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Abstract: The Berlin questionnaire (BQ), with its ten questions, stands out as one of the simplest and
most widely implemented non-invasive screening tools for detecting individuals at a high risk of
Obstructive Sleep Apnea (OSA), a still underdiagnosed syndrome characterized by the partial or
complete obstruction of the upper airways during sleep. The main aim of this study was to enhance
the diagnostic accuracy of the BQ through Machine Learning (ML) techniques. A ML classifier
(hereafter, ML-10) was trained using the ten questions of the standard BQ. Another ML model (ML-2)
was trained using a simplified variant of the BQ, BQ-2, which comprises only two questions out of
the total ten. A 10-fold cross validation scheme was employed. Ground truth was provided by the
Apnea–Hypopnea Index (AHI) measured by Home Sleep Apnea Testing. The model performance
was determined by comparing ML-10 and ML-2 with the standard BQ in the Receiver Operating
Characteristic (ROC) space and using metrics such as the Area Under the Curve (AUC), sensitivity,
specificity, and accuracy. Both ML-10 and ML-2 demonstrated superior performance in predicting
the risk of OSA compared to the standard BQ and were also capable of classifying OSA with two
different AHI thresholds (AHI ≥ 15, AHI ≥ 30) that are typically used in clinical practice. This study
underscores the importance of integrating ML techniques for early OSA detection, suggesting a
direction for future research to improve diagnostic processes and patient outcomes in sleep medicine
with minimal effort.
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1. Introduction

Obstructive Sleep Apnea (OSA) is a syndrome characterized by the partial or complete
obstruction of the upper airways during sleep. This blockage leads to frequent awakenings
to reopen the airway, disrupting sleep, causing excessive daytime sleepiness, and triggering
a stress response in the body. The obstruction can also result in lowered blood oxygen
levels during sleep [1], increased carbon dioxide levels, and potential damage to the
cardiovascular system. OSA is also linked to a variety of health issues including stroke, high
blood pressure, and even death [2–6]. These health problems are especially pronounced in
individuals who are overweight and vary based on gender and age.

The occurrence of OSA, estimated to be between 9% and 38% of the Italian population,
varies widely, with a higher likelihood in older adults, men, and those who are obese [1,7,8].
Among older individuals, its prevalence may rise up to 84% [1]. Despite an increase in
research and medical attention towards OSA in recent years, it remains a condition that is
frequently not diagnosed. This underdiagnosis can be attributed to the lack of biomarkers
capable of identifying the disease [9–13].

In 2019, CERGAS (Research Center on Health and Social Care Management at the
Bocconi University) released data estimating that the annual costs associated with OSA in
Italy are approximately 31 billion euros. On average, the cost for each patient with severe
OSA was calculated to be around 3850 euros. Despite having an estimated 12 million
people with moderate to severe OSA, only about 460,000 individuals in Italy have been
formally diagnosed, and merely half of these diagnosed patients have received treatment.
This situation places Italy at the bottom among major countries in terms of the number
of individuals diagnosed with OSA [14]. Considering that each patient is diagnosed
many years after the onset of the disease, the direct and indirect healthcare costs impose a
significant burden for the National Health System (NHS), which affects every single citizen.
Prevention and early diagnosis are the only ways to achieve an improved quality of life
and cost containment [9,15].

For the diagnosis of OSA, polysomnography (PSG) is considered the gold standard,
and the severity of OSA is typically measured using the apnea–hypopnea index (AHI),
with thresholds set at ≥5/h for OSA diagnosis, ≥15/h for moderate to severe OSA, and
≥30/h for severe OSA [1]. However, this method is expensive [9] and requires the patient
to be monitored continuously by healthcare professionals [16], leading to a scarcity of
available testing and, consequently, delays in diagnosis and an increase in the burden of
disease [17–19]. Therefore, Home Sleep Apnea Testing (HSAT) is often used as an alterna-
tive. HSAT offers several advantages over traditional PSG. One of the foremost benefits of
HSAT is the convenience it provides; patients can undergo testing in the familiar and com-
fortable setting of their own home. This not only reduces the anxiety and discomfort often
associated with spending a night in an unfamiliar sleep lab environment, but also removes
the logistical challenges of arranging for an overnight stay away from home. Furthermore,
HSAT stands out for its cost-effectiveness. Generally costing less than laboratory-based
PSG, it becomes a more accessible option for a broader range of patients, breaking down
financial barriers to obtaining a diagnosis.

Recent advancements in software technologies and Machine Learning (ML) methods
have significantly enhanced the development of effective predictive and diagnostic tools,
becoming increasingly prevalent in various fields of medical research and applications,
including for OSA [11,12,20–27]. The prediction models described in existing research pri-
marily utilize clinical data, such as demographic information (age and gender), comorbid
conditions, anthropometric measures (Body Mass Index (BMI), waist and neck circum-
ferences), symptoms of OSA, and physiological parameters (blood pressure, overnight
pulse oximetry, and lung function tests). The effectiveness of these models in predicting
OSA, as indicated by an AHI ≥ 5/h, has shown sensitivity rates ranging from 66% to
100% and specificity rates ranging from 30.8% to 76.2%. For predicting more severe OSA
(AHI ≥ 15/h), the sensitivity ranges from 60.3% to 92.7%, with the specificity ranging
between 33.3% and 90.7% [24]. The variability in these models’ ability to discriminate
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between cases may be due to factors such as the complexity of the models, sample size,
OSA prevalence, and the proportion of cases with different severities of OSA. It is noted
that most OSA prediction models prioritize higher sensitivity over specificity to facilitate
early diagnosis, although this approach may result in a higher rate of false positives and
potentially lead to unnecessary PSG testing [24].

The Berlin questionnaire (BQ) [28] stands out as one of the simplest and most widely
implemented non-invasive screening tools for diagnosing OSA, demonstrating a sensitivity
of 86% and a specificity of 95% for OSA diagnosis. Originally introduced in the United
States (US), the BQ consists of a concise set of questions focused on the risk factors and
symptoms associated with OSA, aimed at identifying patients at high risk who might
benefit from undergoing PSG to facilitate increased diagnosis rates. While the standard BQ
comprises 10 questions, we previously introduced a streamlined questionnaire version by
using a trained classifier [22], reducing the questionnaire to just two questions (“simplified
Berlin questionnaire”, or BQ-2). This abbreviated version has been shown to achieve results
comparable to the original BQ, offering an efficient means of rapidly screening high-risk
OSA patients.

The main aim of this research was to enhance the sensitivity, specificity, and accuracy
of the conventional BQ by incorporating ML techniques. For this purpose, we developed an
ML-enhanced BQ model (ML-10) capable of predicting the risk of OSA using the BQ items
as model features. Additionally, we explored a simplified version of ML-10, called ML-2,
based on BQ-2 [22], to determine whether it yields comparable results. The predictive
performance of these models was evaluated against the conventional BQ approach, which
does not incorporate ML techniques. Furthermore, we utilized the ML-10 and the ML-2
models to identify patients with OSA at two different AHI thresholds: ≥15/h, and ≥30/h,
thereby assessing their efficacy across a spectrum of OSA severity.

In conclusion, the integration of an ML algorithm into the conventional BQ demon-
strated a significant enhancement in the ability to predict the risk of OSA across various
severity thresholds. This advancement underscores the potential of ML-enhanced diagnos-
tic tools in improving the early detection of OSA. The findings of this research validate the
application of innovative ML approaches in enhancing the diagnostic processes for OSA,
potentially leading to more timely and effective interventions for this widely prevalent but
underdiagnosed condition.

The remaining sections of this paper are organized as follows: Section 2 details the
participants and methods used in this study, including the study design, OSA diagnosis
process, and ML predictive models. Section 3 presents the results of our experiments,
comparing the performance of the conventional BQ, the ML-10 model, and the simplified
ML-2 model. Section 4 discusses the implications of our findings, situates our work within
the broader context of existing research, and outlines the limitations of our study. Finally,
Section 5 concludes the paper with a summary of our contributions and suggestions for
future research.

2. Participants and Methods
2.1. Design

From January to December 2023, an observational multicenter study was conducted
across two Italian hospitals: the Otorhinolaryngology Unit at the “Vito Fazzi” Hospital in
Lecce and the Otorhinolaryngology Head & Neck Surgery Unit at the IRCCS Humanitas
Research Hospital in Milan. A total of 462 subjects, including 112 from Lecce and 350 from
Milan, were screened due to suspected symptoms of OSA and underwent HSAT.

2.2. Participants

The inclusion criteria for this study were as follows: (1) participants aged ≥ 18 years
and (2) who had undergone a HSAT recording. Before the HSAT examination, a baseline
screening questionnaire was used to assess each participant’s basic information, medication
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history, and surgical history. The participants were measured for height, weight, and BMI
(kg/m2) [28] at the time of registration.

2.3. OSA Diagnosis

All the sleep-related signals were obtained using a HSAT device (Embletta Gold
Portable Testing Device®, RemLogicE® Software v3.4.4 (2015), Embla System Inc., Broom-
field, CO, USA, used in Lecce, and the Embletta® Multi Parameter Recorder-Polygraph
(MPR-PG), RemLogicE® 3.4.1, Embla Systems, Kanata, ON, Canada, used in Milan). This
study adhered to the guidelines set forth by the American Academy of Sleep Medicine
(AASM) [29,30].

2.4. The Berlin Questionnaire and the Simplified Berlin Questionnaire

The BQ [28] is structured into three categories that assess the risk of sleep apnea.
Patients are classified as either high risk or low risk for OSA based on their responses to
individual items and their cumulative scores within these symptom categories. Category
1, comprising five items, focuses on snoring behaviors. Category 2, with three items,
investigates daytime somnolence. Category 3 consists of a single item that evaluates the
presence of hypertension. A positive score in the first two categories requires frequent
symptom occurrence, defined as more than 3–4 times per week. In contrast, a positive score
in the third category results from either a history of hypertension or a BMI greater than
30 kg/m2 [28]. The overall assessment is based on the collective responses across these
categories, with patients categorized as high risk for OSA if they have positive scores in
two or more categories; otherwise, they are deemed low risk [28].

Our previous research showed that, among the ten questions in the standard BQ, two
questions were sufficient to closely approximate the BQ output using a trained classifier.
Further details are available in [22]. In summary, the first critical question assesses high
blood pressure, asking, “Do you have high blood pressure?”. This inquiry is followed by
one of two options regarding fatigue: “How often do you feel tired or fatigued after your
sleep?” or “During your waking time, do you feel tired, fatigued or not up to par?” These
questions are designed to be selected independently yet provide insightful data for OSA
risk assessment. Despite their independence, we arbitrarily opted to utilize the first fatigue-
related question (“How often do you feel tired or fatigued after your sleep?”). This decision
was based on the observation that the models using one or the other yielded comparable
results when applied independently, suggesting that favoring one fatigue-related question
over the other offers no significant advantage in the context of our study.

2.5. Statistical Analysis

The baseline characteristics and BQ items for all participants, encompassing patients
with confirmed OSA and those without, underwent descriptive statistical analysis. Contin-
uous variables were summarized using the mean and standard deviation (SD), whereas
categorical variables were described using frequencies and percentages. Fisher’s exact test
was employed to explore the associations between two categorical variables. Additionally,
the Mann–Whitney U-test was utilized to assess the statistical significance of differences
between the distributions of two continuous variables among participants categorized on
the basis of their AHI values, specifically those who are not at risk of OSA (AHI < 5) and
those who are (AHI ≥ 5), according to the threshold defined in the BQ [28]. A p-value
of less than 0.05 was considered statistically significant. The scoring of the BQ and all
statistical analyses, including evaluations of both qualitative and quantitative variables,
were performed using Matlab software, version 2023b.

2.6. Machine Learning Predictive Value

Calculating group statistics is crucial in establishing the statistical relevance of vari-
ables within a diagnostic context, allowing for the assessment of risk factors and relation-
ships with comorbidities. However, it is widely recognized that statistical relevance does
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not equate to discriminant power, which is more critical for classification and prediction
tasks. Variables that are statistically significant in a model do not necessarily guarantee
superior prediction performance, and attributes deemed non-significant might be predic-
tive. Therefore, we opted to investigate the predictive capabilities of the BQ using ML
techniques. To this end, six distinct classifiers were evaluated for their suitability in the pre-
dictive task: Naive Bayes, Support Vector Machine (SVM), Decision Trees, Error-correcting
Output Codes (ECOCs), Discriminant Analysis, Ensemble of decision trees, and Artificial
Neural Networks (ANNs). Among these, the Ensemble of decision trees demonstrated
the best performance. This model was initially trained with the ten responses from the
standard BQ and then separately with only the two responses from the simplified version,
BQ-2, independently, resulting in the development and evaluation of two distinct models
designated as ML-10 and ML-2, respectively.

We employed a 10-fold cross-validation (CV) approach for the training and quality
assessment. For both models, features were normalized to a 0–1 range using min–max
normalization on the training dataset in each CV iteration, with identical normalization
parameters applied to the corresponding validation set.

The Receiver Operating Characteristic (ROC) curve was used to illustrate the di-
agnostic capability of the models at various decision thresholds, providing a graphical
representation of the trade-off between sensitivity (true positive rate) and 1-specificity
(false positive rate). Initially, we identified the specific operating point in the ROC space
corresponding to the conventional BQ, indicating the combined sensitivity (ability to cor-
rectly identify cases at high risk of OSA) and specificity (ability to correctly identify low or
non-OSA cases) achieved without integrating ML techniques. Subsequently, we compared
this point with the performance of the ML-enhanced models (both ML-10 and ML-2) at
equal specificity and equal sensitivity, by vertically and horizontally adjusting them from
the BQ point until the ROC curve of the ML-10 model was intersected. This approach
allowed us to evaluate how ML-10 and ML-2 could enhance sensitivity while maintaining
the specificity of the conventional BQ, and vice versa.

Subsequently, we extended our analysis to evaluate the ML-10 and ML-2 models
across two different AHI thresholds (AHI ≥ 15, and AHI ≥ 30) referenced in the literature
to classify OSA as moderate to severe, or severe, respectively [1]. For this purpose, the
ROC curve was utilized to assess the classifier performance and to determine an “optimal”
prediction threshold that maximizes accuracy. Binary classifiers were derived from this
optimal operating point. Performance metrics including the Area Under the Curve (AUC),
accuracy, sensitivity, and specificity were used to measure the models’ effectiveness. All
computational analyses were performed using MATLAB software, version R2023b.

2.7. Ethical Considerations

The experimental protocol received approval from the Bioethics Committees of the
Local Health Authorities of Lecce (Protocol Number 74, dated 22 April 2022) and Milan
(Protocol Number CET Lombardia 5-PIO X-153 /23, dated 19 September 2023). Conducted
in full compliance with the Helsinki Declaration for Human Research, this study ensured the
ethical treatment and protection of all participants. Written informed consent was secured
from each subject who agreed to partake in the study, underscoring our commitment
to ethical research practices. The ethical considerations of the study were meticulously
outlined in the questionnaire introduction, designed in alignment with the principles
established by the Italian Data Protection Authority (DPA). Participants were informed
of their right to voluntary participation, with the explicit option to withdraw from the
study at any point should they choose to. The process of obtaining informed consent was
structured to emphasize the voluntary nature of participation, while highlighting that the
confidentiality and anonymity of all collected information would be ensured. This approach
ensured that participants were fully aware of their rights and the ethical standards of the
study, fostering an environment of trust and respect for individual autonomy.
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3. Results
3.1. Sample Demographics

The baseline characteristics of the participants were analyzed. Overall, 460 subjects
who had undergone HSAT were enrolled in this study. Of these, 141 were women, 257
were over 60 years old and 310 (67%) had an AHI ≥ 5, therefore being considered positive.
The median BMI was 27.38 kg/m2 (range 13–53 kg/m2).

Clinical features were compared between patients with and without suspicion of
OSA (cutoff AHI ≥ 5) and among the subgroups at three cutoffs (AHI ≥ 10, AHI ≥ 15,
AHI ≥ 30). The results are reported in Table 1. Compared to patients without OSA, those
with suspected OSA were older (<0.001 ***), more obese (<0.001 ***), sleepier (<0.001 ***),
and more likely to be men.

Table 1. Baseline characteristics of the cohort. Data are expressed as mean ± standard deviation. The
p-value represents the comparison between the AHI ≥ 5 (positive) and AHI < 5 (negative) groups.
A p-value < 0.05 was considered statistically significant and labeled with asterisks.

Negative
(AHI ≤ 5)

Positive
(AHI ≥ 15)

Positive
(AHI ≥ 30)

p Value
(Comparison between
Positive and Negative,
Cutoff AHI ≥ 5)

n 150 181 83
Age > 60 n (%) 60 (40) 117 (64) 53 (63) <0.001 ***
Female n (%) 52 (35) 39 (22) 11 (13) 0.19
Height (cm) 172.4 ± 9.8 174.1 ± 10.1 174.7 ± 8.06 0.94
Weight (kg) 77.6 ± 16.3 88.3 ± 16.9 93.4 ± 15.9 <0.001 ***
BMI (kg/m2) 26.0 ± 4.6 29.2 ± 5.6 30.7 ± 5.6 <0.001 ***

HSAT
AHI 2.5 ± 1.4 32.8 ± 15.7 45.7 ± 14.5 <0.001 ***
ODI 2.6 ± 1.8 31.3 ± 18.7 42.2 ± 14.8 <0.001 ***
LOS 92.6 ± 11.1 88.1 ± 10.3 85.5 ± 11.8 <0.001 ***
SpO2 mean (%) 89.8 ± 8.1 82.6 ± 7.7 81.1 ± 8.8 <0.001 ***

BMI = Body Mass Index; ODI = Oxygen Desaturation Index; LOS = Length of Stay.

3.2. Berlin Questionnaire Score and Metrics

The BQ was administered to all the participants, and the collected answers were
analyzed. Before delving into the specifics of the BQ scores, we categorized the subjects into
low versus high OSA risk groups based on the cutoff utilized in connection with the BQ,
which considers an AHI ≥ 5 as positive (high risk) [28]. Consequently, Table 2 compares the
high versus low OSA risk groups as determined by this BQ cutoff. It is important to clarify
that this initial categorization uses the ‘ground truth’ based on the AHI ≥ 5 threshold,
rather than the metrics derived from the questionnaire itself. The latter will be examined
subsequently to assess how well the BQ scores align with the established ‘ground truth’.
This approach allows for a direct comparison between the questionnaire categorization and
the clinical benchmark, providing insight into the BQ’s effectiveness in identifying patients
with varying levels of OSA risk.
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Table 2. Differences between low vs. high OSA risk groups. Statistical significance was determined
by the Mann–Whitney test and labeled with asterisks.

Items Z-Value Rank Sum p-Value

Snoring category
History of snoring −3.31 32,084 <0.001 ***
Very loud snoring −2.30 31,200 0.02
Snoring every night −0.08 3.4004 × 104 0.92
Bothersome snoring −1.70 3.2403 × 104 0.08
Interrupting night breathing 4.77 40,315 <0.001 ***

Symptoms category
Tired upon awakening 4.25 39,622 <0.001 ***
Tired while daytime 3.29 38,386 <0.001 ***
Dozing off while driving −5.39 29,418 <0.001 ***
Frequency of dozing off 4.33 37,442 <0.001 ***

Hypertension category
High blood pressure −7.34 2.5476 × 104 <0.001 ***

In our sample, the high-risk OSA group had a significantly larger proportion of respon-
dents reporting frequent snoring compared to the low-risk group (p < 0.001). The high-risk
group also reported more breathing interruptions than the low-risk subjects (p < 0.001).
Fatigue and somnolence upon awakening and during the daytime were also significantly
more present in the high-risk group compared to the low-risk group (p < 0.001). High blood
pressure was also highly reported in subjects with a high risk of OSA, and this difference
was statistically significant (p < 0.001). Following the administration of the BQ and the
subsequent data collection, we calculated the BQ scores as prescribed by its guidelines.
The outcomes of this analysis, including the accuracy, sensitivity, and specificity of the BQ,
are detailed in Table 3. The ROC space is shown in Figure 1, where a red point indicates
the BQ position. Notably, the classic BQ is positioned in the upper right corner of the
evaluation plot, approaching the point (1, 1), which represents the maximum sensitivity
and minimum specificity. This characteristic reflects the aim of the BQ to function as a
high-sensitivity screening tool, intended to minimize false negatives even at the cost of
accepting a higher number of false positives.

Table 3. Comparing the performance of the standard BQ, the BQ enhanced through Machine Learning
(ML-10) and the simplified BQ (i.e., BQ-2) enhanced through ML (ML-2), using metrics such as the
AUC, Sensitivity, and Specificity. Note that the Sensitivity and Specificity for ML-10 and ML-2 were
obtained with the procedure described in the text (i.e., by preserving BQ Specificity or Sensitivity,
respectively), at specific points A10/A2 and B10/B2 (see Figure 1).

BQ ML-10 ML-2

AUC (not applicable) 86% 78%
Sensitivity 82% 93% (Figure 1, point B10) 88% (Figure 1, point B2)
Specificity 53% 73% (Figure 1, point A10) 54% (Figure 1, point A2)

AUC = Area Under the (ROC) Curve.
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Figure 1. ROC comparison among the standard BQ, the BQ enhanced through Machine Learning
(ML-10), and the simplified BQ (BQ-2, [22]) enhanced through Machine Learning (ML-2). AHI ≥ 5
was used as the cutoff. Although some statistical software also associates AUC values with classifiers
with binary output (when just one point exists in the ROC space), we preferred to neglect this feature
and only drew the particular BQ working point (red point in the plot) that gives the BQ performance
in terms of fixed sensitivity and specificity. A2 and A1 are the intersection points of a horizontal line
from BQ, with the ML-2 and ML-10 ROC curves. B2 and B10 are the same for a vertical line (see text
for details).

3.3. The ML-10 Model

To determine whether the ML-10 and the reduced version ML-2 outperform the
traditional BQ in predicting patients at a high versus low risk of OSA, we conducted
a comparative analysis using the same threshold used in the standard BQ (AHI ≥ 5).
By employing the same AHI ≥ 5 threshold across all models, we ensured a consistent
basis for comparison, enabling a clear understanding of the potential advantages offered
by integrating ML techniques into the traditional BQ assessment. Figure 1 presents the
ROC space comparing the three models (BQ, ML-10, and ML-2), and Table 3 reports the
calculated metrics. Consider Figure 1. By maintaining the BQ level of sensitivity (through a
horizontal displacement in the ROC space from BQ coordinates to point A10), the ML-10
model showcased a remarkable specificity of 73%, significantly outperforming the BQ
(53%). This improvement indicates the ML-10 model’s enhanced capability to correctly
identify individuals without OSA at a fixed sensitivity, thereby reducing the incidence
of false positives. Conversely, when aligning with the BQ specificity level (via a vertical
displacement from BQ to point B10), the ML-10 model demonstrated a sensitivity of 93%, a
substantial increase from the BQ (82%). This indicates the ML-10 model’ superior ability to
accurately detect individuals at a high risk of OSA at a fixed specificity, lowering the risk of
overlooking affected patients.
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Additionally, ML-2 also showed (smaller) improvements when compared to the con-
ventional BQ, and (as expected) its figures of merit were smaller than those of ML-10 (points
A2 and B2 in Figure 1).

Recognizing the importance of a nuanced clinical evaluation, we expanded our anal-
ysis to investigate how well the ML-10 and ML-2 models distinguish between patients
across different levels of OSA severity. This step involved utilizing two AHI thresholds
(AHI ≥ 15, and AHI ≥ 30) commonly referenced in the literature to categorize OSA severity
as moderate to severe, and severe, respectively [1]. The outcomes of this comprehensive
evaluation are presented in Figure 2 and Table 4. Before all, we realized that the AUCs
for ML-10 (0.85 and 0.88) were (slightly) better than the AUCs for ML-2 (0.82 and 0.87),
being AHI ≥ 15 and AHI ≥ 30, respectively. Then, by arbitrarily selecting the ones that
yield the highest accuracy as the optimal thresholds for the classifier output (therefore
precisely defining working points in the ROC space), the performance of the ML-10 model
consistently remained high across the two AHI thresholds and larger than that of ML-2,
except in one case where, compared to the ML-10 model, ML-2 had higher sensitivity when
assessing moderate to severe OSA with a cutoff of AHI ≥ 15 (88% vs. 70%, at similar
Accuracy): this is not particularly relevant because we also remark that the corresponding
specificity is lower than ML-10’s.
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Table 4. Metrics comparison among ML-10 model and BQ-2 model in assessing OSA severity with
the two cutoffs (AHI ≥ 15, AHI ≥ 30).

AHI ≥ 15 AHI ≥ 30

ML-10
AUC 85% 89%
Sensitivity 70% 69%
Specificity 81% 93%
Accuracy 77% 89%

ML-2
AUC 83% 88%
Sensitivity 88% 60%
Specificity 69% 92%
Accuracy 76% 86%

4. Discussion

OSA is increasingly recognized as a significant concern within global health and
economic contexts, underlining the importance of its early detection and diagnosis in the
realm of preventive medicine [1,17,31]. The prompt identification of OSA is essential for
initiating timely interventions, which can mitigate a broad range of associated health risks
and enhance patient outcomes. Given that the standard diagnostic test for OSA, namely
in-laboratory PSG, is expensive and often subject to long wait times due to high demand,
there is a clinical imperative to identify the key factors and develop a simple yet reliable
tool for estimating the OSA risk [17,18]. In general, BQ has an expectedly high sensitivity,
as this tool has been developed for the identification of patients at a high risk of OSA in
primary care settings. Despite this advantage, the BQ’s low specificity and consequent
high misclassification rate reveal its limited discriminatory capability, rendering its utility
comparable to subjective clinical judgments [30,32]. In the quest for a straightforward
questionnaire to ascertain OSA risk, clinicians are demanding enhancements to existing
tools. Arunsurat et al. [33] posited that with certain modifications, the BQ could serve
effectively as an OSA screening instrument. Furthermore, Stelmach-Mardas et al. [34]
added to the growing body of evidence indicating the BQ’s inadequacy in distinguishing
between high- and low-risk patients, suggesting the need for the development of alternative
protocols to heighten the diagnostic precision for such individuals.

In this research, we sought to advance the capabilities of the traditional BQ through
the integration of ML techniques. Our research integrates ML models with the standard
BQ to harness Artificial Intelligence capabilities for analyzing patterns and correlations in
data that might not be immediately apparent to human evaluators. This method facilitates
a more detailed assessment of risk factors, potentially identifying the subtle signs of OSA
risk overlooked by conventional approaches. To determine whether our ML-10 and the
simplified two-item version ML-2 outperform traditional BQ in predicting patients at a
high versus low risk of OSA, we conducted a comparative analysis using the established
threshold used in the standard BQ (AHI ≥ 5) and by comparing points in the ROC space.
The findings underscore the efficacy in terms of sensitivity and specificity of the ML-10
model when contrasted with conventional BQ. A sensitivity of 93% at the same specificity
as conventional BQ indicates that the model can correctly identify 93% of individuals (at
low or high risk of OSA), operating with the same TN-rate. This result is significant as it
demonstrates that, while maintaining the same rate of false alarms (1—Specificity), the ML-
10 model is more effective in detecting OSA risk cases compared to conventional BQ. On the
other hand, a specificity of 73% at the same sensitivity as conventional BQ emphasizes that
the ML-10 model reduces the number of false positives (healthy individuals erroneously
identified as at risk of OSA) compared to the conventional BQ, while still correctly detecting
82% of true positives. In this way, the ML-10 model shows excellent performance in
identifying non-risk cases, surpassing conventional BQ.
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These results indicate that the ML-10 model surpasses conventional BQ both in terms of
sensitivity (when specificity is maintained) and specificity (when sensitivity is maintained).
This implies that, depending on clinical or screening needs, the ML-10 model can be
adjusted to optimize the ability to detect OSA risk cases (by maximizing sensitivity) or the
ability to reduce false positives (by maximizing specificity), offering a more flexible and
accurate approach in the diagnosis of OSA.

In the comparative evaluation between conventional BQ and the classifier based on
its simplified version, the results indicate that ML-2, despite the significant reduction in
the number of questions to only two, slightly outperforms BQ in terms of sensitivity and
specificity (fixing one of the two variables at the BQ value). Additionally, the use of ML-2
offers the flexibility needed to adjust the operating point on the ROC curve depending on
the specific needs of clinical or screening applications, thus providing a potential advantage
in terms of customizing the diagnostic approach.

After assessing the ML-10 and ML-2 performance against traditional BQ using a
single cutoff, we expanded our analysis to include two clinically relevant AHI cutoffs.
This step involved utilizing two AHI thresholds (AHI ≥ 15, and AHI ≥ 30) commonly
used in the literature to categorize the OSA severity as moderate to severe, and severe,
respectively [1]. The decision to employ these specific AHI thresholds is rooted in their
widespread acceptance and use in clinical practice and research for defining the severity of
OSA. Such a differentiated approach allows for a more detailed assessment of the models’
performance, providing insights into their predictive capabilities across a spectrum of OSA
severity. This is particularly relevant for clinicians and healthcare providers seeking to
tailor interventions and management strategies based on the severity of the condition.
By choosing the optimal threshold for maximum accuracy, the ML-10 model performance
consistently demonstrated its strength at both AHI thresholds.

These results highlight the potential for a more streamlined and efficient screening pro-
cess. By examining whether a simplified model can retain or surpass the full BQ predictive
accuracy, this study suggests the possibility of more accessible and less cumbersome OSA
screening approaches. This is especially pertinent in primary care environments or areas
with limited access to specialized sleep medicine services, where a rapid and dependable
screening tool could significantly improve the early detection of individuals at risk of OSA.
However, we should consider that using only two questions likely makes the test sensitive
but not specific, as various diseases could present with the same broad symptoms.

The present study is subject to several limitations that merit consideration. Firstly,
the participant cohort was drawn exclusively from two hospitals in Italy, limiting the
data set representativeness of the broader population. Consequently, the predictive model
developed herein might not possess widespread generalizability, potentially limiting its ap-
plicability to populations beyond the initial study setting or to diverse ethnic groups [24,35].
Secondly, this observational study did not account for undiagnosed medical conditions
commonly associated with OSA, such as neurological, cardiovascular, and pulmonary
disorders. The absence of these variables could impact the model’s predictive accuracy.
Furthermore, our model lacked detailed anthropometric imaging or measurements, which
might have restricted its ability to identify disease-specific causes of OSA accurately.

In light of these limitations, there is a clear need for further research to enhance the
model’s robustness and applicability. To this end, we are planning a prospective clinical trial
aimed at evaluating ML-10 and ML-2 across a more representative sample of the general
population. This forthcoming trial is expected to address the current study limitations by
incorporating a broader range of demographic and clinical variables, thereby improving
the model’s predictive performance and generalizability.

5. Conclusions

Given the substantial proportion of individuals still undiagnosed with OSA, coupled
with the current absence of definitive diagnostic biomarkers for the condition, there is a
pressing need for improved screening methodologies. The BQ, when enhanced with ML
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techniques, stands out as a significant advancement in this regard. This study discovered
that the ML-10 model was particularly effective in identifying individuals at risk of OSA
with greater accuracy than the traditional BQ. By integrating ML techniques, we achieved
a notable improvement in sensitivity and specificity, highlighting the potential of ML
to refine diagnostic processes. This suggests that the ML-10 model can more effectively
distinguish between high-risk and low-risk individuals, thereby reducing the likelihood
of false positives and negatives. Furthermore, ML-2, with its reduced question set, also
showcased its utility by maintaining slightly better diagnostic accuracy than the full BQ
while offering a more streamlined and accessible screening tool. This adaptation could
facilitate wider screening efforts, particularly in primary care settings or areas with limited
access to sleep medicine specialists. Additionally, the flexibility of the classifier allows
for adjustments across different operating points, enabling the selection of an optimal
threshold that best balances sensitivity and specificity for the targeted population. This
adaptability is crucial in tailoring the screening process to diverse clinical environments
and patient needs, optimizing the early detection and management of OSA.

Moreover, the application of the ML-10 model extends beyond the commonly used
AHI threshold of the standard BQ (AHI ≥ 5), demonstrating its utility across other clinically
relevant AHI thresholds, specifically ≥15 and ≥30, which are frequently used in the
literature to categorize the severity of OSA as moderate to severe, and severe, respectively.
This versatility underscores the model’s ability to adapt to varying clinical requirements,
offering a nuanced approach to diagnosing OSA across its spectrum. Such adaptability
ensures that the ML-10 model is not only a tool for preliminary screening but also a
significant asset in stratifying OSA severity, thus enhancing the precision of diagnostic
decisions and subsequent management plans.

By leveraging these insights, healthcare professionals can better stratify individuals
based on their risk levels, paving the way for more tailored diagnostic and management
strategies for sleep apnea. ML-10 embodies the potential to transform the approach to
diagnosing OSA, offering a more individualized assessment of risk. Looking forward,
the insights gained from this research could serve as a foundation for further innovations
in the field, ultimately leading to earlier detection, improved patient outcomes, and a
reduction in the healthcare burden associated with OSA. These results can be achieved with
minimal effort, because no modification to the BQ itself is necessary. The approach does not
necessitate developing new questions or methodologies; instead, it leverages AI techniques
to optimize an existing, widely used tool. This means that new screenings could achieve
greater accuracy, and previously administered questionnaires could be easily re-examined
using the ML-10 model. Consequently, more cases of OSAS could be identified, and more
healthy individuals could be correctly reassured. In the end, this study underscores the
value of combining traditional clinical assessment tools with cutting-edge technology to
address complex health challenges, marking a significant stride towards the future of
personalized medicine in sleep health.
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