to see that ui minimizes this probability if and only if
she assigns uniform probabilities to the maximum number of edge disjoint paths connecting
her source-destination pair.

Motivated by the above scenario, we introduce the notion of uniform mixed equilibrium
for (network) congestion games (with adversarial link failures). Formally, given an integer
ρ ≥ 1, a ρ-uniform mixed strategy is a mixed strategy in which exactly ρ edge disjoint
paths are chosen with uniform probabilities. Thus, given an n-tuple of positive integers
ρ = (ρ1, . . . , ρn), a ρ-uniform mixed profile is a mixed profile in which each user ui adopts a
ρi-uniform mixed strategy and a ρ-uniform mixed equilibrium is a ρ-uniform mixed profile
in which no user ui can lower her cost by deviating to another ρi-uniform mixed strategy.

As a first step in the understanding of the properties of these equilibria, we assume that
ρi = ρj := ρ for every pair of users ui and uj , and we denote ρ = (ρ, . . . , ρ) simply as ρ.
Besides defining a simple, yet interesting case, this assumption has at least two practical
applications/justifications. First, it models the case of symmetric games, in which all users
share the same source-destination pair; this setting has been widely studied with respect
to the analysis of efficiency of Nash equilibria [21] and to the (hardness of) computation of
equilibria [17, 16]. From a theoretical point of view, it is worth noting that, in this case,
the value of ρ, i.e. the maximum number of edge disjoint paths connecting the common
source-destination pair, can be efficiently computed by a reduction to the max-flow problem
(see [1] for further details). To illustrate the second application, observe that the desire to
minimize the failure probability induces each user to add even extremely costly paths to
the set of her possible alternatives. It is reasonable to assume that, in some contexts, users’
priorities can be restated as follows: each user wants to select the mixed strategy of minimum
expected latency among those keeping the failure probability within a certain threshold θ.
For the ease of exposition, assume that the adversary can corrupt just one link and that
θ = 1/3. By simple calculations, it is not difficult to establish that the best strategy for each
user is to play ρ = 3 edge disjoint paths with probability 1/3 each.

We stress that, although the notions of 1-uniform mixed equilibria and that of pure
Nash equilibria [26] coincide, there are no correlations between the set of ρ-uniform mixed
equilibria and that of mixed Nash equilibria of a given game when ρ > 1. Moreover, for ρ > 1,
ρ-uniform mixed strategies can be interpreted as an hybridization between the notions of pure
and mixed strategies. In fact, although the cost incurred by a player needs to be evaluated
in expectation (as it happens when adopting mixed strategies), the fact that probabilities
are superimposed by the model limits the players’ choices to deciding which strategies to
play (as it happens when adopting pure strategies). To the best of our knowledge, this is the
first attempt towards this direction.

1.1 Our Contribution
We study the existence and efficiency of ρ-uniform mixed equilibria in (network) congestion
games by distinguish between the case in which all players need to route the same amount of
traffic (unweighted congestion games) and the general case of different traffic rates (weighted
congestion games). In particular, we focus on networks in which the link latency functions
are affine (affine congestion games).
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Table 1 The prices of anarchy and stability of ρ-uniform mixed equilibria in affine unweighted
congestion games and the price of anarchy of ρ-uniform mixed equilibria in affine weighted congestion
games, for each value of ρ ≥ 1. Bounds labeled as ∗ holds also for parallel link networks with
restricted strategies, while bounds labeled as † applies to even parallel link networks with unrestricted
strategies.

ρ
unweighted games weighted games

price of stability price of anarchy price of anarchy

1 1 + 1/
√

3 [11, 13] 5/2∗ [3, 11, 14] (3 +
√

5)/2†[3, 5, 11, 14]
2 1 + 1/

√
5 5/3∗ 2†

3 1 + 1/
√

7 (2
√

7− 1)/3∗ (7 +
√

13)/6†

4 4/3† 4/3† (9 +
√

17)/8†

≥ 5 4/3† 4/3† 4ρ2/(3ρ2 − 2ρ− 1)†

We first prove that ρ-uniform mixed equilibria do exist in affine weighted congestion games,
for each ρ ≥ 1. This is done by showing that any affine weighted congestion game in which
players adopt ρ-uniform mixed strategies admits a potential function. This generalizes to
every value of ρ the results by [21, 22, 27] which were proved for the classical setting in which
players adopt pure strategies, i.e., for ρ = 1. For the case of unweighted players, existential
guarantees are extended to any class of latency functions. This generalizes Rosenthal’s
Theorem [30] which shows existence of pure Nash equilibria, i.e., existence of ρ-uniform
mixed equilibria for the basic case of ρ = 1.

Then, for each ρ ≥ 1, by exploiting the primal-dual method [6], we derive tight bounds
on the price of anarchy of ρ-uniform mixed equilibria in affine weighted congestion games
and tight bounds on both the prices of anarchy and stability of ρ-uniform mixed equilibria
in affine unweighted congestion games (see the values reported in Table 1, where many lower
bounds hold even for parallel link networks). It is worth noticing that our results nicely
extend the ones obtained for pure Nash equilibria, i.e., the case of ρ = 1. In particular, for
unweighted congestion games with affine latency functions, [13] proved that the price of
stability is lower bounded by 1 + 1/

√
3, while [11] showed that this bound is tight; [3, 14]

proved that the price of anarchy is 5/2 and [11] showed that the same (lower) bound extends
to the special case of parallel link networks with restricted strategies (i.e., every player can
only select a link from an allowable set of alternatives). For weighted congestion games
with linear latency functions, [3, 14] proved that the price of anarchy is (3 +

√
5)/2, [11]

showed that the same (lower) bound extends to the special case of parallel link networks with
restricted strategies, and finally [5] proved that even parallel link networks with unrestricted
strategies are enough to obtain a matching lower bound. The existential guarantee, as well
as the bounds for unweighted games, are obtained by exploiting the fact that, for each
ρ ≥ 1, any unweighted congestion game in which players adopt ρ-uniform mixed strategies is
isomorphic to an unweighted congestion game in which players adopt pure strategies and
whose latency functions are slightly different.

Our results show that, as ρ increases, the prices of anarchy and stability of ρ-uniform
mixed equilibria of affine congestion games approach the value 4/3, that is, the price of
anarchy of affine non-atomic congestion games [32]. This is in accordance with the intuition
that, by arbitrarily splitting an atomic request over disjoint strategies, atomic congestion
games tend to their non-atomic counterparts. The striking evidence of our findings, however,
is that, for unweighted players, when such a splitting is restricted to be uniform (i.e., the
same amount of traffic must be routed on each selected path), this happens for ρ = 4 already.

ICALP 2018
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1.2 Related Work
Penn, Polukarov and Tennenholtz [28, 29] introduced congestion games with failures. In
their model, each player has a task that can be executed on any resource, i.e. players only
adopt singleton strategies, and each resource may fail with a certain probability, hence, for
reliability reasons, a player may choose to simultaneously use multiple resources. The cost of
a player is given by the minimum of the costs payable on all the selected resources that do
not fail. In this setting, the existence, properties and efficiency of pure Nash equilibria are
investigated.

The setting of adversarial behavior in congestion games was introduced by Karakostas
and Viglas [23] for network congestion games. Babaioff, Kleinberg and Papadimitriou [4]
studied the impact of malicious players on the quality of Nash equilibria for non-atomic
games. In particular, [4, 23] considered two classes of players, i.e., rational players and
malicious players; while rational players act aiming at minimizing their own cost, malicious
ones aim at maximizing the average delay experienced by the rational players. Roth [31]
applied this adversarial setting to the class of linear congestion games. Also Moscibroda et
al. [25] analyzed an adversarial behavior in a different game.

1.3 Paper Organization
The paper is organized as follows. In the next section we provide the notation and definitions,
together with some basic results. Section 3 is devoted to the study of affine weighted
congestion games, while Section 4 to the analysis of the unweighted case. Finally, Section
5 gives some conclusive remarks and lists some interesting open problems. Due to space
limitations, some proofs are omitted (see the full version of the paper).

2 Definitions and Notation

Given two integers 0 ≤ k1 ≤ k2, let [k2]k1 denote the set {k1, k1 + 1, . . . , k2 − 1, k2} and let
[k1] denote the set [k1]1. Moreover, let ~1n denote the vector (1, . . . , 1) ∈ Rn≥0.

A weighted congestion model is defined by a tuple CM = (N, E, (`e)e∈E , (wi)i∈N, (Σi)i∈N),
where N is a set of n ≥ 2 players, E is a set of resources, `e : R≥0 → R≥0 is the latency
function of resource e ∈ E, and, for each i ∈ N, wi ≥ 0 is the weight of player i and
Σi ⊆ 2E \ ∅ is her set of strategies. A weighted congestion model is symmetric if Σi = Σ
for each i ∈ N, i.e., if all players share the same strategy space. A weighted load balancing
model is a weighted congestion model in which for each i ∈ N and S ∈ Σi, |S| = 1, that
is, all players’ strategies are singleton sets. Observe that a weighted load balancing model
corresponds to a parallel link network. A weighted congestion model is affine if its latency
functions are of the form `e(x) := αex+βe, with αe, βe ≥ 0. An unweighted congestion model
is a weighted congestion model such that wi = 1 for each i ∈ N.

Depending on the types of strategies adopted by the players, a congestion model CM may
induce different classes of congestion games.

A strategy profile is an n-tuple of strategies s = (s1, s2, . . . , sn), that is a state in which
each player i ∈ N adopts pure strategy si ∈ Σi. When players adopt pure strategies, CM
induces a congestion game CG(CM) (usually, when CM is clear from the context, we shall drop
it from the notation). For a strategy profile s, the congestion of resource e ∈ E in s, denoted
as ke(s) :=

∑
i∈N:e∈si wi, is the total weight of the players using resource e in s, (observe that,

for unweighted games, ke(s) coincides with the number of users selecting resource e in s). The
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cost of player i in s is defined as costCG
i (s) =

∑
e∈si `e(ke(s)) (usually, when CG is clear from

the context, we shall drop it from the notation). The quality of a strategy profile in CG(CM)
is measured by using the social function SUM(s) =

∑
i∈N wicosti(s) =

∑
e∈E ke(s)`e(ke(s)),

that is, the weighted sum of the players’ costs. A pure Nash equilibrium for CG(CM) is a
strategy profile s such that, for any player i ∈ N and strategy s′i ∈ Σi, costi(s) ≤ costi(s−i, s′i).
We denote by Eq(CG(CM)) the set of pure Nash equilibria of a weighted congestion game
CG(CM). The price of anarchy (resp. price of stability) of a weighted congestion game
CG(CM) is defined as PoA(CG(CM)) = maxs∈Eq(CG(CM))

{
SUM(s)

SUM(s∗)

}
(resp. PoS(CG(CM)) =

mins∈Eq(CG(CM))

{
SUM(s)

SUM(s∗)

}
), where s∗ is a social optimum for CG(CM), that is a strategy

profile minimizing the social function.
A mixed strategy for player i is a probability distribution σi defined over Σi, so that σi(s)

is the probability that player i plays strategy s ∈ Σi. We denote by supp(σi) = {s ∈ Σi :
σi(s) > 0} the set of strategies played with positive probability in σi. A mixed profile σ is an
n-tuple of mixed strategies, i.e., σ = (σ1, σ2, . . . , σn). Informally, σ is a state in which each
player i ∈ N picks her strategy according to probability distribution σi, independently from
the choices of other players. If σi is such that a pure strategy si is picked with probability
one by player i, we write si instead of σi.

Given an integer ρ ≥ 1 and a weighted congestion model CM in which for each player i ∈ N
there exist at least ρ pairwise disjoint strategies in Σi, a ρ-uniform mixed strategy for player
i is a mixed strategy σi such that |supp(σi)| = ρ, s1 ∩ s2 = ∅ for any s1, s2 ∈ supp(σi) with
s1 6= s2, and σi(s) = 1/ρ for each s ∈ supp(σi), i.e., a mixed strategy in which player i plays
exactly ρ pairwise disjoint strategies with uniform probability. Denote by ∆ρ

i (CM) the set of
ρ-uniform mixed strategies for player i. A ρ-uniform mixed profile σ = (σ1, σ2, . . . , σn) is an
n-tuple of ρ-uniform mixed strategies, one for each player. When players adopt ρ-uniform
mixed strategies, CM induces a ρ-uniform congestion game ρ-CG(CM) (again, when CM is
clear from the context, we shall drop it from the notation). For a ρ-uniform mixed profile σ,
the expected congestion of resource e ∈ E in σ, denoted as ke(σ) := Es∼σ

(∑
i∈N:e∈si wi

)
,

is the expected total weight of the players using resource e in σ. The cost of player i in
σ is defined as costρ-CG

i (σ) = Es∼σ
(∑

e∈si `e(ke(s))
)
(again, when ρ-CG is clear from the

context, we shall drop it from the notation). The quality of a ρ-uniform mixed profile
in ρ-CG(CM) becomes SUM(σ) = Es∼σ

(∑
i∈N wicosti(s)

)
=
∑
e∈E Es∼σ (ke(s)`e(ke(s))),

that is, the expected weighted sum of the players’ costs. A ρ-uniform mixed equilibrium
for ρ-CG(CM) is a ρ-uniform mixed profile σ such that, for any player i ∈ N and ρ-uniform
mixed strategy σ′i ∈ ∆ρ

i (CM), costi(σ) ≤ costi(σ−i, σ′i). We denote by Eq(ρ-CG(CM)) the
set of ρ-uniform mixed equilibria of a weighted congestion game ρ-CG(CM). The price
of anarchy (resp. price of stability) of a ρ-uniform weighted congestion game ρ-CG(CM)
is defined as PoAρ(ρ-CG(CM)) = maxσ∈Eq(ρ-CG(CM))

{
SUM(σ)

SUM(σ∗)

}
(resp. PoSρ(ρ-CG(CM)) =

minσ∈Eq(ρ-CG(CM)

{
SUM(σ)

SUM(σ∗)

}
), where σ∗ is a ρ-uniform social optimum for ρ-CG(CM), that

is a ρ-uniform mixed profile minimizing the social function.
Given a ρ-uniform mixed strategy σi, let E(σi) =

⋃
s∈supp(σi) s denote the set of resources

contained by all strategies belonging to supp(σi)2. For a ρ-uniform mixed profile σ, the ρ-
maximum congestion of resource e in σ, denoted as kρ,e(σ) =

∑
i:e∈E(σi) wi, is the congestion

of e obtained if all players assigning non-null probability to a strategy s containing e pick s.

2 Given e ∈ E(σi), there exists a unique strategy of σi containing e, since strategies selected with non-null
probability by each player are pairwise disjoint.

ICALP 2018
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I Remark. According to the first application described in Section 1, given a symmetric
congestion model CM such that the maximum number of disjoint strategies is ρ∗ > ρ, we
can consider a congestion model CM′ such that CG(CM′) is equivalent to CG(CM), and such
that the maximum number of disjoint strategies of CG(CM′) is ρ. To this aim, it suffices
considering a congestion model CM′ in which E′ := E ∪{e′1, e′2, . . . , e′ρ}, where e′j is a dummy
resource with `′(e′j) = 0 for any j ∈ [ρ], Σi

′ := {s ∪ {e′j} : s ∈ Σi, j ∈ [ρ]} for any i ∈ N,
and all the other quantities are defined as in CM. Observe that, given ρ-disjoint strategies
s1, s2, . . . , sρ in Σ, we have that s1 ∪ {e′1}, s2 ∪ {e′2}, . . . , sρ ∪ {e′ρ} are disjoint strategies of
Σi
′. Furthermore, there are no ρ+ 1 disjoint strategies in Σi

′, since, given ρ+ 1 strategies of
Σi
′, there are necessarily at least two strategies s′1, s′2 ∈ Σi

′ such that e′j ∈ s′1 ∩ s′2 for some
j ∈ [ρ]. Thus, ρ is the maximum number of disjoint strategies in CG(CM′). Finally, since
each strategy of Σi

′ is defined as union of some strategy of Σi and some dummy resource
having null cost, games CG(CM′) and CG(CM) are completely equivalent.

We conclude the section by providing useful equations to express the players’ costs in
ρ-uniform congestion games as a function of the ρ-maximum congestions only, thus getting
rid of expected values. Towards this end, as shown in [6], we can assume without loss of
generality that the latency functions of the games we consider are restricted to be linear,
that is, of the form `(x) = αex for some αe ≥ 0.

I Lemma 1. Given an affine weighted congestion model CM and a ρ-uniform strategy profile
σ for ρ-CG(CM), we have

costi(σ) =
∑

e∈E(σi)

αe

(
kρ,e(σ)
ρ2 +

(
ρ− 1
ρ2

)
wi

)
(1)

and, given σ′i ∈ ∆ρ
i (CM), we have

costi(σ−i, σ′i) =
∑

e∈E(σ′
i
)\E(σi)

αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
+

∑
e∈E(σ′

i
)∩E(σi)

αe

(
kρ,e(σ)
ρ2 +

(
ρ− 1
ρ2

)
wi

)

≤
∑

e∈E(σ′
i
)

αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
. (2)

3 Weighted Games

In this section, we consider the general case of ρ-uniform congestion games induced by affine
weighted congestion models. We start by showing that ρ-uniform mixed equilibria are always
guaranteed to exist, for each ρ ≥ 1. In particular, by resorting to a potential function
argument, we prove that, for each affine weighted congestion model CM, any better-response
dynamics in ρ-CG(CM) converges to a ρ-uniform mixed equilibrium after a finite number of
steps.

I Theorem 2. For each affine weighted congestion model CM and ρ ≥ 1, ρ-CG(CM) admits
a potential function.

Proof. Given an affine weighted congestion model CM and an integer ρ ≥ 1, consider the
function Φρ defined on the set of ρ-uniform mixed profiles for ρ-CG(CM):

Φρ(σ) :=
∑
e∈E

αe

kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2

∑
i:e∈E(σi)

w2
i

 . (3)
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We prove that Φρ is a weighted potential function for ρ-CG. Fix a ρ-uniform mixed profile
σ, a player i ∈ N, and a ρ-uniform mixed strategy σ′i ∈ ∆ρ

i (CM). Let Ie = 1 if e ∈ σ′i \ σi,
Ie = −1 if e ∈ σi \ σ′i, Ie = 0 if e ∈ σ′i ∩ σi. We have

Φρ(σ−i, σ′i)− Φρ(σ)

=
∑
e∈E

αe

 (kρ,e(σ) + Iewi)2

2ρ2 + 2ρ− 1
2ρ2

 ∑
j:e∈E(σj)

w2
j + Iew2

i


−
∑
e∈E

αe

kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2

∑
j:e∈E(σj)

w2
j


=

∑
e∈E(σ′

i
)\E(σi)

αe

(
(kρ,e(σ) + wi)2 − kρ,e(σ)2

2ρ2 + 2ρ− 1
2ρ2 w2

i

)

−
∑

e∈E(σi)\E(σ′
i
)

αe

(
kρ,e(σ)2 − (kρ,e(σ)− wi)2

2ρ2 + 2ρ− 1
2ρ2 w2

i

)

=
∑

e∈E(σ′
i
)\E(σi)

αewi

(
kρ,e(σ)
ρ2 + 1

ρ
wi

)
−

∑
e∈E(σi)\E(σ′

i
)

αewi

(
kρ,e(σ)
ρ2 + ρ− 1

ρ2 wi

)
=wi(costi(σ−i, σ′i)− costi(σ)), (4)

where (4) comes from Lemma 1. Thus, Φρ is a weighted potential function for ρ-CG(CM). J

3.1 Price of Anarchy
In this subsection, we derive exact bounds on the price of anarchy of ρ-uniform congestion
games induced by affine weighted congestion models.

I Theorem 3. Fix an affine weighted congestion model CM. For any ρ ≥ 1, we have

PoAρ(ρ-CG(CM)) ≤
{√

4ρ+1+2ρ+1
2ρ if ρ < 5,

4ρ2

3ρ2−2ρ−1 if ρ ≥ 5.

Proof. Given an integer ρ ≥ 1, let CM be an arbitrary affine weighted congestion model. Let
σ and σ∗ be a ρ-uniform mixed equilibrium and a ρ-uniform social optimum for ρ-CG(CM),
respectively. By exploiting the primal-dual technique we get the following linear program:

max SUM(σ) =
∑
i∈N

wicosti(σ)

s.t.
∑
i∈N

wicosti(σ) ≤
∑
i∈N

wicosti(σ−i, σ∗i ) (5)

SUM(σ∗) =
∑
i∈N

wicosti(σ∗) = 1 (6)

αe ≥ 0, ∀e ∈ E

where:
(5) has been obtained by multiplying each inequality costi(σ) ≤ costi(σ−i, σ∗i ) by wi,
and then summing them up for each i ∈ N;
the linear coefficients αe’s are the variables of the linear program, and the other quantities
are fixed parameters;

ICALP 2018
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(6) normalizes the optimal social function, so that the maximum value of the objective
function (i.e. the social function of the ρ-uniform mixed equilibrium) is an upper bound
on the price of anarchy.

By using Lemma 1 in the previous linear program, we get the following relaxation
(relaxation comes from inequality (2), that may not be tight):

LP: max
∑
e∈E

αe

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

 (7)

s.t.
∑
e∈E

αe

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

 ≤
≤
∑
e∈E

αe

kρ,e(σ∗)kρ,e(σ)
ρ2 +

∑
i:e∈E(σ∗

i
)

w2
i

ρ

 (8)

∑
e∈E

αe

kρ,e(σ∗)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σ∗

i
)

w2
i

 = 1 (9)

αe ≥ 0, ∀e ∈ E

where (7) comes from (1), as
∑

i∈N wicosti(σ) =
∑

i∈N wi
∑

e∈E(σi)
αe

(
kρ,e(σ)
ρ2 +

(
ρ−1
ρ2

)
wi

)
=∑

e∈E αe

(
kρ,e(σ)2

ρ2 +
(
ρ−1
ρ2

)∑
i:e∈E(σi)

w2
i

)
, and (8) comes from (2), as

∑
i∈N wicosti(σ−i, σ∗i )

≤
∑
i∈N wi

∑
e∈E(σ∗

i
) αe

(
kρ,e(σ)
ρ2 + wi

ρ

)
=
∑
e∈E αe

(
kρ,e(σ∗)kρ,e(σ)

ρ2 +
∑
i:e∈E(σ∗

i
)
w2
i

ρ

)
. By

taking the dual of LP, where we associate the dual variable x to the primal constraint (8)
and the dual variable γ to the primal constraint (9), we get

DLP : min γ

s.t. γ

kρ,e(σ∗)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σ∗

i
)

w2
i

 ≥
≥ −(x− 1)

kρ,e(σ)2

ρ2 +
(
ρ− 1
ρ2

) ∑
i:e∈E(σi)

w2
i

+

+ x

kρ,e(σ∗)kρ,e(σ)
ρ2 +

∑
i:e∈E(σ∗

i
)

w2
i

ρ

 , ∀e ∈ E (10)

x ≥ 0

By choosing x > 1, we have that, if kρ,e(σ∗) = 0, (10) is always satisfied. Thus, assume
that kρ,e(σ∗) > 0. Let us now manipulate (10) as follows: we divide both sides by kρ,e(σ∗)2,
so that we can rewrite it as a function of a variable t := kρ,e(σ)/kρ,e(σ∗) and of some
new player’s weights ui = wi/kρ,e(σ∗). Furthermore, by setting

∑
i:e∈E(σi) w

2
i = 0 we have

stronger constraints. By observing that
∑
i:e∈E(σ∗

i
) wi = kρ,e(σ∗), and then

∑
i:e∈E(σ∗

i
) ui = 1,
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we obtain that the following value γ(x) is a feasible solution of DLP for any x > 1:3

γ(x) = sup
{n∈N,t≥0,ui≥0,

∑n

i=1
ui=1}

t2

ρ2 + x
(
− t2

ρ2 + t
ρ2 + 1

ρ

∑n
i=1 u

2
i

)
1
ρ2 + ρ−1

ρ2

∑n
i=1 u

2
i

.

Since
∑n
i=1 ui = 1 and ui ≥ 0 for each i ∈ [n], one can replace

∑n
i=1 u

2
i with a variable

u ∈ [0, 1], so that we can set γ(x) = supt≥0,u∈[0,1] γ(x, t, u), where

γ(x, t, u) =
t2

ρ2 + x
(
− t2

ρ2 + t
ρ2 + u

ρ

)
1
ρ2 + ρ−1

ρ2 u
.

We have that the monotonicity of γ(x, t, u) with respect to u does not depend on u, thus
γ(x, t, u) is maximized either by u = 0 or by u = 1. So, we get γ(x) = supt≥0,u∈{0,1} γ(x, t, u).
Note that t = x

2x−2 is the unique maximum point of γ(x, t, u) for u ∈ {0, 1}. Thus, we can
conclude

γ(x) = max
{
γ

(
x,

x

2x− 2 , 0
)
, γ

(
x,

x

2x− 2 , 1
)}

.

Now, if ρ < 5, set x = 1 + 1√
4ρ+1 , otherwise set x = 4ρ

3ρ+1 . If ρ < 5, we get

γ

(
1 + 1√

4ρ+ 1

)
=
√

4ρ+ 1 + 2ρ+ 1
2ρ ≥ PoAρ(ρ-CG),

otherwise, for ρ ≥ 5, we get

γ

(
4ρ

3ρ+ 1

)
= 4ρ2

3ρ2 − 2ρ− 1 ≥ PoAρ(ρ-CG),

thus showing the claim. J

We show that the derived upper bounds are tight, even when restricting to games induced
by symmetric load balancing models.

I Theorem 4. For any ρ ≥ 1 and ε > 0, there exists an affine weighted symmetric load
balancing model CM := CM(ρ, ε) such that

PoAρ(ρ-CG(CM)) ≥
{√

4ρ+1+2ρ+1
2ρ − ε if ρ < 5,

4ρ2

3ρ2−2ρ−1 − ε if ρ ≥ 5.

4 Unweighted Games

In this section, we consider the case of ρ-uniform congestion games induced by unweighted
congestion models. First, we show that uniform mixed equilibria are always guaranteed to
exist for any class of latency functions.

Given an unweighted congestion model CM and an integer ρ ≥ 1, let f be a function
mapping CM and ρ to another congestion model f(CM, ρ), according to the following
definition.

3 To simplify the notation, we have written
∑n

i=1 ui, instead of
∑

i:e∈E(σ∗
i

) ui.
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I Definition 5. Given an unweighted congestion model

CM =
(
N, E, (`e)e∈E ,~1n, (Σi)i∈N

)
,

define CM′ = f(CM, ρ) =
(
N′, E′, (`′e)e∈E ,~1n, (Σ′i)i∈N

)
as the unweighted congestion model

such that N′ = N, E′ = E, Σ′i = {E(σi) : σi is a ρ-uniform mixed strategy for player i in
ρ-CG(CM)} for each i ∈ N, and

`′e(x) := 1
ρ

x−1∑
j=0

(
x− 1
j

)(
1
ρ

)j (
ρ− 1
ρ

)x−1−j
`e(j + 1)

 (11)

for each e ∈ E′. Moreover, given a latency function `e, let `f(ρ)
e denote the latency function

defined in (11), and let `−f(ρ)
e denote the function `e such that `f(ρ)

e = `e.

For instance, if CG(CM) is a symmetric load balancing game, then CG(f(CM, ρ)) is a ρ-
uniform matroid congestion game [15], i.e. the strategies of each player are arbitrary subsets
of ρ resources.

We show that ρ-CG(CM) is equivalent to CG(f(CM, ρ)) for each ρ ≥ 1. For a ρ-uniform
mixed profile σ for ρ-CG(CM), define s′(σ) as the strategy profile for CG(f(CM, ρ)) such
that s′(σ) := (E(σ1), E(σ2), . . . , E(σn)).

I Theorem 6. Given ρ ≥ 1 and an unweighted congestion model CM, we have that, for each
ρ-uniform mixed profile σ for ρ-CG(CM) and i ∈ N, costρ-CG(CM)

i (σ) = cost
CG(f(CM,ρ))
i (s′(σ)).

As a corollary, we obtain existence of uniform mixed equilibria for each uniform congestion
games induced by unweighted congestion models, regardless of which are their latency
functions. In particular, we extend Rosenthal’s Theorem [30], by showing that, for each
ρ ≥ 1, any ρ-uniform unweighted congestion game admits an exact potential.

I Corollary 7. For each ρ ≥ 1 and unweighted congestion model CM, ρ-CG(CM) admits an
exact potential.

Proof. By Rosenthal’s Theorem [30], CG(f(CM, ρ)) admits an exact potential function Φ.
Because of Theorem 6, we have that Φ◦s′ is an exact potential function for ρ-CG(CM). Indeed,
given i ∈ N, a strategy profile σ of ρ-CG(CM), and σ′i ∈ ∆ρ

i (CM), we get costρ-CG(CM)
i (σ)−

cost
ρ-CG(CM)
i (σ−i, σ′i) = cost

CG(f(CM,ρ))
i (s′(σ)) − cost

CG(f(CM,ρ))
i (s′(σ−i, σ′i)) = Φ(s′(σ)) −

Φ(s′(σ−i, σ′i)) = (Φ ◦ s′)(σ)− (Φ ◦ s′)(σ−i, σ′i). J

4.1 Price of Anarchy
In this subsection, we derive exact bounds on the price of anarchy of ρ-uniform congestion
games induced by affine unweighted congestion models.

I Theorem 8. Fix an affine unweighted congestion model CM. For any ρ ≥ 1, we have

PoAρ(ρ-CG(CM)) ≤


5
ρ+1 if ρ ≤ 2,
2
√

7−1
3 if ρ = 3,

4
3 if ρ ≥ 4.

Proof. Given an integer ρ ≥ 1, let CM be an arbitrary affine unweighted congestion model.
Let σ and σ∗ be a ρ-uniform mixed equilibrium and a ρ-uniform social optimum for
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ρ-CG(CM), respectively. By exploiting (1) and (2), we have that, for each i ∈ N, the
inequality costi(σ) ≤ costi(σ−i, σ∗i ) becomes∑

e∈E(σi)

αe

(
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
e∈E(σ∗

i
)

αe

(
kρ,e(σ) + ρ

ρ2

)
≤ 0.

By also using (1) within SUM(σ) and SUM(σ∗), we get the following linear program:

LP : max
∑
e∈E

αe

(
kρ,e(σ)(kρ,e(σ) + ρ− 1)

ρ2

)
s.t.

∑
e∈E(σi)

αe

(
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
e∈E(σ∗

i
)

αe

(
kρ,e(σ) + ρ

ρ2

)
≤ 0, ∀i ∈ N

(12)∑
e∈E

αe

(
kρ,e(σ∗)(kρ,e(σ∗) + ρ− 1)

ρ2

)
= 1 (13)

αe ≥ 0, ∀e ∈ E

By taking the dual of LP, where we associate the dual variable xi to the ith primal constraint
in (12) and the dual variable γ to the primal constraint (13), we get:

DLP : min γ

s.t.
∑

i:e∈E(σi)

(
xi
kρ,e(σ) + ρ− 1

ρ2

)
−

∑
i:e∈E(σ∗

i
)

(
xi
kρ,e(σ) + ρ

ρ2

)

+ γ
kρ,e(σ∗)(kρ,e(σ∗) + ρ− 1)

ρ2

≥ kρ,e(σ)(kρ,e(σ) + ρ− 1)
ρ2 , ∀e ∈ E (14)

xi ≥ 0, ∀i ∈ N

By using xi = x for each i ∈ N, k := kρ,e(σ) and o := kρ,e(σ∗) in (14), and multiplying both
sides by ρ2, we obtain the following relaxed dual constraint:

xk(k + ρ− 1)− xo(k + ρ) + γo(o+ ρ− 1) ≥ k(k + ρ− 1). (15)

To complete the proof, we are left to provide, for each ρ ≥ 1, a suitable value x ≥ 0 satisfying
inequality (15) where γ is set to be equal to the claimed upper bound on the ρ-uniform price
of anarchy. We now proceed by case analysis.

For ρ ≤ 2, for which we have γ = 5
ρ+1 , set x = ρ+2

ρ+1 . By substituting these values in (15),
we get the inequality k2 − k (o(ρ+ 2) + ρ+ 1) + o(5o− ρ2 + 3ρ− 5) ≥ 0 which can be easily
shown to be satisfied for any pair of non-negative integers k, o when ρ = 1, 2. In fact, the
discriminant of the associated equality is negative for each integer o ≥ 2, while the cases of
o ∈ {0, 1} can be checked by inspection.

For ρ = 3, for which we have γ = 2
√

7−1
3 , set x = 2

√
7− 4. By substituting these values

in (15), we get the inequality

(6
√

7− 15)k2 − 6k
(
o(
√

7− 2)− 2
√

7 + 5
)

+ o
(
o(2
√

7− 1)− 14
√

7 + 34
)
≥ 0,

which can be easily shown to be satisfied for any pair of non-negative integers k, o. In fact,
the discriminant of the associated equality is negative for each integer o ≥ 2, while the cases
of o ∈ {0, 1} can be checked by inspection.

ICALP 2018
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For ρ ≥ 4, for which we have γ = 4
3 , set x = 4

3 . By substituting these values in (15), we
get the inequality k2 − k(4o− ρ+ 1) + 4o(o− 1) ≥ 0 whose left-hand side is increasing in ρ.
Hence, we only need to prove that it gets satisfied for the case of ρ = 4, by which we get the
inequality k2−k(4o−3)+4o(o−1) ≥ 0 which can be easily shown to be satisfied for any pair
of non-negative integers k, o. Again, the discriminant of the associated equality is negative
for each integer o ≥ 2, while the cases of o ∈ {0, 1} can be checked by inspection. J

We show matching lower bounds for each ρ ≤ 3. For ρ ≥ 4, we show in the next subsection
a matching lower bound holding even for the price of stability.

I Theorem 9. For any ρ ≤ 3 and ε > 0, there exists an affine unweighted load balancing
model CM := CM(ρ, ε) such that

PoAρ(ρ-CG(CM)) ≥
{

5
ρ+1 − ε if ρ ≤ 2,
2
√

7−1
3 − ε if ρ = 3.

4.2 Price of Stability
In this subsection, we exhibit exact bounds on the price of stability of ρ-uniform congestion
games induced by affine unweighted congestion models.

I Theorem 10. Fix an affine unweighted congestion model CM. For any ρ ≥ 1, we have

PoSρ(ρ-CG(CM)) ≤
{

1 + 1√
2ρ+1 if ρ ≤ 3,

4
3 if ρ ≥ 4.

We also have matching lower bounds. We first consider the case of ρ ≤ 3.

I Theorem 11. For each ρ ≤ 3 and ε > 0, there exists an affine unweighted congestion
model CM := CM(ρ, ε) such that PoSρ(ρ-CG(CM)) ≥ 1 + 1√

2ρ+1 − ε.

For ρ ≥ 4, the upper bounds are tight even when restricting to games induced by
symmetric load balancing models.

I Theorem 12. For each ρ ≥ 1 and ε > 0, there exists an affine unweighted symmetric load
balancing model CM := CM(ρ, ε) such that PoSρ(ρ-CG(CM)) ≥ 4

3 − ε.

5 Open Problems

In this paper, motivated by possible applications in fault-tolerant routing, we have introduced
the notion of uniform mixed equilibria, and we have applied it to the well-studied class of
(network) congestion games with affine latency functions, by providing existential results of
these equilibria and by deriving tight bounds to the prices of anarchy and stability.

The main left open problem is to consider the more general definition of ρ-uniform mixed
equilibria, where players can use uniform mixed strategies of different support size. Another
important question is the determination of lower bounds for the price of stability of ρ-unform
mixed equilibria, in the setting of weighted congestion games. However, this question is
open even for the price of stability of pure Nash equilibria (i.e., ρ = 1), for which only an
upper bound equal to 2 is known, as a direct consequence of the potential function given
in [20]. Following the approach used in [12, 10, 19, 9] for ρ = 1, it could be interesting
investigating resource taxation or other strategies to improve the performance of ρ-unform
mixed equilibria. Another interesting research direction is that of extending the results
to other latency functions, e.g., polynomial functions, or decreasing functions as the ones
inducing the Shapley cost sharing game [2, 24, 8, 7, 18].
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