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Topological Properties of Weighted
Composition Operators in Sequence Spaces
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Abstract. For fixed sequences u = (ui)i∈N, ϕ = (ϕi)i∈N, we consider the
weighted composition operator Wu,ϕ with symbols u, ϕ defined by x =
(xi)i∈N �→ u(x ◦ ϕ) = (uixϕi)i∈N. We characterize the continuity and the
compactness of the operator Wu,ϕ when it acts on the weighted Banach
spaces lp(v), 1 ≤ p ≤ ∞, and c0(v), with v = (vi)i∈N a weight sequence
on N. We extend these results to the case in which the operator Wu,ϕ acts
on sequence (LF)-spaces of type lp(V) and on sequence (PLB)-spaces of
type ap(V), with p ∈ [1, ∞] ∪ {0} and V a system of weights on N. We
also characterize other topological properties of Wu,ϕ acting on lp(V) and
on ap(V), such as boundedness, reflexivity and to being Montel.
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1. Introduction

Shift operators are of interest because many classical operators can be viewed
as such operators and also because they have been through the years a favourite
testing ground for operator-theorists. The basic model of all shifts is the (uni-
lateral) backward shift

B(x1, x2, x3 . . .) = (x2, x3, x4, . . .).

Shift operators in a Banach space setting where first studied by Rolewicz [34],
who showed that for any c > 1 the multiple cB of the backward shift B on
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the sequence space lp, 1 ≤ p < ∞, or c0 is hypercyclic. A generalization of the
(unilateral) backward shift is the (unilateral) weighted backward shift

Bw(x1, x2, x3 . . .) = (w2x2, w3x3, w4x4, . . .),

where w = (wn)n∈N is a sequence of non-zero scalars, called a weight sequence.
For instance, the differentiation operator D on the space H(C) of entire func-
tions can be regarded as a particular weighted backward shift operator. Indeed,
we have

Den = nen−1, n ∈ N0,

where (en)n∈N0 denotes the canonical basis on H(C) given by en(z) := zn, for
z ∈ C and n ∈ N0, and where e−1 = 0.

The study of (weighted) shift operators on various spaces of sequences or
functions has made possible to obtain an astounding number of deep results
in the setting of the dynamic properties of linear operators such as topological
transitivity, hypercyclicity and linear chaos (see, e.g., [10,11,17,20,21,28,29,
35,36,40] and the references therein).

In the last years, the attention of the researchers has been attracted by the
study of power boundedness, topologizability and mean ergodicity for linear
operators acting on Banach spaces as well as on locally convex Hausdorff spaces
such as Fréchet spaces or (LB)-spaces (see, e.g., [1–3,14,32,33]). Particular
interest has been devoted to the study of these properties for weighted compo-
sition operators in function spaces or in sequence spaces (see [5,7–9,15,16,23–
26,37] and the references therein). A weighted composition operator Wu,ϕ,
with u = (ui)i∈N ∈ K

N, ϕ = (ϕi)i∈N ∈ N
N, when it acts on a sequence space

X ⊆ K
N is of this type

x = (xi)i∈N ∈ X �→ Wu,ϕ(x) := (wixϕi
)i∈N.

(the operator Wu,ϕ is also called weighted pseudo shift if ϕ : N → N is in-
jective). Weighted composition operators acting on sequence spaces are then
a generalization of weighted shift operators. Observe that if ϕi = i for every
i ∈ N, then Wu,ϕ becomes the multiplication operator defined by Mu(x) :=
ux = (uixi)i∈N, for x ∈ X. For ui = 1 for every i ∈ N, the operator Wu,ϕ

becomes the composition operator defined by Cϕ(x) := x ◦ ϕ = (xϕi
)i∈N, for

x ∈ X.
As some properties like being a compact operator or a Montel operator

are closely related to the (uniform) mean ergodicity (see, e.g., [4] and the
rerences therein), the aim of this paper is to investigate and to characterize the
continuity, the boundedness, the compactness and the property of being Montel
or reflexive for weighted composition operators Wu,ϕ in sequence (LF)-spaces
of type lp(V) and in sequence (PLB)-spaces of type ap(V), with p ∈ [1,∞]∪{0}
and V a system of weights on N. Köthe echelon spaces and Köthe co-echelon
spaces are spaces of type ap(V) and lp(V), respectively, for particular systems
V of weights.
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The paper is organized as follows. In Sect. 2, we recall general definitions
and results on (LF)- and (PLB)-spaces and on operators acting on these spaces.
Section 3 is devoted to the study of the topological properties of weigthed
composition operators. In particular, in Sect. 3.1 we introduce the sequence
(LF)- and (PLB)-spaces and give their relevant properties. In Sect. 3.2 we
establish when the weighted composition operator Wu,ϕ acts continuously or
compactly on the sequence Banach spaces lp(v), for p ∈ [1,∞]∪{0} (Theorems
3.4 and 3.12). The continuity, the boundedness and the compactness of the
operator Wu,ϕ in the sequence spaces lp(V) and ap(V), for p ∈ [1,∞] ∪ {0},
are characterized in Sect. 3.3 (Theorems 3.14, 3.15 and 3.16 for the (LF)-
case; Theorems 3.17, 3.18 and 3.19 for the (PLB)-case). Sects. 3.5 and 3.6
are devoted to establish when the weighted composition operator Wu,ϕ acting
either on Köthe echelon spaces or on sequence (LF)-spaces of type lp(V), with
p ∈ [1,∞] ∪ {0}, is Montel or reflexive, respectively.

2. Definitions and General Results on (LF)- and (PLB)-Spaces

Let E and F be two locally convex Hausdorff spaces (briefly, lcHs for locally
convex Hausdorff space). We denote by L(E,F ) the space of all continuous lin-
ear operators from E into F . In particular, Ls(E,F ) (Lb(E,F ), resp.) denotes
L(E,F ) endowed with the strong operator topology τs (L(E,F ) endowed with
the topology τb of the uniform convergence on bounded subsets of E, resp.).
In case F = E, we simply write L(E), Ls(E) and Lb(E).

Let E and F be two lcHs and T be a linear operator from E into F .
The operator T is called bounded if T maps some 0-neighborhood of E into
a bounded subset of F . The operator T is called compact if T maps some
0-neighborhood of E into a relatively compact subset of F . We denote by
K(E,F ) the space of all compact linear operators from E into F . We observe
that if T is a bounded or compact operator from E into F , then it is necessar-
ily continuous, i.e., T ∈ L(E,F ). Moreover, an operator T ∈ L(E,F ) is called
Montel (reflexive, resp.) if T maps bounded subsets of E into relatively com-
pact (relatively weakly compact, resp.) subsets of F . In case E is a bornological
lcHs, the assumption on the continuity of T is not necessary because in such
a case every linear operator from E into F mapping bounded subsets of E
into relatively (weakly) compact subsets of F is continuous. If F is a reflexive
lcHs, then every T ∈ L(E,F ) is reflexive. If E and F are Banach spaces, then
a linear operator T : E → F is Montel if, and only if, it is compact. We refer
the reader to [27] for more details.

In the following we recall some necessary definitions and collect some
results on (LF)- or (PLB)-spaces and on operators acting in such spaces. We
first consider the case of (LF)-spaces.

A lcHs E is called an (LF)-space if there exists a sequence {En}n∈N

of Fréchet spaces with En ↪→ En+1 continuously such that E =
⋃

n∈N
En
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and the topology of E coincides with the finest locally convex topology for
which each inclusion En ↪→ E is continuous. In such a case, we simply write
E = indn∈N En. The sequence {En}n∈N is called a defining inductive spectrum
for E. In this paper the (LF)-spaces are Hausdorff by definition. The space
E = indn∈N En is called an (LB)-space if En is a Banach space for all n ∈ N.
An (LF)-space E = indn∈N En is called regular if every bounded subset B of
E is contained and bounded in En for some n ∈ N. Every complete (LF)-space
is always regular.

An (LF)-space can satisfy stronger regularity conditions.
Let E = indn∈N En be an (LF)-space and τ (τn, resp.) denote the locally

convex topology of E (of En, for n ∈ N, resp.). The (LF)-space E is said to
satisfy the condition (M) ((M0), resp.) of Retakh if there exists an increasing
sequence {Un}n∈N of subsets of E such that Un is an absolutely convex 0-
neighborhood of En for all n ∈ N satisfying

∀n ∈ N ∃m ≥ n ∀μ ≥ m : τμ and τm induce the same topology on Un,

(∀n ∈ N∃m ≥ n ∀μ ≥ m : σ(Eμ, E′
μ) and σ(Em, E′

m) induce the same topology
on Un, resp.). An (LF)-space satisfying the condition (M) ((M0), resp.) is called
acyclic (weakly acyclic, resp.). Every acyclic (LF)-space is weakly acyclic and
also complete (see [41, Corollary 6.5]).

The (LF)-space E = indn∈N En is called compactly retractive if every
compact subset K of E is contained and compact in En for some n ∈ N.
The (LF)-space E = indn∈N En is called boundedly retractive if every bounded
subet B of E is contained and bounded in some step En and the topologies of E
and En coincide on B. While, the (LF)-space E is called sequentially retractive
if every convergent sequence in E is contained in some step En and converges
there. We observe that, in view of Grothendieck’s factorization theorem [22,
p.147], all conditions above do not depend on the defining inductive spectrum
of E.

Recall the following deep result due to Wengenroth [41].

Theorem 2.1 ([41, Theorem 6.4]). For an (LF)-space E = indn∈N En the fol-
lowing conditions are equivalent:
(1) E satisfies condition (M);
(2) E is boundedly retractive;
(3) E is compactly retractive;
(3) E is sequentially retractive.

The characterization of the continuity of operators between (LF)-spaces is
well-known and due to Grothendieck. The characterization of the boundedness
or the compactness as well as the property to being Montel or reflexive for
operators acting between (LF)-spaces has been given in [31] (see also [16]) as
it follows.

Theorem 2.2 ([31, §2.2]). Let E =indm∈N Em and F =indn∈N Fn be two (LF)-
spaces. Let T : E → F be a linear operator. The following assertions hold true:
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(1) Assume that F is regular. The operator T is bounded if, and only if, there
exists n ∈ N such that for all m ∈ N we have that T (Em) ⊂ Fn and the
restriction T : Em → Fn is bounded.

(2) Assume that F satisfies the condition (M). The operator T is compact
if, and only if, there exists n ∈ N such that for all m ∈ N we have that
T (Em) ⊂ Fn and the restriction T : Em → Fn is compact.

(3) Assume that E is regular and F satisfies the condition (M). The operator
T is Montel if, and only if, for all m ∈ N there exists n ∈ N such that
T (Em) ⊂ Fn and the restriction T : Em → Fn is Montel.

(4) Assume that E is regular and F satisfies the condition (M0). The operator
T is reflexive if, and only if, for all m ∈ N there exists n ∈ N such that
T (Em) ⊂ Fn and the restriction T : Em → Fn is reflexive.

A lcHs E is called a (PLB)-space if there exists a sequence {En}n∈N

of (LB)-spaces with En+1 ↪→ En continuously, for n ∈ N, such that E =⋂
n∈N

En and the topology of E is the coarsest locally convex topology for
which each inclusion E ↪→ En is continuous. In such a case, we simply write
E = projn∈N En. Clearly, a (PLB)-space E = projn∈N En is complete whenever
En is a complete (LB)-space for an infinite number of indices n.

The characterization of the continuity as well as the boundedness and
the compactness for operators acting between (PLB)-spaces has been given in
[6]. We collect these characterizations in the following result.

Theorem 2.3 [6, §2]. Let E = projn∈N En be a (PLB)-space such that the con-
tinuous inclusion E ↪→ En has dense range for all n ∈ N. Let F = projk∈N Fk

be a (PLB)-space such that Fk is a complete (LB)-space for all k ∈ N. Let
T : E → F be a linear operator. Then the following assertions hold true:
(1) The operator T is continuous if, and only if, for all k ∈ N there exists n ∈

N such that the operator T admits a unique linear continuous extention
Tn

k from En into Fk.
(2) The operator T is bounded (compact, resp.) if, and only if, there exists

n ∈ N such that for all k ∈ N the operator T admits a unique linear
extension Tn

k : En → Fk which is bounded (compact, resp.).

We recall from [6] the following remarks, which are useful for the next
sections.

Remark 2.4 Let E = projn∈N En be a (PLB)-space. Let τn denote the locally
convex topology of En, for n ∈ N.
(1) From the proof of Theorem 2.3(1), it follows that for all k ∈ N there

exists n ∈ N such the operator T : (E, τn) → Fk is continuous also in the
case E = projn∈N En is a (PLB)-space with no dense inclusion in En for
any n ∈ N.

(2) From the proof of Theorem 2.3(2), it follows that there exists n0 ∈ N

such that the operator T : (E, τn0) → Fk is bounded (compact, resp.) for
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all k ∈ N also in the case that E = projn∈N En is a (PLB)-space with no
dense inclusion in En for any n ∈ N.

3. Weighted Composition Operators Between Sequence (LF)-
and (PLB)-Spaces

3.1. Sequence (LF)- and (PLB)-Spaces

Throughout the paper, ω := K
N (where K ∈ {R,C}) denotes the space of all

K-valued sequences, endowed with the locally convex (briefly, lc) topology of
the coordinate convergence. Therefore, ω is a reflexive Fréchet space whose
topological dual is the space ω′ = K

(N) of all K-valued sequences with only a
finite number of not-zero coordinates. In particular, ω′ is an (LB)-space when
it is endowed with the strong topology.

For all n ∈ N, let Vn = (vn,k)k∈N
be a countable family of (strictly)

positive sequences, called weights, on N. We denote by V the sequence (Vn)n∈N

and we assume that the following two conditions are satisfied:
(1) vn,k(i) ≤ vn,k+1(i) for all n, k ∈ N and i ∈ N;
(2) vn,k(i) ≥ vn+1,k(i) for all n, k ∈ N and i ∈ N.

The family V is called a system of weights on N.
Given a system V of weights on N, for n, k ∈ N and 1 ≤ p ≤ ∞, we define

as usual

lp(vn,k) :=
{
x = (xi)i∈N ∈ ω : ‖x‖p,vn,k

:= ‖(xivn,k(i))i∈N‖p < ∞} ,

where ‖ · ‖p denotes the lp norm. For p = 0, we set

c0(vn,k) :=
{

x = (xi)i∈N ∈ ω : lim
i→∞

vn,k(i)xi = 0
}

.

Clearly, (lp(vn,k), ‖ · ‖p,vn,k
), 1 ≤ p ≤ ∞, are Banach spaces, and c0(vn,k) is

a Banach space with the norm of l∞(vn,k). Since lp(vn,k+1) is continuously
included into lp(vn,k), the sequence {lp(vn,k)}k∈N of Banach spaces forms a
projective spectrum. Hence, for all n ∈ N and 1 ≤ p ≤ ∞, we can consider the
echelon spaces

λp(Vn) :=
⋂

k∈N

lp(vn,k) and λ0(Vn) :=
⋂

k∈N

c0(vn,k).

Endowed with the projective topologies λp(Vn) = projk∈N lp(vn,k) (λ0(Vn) =
projk∈N c0(vn,k), resp.), these spaces are Fréchet spaces with the topology de-
fined by the corresponding seminorms. We point out that these spaces are
Köthe echelon spaces.

The sequence {λp(Vn)}n∈N of Fréchet spaces forms an inductive spec-
trum. Thus, the spaces

lp(V) :=
⋃

n∈N

λp(Vn) (1 ≤ p ≤ ∞) and l0(V) :=
⋃

n∈N

λ0(Vn)



Topological properties of weighted Page 7 of 29   210 

endowed with the inductive topologies, i.e., lp(V) = indn∈N λp(Vn) (l0(V) =
indn∈N λ0(Vn), resp.) are (LF)-spaces.

We say that the system V of weights on N satisfies the condition (WQ)
(or is of type (WQ)) if

∀n ∈ N ∃μ,m ∈ N ∀k,N ∈ N ∃K ∈ N, S > 0,

s.t. ∀i ∈ N : vm,k(i) ≤ S(vn,μ(i) + vN,K(i)).

While, we say that the system V satisfies the condition (Q) (or is of type (Q))
if

∀n ∈ N ∃μ,m ∈ N ∀k,N ∈ N, R > 0 ∃K ∈ N, S > 0, s.t. ∀i ∈ N :

vm,k(i) ≤ 1
R

vn,μ(i) + SvN,K(i).

The properties of regularity of the (LF)-space lp(V) and the conditions
(Q) and (WQ) are related, as the following theorem of Vogt [39] shows.

Theorem 3.1 Let V = (Vn)n∈N
be a system of weights on N. Then the following

properties hold true:

(1) For 1 < p < ∞, the following conditions are equivalent:
(i) V satisfies the condition (WQ);
(ii) lp(V) is regular;
(iii) lp(V) is complete;
(iv) lp(V) is reflexive.

(2) For p = 1,∞, the following conditions are equivalent:
(i) V satisfies the condition (WQ);
(ii) lp(V) is regular;
(iii) lp(V) is complete.

(3) For p = 0, the following conditions are equivalent:
(i) V satisfies the condition (Q);
(ii) l0(V) is regular;
(iii) l0(V) is complete.

Vogt [39] also characterized when the (LF)-spaces lp(V) satisfy the con-
dition (M) and (M0), as stated in the following result.

Theorem 3.2 Let V = (Vn)n∈N
be a system of weights on N.

For p ∈ [1,∞] ∪ {0}, the (LF)-space lp(V) satisfies the condition (M) if,
and only if, V satisfies the condition (Q).

Moreover, if p �= 1,∞, the (LF)-space lp(V) satisfies the condition (M0)
if, and only if, V satisfies the condition (WQ). The (LF)-space l1(V) satisfies
the condition (M0) if, and only if, V satisfies the condition (Q).

Given a system of weights V = (vn,k)n,k∈N on N, we set V k = (vn,k)n∈N
,

for all k ∈ N. Then for k ∈ N and 1 ≤ p ≤ ∞, both the sequences {lp(vn,k)}n∈N
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and {c0(vn,k)}n∈N of Banach spaces form an inductive spectrum. Hence, we
can consider the co-echelon spaces

ap(V k) :=
⋃

n∈N

lp(vn,k) (1 ≤ p ≤ ∞) and a0(V k) :=
⋃

n∈N

c0(vn,k),

which are (LB)-spaces when they are endowed with the inductive topologies,
i.e., ap(V k) = indn∈N lp(vn,k) (a0(V k) = indn∈N c0(vn,k), resp.). We point out
that these spaces are Köthe co-echelon spaces.

The sequence {ap(V k)}k∈N of (LB)-spaces forms a projective spectrum.
Hence, the spaces

ap(V) :=
⋂

k∈N

ap(V k) (1 ≤ p ≤ ∞) and a0(V) :=
⋂

k∈N

a0(V k),

endowed with the projective topologies, i.e., ap(V) = projk∈N ap(V k) and
a0(V) = projk∈N a0(V k) are (PLB)-spaces. We observe that by [13, Theorem
2.3 and Corollary 2.8], the co-echelon spaces ap(V k) are complete (LB)-spaces
for every 1 ≤ p ≤ ∞. Accordingly, ap(V) = projk∈N ap(V k) is a complete
(PLB)-space for every 1 ≤ p ≤ ∞. The (LB)-space a0(V k), for k ∈ N, need
not be regular. The regularity is ensured by a stronger condition on the sys-
tem V k of weights. To see this, we recall that, given a sequence (vn)n∈N of
decreasing weights on N, the sequence (vn)n∈N is called regularly decreasing
if given n ∈ N, there exists m ≥ n such that, on each subset of N on which
the quotient vm

vn
is bounded away from zero, also all quotients vk

vn
, k ≥ m, are

bounded away from zero. By [13, Theorem 3.7], the co-echelon space a0(V k),
for k ∈ N, is regular if, and only if, it is complete if, and only if, it satisfies
condition (M) if, and only if, it is (strongly) boundedly retractive if, and only
if, the sequence V k = (vn,k)n∈N is regularly decreasing. Furthermore, every
co-echelon space ap(V k), for k ∈ N and 1 ≤ p ≤ ∞, satisfies condition (M) if,
and only if, it is (strongly) boundedly retractive if, and only if, the sequence
V k = (vn,k)n∈N is regularly decreasing.

Finally, we point out that the spaces introduced above are all continuously
included in ω with dense range.

3.2. Weighted Composition Operators or Pseudo Shifts

For fixed u = (ui)i∈N ∈ ω, ϕ = (ϕi)i∈N ∈ N
N, we can define the weighted

composition operator Wu,ϕ acting on ω with symbols u, ϕ by setting

Wu,ϕ(x) := u(x ◦ ϕ) = (uixϕi
)i∈N, x = (xi)i∈N ∈ ω.

Observe that this operator is obtained by composition of two well-known op-
erators: the multiplication operator Mu and the composition operator Cϕ. In
fact, when ϕ is the identity map on N, Wu,ϕ becomes a multiplication opera-
tor which is defined pointwise by Mu(x) := ux = (uixi)i∈N. If ui = 1 for all
i ∈ N, then Wu,ϕ becomes a composition operator defined as Cϕ(x) := x ◦ϕ =
(xϕi

)i∈N. Clearly, Wu,ϕ ∈ L(ω) for every pair u, ϕ ∈ ω.
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Remark 3.3 Let X be a non complete lcHs, Y be a complete lcHs and u ∈
ω, ϕ ∈ N

N. If X and Y are continuously included in ω (here, X denotes the
completion of X) and Wu,ϕ ∈ L(X,Y ), then the continuous linear extension
Wu,ϕ : X → Y coincides with Wu,ϕ. Indeed, if we denote by jX : X ↪→ ω

(by jY : Y ↪→ ω, resp.) the continuous inclusion of X (of Y , resp.) in ω, then
jY ◦ Wu,ϕ = Wu,ϕ ◦ (jX)|X . Since Wu,ϕ ∈ L(ω), by passing to the completion
of X, it follows that jY ◦ Wu,ϕ = Wu,ϕ ◦ jX . Therefore, Wu,ϕ = Wu,ϕ.

Throughout the paper, we denote by en, for n ∈ N, the element (δn,i)i∈N

of ω. We observe that the sequence (en)n∈N forms an unconditional basis for
ω.

3.3. The Operator Wu,ϕ Acting on Weighted lp Sequence Banach Spaces

We start by studying the continuity and the compactness of the weighted
composition operator Wu,ϕ when it acts from lp(v) into lp(w), for 1 ≤ p ≤ ∞
and v, w two weights on N. We first characterize the continuity as follows. For
p = 2 and p = ∞ the result is given in [26, Theorem 2.3] and in [18, Theorem
2.1], respectively.

Theorem 3.4 Let u = (ui)i∈N ∈ ω, ϕ = (ϕi)i∈N ∈ N
N, let v, w be two weights on

N and 1 ≤ p < ∞. The weighted composition operator Wu,ϕ ∈ L(lp(v), lp(w))
if, and only if, there exists M > 0 such that

1
vp

n

∑

j∈ϕ−1(n)

|uj |pwp
j ≤ M, ∀n ∈ N, (3.1)

where the sum is defined equal to 0 if ϕ−1(n) = ∅ for some n ∈ N.

Proof Suppose that Wu,ϕ ∈ L(lp(v), lp(w)). Then there exists M > 0 such
that for every x ∈ lp(v)

‖Wu,ϕ(x)‖p
p,w ≤ M‖x‖p

p,v. (3.2)

Fix n ∈ N. Obviously, if ϕ−1(n) = ∅, then (3.1) is clearly satisfied. So, let
ϕ−1(n) �= ∅. Observe that Wu,ϕ(en) = (uj(en)ϕj

)j∈N = (ujδn,ϕj
)j∈N, where

δn,ϕj
=

{
1 if n = ϕj ,

0 if n �= ϕj .

Therefore, applying (3.2) with x = en, we get that
∑

j∈ϕ−1(n)

|uj |pwp
j = ‖Wu,ϕ(en)‖p

p,w ≤ M‖en‖p
p,v = vp

n.

Conversely, suppose that (3.1) is satisfied. Then for every x ∈ lp(v) we have

‖Wu,ϕ(x)‖p
p,w =

∑

j∈N

|uj |p|xϕj
|pwp

j =
∑

n∈N

∑

j∈ϕ−1(n)

|uj |p|xn|pwp
j

=
∑

n∈N

|xn|p
∑

j∈ϕ−1(n)

|uj |pwp
j ≤ M

∑

n∈N

|xn|pvp
n = M‖x‖p

p,v.



  210 Page 10 of 29 A. A. Albanese and C. Mele Results Math

This means that Wu,ϕ ∈ L(lp(v), lp(w)). �
Remark 3.5 For p = ∞ the operator Wu,ϕ belongs to L(l∞(v), l∞(w)) if, and
only if, supn∈N

‖Wu,ϕ(en)‖∞,w

‖en‖∞,v
< ∞, see [18, Theorem 2.1]. This is equivalent

to the existence of M > 0 such that

sup
j∈ϕ−1(n)

|uj |wj ≤ Mvn, ∀n ∈ N. (3.3)

Remark 3.6 Let X be a locally compact Hausdorff topological space. A con-
tinuous map ϕ : X → X is called proper if the preimage of every compact set
K in X is also a compact set in X. If ϕ : N → N, then ϕ is proper if, and only
if, limi→∞ ϕi = ∞, as it is easy to show.

If we assume that ϕ : N → N is a proper map, then the operator Wu,ϕ

belongs to L(c0(v), c0(w)) if, and only if, Wu,ϕ belongs to L(l∞(v), l∞(w)).
The proof follows as in [6, Proposition 4] with some obvious changes.

Remark 3.7 The proof of Theorem 3.4 yields for each 1 ≤ p < ∞ that

‖Wu,ϕ‖p = inf

⎧
⎨

⎩
M > 0:

1
vp

n

∑

j∈ϕ−1(n)

|uj |pwp
j ≤ M ∀n ∈ N

⎫
⎬

⎭
.

In a similar way, one shows for p = ∞ that

‖Wu,ϕ‖∞ = inf

{

M > 0: sup
j∈ϕ−1(n)

|uj |wj ≤ Mvn ∀n ∈ N

}

.

Moreover, we observe that:
(1) If ϕ is one-to-one, then Wu,ϕ ∈ L(lp(v), lp(w)) if, and only if, there exists

M > 0 such that |uϕ−1(n)|wϕ−1(n)

vn
≤ M , for all n ∈ N. In such a case, we

have

‖Wu,ϕ‖ = inf
{
M > 0:

∣
∣uϕ−1(n)

∣
∣wϕ−1(n) ≤ Mvn ∀n ∈ N

}
.

(2) Suppose that there exists L > 0 such that λ(ϕ−1(n)) ≤ L for all n ∈ N,
where λ denotes the counting measure on N. If there exists M > 0 such

that |uϕ−1(n)|wϕ−1(n)

vn
≤ M , for all n ∈ N, then Wu,ϕ ∈ L(lp(v), lp(w)) and

‖Wu,ϕ‖ ≤ ML1/p.

We now deal with the study of the compactness of weighted composition
operators Wu,ϕ acting on weighted lp sequence Banach spaces. To obtain a
characterization of the compactness of the operator Wu,ϕ, we need some aux-
iliary results about the dual operator W ′

u,ϕ of Wu,ϕ which acts from (lp(w), ‖ ·
‖p,w)′ into (lp(v), ‖ · ‖p,v)′. For this, recall that if v is a weight on N, then for

1 ≤ p < ∞ the Banach space
(
lp

′ ( 1
v

)
, ‖ · ‖p′, 1

v

) ((
l1
(
1
v

)
, ‖ · ‖1, 1

v

)
, resp.

)
is

the strong dual of the Banach space (lp(v), ‖ · ‖p,v) ((c0(v), ‖ · ‖∞,v), resp.),
with 1

p + 1
p′ = 1. Moreover, the following representation for the dual operator

W ′
u,ϕ is valid.
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Proposition 3.8 Let u = (ui)i∈N ∈ ω, ϕ = (ϕi)i∈N ∈ N
N, let v, w be two

weights on N and p ∈ [1,∞) ∪ {0}. If Wu,ϕ ∈ L(lp(v), lp(w)), then W ′
u,ϕ ∈

L
(
lp

′ ( 1
w

)
, lp

′ ( 1
v

))
and

W ′
u,ϕ(y) =

⎛

⎝
∑

j∈ϕ−1(n)

ujyj

⎞

⎠

n∈N

, ∀y ∈ lp
′
(

1
w

)

,

where p′ is the conjugate exponent of p if p ∈ [1,∞), while p′ = 1 if p = 0.

Proof Suppose 1 ≤ p < ∞. Then the assumption implies that W ′
u,ϕ ∈ L

(
lp

′ ( 1
w

)
, lp

′ ( 1
v

))
. Moreover, for every y ∈ lp

′ ( 1
w

)
and x ∈ lp(v) we have

〈x,W ′
u,ϕy〉 = 〈Wu,ϕx, y〉 =

∑

j∈N

ujxϕj
yj =

∑

n∈N

∑

j∈ϕ−1(n)

ujxnyj

=
∑

n∈N

xn

∑

j∈ϕ−1(n)

ujyj =

〈

x,

⎛

⎝
∑

j∈ϕ−1(n)

ujyj

⎞

⎠

n∈N

〉

.

It follows that W ′
u,ϕ(y) =

(∑
j∈ϕ−1(n) ujyj

)

n∈N

for every y ∈ lp
′ ( 1

w

)
.

For p = 0 the proof is analogous. �
To obtain the desired characterization for the compactness of Wu,ϕ we

will require the following two results.

Remark 3.9 Let ϕ : N → N be a map. Then for all J ∈ N there exists N ∈ N

such that for all n > N and j ∈ ϕ−1(n) we have j > J .
Indeed, for a fixed J ∈ N, set N := max1≤j≤J ϕ(j). Fixed n > N and

j ∈ ϕ−1(n), if j ≤ J , then

N ≥ ϕ(j) = n > N ;

a contradiction.

Lemma 3.10 Let u = (ui)i∈N ∈ ω, ϕ = (ϕi)i∈N ∈ N
N, let v, w be two weights on

N. If Wu,ϕ ∈ L(l1(v), l1(w)), then the dual operator W ′
u,ϕ ∈ L (l∞ ( 1w

)
, l∞
(
1
v

))

maps c0
(
1
w

)
into c0

(
1
v

)
and W ′

u,ϕ|c0( 1
w ) ∈ L (c0

(
1
w

)
, c0
(
1
v

))
.

Proof By Proposition 3.8 we have that W ′
u,ϕ ∈ L (l∞ ( 1w

)
, l∞
(
1
v

))
is given

by

W ′
u,ϕ(y) =

⎛

⎝
∑

j∈ϕ−1(n)

ujyj

⎞

⎠

n∈N

, ∀y ∈ l∞
(

1
w

)

.

On the other hand, by Theorem 3.4 the continuity of Wu,ϕ implies the existence
of M > 0 such that

∑

j∈ϕ−1(n)

|uj |wj ≤ Mvn, ∀n ∈ N.
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Now, for fixed y ∈ c0
(
1
w

)
and ε > 0, there exists j0 ∈ N such that |yj |

wj
≤ ε

M

for all j ≥ j0. On the other hand, by Remark 3.9 there exists n0 ∈ N such that
for all n > n0 and j ∈ ϕ−1(n) we have j > j0. Therefore, we get for all n > n0

that
∣
∣
∣
∣
∣
∣

∑

j∈ϕ−1(n)

ujyj

∣
∣
∣
∣
∣
∣
≤
∑

j∈ϕ−1(n)

|ujyj | =
∑

j∈ϕ−1(n)

|ujyj |wj

wj

≤ ε

M

∑

j∈ϕ−1(n)

|uj |wj ≤ vnε.

By the arbitrariness of ε > 0, this means that W ′
u,ϕ(y) =

(∑
j∈ϕ−1(n) ujyj

)

n∈N

belongs to c0
(
1
v

)
. Since y is also arbitrary, it follows that W ′

u,ϕ maps c0
(
1
w

)

into c0
(
1
v

)
and hence, W ′

u,ϕ|c0( 1
w ) ∈ L (c0

(
1
w

)
, c0
(
1
v

))
. �

Remark 3.11 Let X,Y be two lcHs. We recall that if T ∈ L(X,Y ), then T is
σ(X,X ′) − σ(Y, Y ′) continuous (w − w continuous). Moreover, T ′ ∈ L(Y ′,X ′)
is also σ(Y ′, Y ) − σ(X ′,X) continuous (w∗ − w∗ continuous) and σ(Y ′, Y ′′) −
σ(X ′,X ′′) continuous (w − w continuous).

It is well-known that there are no compact composition operator from l2

into itself. On the other hand, Singh and Manhas [38] established necessary and
sufficient conditions in order to have a compact composition operator acting
on l2(v), with v a weight on N. An analogous result was given in [26]. In [18]
the authors characterized the compactness of weighted composition operators
in l∞(v). In the next result we extend this characterization in the setting of
lp(v) spaces, for 1 ≤ p < ∞, without any addditional assumptions on the
multiplier u and on the map ϕ.

Theorem 3.12 Let u = (ui)i∈N ∈ ω, ϕ = (ϕi)i∈N ∈ N
N, let v, w be two weights

on N and 1 ≤ p < ∞. Then Wu,ϕ ∈ K(lp(v), lp(w)) if, and only if,(
1

vp
n

∑
j∈ϕ−1(n) |uj |pwp

j

)

n∈N

∈ c0.

Proof We distinguish the cases p = 1 and 1 < p < ∞.
Case: 1 < p < ∞. Suppose that the operator Wu,ϕ is compact. As{

en

‖en‖p,v
: n ∈ N

}
is a bounded subset of lp(v), it then follows that the set

{
Wu,ϕ(en)
‖en‖p,v

: n ∈ N

}
is relatively compact in lp(w). On the other hand, the se-

quence
(

en

‖en‖p,v

)

n∈N

weakly converges to 0 in lp(v), as it is easy to show.

Thus,
(

Wu,ϕ(en)
‖en‖p,v

)

n∈N

weakly converges to 0 in lp(w), thereby implying that

the set
{

Wu,ϕ(en)
‖en‖p,v

: n ∈ N

}
is relatively weakly compact in lp(w). Accordingly,

the norm topology of lp(w) and the weak topology σ
(
lp(w), lp

′
( 1

w )
)

neces-

sarily coincide on the set
{

Wu,ϕ(en)
‖en‖p,v

: n ∈ N

}
. Hence, Wu,ϕ(en)

‖en‖p,v
→ 0 in lp(w).
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Since
‖Wu,ϕ(en)‖p

p,w

‖en‖p
p,v

=
1
vp

n

∑

j∈ϕ−1(n)

|uj |pwp
j , ∀n ∈ N,

the thesis follows.
Now, assume that

(
1

vp
n

∑
j∈ϕ−1(n) |uj |pwp

j

)

n∈N

∈ c0. By Theorem 3.4,

this condition implies that Wu,ϕ ∈ L(lp(v), lp(w)) with

‖Wu,ϕ‖p =

∥
∥
∥
∥
∥
∥

⎛

⎝ 1
vp

n

∑

j∈ϕ−1(n)

|uj |pwp
j

⎞

⎠

n∈N

∥
∥
∥
∥
∥
∥

∞

=: M.

In order to show that Wu,ϕ ∈ K(lp(v), lp(w)), we fix a bounded sequence
(xi)i∈N of lp(v) and set L := supi∈N ‖xi‖p,v. Since lp(v) is a reflexive Banach
space, there exists a subsequence of (xi)i∈N, denoted again by (xi)i∈N for the
sake of simplicity, such that (xi)i∈N weakly converges in lp(v) to some x ∈ lp(v).
Accordingly, ‖x‖p,v ≤ L. Since Wu,ϕ : lp(v) → lp(w) is also weakly continuous,
it follows that the sequence (Wu,ϕ(xi))i∈N weakly converges to Wu,ϕ(x).

Now, for a fixed ε > 0, by assumption there exists n0 ∈ N such that
1
vp

n

∑

j∈ϕ−1(n)

|uj |pwp
j <

εp

(3L)p

for all n > n0. Therefore, we get for all n > n0 and i ∈ N that

‖Wu,ϕ(xi) − Wu,ϕ(x)‖p
p,w =

∑

j∈N

wp
j |ujxiϕj

− ujxϕj
|p

=
∑

n∈N

∑

j∈ϕ−1(n)

wp
j |uj |p|xin − xn|p

=
∑

n∈N

|xin − xn|p
∑

j∈ϕ−1(n)

wp
j |uj |p

=
n0∑

n=1

|xin − xn|p
∑

j∈ϕ−1(n)

wp
j |uj |p

+
∑

n>n0

|xin − xn|p
∑

j∈ϕ−1(n)

wp
j |uj |p

≤ M

n0∑

n=1

vp
n|xin − xn|p

+
εp

(3L)p

∑

n>n0

vp
n|xin − xn|p

≤ M

n0∑

n=1

vp
n|xin − xn|p +

εp(2L)p

(3L)p
.
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Since xi → x weakly in lp(v) and hence, pointwise, there is i0 ∈ N such that

M

n0∑

n=1

vp
n|xin − xn|p <

εp

3p

for all i ≥ i0. Summing up, we obtain for all i ≥ i0 that

‖Wu,ϕxi − Wu,ϕx‖p
p,w <

εp

3p
+

εp2p

3p
≤ εp.

This means that Wu,ϕ(xi) → Wu,ϕ(x) in lp(w). So, the proof is complete.

Case: p = 1. Suppose that Wu,ϕ ∈ K(l1(v), l1(w)). Then Wu,ϕ ∈ L(l1(v),
l1(w)) and hence, by Lemma 3.10, the dual operator W ′

u,ϕ ∈ L (l∞ ( 1w
)
, l∞
(
1
v

))

maps c0
(
1
w

)
into c0

(
1
v

)
and T := W ′

u,ϕ|c0( 1
w ) ∈ L (c0

(
1
w

)
, c0
(
1
v

))
. Therefore,

T ′ ∈ L(l1(v), l1(w)) is also σ
(
l1(v), c0( 1

v )
) − σ

(
l1(w), c0( 1

w )
)

continuous, i.e.,
w*-w* continuous (see Remark 3.11). Moreover, T ′ = (W ′

u,ϕ|c0( 1
w ))′ = Wu,ϕ,

as it easily follows by using standard duality arguments. So, since the se-
quence

(
en

‖en‖1,v

)

n∈N

⊂ l1(v) weakly* converges to 0 in l1(v), the sequence
(
Wu,ϕ

(
en

‖en‖1,v

))

n∈N

necessarily weakly* converges to 0 in l1(w). This im-

plies that the set
{

Wu,ϕ

(
en

‖en‖1,v

)
: n ∈ N

}
is relatively weakly* compact

in l1(w). On the other hand, by the facts that Wu,ϕ ∈ K(l1(v), l1(w)) and{
en

‖en‖1,v
: n ∈ N

}
is a bounded set in l1(v), we get that

{
Wu,ϕ

(
en

‖en‖1,v

)
: n ∈ N

}

is a relatively compact subset of l1(w). So, we get that the norm topology of
l1(w) and the weak* topology σ(l1(w), c0( 1

w )) necessarily coincide on the set{
Wu,ϕ

(
en

‖en‖1,v

)
: n ∈ N

}
. Accordingly, Wu,ϕ

(
en

‖en‖1,v

)
→ 0 in l1(w). This

means that

‖Wu,ϕen‖1,w

‖en‖1,v
=

1
vn

∑

j∈ϕ−1(n)

|uj |wj → 0.

Now, assume that
(

1
vn

∑
j∈ϕ−1(n) |uj |wj

)

n∈N

∈ c0. By Theorem 3.4, this con-

dition implies that Wu,ϕ ∈ L(l1(v), l1(w)) with

‖Wu,ϕ‖ =

∥
∥
∥
∥
∥
∥

⎛

⎝ 1
vn

∑

j∈ϕ−1(n)

|uj |wj

⎞

⎠

n∈N

∥
∥
∥
∥
∥
∥

∞

=: M.

In order to prove that Wu,ϕ ∈ K(l1(v), l1(w)), we fix a bounded sequence
(xi)i∈N of l1(v) and set L := supi∈N ‖xi‖1,v. Since l1(v) ↪→ ω continuously and
ω is a Fréchet Montel space, we have that (xi)i∈N is a bounded sequence in ω
and hence, it contains a subsequence convergent in ω to some x ∈ ω. For the
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sake of simplicity, we still denote the subsequence by (xi)i∈N. Since
n∑

j=1

|xij |vj ≤ L, ∀i, n ∈ N,

by letting i → ∞, it follows that
n∑

j=1

|xj |vj ≤ L, ∀n ∈ N.

This implies that ‖x‖1,v ≤ L and hence, x ∈ l1(v). Now, to get the thesis it
suffices to proceed as in the proof of the case 1 < p < ∞ (just to put 1 instead
of p). �

Remark 3.13 The operator Wu,ϕ belongs to K(l∞(v), l∞(w)) if, and only if,
we have limn→∞

‖Wu,ϕ(en)‖∞,w

‖en‖∞,v
= 0 (see [18, Theorem 3.2]). This is equivalent

to require that

lim
n→∞

supj∈ϕ−1(n) |uj |wj

vn
= 0.

If p = 0 and ϕ : N → N is a proper map, then the operator Wu,ϕ belongs to
K(c0(v), c0(w)) if, and only if, it belongs to K(l∞(v), l∞(w)).

3.4. The Operator Wu,ϕ Acting on Sequence (LF)- and (PLB)-Spaces

Thanks to the results in Sect. 2 and in Sect. 3.3, we can characterize the conti-
nuity, the boundedness and the compactness of weighted composition operators
in sequence (LF)-spaces of type lp(V) and in sequence (PLB)-spaces of type
ap(V), for p ∈ [1,∞] ∪ {0}.

Concerning the weighted composition operator Wu,ϕ in sequence (LF)-
spaces of type lp(V) we have the following results. In the first one we charac-
terize the continuity.

Theorem 3.14 Let V,W be two systems of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. For 1 ≤ p < ∞, the following properties are equivalent:
(1) Wu,ϕ : lp(V) → lp(W) is well-defined;
(2) Wu,ϕ : lp(V) → lp(W) is continuous;
(3) For all m ∈ N there exists n ∈ N such that for all k ∈ N there exist l ∈ N,

M > 0 for which
1

vp
m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N,

where the sum is defined equal to 0 if ϕ−1(i) = ∅ for some i ∈ N.
If p = ∞, the following properties are equivalent:
(1) Wu,ϕ : l∞(V) → l∞(W) is well-defined;
(2) Wu,ϕ : l∞(V) → l∞(W) is continuous;
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(3) For all m ∈ N there exists n ∈ N such that for all k ∈ N there exist l ∈ N,
M > 0 for which

sup
j∈ϕ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N.

If p = 0 and ϕ : N → N is a proper map, then Wu,ϕ : l0(V) → l0(W) is
continuous if, and only if, Wu,ϕ : l∞(V) → l∞(W) is continuous.

Proof Case 1 ≤ p < ∞. Clearly, (2) implies (1) and (1) implies (2) by the
Closed Graph theorem (see, f.i., [27, p.57]). Indeed, if (xα)α ⊂ lp(V) is a
net convergent to x in lp(V) and (Wu,ϕ(xα))α is convergent to y in lp(W),
then (xα)α and (Wu,ϕ(xα))α converge in ω to x and y respectively. Since
Wu,ϕ ∈ L(ω), it follows that Wu,ϕ(x) = y. This proves that the graph of Wu,ϕ

is closed.
(2)⇔(3). The weighted composition operator Wu,ϕ : lp(V) → lp(W) is

continuous if, and only if, for all m ∈ N the operator Wu,ϕ : λp(Vm) → lp(W)
is continuous. By Grothendieck’s factorization theorem [22, p.147], it follows
that Wu,ϕ is continuous if, and only if, for all m ∈ N there exists n ∈ N such
that Wu,ϕ : λp(Vm) → λp(Wn) is well-defined and continuous. Since each space
lp(vm,l) is dense in λp(Vm), by Theorem 2.3(1), this holds if, and only if, for
all k ∈ N there exists l ∈ N such that the operator Wu,ϕ admits a unique
continuous linear extension (Wu,ϕ)l

k : lp(vm,l) → lp(wn,k). Since Wu,ϕ ∈ L(ω)
and the spaces lp(vm,l) and lp(wn,k) are continuously included in ω, (Wu,ϕ)l

k =
Wu,ϕ (see Remark 3.3), thereby implying that Wu,ϕ : lp(vm,l) → lp(wn,k) is
continuous. The thesis now follows by applying Theorem 3.4.

For p = ∞, it suffices to observe that Wu,ϕ : λ∞(Vm) → λ∞(Wn) is
continuous if, and only if, for all k ∈ N there exist l ∈ N, M > 0 such that

‖Wu,ϕ(x)||∞,wn,k
≤ M‖x‖∞,vm,l

, ∀x ∈ λ∞(Vm). (3.4)

If we put x = ei ∈ λ∞(Vm) in (3.4) for some fixed i ∈ N, we get that

sup
j∈ϕ−1(i)

|uj |wn,k(j) = ‖Wu,ϕ(ei)||∞,wn,k
≤ M‖ei‖∞,vm,l

= Mvm,l(i).

Since i ∈ N is arbitrary, we can then conclude that (2)⇒(3) also for p = ∞.
Conversely, suppose that (3) holds true. Then by Remark 3.5, we get that

Wu,ϕ ∈ L(l∞(vm,l), l∞(wn,k)) and hence, the thesis follows in view of Theorem
2.3(1).

For p = 0, we can argue as in the proof of the case 1 ≤ p < ∞, by
obtaining that Wu,ϕ : l0(V) → l0(W) is continuous if, and only if, for all m ∈ N

there exists n ∈ N such that for all k ∈ N there exist l ∈ N,M > 0 for which
supj∈ϕ−1(i) |uj |wn,k(j) ≤ Mvm,l(i) for all i ∈ N. So, Wu,ϕ : l0(V) → l0(W) is
continuous if, and only if, Wu,ϕ : l∞(V) → l∞(W) is continuous. �

The proof of the following characterization of the boundedness of Wu,ϕ

in lp(V) is an application of Theorems 2.2(1), 2.3(2) and 3.4, and Remark 3.5.
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Theorem 3.15 Let V,W be two systems of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. The following assertions hold true:
(1) If 1 ≤ p < ∞ and lp(W) is regular, then Wu,ϕ : lp(V) → lp(W) is bounded

if, and only if, there exists n ∈ N such that for all m ∈ N there exists
l ∈ N such that for all k ∈ N there exists M > 0 for which

1
vp

m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N,

where the sum is defined equal to 0 if ϕ−1(i) = ∅ for some i ∈ N.
(2) If p = ∞ and l∞(W) is regular, then Wu,ϕ : l∞(V) → l∞(W) is bounded

if, and only if, there exists n ∈ N such that for all m ∈ N there exists
l ∈ N such that for all k ∈ N there exists M > 0 for which

sup
j∈ϕ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N.

(3) If p = 0, ϕ : N → N is a proper map and l0(W) is regular, then Wu,ϕ : l0(V)
→ l0(W) is bounded if, and only if, Wu,ϕ : l∞(V) → l∞(W) is bounded.

Proof For p ∈ [1,∞) ∪ {0} the proof follows by arguing as in the proof of
Theorem 3.14 in view of Theorems 2.2(1), 2.3(2) and 3.4, and Remark 3.6. In
particular, for p = 0 one shows that Wu,ϕ : l0(V) → l0(W) is bounded if, and
only if, the condition in (2) is satisfied.

For p = ∞ we observe that Wu,ϕ : l0(V) → l0(W) is bounded if, and only
if, there exists n ∈ N such that for all m ∈ N the restriction Wu,ϕ : λ∞(Vm) →
λ∞(Wn) is bounded. By Theorem 2.3(2) combined with Remark 2.4, the op-
erator Wu,ϕ : λ∞(Vm) → λ∞(Wn) is bounded if, and only if, there exists l ∈ N

such that for all k ∈ N the operator Wu,ϕ : (λ∞(Vm), τm,l) → l∞(wn,k) is
continuous, where τm,l denotes the lc-topology of l∞(vm,l), i.e., there exists
M > 0 such that

‖Wu,ϕ(x)‖∞,wn,k
≤ M‖x‖∞,vm,l

, ∀x ∈ λ∞(Vm).

In view of the inequality above, we can argue as in the proof of Theorem 3.14
to conclude that this is equivalent to require that the conditon (2) is satisfied.

�
In the next result we characterize the compactness of weighted composi-

tion operators in sequence (LF)-spaces of type lp(V).

Theorem 3.16 Let V,W be two system of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. The following assertions hold true:
(1) If 1 ≤ p < ∞ and lp(W) satisfies condition (M), then Wu,ϕ : lp(V) →

lp(W) is compact if, and only if, there exists n ∈ N such that for all
m ∈ N there exists l ∈ N such that for all k ∈ N

lim
i→∞

1
vp

m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) = 0.
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(2) If p = ∞, l∞(W) satisfies condition (M) and the space λ∞(Vm) is dense
in l∞(vm,l) for all m, l ∈ N, then Wu,ϕ : l∞(V) → l∞(W) is compact if,
and only if, there exists n ∈ N such that for all m ∈ N there exists l ∈ N

such that for all k ∈ N

lim
i→∞

supj∈ϕ−1(i) |uj |wn,k(j)
vm,l(i)

= 0.

(3) If p = 0, l0(W) satisfies condition (M) and ϕ : N → N is a proper map,
then Wu,ϕ : l0(V) → l0(W) is compact if, and only if, Wu,ϕ : l∞(V) →
l∞(W) is compact.

Proof Let 1 ≤ p < ∞. By Theorem 2.2(2), Wu,ϕ : lp(V) → lp(W) is compact
if, and only if, there exists n ∈ N such that for all m ∈ N the restriction
Wu,ϕ : λp(Vm) → λp(Wn) is compact. On the other hand, by Theorem 2.3(2),
this holds true if, and only if, there exists l ∈ N such that for all k ∈ N the
operator Wu,ϕ admits a unique linear extension (Wu,ϕ)l

k : lp(vm,l) → lp(wn,k)
which is compact. Since Wu,ϕ ∈ L(ω) and the space lp(vm,l) and lp(wn,k) are
continuously included in ω, necessarily, (Wu,ϕ)l

k = Wu,ϕ (see Remark 3.3), i.e.,
Wu,ϕ ∈ K(lp(vm,l), lp(wn,k)). Accordingly, the thesis now follows by applying
Theorem 3.12.

For p = 0,∞ the proof is analogous and so, it is omitted. �

We now turn our attention on the study of weighted composition opera-
tors Wu,ϕ in sequence (PLB)-spaces of type ap(V). In view of Theorems 2.3(1)
and 3.4, we can characterize the continuity of Wu,ϕ as follows.

Theorem 3.17 Let V,W be two systems of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. The following assertions hold true:

(1) If 1 ≤ p < ∞, then Wu,ϕ : ap(V) → ap(W) is continuous if, and only if,
for all k ∈ N there exists l ∈ N such that for all m ∈ N there exist n ∈ N,
M > 0 for which

1
vp

m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N.

(2) If p = ∞, then Wu,ϕ : a∞(V) → a∞(W) is continuous if, and only if, for
all k ∈ N there exists l ∈ N such that for all m ∈ N there exist n ∈ N,
M > 0 for which

sup
j∈ϕ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N. (3.5)

(3) If p = 0, ϕ : N → N is a proper map and the sequence W k = (wn,k)n∈N

is regularly decreasing for all k ∈ N, then Wu,ϕ : a0(V) → a0(W) is con-
tinuous if, and only if, Wu,ϕ : a∞(V) → a∞(W) is continuous.
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Proof For 1 ≤ p < ∞ or p = 0, the characterization of the continuity follows
by arguing as in the proof of Theorem 3.14 in view of Theorems 2.3(1) and 3.4
and Remarks 3.5 and 3.6. In particular, for p = 0 one shows that the operator
Wu,ϕ : a0(V) → a0(W) is continuous if, and only if, the condition in (2) is
satisfied.

For p = ∞, the space a∞(V) could be not dense in each a∞(V l). So, to
show the statement, we proceed as follows.

By Remark 2.4(1), the operator Wu,ϕ : a∞(V) → a∞(W) is continuous
if, and only if, for all k ∈ N there exists l ∈ N such that Wu,ϕ : (a∞(V), τl) →
a∞(W k) is continuous, where τl denotes the lc-topology of the co-echelon space
a∞(V l). Now, for a fixed m ∈ N, let B := { ei

vm,l(i)
: i ∈ N} ⊂ a∞(V). Then the

set B is contained in l∞(vm,l) and bounded there. Indeed, for all i ∈ N, we
have

∥
∥
∥
∥

ei

vm,l(i)

∥
∥
∥
∥

∞,vm,l

= 1.

Accordingly, B is a bounded subset of (a∞(V), τl). The continuity of Wu,ϕ

from (a∞(V), τl) into a∞(W k) implies that Wu,ϕ(B) is a bounded subset of
a∞(W k). Therefore, there exist n ∈ N and C > 0 such that

1
vm,l(i)

sup
j∈ϕ−1(i)

|uj |wn,k(j) =
∥
∥
∥
∥Wu,ϕ

(
ei

vm,l(i)

)∥
∥
∥
∥

∞,wn,k

≤ C, ∀i ∈ N,

i.e., (3.5) is satisfied.
Conversely, if (3.5) is satisfied, then by Remark 3.5, this implies that the

operator Wu,ϕ ∈ L(l∞(vm,l), l∞(wn,k)) and hence, the thesis follows. �

The characterization of the boundedness of weighted composition oper-
ators in sequence (PLB)-spaces of type ap(V) is contained in the following
result. The proof relies on Theorems 2.2(1), 2.3(2) and 3.4, and Remark 3.5.

Theorem 3.18 Let V,W be two systems of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. The following assertions hold true:

(1) If 1 ≤ p < ∞, then Wu,ϕ : ap(V) → ap(W) is bounded if, and only if,
there exists l ∈ N such that for all k ∈ N there exists n ∈ N such that for
all m ∈ N there exist M > 0 for which

1
vp

m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) ≤ M, ∀i ∈ N.

(2) If p = ∞, then Wu,ϕ : a∞(V) → a∞(W) is bounded if, and only if, there
exists l ∈ N such that for all k ∈ N there exists n ∈ N such that for all
m ∈ N there exist M > 0 for which

sup
j∈ϕ−1(i)

|uj |wn,k(j) ≤ Mvm,l(i), ∀i ∈ N.
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(3) If p = 0, ϕ : N → N is a proper map and the sequence W k = (wn,k)n∈N is
regularly decreasing for all k ∈ N, then Wu,ϕ : a0(V) → a0(W) is bounded
if, and only if, Wu,ϕ : a∞(V) → a∞(W) is bounded.

Proof For p ∈ [1,∞)∪{0} the proof follows as in the proof of Theorem 3.14 in
view of Theorems 2.2(1), 2.3(2) and 3.4, and Remarks 3.5 and 3.6. In partic-
ular, for p = 0 one shows that the operator Wu,ϕ : a0(V) → a0(W) is bounded
if, and only if, the condition in (2) is satisfied.

Let p = ∞. By Theorem 2.3(2) and Remark 2.4, the operator Wu,ϕ : a∞(V)
→ a∞(W) is bounded if, and only if, there exists l ∈ N such that for all k ∈ N

the operator Wu,ϕ : (a∞(V), τl) → a∞(W k) is bounded, where τl denotes the
lc-topology of the (LB)-space a∞(V l).

Fix k ∈ N. The fact that Wu,ϕ : (a∞(V), τl) → a∞(W k) is bounded im-
plies that there exists a 0-neighborhood U of a∞(V l) such that Wu,ϕ(U ∩
a∞(V)) is a bounded subset of a∞(W k). Since a∞(W k) is regular, there exists
n ∈ N such that such that Wu,ϕ(U ∩ a∞(V)) is contained in l∞(wn,k) and
bounded there. Now, for a fixed m ∈ N, set B := { ei

vm,l(i)
: i ∈ N} ⊂ a∞(V).

Then B is contained in l∞(vm,l) and bounded there (see the proof of Theorem
3.14). Accordingly, B is a bounded subset of (a∞(V), τl). Thus, there exists
λ > 0 such that B ⊆ λ(U ∩ a∞(V)). It follows that Wu,ϕ(B) is also a bounded
subset of l∞(wn,k). So, there exists C > 0 such that

1
vm,l(i)

sup
j∈ϕ−1(i)

|uj |wn,k(j) =
∥
∥
∥
∥Wu,ϕ

(
ei

vm,l(i)

)∥
∥
∥
∥

∞,wn,k

≤ C, ∀i ∈ N,

i.e., the condition in (2) is satisfied. Conversely, if the condition in (2) is satis-
fied, then by Remark 3.5 the operator Wu,ϕ ∈ L(l∞(vm,l), l∞(wn,k)). So, the
thesis follows. �

In the final result of this section, we characterize the compactness of
weighted composition operators in sequence (PLB)-spaces of type ap(V).

Theorem 3.19 Let V,W be two systems of weights on N and ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. The following assertions hold true:
(1) If 1 ≤ p < ∞, then Wu,ϕ : ap(V) → ap(W) is compact if, and only if,

there exists l ∈ N such that for all k ∈ N there exists n ∈ N such that for
all m ∈ N

lim
i→∞

1
vp

m,l(i)

∑

j∈ϕ−1(i)

|uj |pwp
n,k(j) = 0.

(2) If p = ∞, a∞(V) is dense in a∞(V l) for all l ∈ N and the sequence W k =
(wn,k)n∈N is regularly decreasing for all k ∈ N, then Wu,ϕ : a∞(V) →
a∞(W) is compact if, and only if, there exists l ∈ N such that for all
k ∈ N there exists n ∈ N such that for all m ∈ N

lim
i→∞

supj∈ϕ−1(i) |uj |wn,k(j)
vm,l(i)

= 0.
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(3) If p = 0, ϕ : N → N is a proper map and the sequence W k = (wn,k)n∈N is
regularly decreasing for all k ∈ N, then Wu,ϕ : a0(V) → a0(W) is compact
if, and only if, Wu,ϕ : a∞(V) → a∞(W) is compact.

Proof The thesis follows by arguing as in the proof of Theorem 3.16 in view
of Theorems 2.2(2), 2.3(2) and 3.12, and of the remark thereafter. �

Remark 3.20 The results of this subsection extend to the case p ∈ [1,∞) the
characterization of the continuity, the boundedness and of the compactness
of composition operators acting either on sequence (LF)-spaces of type lp(V)
or on sequence (PLB)-spaces of type ap(V) for p = 0,∞ given in [6]. The
results above also extend to the case of weighted composition operators the
characterization of the continuity, the boundedness and of the compactness
of multiplication operators acting on sequence (LF)-spaces of type lp(V), for
p ∈ [1,∞] ∪ {0}, given in [31].

3.5. Montel Weighted Composition Operators Acting on Köthe Echelon Spaces
and on Sequence (LF)-Spaces

In this section we give necessary and sufficient conditions in order that a
weighted composition operator acting on Köthe echelon spaces and on sequence
(LF)-spaces of type lp(V) is Montel. To this end, we recall a known result about
the relative compactness of subsets of the spaces lp(v), 1 ≤ p < ∞, and c0(v)
(see, f.i., [30, Chapter 15]), where v is a weight on N. For 1 ≤ p < ∞, a subset
K of lp(v) is relatively compact if, and only if, for every ε > 0 there exists
j0 ∈ N such that

∑∞
j=j0+1 |xj |pvp

j < εp for every x ∈ K. A subset K of c0(v)
is relatively compact if, and only if, for every ε > 0 there exists j0 ∈ N such
that supj≥j0+1 |xj |vj < ε for every x ∈ K.

Let A = (an)n∈N be a Köthe matrix, i.e., an ∈ ω for all n ∈ N and
0 < an(i) ≤ an+1(i) for all i, n ∈ N. Denote by

A := λ∞(A)+ = {x = (xn)n∈N ∈ ω : ‖(anxn)n∈N‖∞ < ∞ and xn > 0∀n ∈ N}.

The following useful description of the bounded sets in a Köthe echelon space
is due to Bierstedt, Meise and Summers [13].

Proposition 3.21 Let A = (an)n∈N be a Köthe matrix. For p ∈ [1,∞) ∪ {0},
a subset B of λp(A) is bounded if, and only if, there exists a ∈ A such that

B ⊆ Ba :=

{

x ∈ ω :
∥
∥
∥
∥

(
xi

a(i)

)

i∈N

∥
∥
∥
∥

p

≤ 1

}

.

In the following result we characterize Montel weighted composition op-
erators acting on Köthe echelon spaces.

Proposition 3.22 Let A = (an)n∈N, B = (bm)m∈N be two Köthe matrices and
let ϕ = (ϕi)i∈N ∈ N

N, u = (ui)i∈N ∈ ω, with ϕ increasing. The following
assertions hold true:
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(1) If 1 ≤ p < ∞ and Wu,ϕ ∈ L(λp(A), λp(B)), then Wu,ϕ : λp(A) → λp(B)
is Montel if, and only if, for every a ∈ A and m ∈ N we have

lim
n→∞ ap(n)

∑

j∈ϕ−1(n)

bp
m(j)|uj |p = 0. (3.6)

(2) If p = 0, ϕ : N → N is a proper map and Wu,ϕ ∈ L(λ0(A), λ0(B)), then
Wu,ϕ : λ0(A) → λ0(B) is Montel if, and only if, for every a ∈ A and
m ∈ N we have

lim
n→∞ a(n) sup

j∈ϕ−1(n)

bm(j)|uj | = 0. (3.7)

Proof We prove the statement only for 1 ≤ p < ∞. The proof for p = 0 is
analogous and so, it is omitted.

Suppose that Wu,ϕ : λp(A) → λp(B) is Montel. So, in order to show that
the condition is necessary, we fix a ∈ A and m ∈ N, and consider the set
Ba = {x ∈ ω : ‖(xi(a(i))−1)i∈N‖p ≤ 1}. In view of Proposition 3.21, the set
Ba is bounded in λp(A). By applying the assumption on Wu,ϕ, we get that
the set Wu,ϕ(Ba) is relatively compact in λp(B) and hence, in lp(bm). Since
{a(n)en : n ∈ N} ⊂ Ba, it follows that the set {Wu,ϕ(a(n)en) : n ∈ N} is rela-
tively compact in lp(bm). On the other hand, the sequence (a(n)en)n∈N weakly
converges to 0 in λp(A), thereby implying that the sequence (Wu,ϕ(a(n)en))n∈N

weakly converges to 0 in λp(B) and hence, also in lp(bm). But, as the set
{Wu,ϕ(a(n)en) : n ∈ N} is relatively compact in lp(bm), the norm topology of
lp(bm) and the weak topology of lp(bm) coincide on {Wu,ϕ(a(n)en) : n ∈ N}.
Accordingly, the sequence (Wu,ϕ(a(n)en))n∈N converges to 0 in lp(bm). This
means that (3.6) is satisfied. Indeed, for all n ∈ N we have

‖Wu,ϕ(a(n)en)‖p
p,bm

= ap(n)
∑

j∈ϕ−1(n)

bp
m(j)|uj |p.

Now, suppose that the condition is fulfilled. In order to prove that Wu,ϕ

: λp(A) → λp(B) is Montel, we fix a bounded set B of λp(A). In view of
Proposition 3.21, there exists a ∈ A such that B ⊂ Ba. To conclude the proof,
it then suffices to show that the set Wu,ϕ(Ba) is relatively compact in lp(bm)
for all m ∈ N, i.e., to show that for every ε > 0 and m ∈ N there exists j0 ∈ N

such that
∑

j≥j0+1 bp
m(j)|yp

j | < εp for every y ∈ Wu,ϕ(Ba). Hence, for fixed
m ∈ N and ε > 0, due to (3.6), we can choose n0 ∈ N such that for all n ≥ n0

we have

ap(n)
∑

j∈ϕ−1(n)

bp
m(j)|uj |p < εp.

If y ∈ Wu,ϕ(Ba), then y = (yj)j∈N = (ujxϕj
)j∈N. Set j0 := min ϕ−1(n0) (if

ϕ−1(n0) = ∅, we get trivially the thesis). Then, for every y ∈ Wu,ϕ(Ba), we
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get
∑

j≥j0+1

|yj |pbp
m(j) =

∑

j≥j0+1

|ujxϕj
|pbp

m(j) =
∑

n≥n0+1

∑

j∈ϕ−1(n)

|ujxn|pbp
m(j)

≤
∑

n≥n0+1

|xn|p
∑

j∈ϕ−1(n)

|uj |pbp
m(j) ≤

∑

n≥n0+1

|xn|pεp

ap(n)
≤ εp,

where we used the fact that ϕ is increasing. �

Remark 3.23 If ϕ is an increasing self-map on N, i.e., ϕ(i) ≤ ϕ(i + 1) for all
i ∈ N, the map ϕ could not be proper. For example, let ϕ(i) = 1 for all i ∈ N.
While, ϕ strictly increasing, i.e., ϕ(i) < ϕ(i + 1) for all i ∈ N, implies that
limi→∞ ϕ(i) = ∞ and hence, ϕ is a proper map (see Remark 3.6).

The case p < ∞ is completely characterized. So, it remains to prove that
the same characterization holds for p = ∞. In order to do this, we observe
what follows.

Remark 3.24 Let X be the family of all sequence lcHs X satisfying the follow-
ing properties:
(a) The inclusion j : X ↪→ ω is continuous with dense range;
(b) The dual operator j′ : ω′

β ↪→ X ′
β has dense range.

We point out that, for any X ∈ X , by (b), the bidual operator j′′ : X ′′ ↪→ ω is
a continuous inclusion.

We observe that, for fixed X,Y ∈ X and ϕ ∈ N
N, if the composition

operator Cϕ ∈ L(X,Y ) (i.e., Cϕ(x) = x ◦ ϕ, for x ∈ X), then the bidual
operator C ′′

ϕ ∈ L(X ′′
β , Y ′′

β ) is given by C ′′
ϕ(x′′) = x′′ ◦ ϕ for every x′′ ∈ X ′′.

Indeed, if we denote by Φ the composition operator by ϕ acting on ω and
by jX : X ↪→ ω (jY : Y ↪→ ω, resp.) the inclusion of X (Y , resp.) into ω, we
have that jY ◦ Cϕ = Φ ◦ jX . Passing to the bidual operators, we obtain that
j′′
Y ◦ C ′′

ϕ = Φ′′ ◦ j′′
X . Since ω is reflexive, Φ′′ coincides with Φ on ω. Since j′′

X

and j′′
Y are inclusion maps, it follows that C ′′

ϕ(x′′) = x′′ ◦ ϕ for every x′′ ∈ X ′′.
An analogous result holds for the weighted composition operators, i.e.,

Wu,ϕ = W ′′
u,ϕ, if X,Y ∈ X and Wu,ϕ ∈ L(X,Y ), for u, ϕ ∈ ω.

Proposition 3.25 Let A = (an)n∈N, B = (bm)m∈N be two Köthe matrices and
let ϕ = (ϕi)i∈N ∈ N

N, u = (ui)i∈N ∈ ω, with ϕ proper and increasing. If the
operator Wu,ϕ ∈ L(λ∞(A), λ∞(B)), then Wu,ϕ : λ∞(A) → λ∞(B) is Montel
if, and only if, Wu,ϕ : λ0(A) → λ0(B) is Montel.

Proof We first observe that Wu,ϕ : λ∞(A) → λ∞(B) is continuous if, and only
if, Wu,ϕ : λ0(A) → λ0(B) is continuous (see Theorem 3.14) and that λ0(A)
(λ0(B), resp.) is a closed subspace of λ∞(A) (λ∞(B), resp.).

If Wu,ϕ : λ∞(A) → λ∞(B) is Montel and B is a bounded subset of λ0(A)
(hence, of λ∞(A)), then the set Wu,ϕ(B) is relatively compact in λ∞(B) and
hence, in λ0(B). This means that Wu,ϕ : λ0(A) → λ0(B) is Montel.
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Now, suppose that Wu,ϕ : λ0(A) → λ0(B) is Montel. By [19, Corollary
2.3], the dual operator W ′

u,ϕ : λ0(A)′
β → λ0(B)′

β is Montel. Since λ0(A)′
β and

λ0(B)′
β are complete (LB)-spaces (see, f.i., [12, Proposition 10]), we can apply

[19, Corollary 2.4] to get that the bidual operator W ′′
u,ϕ : λ0(A)′′

β → λ0(B)′′
β is

also Montel. Since λ∞(A) is the strong bidual of λ0(A) (λ∞(B) is the strong
bidual of λ0(B)) and W ′′

u,ϕ = Wu,ϕ (apply Remark 3.24 with X = λ0(A) and
Y = λ0(B)), we get the claim. �

In the next result, we characterize when a weighted composition oper-
ator acting on sequence (LF)-spaces of type lp(V) is Montel. The proof is
an application of Theorem 2.2(3), and of Propositons 3.22 and 3.25, taking
into account that for a system V = (Vn)n∈N of weights on N we have that
lp(V) = ind n∈Nλp(Vn), for 1 ≤ p ≤ ∞ or p = 0, where each λp(Vn) is a Köthe
echelon space.

Theorem 3.26 Let V, W be two systems of weights on N and let ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω, with ϕ increasing. Let p ∈ [1,∞]∪ {0}. Suppose that lp(V)
is regular and that lp(W) satisfies the condition (M). Moreover, suppose that
the operator Wu,ϕ : lp(V) → lp(W) is continuous. Then the following assertions
hold true:

(1) If 1 ≤ p < ∞, then Wu,ϕ : lp(V) → lp(W) is Montel if, and only if, for all
m ∈ N there exists n ∈ N such that for every vm ∈ λ∞(Vm)+ and k ∈ N

we have

lim
n→∞ vp

m(n)
∑

j∈ϕ−1(n)

wp
n,k(j)|uj |p = 0.

(2) If ϕ : N → N is a proper map, then Wu,ϕ : l∞(V) → l∞(W) is Montel if,
and only if, Wu,ϕ : l0(V) → l0(W) is Montel if, and only if, for all m ∈ N

there exists n ∈ N such that for every vm ∈ λ∞(Vm)+ and k ∈ N we
have

lim
n→∞ vm(n) sup

j∈ϕ−1(n)

wn,k(j)|uj | = 0.

Theorem 3.26 extends to the case of weighted composition operators the
characterization of when a multiplication operator acting on sequence (LF)-
spaces of type lp(V), for p ∈ [1,∞] ∪ {0} is Montel given in [31, Theorem
4.12].

3.6. Reflexive Weighted Composition Operators Acting on Köthe Echelon
Spaces and on Sequence (LF)-Spaces

In the following, we give necessary and sufficient conditions in order that a
weighted composition operator acting either on Köthe echelon spaces or on
sequence (LF)-spaces of type lp(V) is reflexive.
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For p = 1, 0,∞, we will show that a weighted composition operator acting
on Köthe echelon spaces is Montel if, and only if, it is reflexive. In order to see
this, we observe what follows.

Let A = (an)n∈N, B = (bm)m∈N be two Köthe matrices and fix ϕ =
(ϕi)i∈N ∈ N

N, u = (ui)i∈N ∈ ω. For p = 1, 0,∞, assume that Wu,ϕ : λp(A) →
λp(B) is continuous. Then we have:

(i) If p = 1, by Schur’s Theorem (see [42]) a bounded subset B of λ1(A)
is weakly (relatively) compact if, and only if, it is (relatively) compact.
Accordingly, Wu,ϕ : λ1(A) → λ1(B) is reflexive if, and only if, it is Montel;

(ii) If p = 0 and ϕ : N → N is a proper increasing map, we claim that
Wu,ϕ : λ0(A) → λ0(B) is reflexive if, and only if, it is Montel. We only
have to show that the condition is necessary. So, suppose that Wu,ϕ : λ0(A)
→ λ0(B) is reflexive. By a result of Grothendieck [22] (see also [27,
p.204]), this implies that Wu,ϕ = W

′′
u,ϕ (see Remark 3.24) maps λ∞(A) =

(λ0(A)′
β)′

β in λ0(B). If we set A = λ∞(A)+, then we get that Wu,ϕ(A) ⊂
λ0(B). But, this is equivalent to say that for every a ∈ A and m ∈ N the
sequence (a(ϕn)unbm(n))n∈N vanishes at infinity, that is

lim
n→∞ a(n) sup

j∈ϕ−1(n)

bm(j)|uj | = 0

Therefore, the condition (2) (see (3.7)) in Proposition 3.22 is satisfied
and hence, the claim is proved.

(iii) If p = ∞ and ϕ : N → N is a proper increasing map, then the weighted
composition operator Wu,ϕ : λ∞(A) → λ∞(B) is reflexive if, and only if, it
is Montel. Indeed, by [19, Corollary 2.3, 2.4] the fact that Wu,ϕ : λ∞(A) →
λ∞(B) is reflexive implies that Wu,ϕ : λ0(A) → λ0(B) is reflexive. So, in
view of point (ii) above, we can conclude that Wu,ϕ : λ0(A) → λ0(B)
is Montel. Thus, by Proposition 3.25 also Wu,ϕ : λ∞(A) → λ∞(B) is
Montel.

Therefore, we can give a first characterization. The proof is an application of
Theorem 2.2(3)–(4) and the considerations above, taking into account that for
a system V of weights on N we have lp(V) = ind n∈Nλp(Vn), for 1 ≤ p ≤ ∞ or
p = 0, where each λp(Vn) is a Köthe sequence space.

Theorem 3.27 Let V, W be two systems of weights on N and let ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω, with ϕ an increasing sequence. Let p = 1, 0,∞. Suppose
that lp(V) is regular and that lp(W) satisfies the condition (M0). Furthermore,
for p �= 1, suppose also that ϕ is a proper map. If Wu,ϕ ∈ L(lp(V), lp(W)),
then Wu,ϕ is reflexive if, and only if, Wu,ϕ is Montel.

We now consider the case 1 < p < ∞. Since λp(A) and λp(B) are re-
flexive Fréchet spaces ([12, Proposition 9]), the weighted composition operator
Wu,ϕ : λp(A) → λp(B) is clearly reflexive. In this case the following character-
ization is valid. The proof is an obvious consequence of Theorem 3.1.
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Theorem 3.28 Let V, W be two systems of weights on N and let ϕ = (ϕi)i∈N ∈
N

N, u = (ui)i∈N ∈ ω. Let 1 < p < ∞. Suppose that lp(W) is regular. The
weighted composition operator Wu,ϕ : lp(V) → lp(W) is continuous if, and only
if, it is reflexive.

Theorems 3.27 and 3.28 extend to the case of weighted composition op-
erators the characterization of reflexive multiplication operators acting on se-
quence (LF)-spaces of type lp(V), for 1 ∈ [1,∞] ∪ {0}, given in [31, Theorem
4.13] and [31, Proposition 4.14], respectively.
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[15] Bonet, J., Domański, P.: Power bounded composition operators on spaces of
analytic functions. Collect. Math. 62, 69–83 (2011)
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