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A B S T R A C T

Amidst escalating food insecurity and climate change threats, which exacerbate food shortages and increase
agricultural emissions, this paper explores transformative strategies in cereal production within the BRICS
countries from 1990 to 2021. The uncontrolled growth of intensive agriculture, aimed at satisfying the growing
global demand for food in a context already threatened by climate change, has led to a uniformity of crops with
devastating impacts on biodiversity and ecosystem functioning, resulting in a transformation of soil and its
capacity to implement ecosystem services, such as food, fiber, and raw material production, nutrient recycling,
carbon sequestration, clean water availability, and the regulation of water regimes and local temperatures. These
changes have had negative consequences on agricultural production. Thus, sustainable agriculture faces three
closely related challenges: reducing environmental impact, in-creasing productivity, and adapting to and miti-
gating climate change. This analysis utilizes advanced econometric tools such as panel second-generation unit
root tests, Westerlund’s cointegration test, second-generation long-run estimators, and the Dumitrescu-Hurlin
causality test, together with several machine learning algorithms, to investigate the influence of technological
innovations and improved land management on cereal yields. The findings demonstrate a positive correlation
between technological advancements, enhanced land management for cereal cultivation, and the food produc-
tion index with increased cereal output. At the same time, emissions from agriculture significantly reduce yields
over time. Furthermore, an interaction analysis reveals that the comprehensive integration of these factors
significantly boosts cereal productivity. The study also identifies directional causal relationships between tech-
nological and emission factors and cereal production, suggesting a complex interplay with land use. Sustainable
land use is one of the key conditions for ensuring the ecological resilience of agricultural practices in terms of
providing ecosystem services. Implementing these strategies calls for a collaborative approach among govern-
ments, policymakers, farmers, researchers, and other stakeholders, considering each BRICS nation’s unique
environmental, socio-economic, and local contexts, and fostering regional cooperation to promote sustainable
agricultural practices.

1. Introduction

Food security and scarcity have become increasingly critical and

formidable challenges, exacerbated by a rapidly growing population,
diminishing cropland, escalating food demands, and decreased soil
fertility and productivity (Beddington et al., 2012; Chandio et al.,
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2023b). Soil, the top layer of the earth, comprises mineral components,
organic matter, water, air, and living organisms, representing the
interface between land, air, and water while hosting a significant
portion of the biosphere. Its functions are manifold: it provides food,
biomass, and raw materials, serves as the platform for human activities,
acts as a central element of the landscape and cultural heritage, and
plays a fundamental role as a habitat and gene pool. Healthy soils offer
essential ’regulating’ services by providing nutrients, remediating and
storing contaminants, mitigating floods, storing carbon, recycling waste,
and regulating pests and diseases (Evangelista et al., 2023). These
characteristics, combined with their ability to absorb water and reduce
the risk of floods and droughts, make soils indispensable allies in climate
change mitigation strategies (Adhikari and Hartemink, 2016).

Global environmental changes, habitat loss or fragmentation,
climate change, and practices associated with intensive agriculture have
had significant and negative impacts on natural capital and biodiversity
(Foley et al., 2005). Oversimplification of landscapes and increasingly
unsustainable land use have led to habitat changes primarily caused by
land use changes, which have strained biodiversity conservation on a
planetary scale (Billeter et al., 2008; Karp et al., 2012; Dainese et al.,
2019).

The global population is expected to surge from 6 to 9 billion people
between 2000 and 2050 (Smith and Olesen, 2010). Despite this, per
capita cereal production has slightly increased over time, mainly due to
technological advancements, particularly in high-yield wheat and rice
varieties developed during the Green and Clean Revolutions. These in-
novations have played a key role in meeting the food demands of the
growing population (Pingali, 2012). Dietary patterns have evolved in
response to rapid population growth, leading to the overexploitation of
available resources to meet increased food production demands.
Retrospectively, the population growth rate peaked at 1.66 percent over
the last three decades before declining to below 0.5 percent by 2009
(Koondhar et al., 2021).

Previous research on food supply forecasts and demand patterns of
Brazil, Russia, India, China, and South Africa (commonly referred to as
the BRICS countries) has offered limited insight into the potential food
security and scarcity challenges these nations may face. The BRICS re-
gion has significant potential for enhancing cereal grain productivity
and food consumption. However, the integration of environmental
considerations into technological adoptions is crucial, especially in
countries that have also experienced rapid and strong economic growth
driven by fossil fuel use, with serious environmental repercussions. The
BRICS countries’ significant contribution to the world’s energy con-
sumption underscores the urgent need for ecological and environmental
attention in these nations, particularly regarding renewable energy
consumption, human capital development, and natural resource sus-
tainability (Yang et al., 2023). Incorporating technology into agricul-
tural practices aims to reduce chemical inputs on farms, enhancing
production through smart agriculture and precision farming. Mini-
mizing chemical methods on farms can preserve soil faunal diversity,
which is at risk due to excessive use of insecticides, pesticides, and
herbicides (Pandey and Pandey, 2023). This study emphasizes that
achieving Sustainable Development Goals (SDGs) is possible through
agronomy, which directly and indirectly affects all other SDGs.

This study contributes to the existing literature in several ways.
Firstly, it examines the complex interplay among technological in-
novations (TEC), land use for cereal productivity (LU), the Food Pro-
duction Index (FPI), and emissions from the agricultural sector (e.g.,
agricultural methane and nitrous oxide emissions: PAG) on cereal food
productivity for BRICS nations, aiming to reduce food insecurities and
promote food sustainability. It distinguishes itself from previous studies
by focusing on Cereal Food Productivity (CFP), considering the BRICS
economies’ continued concern with self-sufficiency in cereals as a so-
lution to regional food insecurity, where capital accumulation, social
reproduction, and politics remain key problems of the ‘agrifood ques-
tion’ (Escher, 2021). Secondly, it introduces food technological

innovations, land harvested for cereal production, an index for food
production, and pollution from the agriculture sector as variables in the
cereal food productivity model, which have yet to be explored in earlier
literature, especially for the BRICS economies. Thirdly, this paper ad-
dresses the research gap by employing recent panel data techniques: the
Cross-sectionally Augmented Dickey-Fuller (CADF) test, Cross-
sectionally augmented Im-Pesaran-Shin (CIPS) test, Westerlund’s coin-
tegration tests, Augmented Mean Group (AMG) estimator, Common
Correlated Effects Mean Group (CCEMG) long-run elasticity estimator,
and the Dumitrescu and Hurlin (2012) causality approach to address
various data issues such as outliers, serial correlation, cross-country
dependency, and slope heterogeneity. Lastly, ensemble Machine
Learning (ML) models are used to test the econometric estimates’
robustness.

The empirical findings of this research can guide policymakers in
formulating and implementing new strategies to enhance cereal food
productivity, optimize resource utilization, and reduce emissions from
the agricultural sector. Incorporating these insights into the existing
body of knowledge may facilitate the development of a comprehensive
policy framework applicable worldwide.

The remainder of the study is organized as follows: Section 2 dis-
cusses the current literature, and Section 3 outlines the conceptual
framework and hypothesis development for the modeling process. Sec-
tion 4 introduces the data, while Section 5 presents the empirical
strategy. Section 6 gives the results. Section 7 reports a discussion
derived from the study’s findings, and Section 8 is devoted to illustrating
the robustness checks, ensuring the reliability and validity of previous
findings. Finally, the last section concludes the study, offering conclu-
sions and policy recommendations based on the empirical findings
obtained.

2. Literature review

Food security and scarcity intersect with several SDGs, including
SDG-1 (No Poverty), SDG-2 (Zero Hunger), SDG-3 (Good Health and
Well-being), SDG-13 (Climate Action), and SDG-15 (Life on Land).
Effectively addressing these issues requires a synergy between technol-
ogy and agriculture through the adoption of bioeconomy, sustainable
agronomy, precision farming, and innovative technologies such as ma-
chinery, geospatial technology, and Artificial Intelligence. Recent trends
in global food security have seen the adoption of technological ad-
vancements (Shah et al., 2024).

The relationship between land use management for cereal produc-
tivity and cereal food production is critically linked, involving the
interplay among land distribution, allocations, agricultural practices,
and conservation measures and their impact on cereal crop yields. For
example, the reduction of green cover and expanding built-up areas
have accelerated the increase in drought severity (Taiwo et al., 2023).
Land use management decisions, such as the distribution of farming and
arable lands and the adoption of sustainable practices like crop diversity
and rotation, directly influence the quality and quantity of cereal food
production. Conversely, cereal food production practices can signifi-
cantly affect land use, as unsustainable agricultural methods and land
degradation may reduce soil fertility and overall productivity. Thus,
advanced techniques for land monitoring are essential (Zhang et al.,
2023). Balancing sustainable land use management with cereal food
production is imperative to ensure long-run environmental sustainabil-
ity, food security, and resilient agricultural systems.

It has also been highlighted that there is no significant increase in
land use for cereal food production. In light of this, Koondhar et al.
(2021) showed that the area sown and FPI contribute to increased cereal
food production. The benefits of an increase in FPI on cereal food pro-
duction are evident in both short- and long-run effects. The FPI includes
all edible crops from nutritious agricultural operations, while cereal
food production specifically pertains to crops harvested for their dry
grains. Consequently, this study incorporates these indicators into the
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empirical analysis, positing that an increase in the FPI will likely
enhance cereal production.

The agricultural sector has been identified as a clear booster for
economic growth and social advancement within the BRICS nations.
However, the relentless pressure exerted on existing resources by
expanding populations and extensive cultivation has altered landscapes,
escalated methane (CH4) and nitrogen oxide (NO2) emissions, and
adversely affected the BRICS environment. Intensive agricultural prac-
tices, which push for nutrient efficiency, prolonged resistance to pests,
and drought tolerance, have yielded returns in terms of productivity but
have also incurred high environmental costs, threatening biodiversity
and the sustainability of food production (Bommarco et al., 2018; Caira
and Ferranti, 2023). Traditional practices supporting ecosystem services
have been abandoned (Tilman et al., 2001).

The intensification of agricultural activities has been one of the most
decisive factors in the loss of biodiversity in terrestrial ecosystems
(Kehoe et al., 2017). The uncontrolled growth of intensive agriculture,
aimed at satisfying the growing global demand for food (Foley et al.,
2005) in a context already threatened by climate change (Omerkhil
et al., 2020), has led to agricultural management models that increase
yields through the use of herbicides, pesticides, fertilizers, high-impact
mechanical systems, and intensive irrigation methods (Zhang et al.,
2013). These practices have had dramatic consequences, particularly
the loss of crop diversification, leading to more homogeneous agricul-
tural landscapes (Leblois et al., 2017). This uniformity of crops has had
devastating impacts on biodiversity and ecosystem functioning (Foley
et al., 2005; Laterra et al., 2012), resulting in a transformation of soil and
its capacity to implement ecosystem services, such as food, fiber, and
raw material production (Daily et al., 1997), nutrient recycling (Safaei
et al., 2019), carbon sequestration (Adhikari and Hartemink, 2016),
clean water availability (Pouyat et al., 2002), biodiversity conservation
(Giraldo-Perez et al., 2021), and the regulation of water regimes and
local temperatures (Dominati et al., 2010). These changes have had
negative consequences on agricultural production.

Among the most significant impacts of intensive agriculture are its
effects on biogeochemical and hydrological cycles, exacerbating climate
change and ecosystem degradation, with consequent impacts on human
health (Bouwman et al., 2013), such as reduced availability of drinking
water. Improving food production towards sustainable models is
imperative, with over 200 million people suffering from extreme food
insecurity (FSIN & GNAFC, 2023). Sustainable agriculture faces three
closely related challenges: reducing environmental impact, increasing
productivity, and adapting to and mitigating climate change (Wei et al.,
2023). Pakrooh et al. (2024) used a C-Vine Copula model to measure the
correlations together with the Granger causality test to analyze the
causality direction and correlation structure among selected horticul-
ture, farming crops, livestock, and poultry products and carbon dioxide
(CO2), nitrogen dioxide (N2O), and methane emissions (CH4) in the
Iranian agriculture sector over the period 1961–2019.

The agricultural industry within the BRICS faces the daunting chal-
lenge of safeguarding against climate change and global warming
(Usman and Makhdum, 2021; Ojekemi et al., 2023). In the next decades,
the agricultural sector in the BRICS may struggle to produce enough
food to sustain the global population, given the significant impact of
pollution from agricultural activities. Introducing carbon-free and
energy-efficient technology in agriculture is crucial for enhancing agri-
cultural productivity in the face of climate change and air pollution
(Shah et al., 2023). Emissions from the agricultural sector pose signifi-
cant challenges, affecting nearly all aspects of society and the food
supply, including cereal production. Long-run agricultural-induced
carbon emissions lead to climatic changes that adversely affect agri-
cultural productivity in various ways, such as changing rainfall patterns,
rising temperatures, and prolonged environmental emissions impacting
water availability for irrigation, crop maturation cycles, and pest out-
breaks. The BRICS economies are particularly vulnerable to environ-
mental pollution due to their diverse geographical features, vast

territories, and significant exposure to global warming and environ-
mental changes (Yang et al., 2023; Shu et al., 2024).

Given the preceding discussion, various hypotheses exist regarding
the impact of technological innovations, land use for cereal productivity,
the food production index, and emissions from the agricultural sector on
cereal yields. These hypotheses employ different models for diverse
datasets to explore relationships among these variables across different
economies, assessing both long- and short-term effects. Consequently,
the relationship among technological innovations, land use for cereal
productivity, the food production index, emissions from the agricultural
sector, and cereal productivity remains ambiguous, particularly in the
BRICS context. This study aims to illuminate how the cereal cultivation
system for this group of countries can be made more robust while
considering the constraints posed by these factors.

3. Theoretical framework and research hypotheses

Technological innovations are depicted as a spectrum of advance-
ments that enhance agricultural management practices, and, subse-
quently, cereal food production, specifically public investment, plays a
statistically significant influence on wheat production (Chandio et al.,
2023a). Land use management strategies, including crop rotation and
conservation agriculture, are identified as pivotal factors that signifi-
cantly affect both production levels and environmental sustainability.

FPI serves as a crucial gauge for tracking fluctuations in food pro-
ductivity over time. Furthermore, emissions emanating from agricul-
tural activities, such as the use of fertilizers and livestock management
practices, are acknowledged contributors to global warming and climate
change. Examining these intertwined factors, the framework facilitates
governmental and policy-making entities in formulating strategies that
promote sustainable cereal food production systems. These systems aim
to elevate production efficiency while mitigating adverse environmental
impacts. This investigation’s theoretical and conceptual foundations are
visually summarized in Fig. 1, providing a comprehensive overview of
the study’s underpinning logic and contribution to the scholarly
discourse on sustainable agriculture and food production.

The diminution of arable land due to urban expansion and the rapid
increase in population heightens reliance on fertilizers in traditional
farming practices, as Hussain et al. (2018) noted, leading to elevated
emissions from the agricultural sector. Concurrently, Ramankutty et al.
(2018) highlighted how such agricultural emissions contribute to global
warming and climate change, adversely affecting agricultural food
productivity. Agriculture is, in fact, a case in point, as it has a dual role:
on the one hand, it has always been a major sector for greenhouse gas
emissions, thus becoming a major driver of climate change; on the other

Fig. 1. Theoretical Framework.
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hand, it is also deeply affected by climate change. In fact, the 2023 Sixth
Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) estimated that the emissions from agriculture, forestry, and other
land uses in 2019 were responsible for 22 % of global greenhouse gas
emissions (IPCC, 2023).

Considering that cereal food productivity constitutes a significant
portion of the overall agricultural yield, Koondhar et al. (2021) posited
that enhancing crop productivity could bolster cereal production. Gani
(2022) observed that, following improvements in food productivity,
cereal yields also play a role in the levels of emissions. Pakrooh et al.
(2024) analyzed the causality flow among selected horticulture, farming
crops, livestock, and poultry products and CO2, nitrogen dioxide, and
methane emissions for Iran in the 1961–2019 years. Magazzino et al.
(2024) showed that domestic credit, renewable consumption, exports,
and urbanization reduce CH4 emissions.

The synthesis of conceptual frameworks and hypotheses from prior
research underscores the multifaceted impacts on cereal food produc-
tion, such as the beneficial effects of technological innovations, land use

management, and the food production index, alongside the detrimental
relationship between cereal food production and environmental pollu-
tion. Conversely, improved land management practices exert less pres-
sure on agricultural land and negatively impact environmental pollution
from the agricultural sector within an efficient production system.
Moreover, previous investigations identified a bidirectional relationship
between environmental pollution and factors such as technological in-

novations, cereal food productivity, and the food production index. In
light of the contributions and identified research gaps from preceding
studies, this study posits the following hypotheses to be empirically
tested within the context of the BRICS nations, drawing upon the
available dataset:

▪ H1: Technological innovation plays a crucial role in enhancing
cereal food productivity in the BRICS countries.

▪ H2: The food production index exerts a positive impact on
cereal food productivity in the BRICS countries.

▪ H3: Land use management specifically for cereal production
positively affects cereal food productivity in the BRICS
countries.

▪ H4: Emissions of agricultural CH4 and NO2 have a direct impact
on cereal food productivity in the BRICS countries.

▪ H5: The synergistic effect of technological innovation, food
production index, and emissions of CH4 and NO2, in conjunc-
tion with land use management for cereal production, posi-
tively affects cereal food productivity in the BRICS countries.

4. Data

The major objective of the current study is to analyze the various
factors contributing to the extent of cereal production in the BRICS re-

gion. To do this, a panel dataset has been constructed from 1990 to
2021. The intended form of cereal food production function is presented
in Eq. (1) as follows:

CFPit = f(TECit, LUit, FPIit, PAGit) (1)

where CFP represents the concept of cereal food production, TEC is
technological innovations (trademark applications in the form of
nonresident and resident by count), LU stands for land use under cereal
productivity (or simple harvested land for cereal production), FPI de-
notes food production index (2014–2016 = 100), and PAG shows
methane and nitrous oxide emissions from the agriculture sector. By
presuming an asymmetric relationship occurs in Eq. (1), it can be con-
verted to Eq. (2) as follows:

CFPit = β1TECit + β2LUit + β3FPIit + β4PAGit + μit (2)

This model is transformed into a natural logarithm format to smoothen
the long-run test process presented in Eq. (3) as:

In addition to examining the direct impacts of the selected model (Model
1), this study establishes three further distinct functions to investigate
their moderating effects. These models, referred to as Model 2, Model 3,
and Model 4 throughout the empirical analysis in Eqs. (4)–(6), respec-
tively, are outlined as follows:

where i denotes the cross-sections (countries), and t represents the time
span from 1990 to 2021. The intercept term of all four functions can be
reported as α0, β0, γ0, δ0, the long-run coefficients are α1 − α4, β1 − β4,

γ1 − γ4,δ1 − δ4, while the error term is presented by μ. Table 1 reports the
description of the variables, measurement units, and data sources.

Fig. 2 presents a box plot summarizing the distributions of various
variables. CFP shows a high median and range with a skewness of 1 and
kurtosis of − 0.15, indicating a right-skewed, flatter distribution. FPI’s
box indicates lower variability, with skewness close to zero (− 0.05) and
slightly platykurtic (kurtosis of − 0.98). LU exhibits a lower range and

Table 1
Data overview.

Acronym Variable’s description Measurement units Data
sources

CFP Cereal food production Metric tons (WDI,
2022)

TEC Patent applications Residents and non-residents (WDI,
2022)

LU Land use under cereal
production

Total hectares (WDI,
2022)

FPI Food production index (2014–2016 = 100) index (WDI,
2022)

PAG Agricultural CH4 and
NO2

Thousand metric tons of CO2

equivalent
(WDI,
2022)

Model1 : ln(CFPit) =α0 + α1ln(TECit)+ α2ln(LUit)+ α3ln(FPIit)+α4ln(PAGit)+ μit (3)

Model2 : ln(CFPit) =β0 + β1ln(TECit)+ β2ln(FPIit)+ β3ln(PAGit)+ β4ln(LU*TECit)+ μit (4)

Model3 : ln(CFPit) =γ0 + γ1ln(TECit)+ γ2ln(FPIit)+ γ3ln(PAGit)+ γ4ln(LU*FPIit)+ μit (5)

Model4 : ln(CFPit) = δ0 + δ1ln(TECit)+ δ2ln(FPIit)+ δ3ln(PAGit)+ δ4ln(LU*LAGit)+ μit (6)
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slight positive skewness (0.12) with a platykurtic distribution (kurtosis
of − 1.66). PAG has minimal skewness (− 0.16) and is platykurtic (kur-
tosis of − 1.67), suggesting a flat distribution. TEC, with a skewness of
3.76 and kurtosis of 13.39, is highly right-skewed and peaked, with most

values clustering near the median.
Fig. 3 displays time series data for CFP, TEC, FPI, PAG, and LU from

1990 to 2020. CFP and FPI trends show consistent increases, indicative
of rising food production levels. TEC also demonstrates notable growth,

Fig. 2. Box plots of the variables.

Fig. 3. Evolution of the series.
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implying a positive relationship with productivity advancements.
Conversely, PAG trends upwards, highlighting potential environmental
concerns related to increased production. LU exhibits minor fluctuations
with a general increase, pointing to evolving land management
strategies.

The correlation matrix for all considered variables is reported in
Fig. 4.

Examining the matrix reveals that TEC and CFP have a positive
correlation of 0.68, implying that technological advances are strongly
associated with increases in cereal food production. A similarly strong
positive correlation is observed between PAG and CFP (0.81), suggesting
that agricultural pollution levels are closely linked with cereal produc-
tion outputs, which may reflect the input-intensive nature of cereal
production. This is corroborated by the significant positive correlation
of 0.84 between CFP and LU, indicating that land use dedicated to cereal
production is strongly associated with the volume of cereal production.

Conversely, the correlation between PAG and FPI is slightly negative
at − 0.06, indicating a very weak inverse relationship, potentially sug-
gesting that as the food productivity index increases, there is a negligible
decrease in pollution from agriculture. This could imply that increased
efficiency in food production does not necessarily translate into pro-
portional increases in pollution levels, perhaps due to improved prac-
tices or technologies that enhance productivity without proportionately
increasing pollution. Furthermore, the correlations involving FPI with
TEC and LU are positive but modest (0.29 and 0.09, respectively),
implying a mild positive association between these variables. Notably,
the correlation between LU and FPI is particularly weak, which could
suggest that land use changes have a relatively small direct impact on
the food production index. Lastly, the negative correlation of − 0.03
between FPI and LU is negligible, almost suggesting no relationship,
which is intriguing as it may imply that land use patterns do not
significantly influence the food production index or that the relationship
is overshadowed by other factors not captured by this study.

5. Empirical strategy

In its empirical testing, this research explores the complex aspects of
panel data analysis, methodically addressing essential issues such as
Cross-Sectional Dependency (CSD), slope heterogeneity, unit root
characteristics, and long-run relationships. This comprehensive
approach leads to the precise estimation of long-run elasticities and the
delineation of causal relationships. Furthermore, to ensure the

reliability of our findings, the study incorporates ensemble ML tech-
niques for robustness validation.

The estimation of panel data is frequently accompanied by chal-
lenges, among which CSD is a critical consideration that requires reso-
lution before advancing further analytical processes. Ignoring CSD can
result in biased coefficients and estimators, leading to erroneous con-
clusions. In the context of the BRICS nations, CSD is an anticipated
phenomenon due to the intricate interconnections fostered by global-
ization and collaboration, often resulting in homogenous economic and
financial traits among these countries. To address CSD, this research
adopts four CSD tests, namely: CSD due to Pesaran (2015, 2021), CSDW
following the method of Juodis and Reese (2022), CSDW+ as introduced
by Fan et al. (2015), and CSD* as conceptualized by Pesaran and Xie
(2021). The CSD test developed by Pesaran (2015, 2021) is implemented
due to its operational applicability, with its mathematical expression
delineated in Eqs. (7)–(8):

CSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(T)

N(N − 1)

√ (
∑N− 1

i=1

∑N

j=i+1
δ̂ij

)

N(0,1) i, j (7)

M =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(T)

N(N − 1)

√ (
∑N− 1

i=1

∑N

j=i+1
δ̂ij

)[
(T − K)δ̂

2
ij − (T − K)δ̂

2
ij

Var(T − K)δ̂
2
ij

]

(8)

The term δ̂
2
ij denotes the bivariate pairwise cross-correlation of

sample estimates, which is estimated through the simple regression
method. The expression for CSDW is defined as:

CSDW =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

Tn(n − 1)

√
∑T

t=1

∑N

i=2

∑i− 1

j=1
ωieitωjejt (9)

As identified by Juodis and Reese (2022), this expression addresses
the issue of power loss in the test. To ameliorate this limitation, Juodis
and Reese (2022) devised an augmented power test statistic, building
upon the work of Fan et al. (2015). This revised method incorporates a
component screening element, denoted as ΔnT, to CSDW, to derive the
CSDW+ statistic, which is defined in the ensuing mathematical
articulation:

CSDW+ = CSDW +ΔnT (10)

ΔnT =
∑N

i=2

∑i− 1

j=1

⃒
⃒ρ̂ij,T

⃒
⃒ > 2

̅̅̅̅̅̅̅̅̅̅̅
ln(n)

T

√

(11)

Finally, for the CSDW+ method, it is important that ΔnT diverges suf-
ficiently swiftly with respect to both T (time dimension) and n (cross-
section dimension) under the alternative hypothesis, which typically
encompasses network or spatial dependencies. Pesaran and Xie (2021)
further contributed to the literature on CSD tests by introducing an
alternative CSD test that integrates the θ̂nT term within the panel data
framework. The operational structure of this method is mathematically
formulated as follows:

CSD*(θ̂nT) = CSD* =
CSD+

̅̅
T
2

√

θ̂nT

1 − θ̂nT
(12)

Here, CSD*(θ̂nT) denoting CSD*, is the bias-adjusted CSD test statis-
tic, and this refined test is denoted as the CSD* approach, founded on the
aforementioned principle.

Within panel data analytics, slope heterogeneity refers to the dis-
similarities in the relationship between the dependent and the inde-
pendent variables across distinct entities or individuals. This
phenomenon emerges when the impact of the independent variables on
the dependent variable is not uniform across the entities or individuals
within the panel data (Pesaran and Yamagata, 2008). The analysis of
slope heterogeneity is instrumental in identifying whether interactions

Fig. 4. Correlation matrix.
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among variables manifest differently under varying conditions. Recog-
nizing the presence of slope heterogeneity is crucial, necessitating the
consideration of entity-specific or individual-specific heterogeneity
when estimating relationships among variables and deducing conclu-
sions from the empirical data (Blomquist and Westerlund, 2013).
Therefore, conducting this test is also beneficial in informing the se-
lection of an appropriate model for the data at hand.

Acknowledging the significance of CDS within the dataset, it is
imperative to select stationary tests for the variables that can concur-
rently facilitate a long-run cointegration analysis to manage CSD con-
cerns effectively. Consequently, this study employs the CADF and CIPS
tests as proposed by Pesaran (2007) to assess the stationarity of the
targeted variables. These methodologies are recognized for their con-
sistency and appropriateness in detecting variations across the specified
panels. Additionally, they are instrumental in identifying characteristics
essential for analyzing second-order dynamics in unique longitudinal
datasets.

After identifying CDS characteristics among variables and imple-
menting a unit root test tailored to the specific panel characteristics,
selecting an appropriate long-run cointegration test becomes relevant.
This test must adequately address the CSD issue within the context of the
model under investigation. Consequently, employing traditional first-
generation panel cointegration tests in this scenario may yield ambig-
uous and unreliable outcomes when scrutinizing for rejecting the null
hypothesis (H0), which postulates the absence of cointegration. The
second-generation cointegration testing methodology, as introduced by
Westerlund (2007), is adopted in response to this challenge. This
advanced approach is designed to effectively manage the CSD problem,
thereby enhancing the accuracy and reliability of conclusions drawn
regarding the H0, ensuring the precision and validity of the inferential
outcomes regarding the long-run relationship.

Upon establishing a long-run relationship between the variables of
interest, the subsequent phase in the econometric analysis entails esti-
mating the long-run elasticities. This is accomplished by AMG and
CCEMG methods. The AMG method, introduced by Eberhardt and Bond
(2009), stands out for its suitability and consistency over traditional
models, particularly due to its allowance for heterogeneous slope pa-
rameters across individual cross-sections. Both AMG and CCEMG
methodologies are adept at addressing critical issues prevalent in panel
data analysis, such as CSD, slope heterogeneity, and endogeneity.

The AMG estimator’s operational mechanism unfolds in two stages.
The first stage is articulated as follows:

ΩYit = λi + λiΩXit + πift +
∑T

t=2
ρiΩDt + μit (13)

In the second stage, the AMG estimator is determined through the
aggregation of individual estimates, delineated as:

λ̂AMG = N− 1
∑N

i=1
λ̂i (14)

This structured approach ensures the incorporation of dynamic panel
data specifics, facilitating a robust and nuanced understanding of the
long-run elasticities that characterize the interrelations among the
variables.

The CCEMG estimator represents an alternative estimation tech-
nique. Crafted by Pesaran (2006), the CCEMG methodology is adeptly
utilized in econometric investigations to address the pervasive issue of
CSD. It effectively resolves cross-correlation among cross-sections and
heterogeneity, offering a robust solution to challenges such as CSD, unit
root series, latent factors, and heterogeneous slopes (Pesaran, 2006).

Following the estimation of long-run elasticities, the subsequent
econometric progression entails discerning the direction of causality. To
this end, this study employs the Dumitrescu and Hurlin (DH) non-
causality approach (Dumitrescu and Hurlin, 2012), a method predi-
cated on Granger’s causality framework (Granger, 1969). A significant
advantage of the DH non-causality test lies in its capacity to navigate the

complexities of CSD and slope heterogeneity. This method utilizes a
system-wide Wald test statistic (WHNC

N.T ) across all variables and cross-
sections, thereby providing a comprehensive assessment of causality
within the panel data context.

Ensemble methods represent a fundamental class of ML techniques
that improve predictive performance by combining multiple models.
These methods are particularly effective in reducing variance, bias, or
improving predictions over single-model approaches. Ensemble tech-
niques such as bagging, boosting, and stacking are widely recognized for
their robustness and accuracy across various applications and datasets
(Mienye and Sun, 2022).

Bagging, short for bootstrap aggregating, is a robust ensemble
technique that enhances the performance of ML models. It is particularly
useful in regression contexts. Bagging aims to improve model stability
and accuracy by averaging the predictions from multiple models trained
on different subsets of the original dataset.

▪ Bootstrap Sampling: The first step in bagging is creating
multiple bootstrap samples from the original training dataset.
In bootstrap sampling, subsets are selected randomly with
replacement, meaning each subset may contain repeated in-
stances of the same data point. Each bootstrap sample is typi-
cally the same size as the original dataset, ensuring that each
model has a comprehensive set of data to learn from. This
method allows the ensemble to explore a variety of data sce-
narios, which is critical for building a robust model.

▪ Model Training: A regression model is trained independently
on each bootstrap sample. The choice of model can vary, but
regression trees are commonly used due to their sensitivity to
changes in the training set, which makes them particularly
effective when used in a bagging ensemble. The independence
of training across different samples captures diverse patterns in
the data, contributing significantly to the ensemble’s
robustness.

▪ Aggregation of Predictions: After training, the predictions
from each model are averaged to produce a single final pre-
diction. This averaging process reduces variance and helps
smooth out prediction anomalies, leading to a more accurate
and stable outcome. Averaging is particularly effective in
regression, as it mitigates the impact of outliers and reduces the
likelihood of overfitting, thus enhancing the predictive per-
formance of the ensemble (Breiman, 1996).

Bagging is highly effective with regression models that exhibit high
variance. The technique leverages the instability of these models by
training multiple instances on varied subsets of data, thus capturing a
broad spectrum of data behaviors. When their predictions are averaged,
the ensemble often outperforms any single model in stability and ac-
curacy, making Bagging a preferred method for regression problems
where predicting continuous outcomes with high precision is critical
(Dietterich, 2000). In regression tasks, bagging is a powerful ensemble
method that significantly enhances model accuracy by averaging mul-
tiple predictions, which reduces variance and improves stability. This
method is ideal for applications requiring precise continuous pre-
dictions, such as in financial modeling or environmental forecasting.

Boosting is an ensemble technique that enhances the performance of
ML models, particularly in regression, by iteratively improving models
based on the errors of previous ones. This method aggregates multiple
weak learners to form a strong predictive model, focusing on reducing
bias and variance, leading to more accurate predictions.

▪ Initialization and Model Building: Boosting starts with
initializing weights for each data point in the training set,
typically giving equal weights initially. A regression model,
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often referred to as a weak learner, is then trained on the
dataset.

▪ Error Evaluation and Model Updating: After the first model
is trained, its prediction errors are evaluated. These errors are
used to update the weights of the data points. Points that are
harder to predict (i.e., have larger errors) receive increased
weights, whereas easier-to-predict points get their weights
decreased. This iterative reweighting focuses the learning al-
gorithm on the most difficult cases in the training dataset
(Solomatine and Shrestha, 2004).

▪ Model Addition and Aggregation: A new model is then
trained on the reweighted data, and the process repeats for a
specified number of iterations or until improvements become
negligible. Each model in the sequence focuses on correcting
the residuals of the previous models. The final predictive model
is a weighted combination of these weak learners, where more
accurate predictors are given higher weights (Schapire, 2003).

Boosting is particularly effective in reducing bias and also helps
reduce variance. This dual benefit is crucial in regression tasks where
both underfitting and overfitting can degrade the model’s performance.
By focusing iteratively on the most difficult parts of the training data,
boosting builds a more accurate and robust model, making it a powerful
tool for regression problems that involve complex, non-linear relation-
ships that are difficult to model with a single weak learner (Solomatine
and Shrestha, 2004). Boosting offers a significant advantage in regres-
sion analysis by effectively combining multiple weak models to produce
a highly accurate prediction. This method systematically focuses on
reducing errors and enhancing the model’s ability to generalize, which is
particularly valuable in regression tasks where prediction accuracy is
paramount.

Stacking, or stacked generalization, is an advanced ensemble
learning technique designed to improve model predictions by combining
multiple base models through a -learner. This technique effectively
harnesses the strengths of various models, addressing their individual
weaknesses to enhance the overall predictive accuracy.

▪ Training Base Learners: The process begins with the inde-
pendent training of multiple base learners, each offering a
unique approach to the problem. In this setup, we use Gener-
alized Linear Models (GLM), Support Vector Machines (SVM),
K-Nearest Neighbors (KNN), and Random Forest (RF). These
models are chosen for their diverse capabilities in capturing
different data patterns, from linear relationships in GLM to
complex nonlinear interactions in RF. The individual pre-
dictions of these models reflect various aspects and structures
within the data, providing a rich set of perspectives for the
subsequent meta-learner (Xu et al., 2021).

▪ Creation of Meta-Features: Once the base models are trained,
they predict outcomes on a holdout set or via cross-validation
on the training set, creating a new dataset of predictions.
These predictions, known as meta-features, serve as the input
for the meta-learner. The meta-features encapsulate the pre-
dictive insights of each base model, effectively summarizing
their individual assessments into a form that the meta-learner
can use (Ding and Wu, 2020).

▪ Training the Meta-Learner: The meta-learner, which could be
another regression model such as Logistic Regression, is trained
on these meta-features. Its role is to discern the best way to
integrate the base models’ predictions. By training on the out-
puts rather than the original features, the meta-learner can
focus on correcting the base models’ errors and capitalizing on
their successes. This step is crucial as it determines how the
strengths of various base models are combined to achieve su-
perior performance (Chatzimparmpas et al., 2021).

Stacking is particularly effective in complex prediction tasks where
no single model uniformly excels across all dataset segments. It reduces
both bias and variance by combining models that are differently biased
and variably accurate, leading to improved prediction accuracy and
robustness. Moreover, stacking has been shown to perform exceptionally
well in both theoretical and practical applications, outstripping the
performance of the individual models and other ensemble techniques in
many cases (Tan and Luo, 2021). The stacking technique stands out as a
sophisticated method in ensemble learning, known for its ability to
integrate multiple predictive models into a coherent framework that
improves upon the capabilities of its constituent elements. Through the
strategic use of a meta-learner, stacking achieves a harmonious balance
among diverse models, enhancing predictive performance across a wide
range of applications.

6. Empirical results

The BRICS countries exhibit similar economic structures, which
suggest the presence of financial and economic spillovers; these dy-
namics may lead to CSD and slope heterogeneity within their economies.
Four CSD tests are employed to examine these phenomena in longitu-
dinal data analysis, which are particularly well-suited for datasets where
the time dimension exceeds the number of cross-sections (T > N). The
results from the panel CSD tests are shown in Table 2. The empirical
findings indicate a rejection of the null hypothesis of the absence of CSD,
thereby affirming the existence of country-specific spillovers within the
sample.

Moreover, the identification of a long-run association from the test
facilitated the subsequent analysis of whether the slope parameters
exhibit heterogeneity. As highlighted by Pesaran and Yamagata (2008)
and Blomquist and Westerlund (2013), insights from the slope param-
eter analysis for longitudinal data are critical in guiding the selection of
analytical methods and interpreting coefficient estimations. The results
from these two tests are presented in Table 3, indicating a rejection of
the null hypothesis that slope coefficients are homogeneous across the
panel. This finding underscores the necessity for employing suitable
long-run coefficient estimation techniques, such as the AMG and CCEMG
estimators, to accurately capture the dynamics within the data.

Given the substantial intercorrelation, CSD, and slope heterogeneity
observed, CADF and CIPS methodologies are utilized to determine the
integration order of the tested variables. The results from the CADF unit
root test, detailed in Table 4, indicate that for all selected variables, the
null hypothesis of non-stationarity is not rejected. However, these var-
iables achieve stationarity when differentiated under both conditions
(intercept but also intercept and trend).

Table 2
CSD test results.

Variable CSD (Pesaran
2015, 2021)

CSDw (Juodis
and Reese,
2022)

CSDwþ (Fan
et al., 2015)

CSD* (Pesaran
and Xie, 2021)

CFP 11.490*** − 2.020** 34.320*** 0.490
(0.000) (0.044) (0.000) (0.624)

TEC 9.150*** − 1.300 27.640*** 0.190
(0.000) (0.195) (0.000) (0.848)

FPI 2.820*** − 1.750* 38.780*** 0.360
(0.000) (0.079) (0.000) (0.723)

LU 1.820* − 2.210** 13.110*** 1.550
(0.069) (0.027) (0.000) (0.121)

PAG − 2.290** − 1.330 32.070*** 7.660***
(0.022) (0.183) (0.000) (0.000)

LU*TEC 5.140*** − 1.440 15.260*** 0.340
(0.000) (0.151) (0.000) (0.732)

LU*FPI 11.700*** − 1.450 35.210*** 0.400
(0.000) (0.148) (0.000) (0.686)

LU*AG − 2.610*** − 2.570 38.520*** 1.600
(0.009) (0.010)*** (0.000) (0.110)

Notes: P-VALUES in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.
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Furthermore, the results derived from the CIPS test reveal that CFP
and the interaction term LU*TEC are level-stationary, or I(0). For the
remaining variables, stationarity is established at the first difference, or I
(1). Consequently, it is established that CFP, TEC, FPI, LU, PAG, and the
interaction terms LU*TEC, LU*FPI, and LU*PAG are treated as station-
ary time series data after first-order differencing, thereby confirming
their non-stationary nature. This detailed analysis ensures that the
econometric models applied later accurately reflect the dynamics
inherent in the data.

The results of the panel cointegration test, as developed by West-
erlund (2007), are documented in Table 5. This cointegration method
conducts statistical analysis to ascertain the existence of long-run re-
lationships, or cointegration, among the variables. The test outcomes
provide compelling and statistically significant evidence of long-run
associations as observed in both group and panel statistics datasets.
Specifically, the Group τ-statistic (Gτ), Group α-statistic (Gα), Panel
τ-statistic (Pτ), and Panel α-statistic (Pα) all demonstrate robust in-
dications of cointegration within the ample, regardless of the deter-
ministic specification. These findings again highlight the presence of an
association between the variables.

To estimate the impact of the regressors on the dependent variable,
AMG and CCEMG estimators have been implemented. The long-run
coefficients are presented in Tables 6-7. The results indicate that tech-
nological advancements, land use dedicated to cereal productivity, and
the food production index significantly enhance cereal food production
in the BRICS region. However, methane and nitrous oxide emissions
from the agricultural sector show a negative sign.

Technological innovations, according to Model 1, significantly boost

cereal food productivity, with long-run coefficients ranging from 0.034
% to 0.089 % (at the 5 % level). This suggests that a 1 % increase in the
adoption of technological innovations in agriculture could lead to an
increase in cereal food productivity by approximately 0.034 % to 0.089
% in the long-run. In addition, the sign of the coefficients remains
consistent across the different models. In the current era, technological
innovations have played a pivotal role globally, particularly in devel-
oping countries, by broadening access to information and enhancing
communication systems in rural areas (Wang et al., 2019; Min et al.,
2020). The widespread use of technology has directly impacted agri-
cultural output and rural household income in the BRICS countries;
technology adoption depends on risk preference as well as it is inter-
linked with credit and insurance contracts (Wu and Li, 2023).

The food production index also shows a positive and significant
correlation with cereal food production; a 1 % increase in the index
results in a 1.368 % to 1.389 % increase in cereal production. This
growth in cereal production can be supported by actions such as
improving water and sanitation systems, natural fertilizer use, advanced
crop breeding, and multiple cropping practices. These findings align
with those of Koondhar et al. (2021), who noted that green advance-
ments in cereal productivity in the BRICS region could significantly
enhance the richness of the food production index.

Regarding CH4 and NO2 emissions, the negative coefficients indicate

Table 3
Slope heterogeneity test results.

Test Delta tilde (Δ̂) Delta tilde Δ̂Adj.

Blomquist and Westerlund (2013) 3.430*** 3.092***
(0.001) (0.002)

Pesaran and Yamagata (2008) 9.905*** 10.989***
(0.000) (0.000)

Notes: P-values in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10. Hetero-
scedasticity and Autocorrelation Consistent Kernel: Bartlett with average
bandwidth 3.

Table 4
Panel unit root test results.

Variable Intercept Intercept and trend Integration order

Level First difference Level First Difference

Coeff. P-Value Coeff. P-Value Coeff. P-Value Coeff. P-Value

CADF panel unit root test
CFP − 1.814 0.468 − 2.631* 0.022 − 2.567 0.282 − 4.834* 0.000 I(1)
TEC − 2.172 0.176 − 2.920* 0.003 − 2.496 0.345 − 3.047** 0.036 I(1)
FPI − 2.256 0.129 − 3.825* 0.000 − 2.700 0.180 − 4.940* 0.000 I(1)
LU − 1.754 0.525 − 4.743* 0.000 − 2.038 0.778 − 4.582* 0.000 I(1)
PA − 2.303 0.107 − 3.182* 0.000 − 2.548 0.299 − 3.696* 0.000 I(1)
LU*TEC − 2.041 0.268 − 2.795* 0.008 − 1.954 0.837 − 3.179** 0.017 I(1)
LU*FPI − 2.165 0.180 − 4.245* 0.000 − 2.586 0.266 − 4.907* 0.000 I(1)
LU*PAG − 1.752 0.527 − 4.108* 0.000 − 2.355 0.485 − 4.101* 0.000 I(1)

CIPS panel unit root test
CFP − 2.762* − 5.863* − 4.333* − 5.963* I(0)
TEC − 2.087 − 3.856* − 2.348 − 4.174* I(1)
FPI − 2.217*** − 5.499* − 2.695 − 6.248* I(1)
LU − 2.362 − 5.698* − 3.898** − 5.922* I(1)
PAG − 2.180 − 4.347* − 2.449 − 4.778* I(1)
LU*TEC − 2.559* − 4.478* − 2.275*** − 4.579* I(0)
LU*FPI − 2.240 − 5.644* − 2.141 − 6.136* I(1)
LU*PAG − 1.438 − 5.863* − 2.363 − 5.867* I(1)
Critical values 1 % 5 % 10 % 1 % 5 % 10 %

− 2.55 − 2.33 − 2.21 − 3.06 − 2.84 − 2.73

Notes: ***p < 0.01, **p < 0.05, *p < 0.10.

Table 5
Westerlund’s panel cointegration test results.

Statistics Gτ Ga Pτ Pa

Intercept
Value − 3.481*** − 11.200 − 10.628*** − 14.238**
Z-Value − 2.425 0.513 − 5.377 − 1.455
P-Value 0.008 0.696 0.000 0.073
Robust P-Value 0.003 0.103 0.000 0.023

Intercept and Trend
Value − 3.544** − 9.364 − 10.568*** − 13.494*
Z-Value − 1.676 2.069 − 4.696 0.103
P-Value 0.047 0.981 0.000 0.541
Robust P-Value 0.037 0.520 0.003 0.057

Notes: ***p < 0.01, **p < 0.05, *p < 0.10.
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that increases in emissions from agriculture significantly diminish cereal
food productivity, with a reduction ranging from 0.483 % to 0.491 %.
This aligns with prior findings by Eshete et al. (2020) and Dimnwobi
et al. (2022), who showed that environmental pollution adversely af-
fects agricultural productivity due to changes in climate conditions such
as precipitation patterns and temperature increases, which can nega-
tively affect cereal crop growth. Furthermore, the positive coefficients
related to land use under cereal production demonstrate a significant
impact on cereal production, with a 1 % increase in land use leading to a
1.019 % to 1.077 % increase in productivity, validating findings by Yu
et al. (2019) and Kibria et al. (2023). This suggests that non-climatic
factors such as land significantly affect efficiency and production levels.

Lastly, the interaction effects of land use under cereal production
with technological innovation (LU*TEC), food production index
(LU*FPI), and emissions from the agriculture sector (LU*PAG) are also
significant. These interactions underline the importance of integrating
effective land use and technological advancements to boost cereal food
productivity sustainably and efficiently in the BRICS economies. This
holistic approach is essential for achieving SDGs and maintaining a
balance in cereal food productivity, highlighting the transformative
potential of minor adjustments in these areas.

Building upon the estimation of long-run coefficients for the relevant
variables, causality analysis is run. The DH methodology provides a
robust framework for identifying the causal relationships within the
data. The results, detailed in Table 8, reveal the strength and direction of
connections among the selected series.

Fig. 5 illustrates the Dumitrescu-Hurlin causality flows, mapping out
the interactions between the variables. The causality analysis reveals
unidirectional causality flows from PAG to CFP, from TEC to CFP, from
PAG to TEC, from LU to PAG, from PAG to FPI, and from LU to FPI. These
results suggest that emissions from agriculture not only impact cereal
food production but also affect the sectors of technology adoption and
food production efficiency, indicating a downstream influence of agri-
cultural practices on these critical areas. Notably, the analysis shows
that technological innovations and food production indices do not
reciprocally influence the emission levels, pointing towards a primarily
one-way impact from agricultural practices to these sectors.

Furthermore, the findings highlight bidirectional causality relation-
ships between several pairs of variables. In fact, a feedback mechanism
emerges between CFP and FPI, CFP and LU, LU and TEC, and TEC and
FPI. These bidirectional interactions underline the interdependent na-
ture of these variables, where changes in one invariably influence the
other, reflecting a complex web of interrelations that govern agricultural

productivity and sustainability.
These causal dynamics are consistent with the findings from previous

studies (Dimnwobi et al., 2022, Kibria et al., 2023). That also under-
scored the intertwined nature of these variables within the agricultural
sector. This coherence across studies reinforces the robustness of the
current findings and emphasizes the critical importance of considering
these interdependencies in policy formulations aimed at enhancing
agricultural efficiency and sustainability. This nuanced understanding
of causality not only informs theoretical perspectives but also provides
actionable insights for policymakers seeking to optimize agricultural
outputs while mitigating environmental impacts in the BRICS region.

7. Discussion

The analyses highlight a crucial intersection among technological
innovations, effective land use, and agricultural practices that directly
impact cereal food production in the BRICS region. Each of these factors,
supported by robust empirical evidence, points towards a nuanced un-
derstanding of how targeted interventions can foster sustainable agri-
cultural productivity.

Technological Innovation: The significant impact of technological in-
novations on cereal production underscores a transformative shift in
agricultural methodologies. Technological tools not only enhance the
efficiency of agricultural operations but also extend their benefits to
broader socio-economic aspects by improving the information dissemi-
nation and resource management capabilities of rural households. The
correlation between technology adoption and increased cereal produc-
tion is consistent with previous findings (Min et al., 2020), which
observed that technology had a substantial effect on the livelihoods and
productivity of rural communities. This reflects a broader trend where
technological interventions, such as precision agriculture, mobile tech-
nology, and genetically modified crops, contribute to increased agri-
cultural outputs by enabling better crop monitoring, optimized resource
use, and improved resistance to pests and diseases. Policymakers could
incentivize the design, improvement, and maintenance of technologies
that promote sustainable environmental development without causing
ecological damage. Such innovative technologies should enable the
planning of agricultural practices to promote the study of ecological
processes that encourage the maintenance of functional biodiversity and
their impacts (Rose et al., 2019). In this contest, therefore, BRICS gov-
ernments should (Ma et al., 2024):

- impose a carbon tax on those technologies that lead to the degra-
dation of environmental quality;

- encourage the diffusion of green technologies and the adaptation of
energy frameworks;

- promote low-carbon technologies;
- stimulate green technologies.

Table 8
Pairwise Dumitrescu-Hurlin panel causality test results.

Null hypothesis W Stat. Zbar Stat. P-value

TEC ⇎ CFP 5.58882 3.21930 0.0013***
CFP ⇎ TEC 2.08522 − 0.08361 0.9334
FPI ⇎ CFP 8.38217 5.85264 0.0000***
CFP ⇎ FPI 6.47287 4.05271 0.0000***
PAG ⇎ CFP 4.24288 1.95045 0.0511*
CFP ⇎ PAG 2.98458 0.76423 0.4447
LU ⇎ CFP 6.19613 3.79182 0.0001***
CFP ⇎ LU 4.73355 2.41302 0.0158**
FPI ⇎ TEC 5.26471 2.91375 0.0036***
TEC ⇎ FPI 5.81390 3.43149 0.0006***
PAG ⇎ TEC 7.29153 4.82448 0.0000***
TEC ⇎ LAG 3.73626 1.47285 0.1408
LU ⇎ TEC 5.73356 3.35575 0.0008***
TEC ⇎ LU 5.50306 3.13845 0.0017***
PAG ⇎ FPI 5.76375 3.38421 0.0007***
FPI ⇎ PAG 3.31862 1.07914 0.2805
LU ⇎ FPI 8.41620 5.88473 0.0000***
FPI ⇎ LU 3.43093 1.18502 0.2360
LU ⇎ PAG 7.29567 4.82838 0.0000***
PAG ⇎ LU 2.78244 0.57367 0.5662

Notes: 2 lags. ***p < 0.01, **p < 0.05, *p < 0.10.

Fig. 5. Summary of causality test results.
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Food Production Index: The positive association between the food
production index and cereal food production further substantiates the
role of enhanced agricultural productivity measures in fostering food
security. This index, as an aggregate indicator, reflects the effectiveness
of various agricultural inputs and practices, from crop diversification to
advanced irrigation systems. The linkage between a higher food pro-
duction index and increased cereal output resonates with the insights
provided by Koondhar et al. (2021), who argued that sustainable prac-
tices within the agricultural sector could dramatically enhance food
production capacities.

Intensive agriculture, with the creation of huge monocultural crops
treated with large external inputs (Pretty, 2008), has caused huge
environmental impacts, so much so that over time there has been a
growing awareness of a shift to agricultural practices that not only
ensure socio-economic equity and food security, but also build and
protect the ecosystem services on which agriculture depends (Barrett,
2010; Godfray et al., 2010; Garnett et al., 2013; FAO; 2014; DeFries
et al., 2015; UN, 2015). In such an approach, ecosystem services guar-
anteed by biodiversity, such as pollination and pest control, must be
exploited in a way that avoids the use of external inputs like chemical
fertilizers, pesticides, etc. (Cassman 1999; Garibaldi et al., 2011; Bom-
marco et al., 2013), as prescribed by the 2030 Agenda for Sustainable
Development and the Intergovernmental Platform on Biodiversity and
Ecosystem Services (Díaz et al., 2015a; Díaz et al., 2015b).

Agricultural Emissions: The adverse effects of methane and nitrous
oxide emissions highlight the environmental challenges associated with
agricultural expansion and intensity. The significant negative impact of
these emissions on cereal productivity brings to the forefront the urgent
need for sustainable farming practices that minimize environmental
footprints while maintaining crop yields. This finding aligns with earlier
research by Eshete et al. (2020), which linked environmental degrada-
tion from agricultural emissions to reduced crop productivity due to
altered weather patterns and disrupted ecosystems. These insights
advocate for integrated pest management, reduced reliance on chemical
fertilizers, and the adoption of green technology in farming operations.
To reduce pollutant emissions, helping the achievement of the SDGs, the
BRICS countries could (Pata, 2021):

- encourage modern agricultural techniques, such as organic farming;
- increase farmers’ awareness of environmental issues;
- promote low-carbon agricultural production;
- incentivizing the use of animal fertilizers;
- supplying clean inputs in agricultural activities.

Land Use: The analysis also confirms the critical role of land use in
determining agricultural output. Effective land management practices
that enhance land productivity without depleting its fertility are
essential for sustainable agriculture (Magazzino et al., 2023a,b). The soil
ecosystem plays a fundamental role not only in sustaining biological
productivity, thus ensuring the life of living organisms such as plants
and animals, but also in ensuring the livelihood of humans through its
central role in agriculture by providing basic ecosystem services
(Vanlauwe et al., 2010; Marinelli et al., 2021), like nutrient cycling and
climate regulation (Dominati et al., 2010). In general, therefore, effec-
tive land management strategies, such as encouraging traditional agri-
cultural practices, such as crop rotation, intercropping, farm-level
diversification, and reduced agrochemical use (Kovács-Hostyánszki
et al., 2017), could have direct consequences on the quality of this core
ecosystem, influencing processes such as the regulation of water flows,
biogeochemical cycles, as well as preserving biodiversity and ecosystem
services. A further and fundamental target could be to halt land degra-
dation and thus achieve the sustainability goal ’Land Degradation
Neutrality’.

In particular, the increase in cereal production with expanded arable
land emphasizes the need for policies that balance land use dynamics
with agricultural needs. This is particularly important in the BRICS

nations, where urbanization and industrialization pose continuous
threats to agricultural land.

Interaction Effects: The study’s exploration of interaction effects be-
tween land use and other variables like technological innovations and
the food production index suggests that synergies between these factors
can significantly enhance cereal productivity. This integrated approach
is pivotal for not only maximizing land use efficiency but also for
ensuring that technological and managerial improvements are effec-
tively translated into agricultural output.

In conclusion, these findings underscore the complex and inter-
connected challenges facing the agricultural sector in the BRICS nations.
Addressing these challenges requires a comprehensive approach that
combines technological advancements, sustainable land use practices,
and environmental considerations to enhance cereal productivity sus-
tainably. Such strategies align with the SDGs and ensure long-run food
security and economic stability in the region.

8. Robustness checks

Three different ensemble ML models were employed to validate the
robustness of the panel data method results: Boosting, Bagging, and
Stacking. These models are known for their efficacy in improving pre-
dictive performance. As ML analysis requires, all variables are normal-
ized using the scale function.

Fig. 6 offers a comparative visual analysis of the performance metrics
for the ensemble models. The figure is organized into three panels, one
for each model type, with each panel depicting four key metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and the coefficient of determination (R2). These metrics
are represented on the y-axis, while the x-axis categorizes them. Each
panel displays a set of colored dots that correspond to different models
(Model 1, Model 2, Model 3, and Model 4), as indicated by the legend. In
all three panels, the distribution of dots varies per metric, which allows
for a quick assessment of how each model performs according to each
specific metric.

For all models, the R2 values appear to be high, suggesting a strong
explanatory power. However, the specific performance of each model
can only be evaluated by examining the corresponding numeric values.
Overall, the graphic aims to facilitate the comparison of the three
ensemble methods and ascertain the most accurate and reliable
approach for the analysis.

Table 9 represents the importance scores derived from the Boosting
and Bagging models.

As per Table 9, the importance scores reveal significant contributions
from specific variables:

• TEC is highlighted as a predominant variable, particularly in Model 3
for the Boosting method, indicating a key driver of cereal food
productivity.

• PAG registers the highest importance scores, reinforcing their sig-
nificant impact on the models’ outputs.

• The importance scores for LU and the interaction terms like LU*TEC
highlight the intricate relationships between land use practices and
technological innovations.

Table 10 provides an overview of the meta-learner coefficients for
the Stacking ensemble models, highlighting the differential contribu-
tions of the base learners: GLM, SVM, KNN, and RF. The coefficients
reveal how much each model influences the final prediction of the
stacked model.

The results from Table 10 underscore the consistent dominance of
the RF model, which exhibits the highest coefficients in all model con-
figurations (1.22, 1.06, 1.17, and 1.10, respectively, for Models 1–4).
This reflects its robustness and superior predictive accuracy, making RF
the most reliable predictor among the incorporated base learners. The
contributions from SVM and KNN, in contrast, display considerable
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variability. SVM, for example, exerts a positive influence in Models 2
and 4 (coefficients of 0.26 and 0.14, respectively), yet a negative impact
in Model 3 (− 0.15). KNN’s influence is similarly variable, contributing
negatively in Models 1 and 2 (− 0.22 and − 0.27, respectively), but
slightly positively in Model 3 (0.01). In conclusion, Model 1 demon-
strates the most robust predictive capabilities within this specific
stacking ensemble, attributable primarily to its high coefficient for RF.

The ensemble ML models applied here as robustness checks under-
score the reliability of the study’s main findings. The consistent per-
formance across various metrics confirms the analytical soundness of the
models, affirming the study’s conclusions regarding the determinants of
cereal food production in the BRICS economies. The application of
ensemble ML methods serves as a robust validation of the key panel

findings. The importance scores from the Boosting and Bagging models,
alongside the meta-learner coefficients from the Stacking models, offer a
quantifiable affirmation of the identified factors affecting cereal food
production in the sample observed.

Technological Innovation: The ML models validate the significant role
of technological innovations as reflected by their high importance
scores. This concurs with the empirical analysis, where technological
advances were shown to enhance cereal production efficiency and
effectiveness. The ML results support the premise that technology is a
key driver of productivity, which is consistent with the documented
benefits to rural socio-economic conditions found in previous
research.
Food Production Index: The positive relationship between the food
production index and cereal output is reaffirmed by ML analyses,
which echo the econometric evidence of this index’s role in
improving agricultural measures. The ensemble models corroborate
the earlier findings that a higher food production index – indicative
of efficient agricultural inputs and practices – is associated with
increased cereal production.
Agricultural Emissions: The adverse impact of agricultural emissions
on cereal productivity is distinctly captured by the ML models, where
emissions variables exhibit a clear influence on the models’ out-
comes. This substantiates the empirical analysis and aligns with prior
research that emphasizes the negative repercussions of environ-
mental degradation on crop yields. The ML methods lend further
credence to the call for sustainable farming practices.
Land Use: The ML models reinforce the importance of land use in
agricultural output, which aligns with the econometric evidence
indicating that land use under cereal productivity is a significant
factor. Through their predictive power, these models support the
need for balanced land use policies that contribute to increased
cereal production.
Interaction Effects: Perhaps most compellingly, the ML methods
validate the interaction effects identified in the empirical analysis.
The importance scores for interaction terms such as LU*TEC in the
ML models confirm that when technological innovations and effi-
cient land use converge, cereal productivity has a substantial positive
effect.

In conclusion, the ensemble methods confirm and enhance the reli-
ability of the panel technique findings, providing computational proof of
the significant influence of technological innovations, food production
index, and land use on cereal food production while also recognizing the
detrimental effect of agricultural emissions. These advanced analytical

Fig. 6. Ensemble ML models’ metrics.

Table 9
Boosting and bagging importance scores.

Variable Boosting Bagging

Model 1 TEC 71.30 17.04
FPI 7.77 1.50
PAG 269.56 95.60
LU 35.47 11.38

Model 2 TEC 51.94 10.80
FPI 17.86 3.72
PAG 242.13 97.77
LU*TEC 26.10 14.13

Model 3 TEC 64.11 19.11
FPI 13.21 1.49
PAG 255.36 98.74
LU*FPI 17.41 7.21

Model 4 TEC 85.55 18.56
FPI 14.19 3.32
PAG 229.68 79.02
LU*PAG 35.09 25.70

Table 10
Stacking model meta-learner coefficients.

(Intercept) GLM SVM KNN RF

Model 1 0.00 0.00 0.01 − 0.22 1.22
Model 2 0.00 − 0.03 0.26 − 0.27 1.06
Model 3 0.00 − 0.03 − 0.15 0.01 1.17
Model 4 0.00 − 0.09 0.14 − 0.13 1.10
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techniques not only corroborate the econometric evidence but also offer
a sophisticated lens through which to interpret the complex dynamics at
play, supporting a comprehensive approach to enhancing agricultural
productivity in the BRICS region.

9. Conclusions and policy Implications

In the quest to meet the escalating food demands of a burgeoning
global population amidst shrinking arable lands and rapid urbanization,
cereal production is a vital cornerstone with its significant potential to
augment this empirical evidence. Yet, the impact of environmental
pollution from cereal production is a crucial factor that bears upon its
own yield. This article delves into the strategies for amplifying cereal
production within the BRICS nations, operating under the constraints of
limited arable land and the overarching influence of agricultural
pollution. It fills a gap in the existing literature by integrating techno-
logical innovations and a newly formulated food production index as
regressors within the context of the BRICS economies over the
1990–2021 period.

To explore the effects of technological innovations, land use under
cereal production, the food production index, and emissions from the
agricultural sector on cereal food production, the study employed
several panel data methodologies (CADF test, CIPS test, Westerlund’s
cointegration test, DH causality analysis, as well as AMG and CCEMG
estimators), addressing significant CSD and slope heterogeneity. The
long-run coefficients highlight that while technological innovations and
the food production index exert a positive influence on cereal food
production, emissions from the agriculture sector inversely affect pro-
duction levels. Interaction terms further indicate a significant
enhancement of cereal food production when combined with effective
land use.

Causality analysis elucidates the directionality of these relationships,
indicating unidirectional causality from emissions and technological
innovations to cereal food production, and bidirectional causality
among cereal production, land use, and the food production index.
Robustness checks conducted via ensemble ML methods confirm these
relationships, with model importance scores and meta-learner co-
efficients underscoring the significance of these variables in predicting
cereal food production.

Based on this empirical evidence, the study offers several policy
recommendations to support the attainment of SDGs 2, 8, 9, and 12 for
BRICS countries:

Technological Innovations: Implementing precision agriculture tech-
nologies, supporting R&D in biotechnology for crop improvement,
and promoting the adoption of modern machinery can enhance ef-
ficiency and reduce environmental impact while bolstering
production.
Land Use Management: Sustainable land management practices, such
as agroforestry and conservation agriculture, can improve soil health
and biodiversity. Policies that ensure secure land tenure can
encourage long-run sustainable investment by farmers (Magazzino
et al., 2023a,b).
Crop Diversification: Diversifying cereal production by cultivating a
range of crops can enhance food security and resilience to climate
change, while sustainable practices like efficient irrigation can in-
crease productivity and mitigate environmental harm.
Environmental Protection: Reducing water pollution through efficient
irrigation and careful fertilizer application, encouraging Integrated
Pest Management, and managing agricultural waste can help miti-
gate emissions and their detrimental effects on productivity.

Implementing these strategies calls for a collaborative approach
among governments, policymakers, farmers, researchers, and other
stakeholders, considering each BRICS nation’s unique environmental,
socio-economic, and local contexts, and fostering regional cooperation

to promote sustainable agricultural practices.
Sustainable land use is one of the key conditions for ensuring the

ecological resilience of agricultural practices in terms of providing
ecosystem services. Indeed, these activities are increasingly aimed at
satisfying an ever-growing demand for food. Integrating attention to the
conservation of soil ecosystem services into production- and income-
oriented agronomic perspectives ensures food production while
reducing the environmental risks associated with the loss of soil
ecosystem services. Effective strategies in this regard can include the
enhancement of key ecological processes that support production,
including nutrient cycling, pollination, and biotic regulation of pests.
The result is diversified agricultural systems.

According to the 2030 Agenda for Sustainable Development and its
goals, there is a strong call to sustain natural resources, food, and agri-
culture by improving local stakeholders’ awareness of the role of soils in
ecosystem services, and identifying farming systems that can produce
various benefits while excluding negative impacts (Loos et al., 2014;
Leifeld, 2016). Achieving the interlinked goals of nutrition, food secu-
rity, poverty reduction, and local development requires extensive
governmental efforts at the top level (MEA, 2005).

Despite the robustness of our findings, several limitations warrant
consideration. First, the study relies on historical data from 1990 to
2021, which may not fully capture the rapidly evolving agricultural
technologies and practices. Future research could focus on more recent
data and emerging trends in cereal production. Additionally, while this
study examines the BRICS nations, its applicability to other regions re-
mains untested. Comparative studies involving different geographic and
economic contexts could provide broader insights. Furthermore, the
complex interactions between environmental pollution and cereal pro-
duction merit deeper investigation, particularly regarding long-run
sustainability and resilience under climate change scenarios. Future
research should also explore the socio-economic impacts of proposed
policy recommendations on smallholder farmers to ensure equitable and
inclusive agricultural development.
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