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We propose a variational approach to study the market penetration of new technologies 
under conditions of spatial heterogeneity in the economic factors influencing the process and 
imprecise knowledge about their intensities. Differently from other methodologies that describe 
the adoption process in terms of partial differential equations, we formulate the model as a 
minimization problem of an appropriate variational functional with fuzzy coefficients. This 
approach permits to consider in the analysis both the attractive and diffusive forces that drive 
the process and the subjective opinions of policy makers about the actual influence exerted 
by these determinants on the adoption decision. Interestingly, our results show that different 
degrees of uncertainty lead to significantly different predictions about the diffusion process and, 
therefore, our methodology could be applied to support strategic decisions concerning innovation 
diffusion plans. An application to the digital transition in agriculture is also provided to study the 
effectiveness of government policies.

1. Introduction

Forecasting the diffusion of technological innovations is of strategic importance for both market players and policy makers, such as 
technology-based companies, government agencies and entrepreneurs. Understanding and analysing the spread of a new technology 
introduced in a reference market is also an important research topic in several disciplines, such as marketing, strategy, organizational 
behaviour and economics [45,77,87]. Adoption rates depend on a host of factors including characteristics of the technology and 
characteristics of the adoption environment [43,64,26]. Cost considerations are surely important in explaining adoption patterns, 
although other factors may play a role as well. Relative wage rates are also important in explaining cross-country attractiveness and 
diffusion, as many new technologies are labour-saving and capital-using. Additionally, there may be other barriers as well regulations 
or tariffs that are imposed to protect older technologies [16,74].

Diffusion is a spatial as well as a temporal process [33,47,80]. New technologies spread among many different users as well as 
across different geographic regions and, therefore, it is crucial to study the diffusion of technological improvements among producers 
within a country and across international borders. Diffusion tends to be less pervasive in regions where there is a lack of adequate 
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institutions and infrastructures in adopters, or markets that may not support a technology [43], while it tends to be more effective 
in regions closest to the regions of origin of the innovation [62,48].

Different models have been proposed in literature to capture the diffusion trend in the form of mathematical equations [51,84]. 
They usually refer to different stages of the adoption process classified as innovators/early adopters, early and late majority, and 
laggards according to the time of adoption, since the technology is introduced to the market [61,62]. However, most classical 
diffusion models do not consider the empirical observations regarding the spatial dimensions of technology diffusion. In particular, 
they do not distinguish among core, rim, and periphery regions, and do not represent important feedbacks such as knowledge or 
technology spillover effects where diffusion in one region facilitates adoption in other regions. Furthermore, they do not consider 
that the growth in the number of adoptions is also influenced by the behaviour observed in neighbouring regions [48]. In a forecast 
context, a diffusion agency may be interested not only in estimating “aggregate” adoptions of an innovation, but also in assessing 
how the innovation is penetrating in different geographical regions, in order to determine appropriate marketing strategies. While 
it is possible to estimate adoptions across multiple regions by developing independent diffusion models for each region, such an 
approach is inefficient as it ignores the richness of regional interactions. Therefore, some mathematical models have been proposed 
to consider spatial effects in technology diffusion [47,18].

Technological change is also characterized by a high degree of uncertainty which arises from several sources [65,62,36]. The 
traditional deterministic approach cannot be applied when the costs and benefits of a new technology are not clearly quantifiable 
[28]. Moreover, good data on diffusion are not readily available and, for many innovations, there are none at all [74,51]. In these 
cases information can be provided by expert opinion [64].

In this study, we focus on industrial innovation diffusion and present a variational approach to analyse the penetration process 
of a new technology among firms of a reference market under conditions of fuzzy uncertainty. We identify as main determinants of 
the adoption process the following economic factors: diffusion, innovation and resistance due to costs of substitution. Innovation and 
resistance factors can be viewed as forces that attract the level of adoption towards their respective targets, i.e., the full adoption 
of new technology and the pre-existent owned technology. Diffusion phenomenon reflects the spatial interaction effect, i.e., the 
influence of neighbouring firms on the adoption decision. We design the adoption process as a system that evolves in order to 
minimize an appropriate variational functional, with fuzzy coefficients, that takes into account both the combined action of the 
attractive and diffusive forces and the imprecise knowledge about their impact on the adoption decision. This approach was inspired 
us by the principle of minimum energy applied to the modern theory of phase transitions in fluid dynamics [32]. We interpret the 
market behaviour as a system that tends to reach the equilibrium by minimizing its “total energy”, due to the combined action of 
internal (diffusion) and external (innovation, cost) forces, expressed in the form of a variational functional. Spatial heterogeneity and 
uncertainty are also considered by letting the coefficients of the variational functional be space-dependent and described by fuzzy 
numbers. To our knowledge, this approach has not previously appeared in the innovation diffusion literature.

Differently from other approaches that describe the adoption process in terms of partial differential equations, we formulate 
the model as an optimization problem where the objective function is the variational functional. This permits to aggregate, in 
a meaningful and useful manner, the various sources of information underlying the specific market scenario considered and the 
imprecise knowledge about the effect of the economic factors that influence the adoption process. Furthermore, the proposed flexible 
methodology allows policy makers to carry out scenario analyses for different degrees of uncertainty on the basis of their own 
subjective opinions. We will discuss this and other benefits of our methodology in Section 6.2.

We underline that we focus on the spatial aspect of the innovation diffusion under “stationary” conditions, without explicitly 
consider the temporal evolution of the process. The developed methodology can be used as a pre-screening tool to predict the 
potential market share and geographical diffusion of new technologies or even in situations where diffusion occurs in a short time 
or the model parameters do not vary significantly over time. The stationary solution determined in this study can also represent the 
starting point for a dynamic analysis in which the time variable is explicitly included in the model equations.

In agreement with the literature, our results show that spatial dimension plays a central role in understanding technology diffusion 
and geographic differences in productivity and/or cost can have important implications on the adoption decision. Furthermore, we 
find that not only the spatial dependence of the economic factors influences the adoption process, but also the ambiguity about their 
estimation has a significant impact on the diffusion analysis. Interestingly, the subjective opinions of the decision maker lead to 
significantly different predictions about the adoption process and, therefore, our methodology could be applied to support strategic 
planning for technological innovation.

The paper is organized as follows. Section 2 provides the basics of fuzzy numbers. In Section 3 we present our fuzzy variational 
approach to innovation diffusion. In Section 4 we provide a discrete solution for the addressed problem and, in Section 5, we perform 
and discuss numerical simulations. In Section 6 we briefly review the relevant innovation diffusion models proposed in the literature 
and discuss the main ideas of our proposal. In Section 7 we apply the proposed methodology to the digital transition in agriculture, 
in order to investigate the effectiveness of government policies to promote the adoption of smart technologies. Finally, Section 8

concludes.

2. Basic concepts on fuzzy numbers

A fuzzy subset 𝑎̃ of the non-empty universe set 𝑈 is defined by a membership function 𝜇𝑎̃ ∶ 𝑈 → [0, 1] where, for each 𝑧 ∈ 𝑈 , 
the value 𝜇𝑎̃(𝑥) is the membership degree of element 𝑧 to fuzzy set 𝑎̃. The support and the core of 𝑎̃ are defined, respectively, 
as the crisp sets 𝑠𝑢𝑝𝑝(𝑎̃) = {𝑧 ∈ 𝑈 ∶ 𝜇𝑎̃(𝑧) > 0} and 𝑐𝑜𝑟𝑒(𝑎̃) = {𝑧 ∈ 𝑈 ∶ 𝜇𝑎̃(𝑧) = 1}. A fuzzy subset 𝑎̃ is called normal if its core is 
nonempty, i.e. if there exists an element 𝑧 ∈ 𝑈 such that 𝜇𝑎̃(𝑧) = 1. The 𝛼-level set of 𝑎̃, with 0 ≤ 𝛼 ≤ 1, is defined as the crisp set 
2
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𝑎̃(𝛼) =
{
𝑧 ∈𝑈 ∶ 𝜇𝑎̃(𝑧) ≥ 𝛼

}
if 0 < 𝛼 ≤ 1 and as the closure of the support of 𝑎̃ if 𝛼 = 0. A fuzzy subset 𝑎̃ is said to be a fuzzy number 

if it is a fuzzy subset of the real line ℝ with a normal, convex and upper-semicontinuous membership function of bounded support. 
Each 𝛼-level set of a fuzzy number is a closed interval 𝑎̃(𝛼) = [𝑎𝐿(𝛼), 𝑎𝑅(𝛼)], for 0 ≤ 𝛼 ≤ 1, where 𝑎𝐿(𝛼) = inf 𝑎̃(𝛼) and 𝑎𝑅(𝛼) = sup 𝑎̃(𝛼). 
A triangular fuzzy number is a fuzzy number 𝑎̃ = ⟨𝑎1, 𝑎2, 𝑎3⟩, with 𝑎1 < 𝑎2 < 𝑎3, defined by the 𝛼-level sets

𝑎̃(𝛼) = [𝑎𝐿(𝛼), 𝑎𝑅(𝛼)] = [𝑎1 + 𝛼(𝑎2 − 𝑎1), 𝑎3 − 𝛼(𝑎3 − 𝑎2)] . (1)

We consider the following ordering [29,83,9] for comparing two fuzzy numbers 𝑎̃ and 𝑏̃:

𝑎̃ ≤ 𝑏̃ ⟺

1

∫
0

(
𝑎𝐿(𝛼) + 𝑎𝑅(𝛼)

)
𝛼 𝑑𝛼 ≤

1

∫
0

(
𝑏𝐿(𝛼) + 𝑏𝑅(𝛼)

)
𝛼 𝑑𝛼 . (2)

In the special case when 𝑎̃ = ⟨𝑎1, 𝑎2, 𝑎3⟩ and 𝑏̃ = ⟨𝑏1, 𝑏2, 𝑏3⟩ are two fuzzy numbers, we have

𝑎̃ ≤ 𝑏̃ ⟺ 𝑎2 + 𝑎1 − 2𝑎2 + 𝑎3

6
≤ 𝑏2 + 𝑏1 − 2𝑏2 + 𝑏3

6
.

If 𝑎̃ and 𝑏̃ are two fuzzy numbers with 𝛼-level sets 𝑎̃(𝛼) = [𝑎𝐿(𝛼), 𝑎𝑅(𝛼)] and 𝑏̃(𝛼) = [𝑏𝐿(𝛼), 𝑏𝑅(𝛼)], respectively, then the sum 𝑎̃+ 𝑏̃ and 
the difference 𝑎̃− 𝑏̃ are defined as the fuzzy numbers with 𝛼-level sets, respectively,

(𝑎̃+ 𝑏̃)(𝛼) = [𝑎𝐿(𝛼) + 𝑏𝐿(𝛼), 𝑎𝑅(𝛼) + 𝑏𝑅(𝛼)]

and

(𝑎̃− 𝑏̃)(𝛼) = [𝑎𝐿(𝛼) − 𝑏𝑅(𝛼), 𝑎𝑅(𝛼) − 𝑏𝐿(𝛼)] .

The multiplication by a real number 𝜆 is defined as the fuzzy number 𝜆𝑎̃, with 𝛼-level sets given by

(𝜆 𝑎̃)(𝛼) = [𝜆𝑎𝐿(𝛼), 𝜆 𝑎𝑅(𝛼)]

if 𝜆 ≥ 0, and

(𝜆 𝑎̃)(𝛼) = [𝜆𝑎𝑅(𝛼), 𝜆 𝑎𝐿(𝛼)]

if 𝜆 < 0. The product of two fuzzy numbers 𝑎̃ and 𝑏̃ is the fuzzy number 𝑎̃ ⊙ 𝑏̃ with 𝛼-level sets given by

(𝑎̃ ⊙ 𝑏̃)(𝛼) = [min(𝑎𝐿(𝛼) ⋅ 𝑏𝐿(𝛼), 𝑎𝐿(𝛼) ⋅ 𝑏𝑅(𝛼), 𝑎𝑅(𝛼) ⋅ 𝑏𝐿(𝛼), 𝑎𝑅(𝛼) ⋅ 𝑏𝑅(𝛼)),

max(𝑎𝐿(𝛼) ⋅ 𝑏𝐿(𝛼), 𝑎𝐿(𝛼) ⋅ 𝑏𝑅(𝛼), 𝑎𝑅(𝛼) ⋅ 𝑏𝐿(𝛼), 𝑎𝑅(𝛼) ⋅ 𝑏𝑅(𝛼))] .

In the case when 𝑎̃ and 𝑏̃ are non-negative fuzzy numbers, i.e. 𝑎𝐿(𝛼), 𝑏𝐿(𝛼) ≥ 0 for all 𝛼, we have

(𝑎̃ ⊙ 𝑏̃)(𝛼) = [𝑎𝐿(𝛼) ⋅ 𝑏𝐿(𝛼), 𝑎𝑅(𝛼) ⋅ 𝑏𝑅(𝛼)] .

For further details on arithmetic operations involving fuzzy numbers we refer to [38,23,73].

3. The variational model for new technology adoption under fuzzy uncertainty

We study the market penetration process of a new technology introduced in a reference market, focusing on the factors that 
drive the diffusion system and the uncertainty about their estimation. We consider as main determinants of the adoption process the 
following factors: diffusion, innovation and cost of substitution. The diffusion factor takes into account the network’s influence on the 
firms’ adoption strategies, i.e. the need for market firms to operate at a technology level as close as possible to that of neighbouring 
firms. The innovation factor refers to the strength with which the new technology imposes itself on the market; it is an aggregate 
combination of several dimensions, such as the advantages that the adoption of new technologies brings in terms of profits, the 
effectiveness of advertising policies, etc. Firms’ resistance to modifying pre-existing technologies derives both from external factors, 
such as the costs associated with the acquisition of new technologies, and from internal factors, such as, for example, the level of 
firm know-how.

We assume that the market penetration of the new technology occurs in order to minimize an appropriate variational functional 
that takes into account both the combined action of the attractive and diffusive forces that guide the adoption process and the 
imprecise knowledge about their intensities. The coefficients of the functional are modelled as fuzzy variables in order to deal with 
the uncertain impact that the factors considered will have on the adoption process.

The main purpose of this research is to determine, at equilibrium, the spatial distribution of the new technology. Consequently, we 
will not focus on the time evolution of the system, but rather on the stationary solution of the diffusion problem. Moreover, following 
a decision-making oriented approach, we incorporate in the model the subjective opinions of decision maker by introducing suitable 
parameters that allow to consider different degrees of uncertainty and pessimistic/optimistic behaviours.

For convenience, in Table 1 we list symbols used for parameters or variables employed in the model.

We consider a reference market represented by a bounded open set Ω ⊂ ℝ2. The level of adoption of the new technology is 
described by a “density” function 𝑢 ∶ Ω → [0, 1] that associates, to each spatial location (𝑥, 𝑦) ∈ Ω, the proportion 𝑢(𝑥, 𝑦) ∈ [0, 1]
3
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Table 1

List of main symbols.

Symbol Description

Ω Reference geographical area

̃ (𝑢) Fuzzy functional defined in (3) and (4)

𝑢(𝑥, 𝑦) Adoption level of the new technology at spatial location (𝑥, 𝑦)

𝑢0(𝑥, 𝑦) Initial distribution, i.e., the adoption level observed at the initial time

𝑑(𝑥, 𝑦) Fuzzy diffusion coefficient at spatial location (𝑥, 𝑦)

𝑎̃(𝑥, 𝑦) Fuzzy innovation investment at spatial location (𝑥, 𝑦)

𝑐(𝑥, 𝑦) Fuzzy cost (also called fuzzy resistance) coefficient at (𝑥, 𝑦)

𝑛 Degree of fuzzy uncertainty (the lower 𝑛, the higher the uncertainty)

𝜆 Pessimistic/optimistic parameter

𝜑𝑛(𝛼) Parametric family of weighting functions 𝜑𝑛(𝛼) = (𝑛+ 1)𝛼𝑛

𝜆,𝑛(𝑢) Evaluation of the fuzzy functional ̃ (𝑢): 𝜆,𝑛(𝑢) =𝐸𝜆,𝑛

[̃ (𝑢)
]

𝑢(𝑝)(𝑖, 𝑗) Iterative procedure, defined in (18) and (23), for minimum problem (8)

of the firms operating at location (𝑥, 𝑦) which has already adopted the new technology. Therefore, the function 𝑢 represents the 
spatial distribution of the market share captured by the innovation. The level 𝑢 = 0 stands for the non adoption and 𝑢 = 1 is the 
total adoption level. The objective is to determine, on the basis of the observed distribution 𝑢0 ∶ Ω → [0, 1] at a reference time 𝑡0, 
the spatial distribution of the new technology at equilibrium. The initial observation 𝑢0 can represent the deployment of the new 
technology after its launch, for example at the end of the first phase of an R&D program. If the new technology has not yet been 
introduced on the market, we will have 𝑢0 = 0. In this setting, the market penetration process of the new technology occurs in such a 
way as to minimize the following three components: the variation of adoption level in the neighbour (diffusion), the distance from 1
(innovation) and the distance from 𝑢0 (cost of substitution). This process can be modelled by using a suitable variational functional 
in which each of its three terms represents one of the effects considered. The imprecise intensities of these effects are described by 
fuzzy coefficients.

We propose to determine the equilibrium distribution 𝑢∗ ∶ Ω → [0, 1] as the minimum of the following variational functional with 
fuzzy coefficients:

̃ (𝑢) = 𝑑 ∫
Ω

|∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ 𝑎̃ ∫
Ω

(1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ 𝑐 ∫
Ω

(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦

(3)

where the gradient operator ∇ is defined by ∇𝑢(𝑥, 𝑦) =
(
𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦)

)
, with 𝑢𝑥(𝑥, 𝑦) =

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦) =

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) and |∇𝑢(𝑥, 𝑦)|2 =(

𝑢𝑥(𝑥, 𝑦)
)2 + (

𝑢𝑦(𝑥, 𝑦)
)2

is the square of the gradient modulus of 𝑢(𝑥, 𝑦). For convenience, we write |∇𝑢(𝑥, 𝑦)|2 = 𝑢2
𝑥
(𝑥, 𝑦) + 𝑢2

𝑦
(𝑥, 𝑦). The 

fuzzy coefficients 𝑑, 𝑎̃, ̃𝑐 are non-negative fuzzy numbers.

The fuzzy functional ̃ (𝑢) defined in (3) is expressed as the sum of three terms. The first term, i.e. the diffusion term, describes 
the diffusion of the innovation in the space depending on the interaction with other adopters in one’s neighbourhood or in one’s 
network. The non-negative fuzzy number 𝑑 expresses the extent to which the adoption rate of innovation by firms is influenced by 
their dependence on the network. It can be interpreted as a measure of the mean information field or, in other words, the spatial 
scale of the social interaction network of firms [37]. The second term of the functional concerns the capacity of the new technology 
to penetrate the market; it forces the distribution to be attracted by the value 𝑢 = 1, that represents the total adoption of the new 
technology. The intensity of this attractive effect is described by the non-negative fuzzy number 𝑎̃. This coefficient takes also into 
account the susceptibility of firms to marketing efforts (advertising policies). We observe that 1 − 𝑢(𝑥, 𝑦) represents the proportion 
of firms, operating at location (𝑥, 𝑦), that have not adopted the new technology. The third term of the functional reflects the factors 
that hinder the adoption of new technologies and imposes a penalty for deviation of 𝑢 from 𝑢0. The non-negative fuzzy number 𝑐
describes resistance to replacing old technology due to the cost of adopting the new one.

To consider heterogeneity in the spatial structure of the reference market [33,37], for example different costs in regions (countries) 
or different know-how of firms, we introduce spatial dependence by local factors in the fuzzy parameters 𝑑, 𝑎̃ and 𝑐. We therefore 
generalize the functional (3) by considering the fuzzy functional

̃ (𝑢) =∫
Ω

𝑑(𝑥, 𝑦) ⋅ |∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ ∫
Ω

𝑎̃(𝑥, 𝑦) ⋅ (1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ ∫ 𝑐(𝑥, 𝑦) ⋅
(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦 ,

(4)
Ω

4
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where, for each spatial location (𝑥, 𝑦) ∈ Ω, the diffusion coefficient 𝑑(𝑥, 𝑦), the innovation coefficient 𝑎̃(𝑥, 𝑦) and the cost coefficient 
𝑐(𝑥, 𝑦) are non-negative fuzzy numbers. We observe that functional defined in (3) can be viewed as a special case of the functional 
(4) when fuzzy coefficients 𝑑(𝑥, 𝑦), 𝑎̃(𝑥, 𝑦), 𝑐(𝑥, 𝑦) do not depend on spatial dimension.

For our analysis, it is convenient to express the fuzzy functional ̃(𝑢) defined in (3) and (4) in terms of its 𝛼-level sets [̃ (𝑢)](𝛼) =
[( (𝑢))𝐿(𝛼), ( (𝑢))𝑅(𝛼)] that, for simplicity of notation, will be denoted as

̃ (𝑢, 𝛼) =
[𝐿(𝑢, 𝛼),𝑅(𝑢, 𝛼)

]
.

If we denote the 𝛼-level sets of fuzzy numbers 𝑑, 𝑎̃, 𝑐, by 𝑑(𝛼) = [𝑑𝐿(𝛼), 𝑑𝑅(𝛼)], 𝑎̃(𝛼) =
[
𝑎𝐿(𝛼), 𝑎𝑅(𝛼)

]
and 𝑐(𝛼) = [𝑐𝐿(𝛼), 𝑐𝑅(𝛼)], respec-

tively, then the 𝛼-level sets of the functional ̃ (𝑢) defined in (3) can be expressed as

𝐿(𝑢, 𝛼) = 𝑑𝐿(𝛼)∫
Ω

|∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ 𝑎𝐿(𝛼)∫
Ω

(1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ 𝑐𝐿(𝛼)∫
Ω

(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦

and

𝑅(𝑢, 𝛼) = 𝑑𝑅(𝛼)∫
Ω

|∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ 𝑎𝑅(𝛼)∫
Ω

(1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ 𝑐𝑅(𝛼)∫
Ω

(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦 .

Furthermore, by denoting the 𝛼-level sets of 𝑑(𝑥, 𝑦), 𝑎̃(𝑥, 𝑦), 𝑐(𝑥, 𝑦) as 𝑑(𝑥, 𝑦, 𝛼) = [𝑑𝐿(𝑥, 𝑦, 𝛼), 𝑑𝑅(𝑥, 𝑦, 𝛼)], 𝑎̃(𝑥, 𝑦, 𝛼) =
[
𝑎𝐿(𝑥, 𝑦, 𝛼), 𝑎𝑅(𝑥, 𝑦, 𝛼)

]
and 𝑐(𝑥, 𝑦, 𝛼) = [𝑐𝐿(𝑥, 𝑦, 𝛼), 𝑐𝑅(𝑥, 𝑦, 𝛼)], respectively, the 𝛼-level sets of the functional ̃ (𝑢) defined in (4) are given by

𝐿(𝑢, 𝛼) =∫
Ω

𝑑𝐿(𝑥, 𝑦, 𝛼) ⋅ |∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ ∫
Ω

𝑎𝐿(𝑥, 𝑦, 𝛼) ⋅ (1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ ∫
Ω

𝑐𝐿(𝑥, 𝑦, 𝛼) ⋅
(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦

and

𝑅(𝑢, 𝛼) =∫
Ω

𝑑𝑅(𝑥, 𝑦, 𝛼) ⋅ |∇𝑢(𝑥, 𝑦)|2 𝑑𝑥𝑑𝑦+ ∫
Ω

𝑎𝑅(𝑥, 𝑦, 𝛼) ⋅ (1 − 𝑢(𝑥, 𝑦))2 𝑑𝑥𝑑𝑦

+ ∫
Ω

𝑐𝑅(𝑥, 𝑦, 𝛼) ⋅
(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2
𝑑𝑥𝑑𝑦 .

In order to include in the analysis the pessimistic/optimistic behaviour of the policy maker and her/his subjective perceptions 
about the degree of fuzzy uncertainty, we suggest to evaluate the fuzzy functional ̃(𝑢) by applying the operator 𝐸𝜆,𝑛[⋅] introduced 
in [83,9,44]. Hence, for each fixed pair of parameters (𝜆, 𝑛) ∈ [0, 1]×]0, +∞[, where 𝜆 represents a pessimistic/optimistic parameter 
and 𝑛 reflects the subjective judgement about the degree of fuzzy uncertainty, we define

𝜆,𝑛(𝑢) =𝐸𝜆,𝑛

[̃ (𝑢)
]
=

1

∫
0

𝜆(𝑢, 𝛼)𝜑𝑛(𝛼)𝑑𝛼 (5)

where 𝜆(𝑢, 𝛼) is the point of the 𝛼-level set ̃ (𝑢, 𝛼) =
[𝐿(𝑢, 𝛼),𝑅(𝑢, 𝛼)

]
computed as

𝜆(𝑢, 𝛼) =𝐸𝜆

[̃ (𝑢, 𝛼)
]
= (1 − 𝜆)𝐿(𝑢, 𝛼) + 𝜆𝑅(𝑢, 𝛼)

and the weighting function 𝜑𝑛 ≥ 0, with ∫ 1
0 𝜑𝑛(𝛼) 𝑑𝛼 = 1, is defined by the parametric family 𝜑𝑛(𝛼) = (𝑛 + 1) 𝛼𝑛. As an immediate 

application of Fubini theorem, we obtain for the functional (5) the following expression

𝜆,𝑛(𝑢) = ∫
Ω

[
𝑑𝜆,𝑛(𝑥, 𝑦) ⋅ |∇𝑢(𝑥, 𝑦)|2 + 𝑎𝜆,𝑛(𝑥, 𝑦) ⋅ (1 − 𝑢(𝑥, 𝑦))2

+ 𝑐𝜆,𝑛(𝑥, 𝑦) ⋅
(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2]
𝑑𝑥𝑑𝑦

(6)

where
5
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𝑑𝜆,𝑛(𝑥, 𝑦) =𝐸𝜆,𝑛

[
𝑑(𝑥, 𝑦)

]
=

1

∫
0

[(1 − 𝜆)𝑑𝐿(𝑥, 𝑦, 𝛼) + 𝜆𝑑𝑅(𝑥, 𝑦, 𝛼)]𝜑𝑛(𝛼)𝑑𝛼

𝑎𝜆,𝑛(𝑥, 𝑦) =𝐸𝜆,𝑛 [𝑎̃(𝑥, 𝑦)] =

1

∫
0

[(1 − 𝜆)𝑎𝐿(𝑥, 𝑦, 𝛼) + 𝜆𝑎𝑅(𝑥, 𝑦, 𝛼)]𝜑𝑛(𝛼)𝑑𝛼

𝑐𝜆,𝑛(𝑥, 𝑦) =𝐸𝜆,𝑛 [𝑐(𝑥, 𝑦)] =

1

∫
0

[(1 − 𝜆) 𝑐𝐿(𝑥, 𝑦, 𝛼) + 𝜆𝑐𝑅(𝑥, 𝑦, 𝛼)]𝜑𝑛(𝛼)𝑑𝛼 .

(7)

For each pair (𝜆, 𝑛) fixed, we say that 𝑢∗
𝜆,𝑛

∶ Ω → [0, 1] is an equilibrium distribution if it solves the minimization problem

min
𝑢

𝜆,𝑛(𝑢) ⟶ 𝑢∗
𝜆,𝑛

, (8)

where the functional 𝜆,𝑛(𝑢) is given by (6). For each value 𝜆 ∈ [0, 1] and for each degree of uncertainty 𝑛 > 0, the solution 𝑢∗
𝜆,𝑛

of the 
minimization problem (8) represents the spatial distribution of the adoption rate of the new technology at equilibrium, that is the 
stationary solution of the innovation diffusion process, determined according to the subjective opinions of the policy maker.

For theoretical studies about the existence of minimizers for the problem (8), we refer the reader to [17,67].

4. Discrete model and numerical procedure

In this section we develop a methodology for finding the equilibrium distribution as solution of the minimization problem (8) for 
the functional 𝜆,𝑛 defined in (6). We analyse both the case in which the fuzzy coefficients do not depend on the spatial dimension 
and the case in which they are dependent.

We approach the minimization problem using the Euler-Lagrange equations associated to functional 𝜆,𝑛. We recall (see, e.g., 
[17] for details) that if 𝑢 is a minimizer of the functional

(𝑢) = ∫
Ω

𝑓
(
𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦

)
𝑑𝑥𝑑𝑦 , (9)

where we have denoted 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
and 𝑢𝑦 =

𝜕𝑢

𝜕𝑦
, then a necessary condition is that the derivative of , applied to 𝑢, is equal to zero. 

Consequently, the minimizer 𝑢 has to satisfy the Euler-Lagrange equations

𝜕𝑓

𝜕𝑢
− 𝜕

𝜕𝑥

𝜕𝑓

𝜕𝑢𝑥
− 𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑢𝑦
= 0 . (10)

4.1. The case when fuzzy coefficients do not depend on spatial dimension

First, we study the minimization problem (8) assuming that the fuzzy coefficients 𝑑, 𝑎̃ and 𝑐 do not depend on spatial dimension. 
In this case the functional (6) can be expressed as

𝜆,𝑛(𝑢) = ∫
Ω

[
𝑑𝜆,𝑛 ⋅ |∇𝑢(𝑥, 𝑦)|2 + 𝑎𝜆,𝑛 ⋅ (1 − 𝑢(𝑥, 𝑦))2 + 𝑐𝜆,𝑛 ⋅

(
𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)

)2]
𝑑𝑥𝑑𝑦 (11)

where

𝑑𝜆,𝑛 =

1

∫
0

[(1 − 𝜆)𝑑𝐿(𝛼) + 𝜆𝑑𝑅(𝛼)]𝜑𝑛(𝛼)𝑑𝛼

𝑎𝜆,𝑛 =

1

∫
0

[(1 − 𝜆)𝑎𝐿(𝛼) + 𝜆𝑎𝑅(𝛼)]𝜑𝑛(𝛼)𝑑𝛼

𝑐𝜆,𝑛 =

1

∫
0

[(1 − 𝜆) 𝑐𝐿(𝛼) + 𝜆𝑐𝑅(𝛼)]𝜑𝑛(𝛼)𝑑𝛼 .

(12)

Observing that functional (11) is of the form (9) with

𝑓
(
𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦, 𝛼

)
= 𝑑𝜆,𝑛

(
𝑢2
𝑥
+ 𝑢2

𝑦

)
+ 𝑎𝜆,𝑛 (1 − 𝑢)2 + 𝑐𝜆,𝑛

(
𝑢− 𝑢0

)2
,

from (10) we obtain, by computation, that the Euler–Lagrange equation associated to the functional 𝜆,𝑛 can be expressed as the 
partial differential equation (PDE)

−2𝑑𝜆,𝑛Δ𝑢(𝑥, 𝑦) − 2𝑎𝜆,𝑛 (1 − 𝑢(𝑥, 𝑦)) + 2 𝑐𝜆,𝑛 (𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)) = 0
6
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that is

𝑑𝜆,𝑛Δ𝑢(𝑥, 𝑦) + 𝑎𝜆,𝑛 (1 − 𝑢(𝑥, 𝑦)) − 𝑐𝜆,𝑛 (𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)) = 0 (13)

where Δ𝑢 = 𝜕2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2
= 𝑢𝑥𝑥 + 𝑢𝑦𝑦 is the two-dimensional Laplacian operator.

We can determine a numerical solution of PDE (13) by using the finite difference approximation methods [2,79]. Hence, we 
discretize the spatial domain by placing a uniform grid over the domain, with grid spacing ℎ. In particular, we represent the spatial 
domain Ω, i.e. the reference market, as the open rectangle ]0, 𝑛 + 1[ × ]0, 𝑚 + 1[ and denote the points of the discretized domain as 
(𝑥𝑖, 𝑦𝑗 ) = (𝑖ℎ, 𝑗ℎ), with 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. Moreover, for simplicity of notation, we denote

𝑢(𝑖, 𝑗) = 𝑢(𝑥𝑖, 𝑦𝑗 ) = 𝑢(𝑖ℎ, 𝑗ℎ) , 𝑖 = 1,… , 𝑛 , 𝑗 = 1,… ,𝑚 .

We adopt the following approximation scheme

𝑢𝑥(𝑖, 𝑗) ≈
𝑢(𝑖+ 1, 𝑗) − 𝑢(𝑖− 1, 𝑗)

2ℎ

𝑢𝑦(𝑖, 𝑗) ≈
𝑢(𝑖, 𝑗 + 1) − 𝑢(𝑖, 𝑗 − 1)

2ℎ

(14)

and

𝑢𝑥𝑥(𝑖, 𝑗) ≈
𝑢(𝑖+ 1, 𝑗) − 2𝑢(𝑖, 𝑗) + 𝑢(𝑖− 1, 𝑗)

ℎ2

𝑢𝑦𝑦(𝑖, 𝑗) ≈
𝑢(𝑖, 𝑗 + 1) − 2𝑢(𝑖, 𝑗) + 𝑢(𝑖, 𝑗 − 1)

ℎ2

(15)

where 𝑢(𝑖 + 1, 𝑗) = 𝑢(𝑥𝑖+1, 𝑦𝑗 ) = 𝑢((𝑖 + 1)ℎ, 𝑗ℎ). From (15) we get the approximation

Δ𝑢(𝑖, 𝑗) ≈ 𝑢(𝑖+ 1, 𝑗) + 𝑢(𝑖− 1, 𝑗) + 𝑢(𝑖, 𝑗 + 1) + 𝑢(𝑖, 𝑗 − 1) − 4𝑢(𝑖, 𝑗)
ℎ2

. (16)

By substituting (16) in (13) we obtain, by computation,

𝑢(𝑖, 𝑗) ≈

4
ℎ2

𝑑𝜆,𝑛 ⋅ 𝑢̄(𝑖, 𝑗) + 𝑎𝜆,𝑛 ⋅ 1 + 𝑐𝜆,𝑛 ⋅ 𝑢0(𝑖, 𝑗)

4
ℎ2

𝑑𝜆,𝑛 + 𝑎𝜆,𝑛 + 𝑐𝜆,𝑛

(17)

where the amount

𝑢̄(𝑖, 𝑗) = 𝑢(𝑖+ 1, 𝑗) + 𝑢(𝑖− 1, 𝑗) + 𝑢(𝑖, 𝑗 + 1) + 𝑢(𝑖, 𝑗 − 1)
4

approximates the mean value of 𝑢 in the neighbour of (𝑖, 𝑗).
From (17), and using the above equations, we can easily derive the following iterative procedure, for 𝑝 = 1, 2, … ,

𝑢(𝑝)(𝑖, 𝑗) =𝑤1 ⋅ 𝑢̄
(𝑝−1)(𝑖, 𝑗) +𝑤2 ⋅ 1 +𝑤3 ⋅ 𝑢0(𝑖, 𝑗) (18)

where

• 𝑢(𝑝)(𝑖, 𝑗) is the value at (𝑖, 𝑗) of the discrete version of 𝑢 at iteration 𝑝;
• 𝑢̄(𝑝−1)(𝑖, 𝑗) is the average value of 𝑢(𝑝−1) in the neighbour of (𝑖, 𝑗); it is computed as

𝑢̄(𝑝−1)(𝑖, 𝑗) = 𝑢(𝑝−1)(𝑖+ 1, 𝑗) + 𝑢(𝑝−1)(𝑖− 1, 𝑗) + 𝑢(𝑝−1)(𝑖, 𝑗 + 1) + 𝑢(𝑝−1)(𝑖, 𝑗 − 1)
4

; (19)

• the weights 𝑤1, 𝑤2, 𝑤3 ≥ 0, such that 𝑤1 +𝑤2 +𝑤3 = 1, are defined by

𝑤1 =

4
ℎ2

𝑑𝜆,𝑛

4
ℎ2

𝑑𝜆,𝑛 + 𝑎𝜆,𝑛 + 𝑐𝜆,𝑛

𝑤2 =
𝑎𝜆,𝑛

4
ℎ2

𝑑𝜆,𝑛 + 𝑎𝜆,𝑛 + 𝑐𝜆,𝑛

𝑤3 =
𝑐𝜆,𝑛

4
𝑑𝜆,𝑛 + 𝑎𝜆,𝑛 + 𝑐𝜆,𝑛

.

(20)
ℎ2

7
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In the expressions (20), the coefficients 𝑑𝜆,𝑛, 𝑎𝜆,𝑛 and 𝑐𝜆,𝑛, as defined in (12), can be computed using the following approximation

𝑑𝜆,𝑛 ≈

𝑁∑
𝑞=1

[(1 − 𝜆)𝑑𝐿(𝑞∕𝑁) + 𝜆𝑑𝑅(𝑞∕𝑁)]
(
𝑞

𝑁

)𝑛
𝑁∑
𝑞=1

(
𝑞

𝑁

)𝑛

for a suitable fixed 𝑁 . Similar approximations hold for coefficients 𝑎𝜆,𝑛 and 𝑐𝜆,𝑛.
Starting from 𝑢(0) = 𝑢0, at each iterative step 𝑝 = 1, 2, … , the update adoption function 𝑢(𝑝)(𝑖, 𝑗) is obtained, according to (18), 

as the weighted average of the values 𝑢̄(𝑝−1)(𝑖, 𝑗), 1 and 𝑢0(𝑖, 𝑗) with weights 𝑤1, 𝑤2 and 𝑤3, respectively. The value 𝑢̄(𝑝−1)(𝑖, 𝑗), that 
approximates the mean value of 𝑢(𝑝−1) in the neighbour of (𝑖, 𝑗), is related to diffusion effect, the attracting value 𝑢 = 1, i.e. the total 
adoption level, is related to innovation effect, and the value 𝑢0(𝑖, 𝑗), related to the friction effect, represents the technology distribution 
observed ad initial time. We observe that 0 ≤ 𝑢(𝑝)(𝑖, 𝑗) ≤ 1, as it can be easily verified taking into account that 0 ≤ 𝑢0(𝑖, 𝑗) ≤ 1 and using 
(18) and (19).

The above iterative procedure allows to determine a numerical solution of PDE (13), since when 𝑝 → +∞ then 𝑢(𝑝)(𝑖, 𝑗) → 𝑢∗(𝑖, 𝑗)
where 𝑢∗(𝑖, 𝑗) = 𝑢∗

𝜆,𝑛
(𝑥, 𝑦) is a discrete solution of the PDE (13).

4.2. The cases when fuzzy coefficients are dependent on spatial dimension

The Euler–Lagrange equation (10) associated to the functional 𝜆 defined in (6), can be expressed as the PDE

div
(
𝑑𝜆,𝑛(𝑥, 𝑦) ⋅∇𝑢(𝑥, 𝑦)

)
+ 𝑎𝜆,𝑛(𝑥, 𝑦) (1 − 𝑢(𝑥, 𝑦))

− 𝑐𝜆,𝑛(𝑥, 𝑦) (𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)) = 0
(21)

where the coefficients are defined in (7) and the divergence operator of a vector function 𝑔 = (𝑔1, 𝑔2) is defined by div𝑔 = (𝑔1)𝑥 +(𝑔2)𝑦. 
By using the identity

div
(
𝑑𝜆,𝑛(𝑥, 𝑦)∇𝑢(𝑥, 𝑦)

)
= 𝑑𝜆,𝑛(𝑥, 𝑦)Δ𝑢(𝑥, 𝑦) + ∇𝑑𝜆,𝑛(𝑥, 𝑦) ⋅∇𝑢(𝑥, 𝑦) , (22)

where ∇𝑑𝜆,𝑛 ⋅∇𝑢 = (𝑑𝜆,𝑛)𝑥 𝑢𝑥 + (𝑑𝜆,𝑛)𝑦 𝑢𝑦 denotes the inner product between the gradients, we can rewrite the equation (21) as

𝑑𝜆,𝑛(𝑥, 𝑦)Δ𝑢(𝑥, 𝑦) + ∇𝑑𝜆,𝑛(𝑥, 𝑦) ⋅∇𝑢(𝑥, 𝑦) + 𝑎𝜆,𝑛(𝑥, 𝑦) (1 − 𝑢(𝑥, 𝑦))

− 𝑐𝜆,𝑛(𝑥, 𝑦) (𝑢(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)) = 0 .

By employing the finite difference schemes (14) and (16) we can easily obtain the following iterative procedure

𝑢(𝑝)(𝑖, 𝑗) =𝑤1(𝑖, 𝑗) ⋅ 𝑢̄(𝑝−1)(𝑖, 𝑗) +𝑤2(𝑖, 𝑗) ⋅ 1 +𝑤3(𝑖, 𝑗) ⋅ 𝑢0(𝑖, 𝑗) +
1

𝑤(𝑖, 𝑗)
𝑉 (𝑝−1)(𝑖, 𝑗) (23)

where

• the average value 𝑢̄(𝑝−1)(𝑖, 𝑗) is the same as defined in (19);

• the value 𝑉 (𝑝−1)(𝑖, 𝑗) =∇𝑑𝜆,𝑛(𝑖, 𝑗) ⋅∇𝑢(𝑝−1)(𝑖, 𝑗) can be computed, using (14), as

𝑉 (𝑝−1)(𝑖, 𝑗) = 1
4ℎ2

[
(𝑑𝜆,𝑛(𝑖+ 1, 𝑗) − 𝑑𝜆,𝑛(𝑖− 1, 𝑗)) (𝑢(𝑝−1)(𝑖+ 1, 𝑗) − 𝑢(𝑝−1)(𝑖− 1, 𝑗))

+(𝑑𝜆,𝑛(𝑖, 𝑗 + 1) − 𝑑𝜆,𝑛(𝑖, 𝑗 − 1)) (𝑢(𝑝−1)(𝑖, 𝑗 + 1) − 𝑢(𝑝−1)(𝑖, 𝑗 − 1))
]
;

• we have denoted

𝑤(𝑖, 𝑗) = 4
ℎ2

𝑑𝜆,𝑛(𝑖, 𝑗) + 𝑎𝜆,𝑛(𝑖, 𝑗) + 𝑐𝜆,𝑛(𝑖, 𝑗)

and

𝑤1(𝑖, 𝑗) =

4
ℎ2

𝑑𝜆,𝑛(𝑖, 𝑗)
, 𝑤2(𝑖, 𝑗) =

𝑎𝜆,𝑛(𝑖, 𝑗)
, 𝑤3(𝑖, 𝑗) =

𝑐𝜆,𝑛(𝑖, 𝑗)
.

𝑤(𝑖, 𝑗) 𝑤(𝑖, 𝑗) 𝑤(𝑖, 𝑗)

8
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Fig. 1. The technology adoption distribution 𝑢0 observed at initial time.

The coefficients 𝑑𝜆,𝑛, 𝑎𝜆,𝑛 and 𝑐𝜆,𝑛 defined in (7) can be computed using the approximation, by setting a suitable 𝑁 ,

𝑑𝜆,𝑛(𝑖, 𝑗) =

1

∫
0

[(1 − 𝜆)𝑑𝐿(𝑖, 𝑗, 𝛼) + 𝜆𝑑𝑅(𝑖, 𝑗, 𝛼)] ⋅𝜑𝑛(𝛼)𝑑𝛼

≈

𝑁∑
𝑞=1

[(1 − 𝜆)𝑑𝐿(𝑖, 𝑗, 𝑞∕𝑁) + 𝜆𝑑𝑅(𝑖, 𝑗, 𝑞∕𝑁)]
(
𝑞

𝑁

)𝑛
𝑁∑
𝑞=1

(
𝑞

𝑁

)𝑛 .

Similar approximations hold for coefficients 𝑎𝜆,𝑛 and 𝑐𝜆,𝑛.
It is worth noting that when the fuzzy coefficients do not depend on spatial dimension, the iterative procedure defined by formula 

(23) agrees with the procedure described by formula (18) since, being 𝑑𝜆,𝑛(𝑖, 𝑗) = 𝑑𝜆,𝑛 a constant, we have 𝑉 (𝑝−1)(𝑖, 𝑗) = 0.

Remark 4.1. Decomposition (22) suggests that the diffusion effect can be described by the sum of two terms. The first is a smoothing 
term and drives the process towards the average adoption level observed in the neighbourhood. The second term, that estimates the 
spatial variation of the diffusion coefficient using a similarity measure between the two gradients, adjusts the previous smoothing 
effect making it stronger in the directions where the coefficient is greater.

We observe that the second term is not present in equation (18). It appears when fuzzy coefficients are dependent on the spatial 
dimension, as indicated by equation (23).

5. Numerical simulations

In this section we will apply the proposed methodology to the analysis of the diffusion process of a new technology considering two 
different market scenarios. First, we will investigate the spatial diffusion of a new technology that has previously been introduced 
in a reference market region. We will perform the analysis under conditions of spatial homogeneity in the market structure and, 
therefore, we will assume that the fuzzy parameters of the model do not depend on the spatial dimension. Second, we will analyse a 
situation where the new technology has not yet been introduced into the market. In this case we will consider a market characterized 
by the presence of two groups of firms, located in two different spatial positions, capable of influencing the decision of the other firms 
to adopt the new technology. We also assume spatial heterogeneity regarding the profitability due to the use of the new technology. 
In accordance with these market conditions, we will consider spatial dependence in fuzzy parameters.

It is interesting to note that, in the light of our results, different degrees of uncertainty lead us to obtain different evolutions 
of the adoption process. Furthermore, also the subjective opinions of the decision-maker lead to significantly different predictions 
regarding the diffusion process.

5.1. Innovation diffusion in markets with homogeneous spatial structure

We consider the problem to forecast the diffusion process of a new technology that has been already introduced in the circular 
region shown in Fig. 1. Assuming homogeneity in the economic spatial structure of the market, we model the fuzzy coefficients as 
independent of the spatial dimension. Furthermore, we describe the diffusion coefficient 𝑑 =< 𝑑1, 𝑑2, 𝑑3 >=< 2, 30, 90 >, the attraction 
coefficient 𝑎̃ =< 𝑎1, 𝑎2, 𝑎3 >=< 1, 10, 70 > and the cost coefficient 𝑐 =< 𝑐1, 𝑐2, 𝑐3 >=< 4, 5, 10 > as triangular fuzzy numbers, whose 𝛼-

level sets are given by (1). In order to apply the procedure iterative established in (18), we consider as domain Ω the square obtained 
by setting the grid spacing to ℎ = 1. The numerical results, for different values of parameters 𝜆 and 𝑛, are displayed in Fig. 2.
9
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Fig. 2. The adoption distribution 𝑢∗
𝜆,𝑛

for different values of parameters 𝜆 and 𝑛.

Fig. 3. (a) The reference market Ω. (b) The distribution 𝑢0 observed at initial time.

We observe that the adoption distribution changes as 𝑛 varies, i.e. when different levels of uncertainty are considered. It is 
interesting to note that even the pessimistic/optimistic point of view of the decision-maker leads to the identification of different 
evolutions of the innovation process.

5.2. Innovation diffusion in markets with heterogeneous spatial structure

Let us now consider the case in which the market Ω is mainly influenced by two groups of firms operating, respectively, at spatial 
locations 𝑃1(𝑥1, 𝑦1) and 𝑃2(𝑥2, 𝑦2), as shown in Fig. 3 (a). Accordingly, we suppose that the diffusion effect has greater intensity near 
𝑃1 and 𝑃2 and, moreover, that the intensity of this effect decreases as one moves away from these two spatial locations. Consequently, 
we model the fuzzy diffusion coefficient as

𝑑(𝑥, 𝑦) = 𝑑(𝑃 ) = 𝐷̃1 𝑒
−𝑘̃𝐷 |𝑃−𝑃1|2 + 𝐷̃2 𝑒

−𝑘̃𝐷 |𝑃−𝑃2|2

for all 𝑃 (𝑥, 𝑦) ∈Ω, where |𝑃 −𝑃1|2 = (𝑥 −𝑥1)2 +(𝑦 −𝑦1)2, |𝑃 −𝑃2|2 = (𝑥 −𝑥2)2 +(𝑦 −𝑦2)2 and 𝐷̃1, 𝐷̃2, ̃𝑘𝐷 are non-negative fuzzy numbers. 
The attractive coefficient, related to the strength of the new technology to penetrate the market, is described by

𝑎̃(𝑥, 𝑦) = 𝑎̃(𝑃 ) = 𝜋̃1 𝑒
−𝑘̃𝜋 |𝑃−𝑃1|2 + 𝜋̃2 𝑒

−𝑘̃𝜋 |𝑃−𝑃2|2

for all 𝑃 (𝑥, 𝑦) ∈ Ω, where 𝜋̃1, 𝜋̃2, ̃𝑘𝜋 are non-negative fuzzy numbers. We assume that the basic cost of equipment of new technology 
is non fuzzy (i.e., a crisp value) and constant, that is

𝑐(𝑥, 𝑦) = 𝑐

for all 𝑃 (𝑥, 𝑦) ∈Ω.
10
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Fig. 4. The technology adoption function 𝑢∗
𝜆,𝑛

for different values of parameters 𝜆 and 𝑛.

We suppose that the neighbour influence exerted by firms located at 𝑃1 is greater than that exerted by firms at 𝑃2, while the 
profitability due to the adoption of the new technology is greater near 𝑃2 than 𝑃1. So we assume 𝐷̃1 > 𝐷̃2 and 𝜋̃2 > 𝜋̃1 (where the 
ordering > has been defined in (2)).

The 𝛼-level sets 𝑑(𝑥, 𝑦, 𝛼) = [𝑑𝐿(𝑥, 𝑦, 𝛼), 𝑑𝑅(𝑥, 𝑦, 𝛼)] of 𝑑(𝑥, 𝑦) and 𝑎̃(𝑥, 𝑦, 𝛼) = [𝑎𝐿(𝑥, 𝑦, 𝛼), 𝑎𝑅(𝑥, 𝑦, 𝛼)] of 𝑎̃(𝑥, 𝑦), can be expressed, re-

spectively, as

𝑑(𝑥, 𝑦, 𝛼) = [𝐷𝐿
1 (𝛼) 𝑒

−𝑘𝑅
𝐷
(𝛼)((𝑥−𝑥1)2+(𝑦−𝑦1)2) +𝐷𝐿

2 (𝛼) 𝑒
−𝑘𝑅

𝐷
(𝛼)((𝑥−𝑥2)2+(𝑦−𝑦2)2),

𝐷𝑅
1 (𝛼) 𝑒

−𝑘𝐿
𝐷
(𝛼)((𝑥−𝑥1)2+(𝑦−𝑦1)2) +𝐷𝑅

2 (𝛼) 𝑒
−𝑘𝐿

𝐷
(𝛼)((𝑥−𝑥2)2+(𝑦−𝑦2)2)]

and

𝑎̃(𝑥, 𝑦, 𝛼) = [𝜋𝐿1 (𝛼) 𝑒
−𝑘𝑅𝜋 (𝛼)((𝑥−𝑥1)

2+(𝑦−𝑦1)2) + 𝜋𝐿2 (𝛼) 𝑒
−𝑘𝑅𝜋 (𝛼)((𝑥−𝑥2)

2+(𝑦−𝑦2)2),

𝜋𝑅1 (𝛼) 𝑒
−𝑘𝐿𝜋 (𝛼)((𝑥−𝑥1)

2+(𝑦−𝑦1)2) + 𝜋𝑅2 (𝛼) 𝑒
−𝑘𝐿𝜋 (𝛼)((𝑥−𝑥2)

2+(𝑦−𝑦2)2)] ,

where 𝑘̃𝐷(𝛼) = [𝑘𝐿
𝐷
(𝛼), 𝑘𝑅

𝐷
(𝛼)] and 𝑘̃𝜋(𝛼) = [𝑘𝐿

𝜋
(𝛼), 𝑘𝑅

𝜋
(𝛼)] denote the 𝛼-level sets of 𝑘̃𝐷 and 𝑘̃𝜋 , respectively. For our simulation, we 

assume that 𝐷̃1, 𝐷̃2, 𝜋̃1 and 𝜋̃2 are the triangular fuzzy numbers given by 𝐷̃1 =< 6, 10, 18 >, 𝐷̃2 =< 1, 3, 5 >, 𝑘̃𝐷 =< 0.001, 0.020, 0.050 >, 
𝜋̃1 =< 3, 6, 9 >, 𝜋̃2 =< 4, 7, 15 >, 𝑘̃𝜋 =< 0.001, 0.020, 0.050 >. Moreover, we set the cost coefficient 𝑐 = 1. We analyse a scenario in which 
the new technology is not present in the market at the observation time, that is 𝑢0(𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ Ω, as shown in Fig. 3 (b). 
The numerical results, for different values of parameters 𝜆 and 𝑛, are displayed in Fig. 4.

Our results show that the proposed fuzzy approach produces different results from those obtained with the traditional crisp 
method and, moreover, leads to interesting interpretations. In particular, observing Fig. 4, we deduce that, differently from the 
traditional crisp model (which can be identified with the case 𝑛 = 10), the fuzzy approach (cases 𝑛 = 1 and 𝑛 = 0.4) indicates that 
the adoption of new technologies occurs in a wider region. This difference in results stems from the fact that the uncertainty of 
the impact of economic variables on the diffusion process, such as, for example, the interaction between networked firms, was also 
incorporated into the model.

6. Conceptual framework and main ideas outline

In this section we explain the main ideas that inspired us to approach the innovation diffusion problem using a fuzzy variational 
framework. First, we briefly review the relevant literature on this topic.

6.1. Innovation adoption models

Many drivers influence an innovation’s market process, including innovation (types and characteristics) [64], the adopter (char-

acteristics and attributes) [52], communication (information channels and media) [82], contextual factors (social system and 
communication behaviours) [53], marketing activities [10] and profitability [52]. Technical factors and economic parameters as 
well as government policy (for example, financial incentives for end users) play key roles in the adoption of new technologies [20].

Several market penetration models have been proposed in the literature with the main aim of forecasting the time period for the 
market penetration of a new technology and the achievable market share in a period of time [5,31,39,57]. For example, subjective 
estimation methods [42], cost models [77], market surveys, diffusion models [62], historical analogy methods and econometric 
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models [49]. The choice of one over the other depends on several factors such as the specific nature of the technology, its maturity 
level (early stage of development, market introduction, market acceptance, maturity) and availability of historical data [61].

Spatial diffusion models have been proposed in order to explain differences in adoption patterns across firms (e.g., producers) and 
across regions or countries [33]. For example, in [74] the Author discusses two models that focus on different sources of profitability 
differentials across producers. The first, which features heterogeneity in producer size and productivity, is directed toward explaining 
diffusion across producers in a single country. The second, which highlights the fact that newer technologies are generally labour-

saving and capital-using, features heterogeneity in wage rates and wage growth, and is directed toward explaining cross-country 
diffusion. Both models draw on model of tractors [50,74] and on model of agricultural technologies in developing countries [13,74]. 
In [30] a diffusion model for hybrid corn is discussed in order to explain differences in adoption patterns across regions: adoption 
was more complete in regions where yields were higher and acreage in corn was larger. The industrial technologies diffusion model 
suggested in [49] aims to explain differences in the speed of adoption across innovations.

Mathematical formulations of innovation diffusion models have been advanced in the form of systems of differential, differential–

integral or integral equations describing boundary-initial value problems [51]. They mainly refer to different stages of consumers’ 
adoption during market development classified as innovators/early adopters, early and late majority, and laggards according to the 
time of adoption, since the new technology is introduced in the market [61,62]. Non linear models have also been introduced to 
consider the spatial aspects in technology diffusion [47,18,37,8], under the general assumption that the growth of the number of 
adoptions in a give region is influenced by the behaviour observed in neighbouring regions [48]. The involved equations are often 
non-linear and, consequently, no analytical solutions can be obtained in non-trivial cases. So, different numerical procedures have 
been implemented [19].

However, classical innovation diffusion models suffer from some limitations since they assume that historical data are precisely 
known and that the model parameters are precisely estimable. But in real life scenario, data are uncertain and imprecise in nature, 
making the model’s parameters unstable and fluctuate. The high degree of uncertainty present in the market penetration process 
[65,81] has lead many Authors to study market penetration patterns [85], life cycle curves of products [41] and market penetration 
curves [59] under different sources of uncertainty [62] and by considering many variables, such as price [35], market potential 
[46], advertising and promotion [22], government support [3] and research and development (R&D) activities [66]. In this context, 
subjective estimation methods have been used since they imply decisions on the introduction of a new technology on the market based 
on the perspectives and available data. Subjective estimation can be carried out by involving an expert panel [25] or, alternatively, 
by acquiring information by distributing questionnaires to experts [63].

Fuzzy logic has been applied in [68,11,66,12,14,71,58] to describe the imprecise knowledge involved in innovation diffusion 
models. In [40] the Authors employ fuzzy set theory in order to qualitatively model the characteristics of an innovation.

6.2. The main ideas of our proposal

In this study we have focused on the spatial aspects of the market penetration of a new technology and we have determined 
the stationary solutions, i.e. the stable configurations, of the adoption process as minima of a suitable variational functional. The 
variational functional (3) proposed in this paper has been inspired us by the functional

𝐽 (𝑢) = 𝛾 ∫
Ω

|∇𝑢(𝐱)|2 𝑑𝐱 + ∫
Ω

𝑊 (𝑢(𝐱))𝑑𝐱 ,

with Ω ⊂ ℝ𝑁 , applied in [32,55,4] to describe the total energy of a dynamical system made of a single fluid in the framework of 
Van der Waals-Cahn-Hilliard theory of phase transitions. The functional 𝐽 (𝑢) consists of two components: the “potential energy” 𝑊 , 
which is a non-negative function of the density distribution 𝑢, and the “density gradient” component, which is the diffusion term. 
The stable configurations of the system are obtained by minimizing the total energy of the fluid expressed by 𝐽 (𝑢), that forces the 
system to be attracted by the wells (i.e., the zeros) of potential 𝑊 , taking also into account the energy due to the variation of the 
density 𝑢 in the neighbour. A modified version of functional 𝐽 (𝑢), that is

𝐽 (𝑢) = 𝛾1 ∫
Ω

|∇𝑢(𝐱)|2 𝑑𝐱 + 𝛾2 ∫
Ω

|𝑢(𝐱) − 𝑔(𝐱)|2 𝑑𝐱 + 𝛾3 ∫
Ω

𝑊 (𝑢(𝐱))𝑑𝐱 ,

where 𝑔 is the observed data, has been applied in [67] to image classification problems.

Starting from the previous framework, we have transposed the principle of minimum energy to the market penetration system 
for determining the stable configurations of the innovation adoption process. In this vision, the variational functional ̃ (𝑢) defined in 
(3) can be interpreted as the “total energy” 𝐽 (𝑢) of the system, where 𝑢 represents the “density” of the new technology, the diffusion 
term describes the energy associated to the network influence, the data term reflects the resistance due to cost of substitution and 
the “potential energy” refers to the attracting force towards the total adoption level 𝑢 = 1 that represents the well of the potential 𝑊 . 
Moreover, in order to consider spatial heterogeneity and uncertainty, we have extended the initial idea by introducing the functional 
(4) in which coefficients are spatial dependent and described by fuzzy numbers.

An advantage offered by our methodology is that it starts from the formulation of the variational functional that describes the 
process and this permits to aggregate, in a meaningful and useful manner, the various sources of information underlying the specific 
scenario considered. Differently from the spatio-temporal models based on reaction-diffusion partial differential equations [37], we 
obtain the differential equations that drive the innovation adoption system as a secondary step, by considering the Euler–Lagrange 
12
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Fig. 5. Conceptual model of the digital farming technologies adoption process.

equations associated to the variational functional. This approach permits to achieve interesting results. For example, as already 
discussed in Remark 4.1, comparing the Euler-Lagrange equations obtained in cases of spatial independence and spatial dependence 
of fuzzy coefficients, we can observe that a new term appears. This new term cannot be obtained through a straightforward extension 
of the equation, by introducing the spatial dependence of the coefficients. Furthermore, another advantage of our approach is that 
it provides a flexible framework that allows to forecast the spatial diffusion of a new technology for different degrees of uncertainty 
also taking into account the subjective opinions of policy makers.

7. An application to the adoption process of digital agricultural technologies

We apply the fuzzy logic-based framework developed in the previous sections to analyse the effectiveness of government policies 
to promote digital transformation in the agricultural sector. The high degree of heterogeneity and complexity of the problem results 
in great uncertainty in estimating the variables involved [15,60,70,72]. In addition, the digital agriculture transition poses different 
issues and challenges from those faced in past transformations of the agricultural sector, which makes the available data insufficient 
or inadequate to conduct an appropriate analysis of the problem. Knowledge must therefore be derived from other sources, such as 
information provided by experts. For this reason, the use of fuzzy logic to handle this kind of information can be particularly useful.

7.1. Factors influencing digital technologies adoption in agriculture

Digital farming, also called smart agriculture or agriculture 4.0, has the potential to transform current agricultural systems to 
make them more sustainable (for example, by reducing the use of agrochemicals). Examples of technologies for digital agriculture 
are: mobile applications for decision support, field sensors and remote sensing technologies for data collection, drones and robots 
for process automation. The impact of disruptive events, such as climate change and the global pandemic, has highlighted the role 
played by innovation capabilities in building resilience and flexibility into the food supply chain [7]. For these reasons, it is important 
to study the mechanisms of adoption and diffusion of digital agricultural technologies [56].

As highlighted in [78] the adoption of digital farming is a multi-dimensional and spatially differentiated process. Heterogeneity 
of natural resources influences performance and subsequent adoptive decision making [21]. Adoption behaviour not only depends 
on farm and operator characteristics but is also influenced by structural, political and economic conditions of the agricultural system. 
Farms’ interactions and organized networks can also play a role in the adoption and diffusion of digital agriculture technologies [1,

27,69]. In addition, government interventions, the costs of digital transformation and the relative difficulty of technology substitution 
are identified as key factors influencing the adoption process.

7.2. Conceptual framework underlying the digital farming adoption decision

Based on the innovation diffusion model introduced in the previous sections, we conceptualize that the adoption decision is influ-

enced by the following three dimensions: diffusion, innovation, and resistance due to replacement cost. Furthermore, stemming from 
the literature [7,27], we decompose each dimension into several aspects (sub-criteria) specific to the problem of digital agricultural 
technology adoption, as shown in Fig. 5. Specifically, we model the main coefficients as follows:

DIFFUSION: The intensity of the diffusion effect, that is, the influence exerted by neighbouring firms on the adoption decision, de-

pends on the structure of the social network. As outlined in [6], the main characteristics that influence the diffusion process are: 
network diameter (𝑁𝐷), also known as the “small-world” property, which reflects the size of the network; network clustering (𝑁𝐶), 
which refers to the strength of connections; and network structure (𝑁𝑆), that is, the extent to which hubs are interconnected to 
facilitate interaction within the network.

INNOVATION: Determinant factors for innovation are the profit (𝑇𝑃 ) due to the adoption of new technology [54] and the farm size

(𝐹𝑆), since large farms can take advantage of economies of scale and are more likely to be able to afford the high initial invest-

ment of new technologies [76]. Also, institutional policies of financial incentives (𝐹𝐼), such as the accessibility of subsidy/credit, 
can have a positive effect on adoption of smart technologies [69]. In addition, the financial ability (𝐹𝐴) of the farm can facilitate 
access to credit and the use of subsidies, and thus promote the adoption of innovations [69].
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Table 2

Description of the employed symbols.

Symbol Description

Ω Target rural area

 Set of identified regions

𝑅 Generic region 𝑅 ∈
𝐷̃, 𝐷̃𝑅 Fuzzy diffusion coefficient, also denoted (for simplicity of notation) 𝐷,𝐷𝑅

𝐴̃, 𝐴̃𝑅 Fuzzy innovation coefficient, also denoted as 𝐴,𝐴𝑅

𝐶̃, 𝐶̃𝑅 Fuzzy resistance coefficient, also denoted as 𝐶,𝐶𝑅

𝑑(𝑥, 𝑦) Fuzzy diffusion coefficient at spatial location (𝑥, 𝑦)

𝑎̃(𝑥, 𝑦) Fuzzy innovation investment at spatial location (𝑥, 𝑦)

𝑐(𝑥, 𝑦) Fuzzy resistance coefficient at spatial location (𝑥, 𝑦)

𝑢(𝑥, 𝑦) Adoption level of digital farming technology at spatial location (𝑥, 𝑦)

𝑈 Rate of adoption of digital farming technology in the area Ω

RESISTANCE: Farms’ resistance to modify pre-existing technologies derives both from external factors, such as the costs of acquisition 
of new technologies (𝑇𝐶), and from internal factors, such as the farm’s level of know-how (𝐾𝐻) development. Know-how (i.e., 
knowledge and capacity) refers to the farmer’s ability to implement digital technologies. Lack of knowledge in new technologies 
is a barrier to innovation [75].

7.3. Modelling the digital farming transition process

We investigate the adoption process in a given area Ω of a country, by supposing that, from the perspective of the agricultural 
sector, a number of geographical regions, characterized by different features, can be identified in the considered area. We denote by 
 the set of regions considered for the analysis.

We approach the problem from a variational point of view, considering the fuzzy functional ̃(𝑢) defined in (4), where the 
diffusion, innovation and resistance coefficients are described by space-dependent fuzzy parameters. According to the conceptual 
scheme illustrated in Fig. 5, we determine the diffusion, innovation and resistance dimensions as an aggregate combination of the 
specific variables that influence their impact on the adoption process. In order to handle with the imprecise estimation of these 
variables, we use appropriate fuzzy inference systems, with input variables the specific regional factors influencing the coefficients, 
that are obtained as output of the systems. This approach handles both the uncertainty due to the imprecise estimation of coefficients 
and the ambiguity of assigning a geographical location (𝑥, 𝑦) to a single region 𝑅. The computed fuzzy coefficients are then used to 
determine the spatial distribution of adopters 𝑢 = 𝑢(𝑥, 𝑦) by solving the minimization problem (8).

The main steps of the proposed procedure can be summarized as follows:

1. For each region 𝑅, we determine the corresponding diffusion, innovation and resistance fuzzy coefficients 𝐷̃𝑅, 𝐴̃𝑅 and 𝐶̃𝑅, as 
outputs of appropriate rule-based inference systems, having as input variables the specific factors influencing the coefficients, 
according to the conceptual scheme illustrated in Fig. 5.

2. For each spatial location (𝑥, 𝑦) and for each region 𝑅, we determine the degree of belonging of (𝑥, 𝑦) to 𝑅, denoted by 𝜇𝑅(𝑥, 𝑦).
3. For each spatial location (𝑥, 𝑦), we determine the overall fuzzy coefficients 𝑑(𝑥, 𝑦), 𝑎̃(𝑥, 𝑦) and 𝑐(𝑥, 𝑦) as the fuzzy weighted average 

of the regional fuzzy coefficients, computed in step 1, with weights membership degrees 𝜇𝑅(𝑥, 𝑦), computed in step 2.

4. We determine the adoption distribution of digital farming technologies by implementing the iterative procedure established in 
(23) using fuzzy coefficients computed in step 3.

In the following, we will detail the steps of the proposed methodology. We refer to Table 2 for a description of the notations 
employed in the analysis.

As first step, we determine the fuzzy coefficients 𝐷̃, 𝐴̃ and 𝐶̃ as the outputs of three inference systems. In all three systems 
considered, the input variables are described by three fuzzy linguistic terms classified as Low (L), Medium (M) and High (H), while 
the output variables, namely 𝐷̃, 𝐴̃ and 𝐶̃ , are described by five fuzzy terms classified as Very Low (VL), Low (L), Medium (M), High 
(H) and Very High (VH). For each considered fuzzy system the inference is preformed through a set of IF-THEN statements, also 
called IF-THEN rules. Using the inference mechanism, we can obtain, for each region 𝑅, the associated fuzzy coefficients 𝐷̃𝑅, 𝐴̃𝑅 and 
𝐶̃𝑅.

The rules of the systems can be established using information provided by one or more experts [24]. For our analysis, we have 
deduced the inference rules using information gathered from the relevant literature.

In the following we illustrate the three fuzzy systems used for determining the diffusion, innovation and resistance coefficients of 
each region 𝑅.

Evaluation of diffusion coefficient. As previously discussed, diffusion coefficient (𝐷) can be inferred from the following variables: 
network diameter (𝑁𝐷), network clustering (𝑁𝐶) and network structure (𝑁𝑆). As established in [6], the network clustering variable 
14
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has a greater impact on the diffusion effect than the others. Therefore, we construct the fuzzy system by assigning a higher weight 
to the variable 𝑁𝐶 . We omit to list all the rules of the fuzzy system, but present only some of them:

IF 𝑁𝐷 is 𝐿 and 𝑁𝐶 is 𝐿 and 𝑁𝑆 is 𝑀 THEN 𝐷 is 𝑉 𝐿

IF 𝑁𝐷 is 𝐿 and 𝑁𝐶 is 𝑀 and 𝑁𝑆 is 𝐿 THEN 𝐷 is 𝐿

IF 𝑁𝐷 is 𝐿 and 𝑁𝐶 is 𝐻 and 𝑁𝑆 is 𝐿 THEN 𝐷 is 𝑀

IF 𝑁𝐷 is 𝐿 and 𝑁𝐶 is 𝐻 and 𝑁𝑆 is 𝑀 THEN 𝐷 is 𝐻

Evaluation of innovation coefficient. The innovation coefficient (𝐴) can be obtained as the output of a fuzzy system with input variables: 
profitability (𝑇𝑃 ), farm size (𝐹𝑆), financial incentives (𝐹𝐼) and financial ability (𝐹𝐴). As pointed out in [7,27,69,86], the effectiveness 
of financial incentives, such as the opportunity to access credit or subsidies, also depends on the financial ability of the farm. 
Therefore, we establish inference rules by considering the interaction (synergy) between the variables 𝐹𝐼 and 𝐹𝐴. Some of the rules 
are as follows:

IF 𝑇𝑃 is 𝐿 and 𝐹𝑆 is 𝐿 and 𝐹𝐼 is 𝐿 and 𝐹𝐴 is 𝑀 THEN 𝐴 is 𝑉 𝐿

IF 𝑇𝑃 is 𝑀 and 𝐹𝑆 is 𝐻 and 𝐹𝐼 is 𝐻 and 𝐹𝐴 is 𝐻 THEN 𝐴 is 𝑉 𝐻

Evaluation of resistance coefficient. The resistance (𝐶) of farms to replace pre-existing technologies depends on the cost of acquiring 
new technologies (𝑇𝐶) and the farm’s level of know-how (𝐾𝐻). We model the inference rules taking into account that the variable 
𝐾𝐻 represents a decreasing criterion, i.e., the higher 𝐾𝐻 the lower 𝐶 . Examples of the adopted system rules are:

IF 𝑇𝐶 is 𝑀 and 𝐻𝐾 is 𝐿 THEN 𝐶 is 𝐻

IF 𝑇𝐶 is 𝑀 and 𝐻𝐾 is 𝑀 THEN 𝐶 is 𝑀

As next step, we compute, for each spatial location (𝑥, 𝑦), the corresponding overall fuzzy coefficients 𝑑(𝑥, 𝑦), 𝑎̃(𝑥, 𝑦) and 𝑐(𝑥, 𝑦). 
To deal with the imprecise boundaries between regions, we introduce, for each region 𝑅, a fuzzy membership function 𝜇𝑅(𝑥, 𝑦)
representing the belonging degree of location (𝑥, 𝑦) to region 𝑅. Fuzzy coefficients 𝑑(𝑥, 𝑦), 𝑎̃(𝑥, 𝑦) and 𝑐(𝑥, 𝑦) are then determined as 
the fuzzy weighted average of the regional fuzzy coefficients 𝐷̃𝑅, 𝐴̃𝑅, 𝐶̃𝑅, with weights expressed by 𝜇𝑅(𝑥, 𝑦). Specifically, the fuzzy 
diffusion coefficient at spatial location (𝑥, 𝑦) is given

𝑑(𝑥, 𝑦) =

∑
𝑅∈

𝜇𝑅(𝑥, 𝑦) ⋅ 𝐷̃𝑅

∑
𝑅∈

𝜇𝑅(𝑥, 𝑦)
, (24)

the fuzzy innovation coefficient by

𝑎̃(𝑥, 𝑦) =

∑
𝑅∈

𝜇𝑅(𝑥, 𝑦) ⋅ 𝐴̃𝑅

∑
𝑅∈

𝜇𝑅(𝑥, 𝑦)
, (25)

and the fuzzy resistance coefficient by

𝑐(𝑥, 𝑦) =

∑
𝑅∈

𝜇𝑅(𝑥, 𝑦) ⋅ 𝐶̃𝑅
∑
𝑅∈

𝜇𝑅(𝑥, 𝑦)
, (26)

where  denotes the set of the regions considered for the analysis.

As final step of the procedure, we study the adoption process of digital farming technologies by implementing the methodology 
developed in the previous sections, using the fuzzy coefficients computed in (24), (25) and (26).

7.4. Simulations and results

We analyse the process of digital technology adoption in a given rural area Ω. We assume that, from the perspective of the 
agricultural sector, five main geographic regions, shown in Fig. 6, can be identified in the target area: a central region 𝑅𝐶 and 
four peripheral regions, namely the northwestern 𝑅𝑁𝑊 , northeastern 𝑅𝑁𝐸 , southeastern 𝑅𝑆𝐸 and southwestern 𝑅𝑆𝑊 regions. We 
suppose that farms operating in central region 𝑅𝐶 are characterized by large size and well-organized network structures. Because 
of their size and developed organizational structure, these farms can realize high profit by adopting the new digital technology. 
Northern regions 𝑅𝑁𝑊 and 𝑅𝑁𝐸 are mostly characterized by medium-sized farms that have high financial ability but, unlike those in 
the central regions, do not have well-developed networks. Differently, in the southern regions 𝑅𝑆𝐸 and 𝑅𝑆𝑊 there are mainly small 
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Fig. 6. Map of the identified agricultural regions in the area Ω.

Table 3

Values of factors associated to individual regions.

Region Variables

Diffusion Innovation Resistance

𝑁𝐷 𝑁𝐶 𝑁𝑆 𝑇𝑃 𝐹𝑆 𝐹𝐴 𝑇𝐶 𝐾𝐻

𝑅𝐶 𝑀 𝑀 𝐿 𝐻 𝐻 𝐻 𝐻 𝑀

𝑅𝑁𝑊 𝐿 𝐿 𝐿 𝑀 𝑀 𝐻 𝑀 𝑀

𝑅𝑁𝐸 𝑀 𝐿 𝐿 𝑀 𝑀 𝐻 𝑀 𝑀

𝑅𝑆𝐸 𝐻 𝐻 𝐻 𝑀 𝐿 𝑀 𝐿 𝑀

𝑅𝑆𝑊 𝐻 𝐻 𝑀 𝑀 𝐿 𝑀 𝐿 𝑀

Table 4

Fuzzy terms for Diffusion, Innovation and Resistance factors.

Fuzzy terms Factors

Diffusion (𝐷) Innovation (𝐴) Resistance (C)

𝑉 𝐿 < 2,2,4 > < 20,20,32.5 > < 20,20,25 >

𝐿 < 2,4,6 > < 20,32.5,45 > < 20,25,30 >

𝑀 < 4,6,8 > < 32.5,45,57.5 > < 25,30,35 >

𝐻 < 6,8,10 > < 45,57.5,70 > < 30,35,40 >

𝑉 𝐻 < 8,10,10 > < 57.5,70,70 > < 35,40,40 >

farms with low financial ability, but organized in well-connected and highly structured networks. All the farms in the considered 
area have a medium level of skills and knowledge. It is assumed that the acquisition cost of the new technology is related to the size 
of the farm. We denote by  = {𝑅𝐶, 𝑅𝑁𝑊 , 𝑅𝑁𝐸, 𝑅𝑆𝐸, 𝑅𝑆𝑊 } the set of the considered regions.

We employ the methodology proposed in Section 7.3 to study the adoption process of digital technology in the area Ω, on the 
basis of the regional farms’ features. First, for every region 𝑅, we assign an evaluation (Low (L), Medium(M) or High (H)) to each of 
the variables that influence the adoption decision. These evaluations, shown in Table 3, will be used as input values of the rule-based 
inference systems. Then, we describe as triangular fuzzy numbers the linguistic values (Very Low, Low, Medium, High and Very 
High) associated with the output variables of the systems, that is diffusion, innovation and resistance factors. The corresponding 
triangular fuzzy terms as shown in Table 4. Furthermore, as an illustration, in Fig. 7 we have plotted the membership functions of 
the triangular fuzzy terms assigned to the diffusion coefficient.

We adopt a fuzzy threshold approach to handle the uncertainty associated with imprecise boundaries between the regions under 
consideration. Therefore, we describe the degree to which a location 𝑃 (𝑥, 𝑦) ∈ Ω belongs to a given region 𝑅 as a function of the 
distance of 𝑃 from the “pilot” location 𝑃𝑅 in the region, i.e.

𝜇𝑅(𝑥, 𝑦) = 𝜇𝑅(𝑃 ) = 𝑓 (dist(𝑃 ,𝑃𝑅)) .

The function 𝑓 , modelling the imprecise thresholds, is defined by
16
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Fig. 7. Fuzzy terms associated to the diffusion coefficient.

Fig. 8. Adoption map: 𝐹𝐼 =𝐿 and 𝐾𝐻 =𝑀 .

𝑓 (𝑥) =
⎧⎪⎨⎪⎩
1 𝑥 < 𝑡1

(𝑡2 − 𝑥)∕(𝑡2 − 𝑡1) 𝑡1 ≤ 𝑥 < 𝑡2

0 𝑥 ≥ 𝑡2

where the values 𝑡1, 𝑡2, with 𝑡1 < 𝑡2, have to be appropriately chosen. Function 𝑓 allows both to avoid setting sharp thresholds 
and to achieve smooth transitions between regions. We assume, with reference to Fig. 6, that the 𝑃𝑅 pilot sites of the regions 
𝑅𝐶, 𝑅𝑁𝑊 , 𝑅𝑁𝐸, 𝑅𝑆𝐸, 𝑅𝑆𝑊 are located, respectively, at the centre and corresponding vertices of the considered area.

In order to investigate the effectiveness of government financial incentives to promote digital transformation in the agricultural 
sector, we determine the adoption distribution for different values of the Financial Incentives (FI) variable. In Fig. 8, Fig. 9(a) and 
Fig. 9(b) we have shown the adoption distributions obtained, respectively, for 𝐹𝐼 =𝐿𝑂𝑊 , 𝐹𝐼 =𝑀𝐸𝐷𝐼𝑈𝑀 and 𝐹𝐼 =𝐻𝐼𝐺𝐻 . These 
simulations were performed with reference to farms having a medium level of know-how, that is 𝐾𝐻 =𝑀𝐸𝐷𝐼𝑈𝑀 , according to 
evaluations assigned in Table 3. In addition, we set the uncertainty level and the pessimistic/optimistic parameters, as defined in 
Section 3, at 𝑛 = 1 and 𝜆 = 0.5, respectively.

The results of the analysis indicate that policies to promote digital technology adoption based on financial incentives, such as 
subsidies and access to credit, are most effective in areas where farms have greater financial ability. However, incentive-based 
policies can still be effective, due to the diffusion factor, in regions where farms have low financial ability but are organized in 
well-structured networks.

As an additional indicator, we define the adoption rate 𝑈 ∈ [0, 1] related to considered area Ω by

𝑈 = 1|Ω| ∫
Ω

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (27)

where |Ω| denotes the measure of Ω. The adoption rates for scenarios described in Fig. 8, Fig. 9(a) and Fig. 9(b) are, respectively, 
given by 𝑈 = 56.4% for 𝐹𝐼 = 𝐿𝑂𝑊 , 𝑈 = 62.4% for 𝐹𝐼 =𝑀𝐸𝐷𝐼𝑈𝑀 and 𝑈 = 63.9% for 𝐹𝐼 =𝐻𝐼𝐺𝐻 . Therefore, the effectiveness of 
financial incentive policy is greater when medium incentives are offered compared to high incentives. This effect can be understood 
by observing that the high increase in financial incentives promotes the adoption of new technologies especially among medium and 
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Fig. 9. Adoption map: (a) 𝐹𝐼 =𝑀 and 𝐾𝐻 =𝑀 ; (b) 𝐹𝐼 =𝐻 and 𝐾𝐻 =𝑀 . (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

Fig. 10. Adoption map: 𝐹𝐼 =𝑀 and 𝐾𝐻 =𝐻 .

large farms (which, for example, can buy more drones to monitor agricultural crops). In contrast, the effect on small farms is less 
significant.

In order to explore the effectiveness of other measures to support the digital transition in the agricultural sector, we study the 
effect of a policy that not only provides financial incentives but also aims to develop the skills and abilities of farms. In Fig. 10 we 
have plotted the adoption distribution referred to 𝐹𝐼 =𝑀𝐸𝐷𝐼𝑈𝑀 and 𝐻𝐾 =𝐻𝐼𝐺𝐻 . The corresponding adoption rate, as defined 
in (27), is 𝑈 = 66.3%. Therefore, the adoption rate obtained for 𝐹𝐼 =𝑀𝐸𝐷𝐼𝑈𝑀 and 𝐾𝐻 =𝐻𝐼𝐺𝐻 is greater than that obtained 
for 𝐹𝐼 =𝐻𝐼𝐺𝐻 and 𝐾𝐻 =𝑀𝐸𝐷𝐼𝑈𝑀 . This result suggests that to encourage the adoption of new digital technologies, it may be 
more effective to implement policies that, in addition to offering financial incentives, also aim to increase the level of knowledge 
and skills of farms. In fact, a high level of know-how reduces barriers (i.e., resistance) to adopting the new technology. Moreover, 
by comparing Fig. 9(b) and Fig. 10, the adoption distribution is more uniform for the case 𝐹𝐼 =𝑀𝐸𝐷𝐼𝑈𝑀 and 𝐻𝐾 =𝐻𝐼𝐺𝐻 . This 
result indicates that the implementation of policies aimed at raising the skill level of farms also has the effect of wider adoption in 
different regions of the considered area. In addition, improving skills also meets the more general goal of helping to raise the level 
of culture in the relevant social environment [86].

7.5. Comments

We applied our methodology to study the effectiveness of government policies, in terms of financial incentives and skill enhance-

ment, on the digital transition in agriculture, under conditions of uncertainty regarding the impact of economic variables and the 
characteristics of rural geographic regions in the reference area. Our study offers interesting insights and useful suggestions on how 
to set up an appropriate farm digitization strategy, focusing on the main determinants of adoption and diffusion and considering 
the effects that interactions in social networks have on the adoption process [34]. More generally, the proposed methodology can 
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provide useful information for policy makers to understand how different components can influence the process of technological 
innovation and, therefore, can be used as a tool to support strategic decisions.

8. Conclusions

In this study, we have introduced a variational formulation of the innovation diffusion problem under conditions of spatial 
heterogeneity in the economic factors influencing the process and fuzzy uncertainty about their intensities. Different market scenarios 
have been considered and analysed. Our results have highlighted that both the different degrees of uncertainty and the different 
subjective opinions of the decision maker lead to significantly different predictions about the diffusion process. Therefore, our 
methodology could be applied to support strategic decisions concerning innovation diffusion plans.

As concluding remarks, we observe that our approach, based on variational functionals, requires less regularity for the distribution 
function than models based on differential equations. This can be useful for analysing scenarios with a high degree of spatial 
heterogeneity, where diffusion of new technologies is not expected to be smooth. We will explore this aspect in our future research.

We note that a disadvantage of our methodology, which needs to be improved, is that it does not explicitly consider the temporal 
evolution of the adoption process. Therefore, it can mainly be used as a pre-screening tool to forecast the potential market share and 
geographic penetration of new technologies, or even when adoption occurs over a short period of time or the model parameters do 
not vary significantly over time.

As future work, we intend to extend the model by explicitly considering the time variable and, furthermore, by including in the 
functional other factors that may influence the adoption process, not necessarily related to firms but also to consumers, such as the 
imitation effect related to the so-called word-of-mouth phenomenon [47].
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