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A B S T R A C T

In this study, we introduce an innovative deep learning framework designed to achieve precise detection,
localization, and rate estimation of gas distribution pipeline system leakages. Our method surpasses conven-
tional statistical approaches, particularly those based on Bayesian inference, by accommodating the system’s
intricate behaviors, including variable usage and production from both sources and sinks. Notably, our
approach demonstrates remarkable accuracy in localizing leakages even amidst multiple occurrences within
the system. Specifically, achieving over 98% accuracy in single-leakage scenarios underscores its effectiveness.
Furthermore, through data augmentation involving the introduction of noise into the training dataset, we
significantly enhance the model’s performance, particularly when tested against real-world-like noisy data.
This study not only showcases the efficacy of our proposed deep learning framework but also underscores its
adaptability and robustness in addressing complex challenges in gas pipeline systems.
1. Introduction

The continuous expansion of gas networks, spanning thousands of
kilometers annually, underscores their crucial role in long-distance
transportation and local distribution. Ensuring the integrity and safety
of these extensive systems is essential for a reliable gas supply. Gas
leaks pose significant risks, including environmental damage, property
damage, and personal injury. Effective leak detection mechanisms are
indispensable for preventing such failures and preserving the integrity
of gas networks.

Advancements in pipeline infrastructure have led to various leak de-
tection techniques. The negative pressure wave technique uses pressure
waves generated by leaks to indicate their presence [1]. Acoustic pres-
sure wave detection explores acoustic emissions from leaks [2]. Pres-
sure Point Analysis (PPA) compares current pipeline pressure data to
historical records to identify leaks [3]. Wavelet transform technology,
combined with an average-weighted localization scheme, is effective in
detecting and locating leaks in linear pipelines [4]. Other methods, such
as frequency response-based approaches [5,6], mass/volume balance
analysis [7], and steady-state or transient models [8], offer additional
leak detection and assessment avenues but may struggle with complex
pipeline networks.
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The interconnected nature of gas distribution networks poses chal-
lenges for effective leak detection and localization. Traditional meth-
ods, suitable for single-pipe scenarios, are inadequate for these com-
plex networks. Conventional methods, including manual patrolling,
are time-consuming and inefficient [9,10]. Recent advancements in
sensor technology have led to real-time leak detection systems utilizing
distributed temperature sensors [11–13], acoustic sensors [14], and
pressure/flow sensors [15]. However, these systems can suffer from
false alarms and faulty diagnostics due to sensor noise and environ-
mental interference. Moreover, the need to place sensors at all nodes
presents practical challenges.

Deep learning offers a potent solution to the challenges of leak
detection and localization in gas networks [16–24], categorized into
supervised and unsupervised techniques. Supervised methods lever-
age extensive datasets encompassing normal and leakage conditions.
Recently, some models have integrated artificial intelligence into dig-
ital twins of gas networks [25,26], enhancing their capability for
leakage detection. A digital twin emulates a physical system using real-
time data, simulations, and machine learning to replicate real-world
behavior and performance.

However, these digital twin and deep learning-based solutions heav-
ily rely on access to comprehensive datasets containing anomalies
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indicative of leakage. The scarcity of such anomalous events in opera-
tional data makes data acquisition time-consuming and impractical for
large-scale networks. Training models on small-scale lab setups poses
challenges for real-world applicability due to issues like ambient noise
and disturbances.

Unsupervised models train deep learning models to produce output
identical to their input, functioning as identity operators. These models
rely on the premise that deviations from the trained data represent
anomalies [23,24]. While effective in detecting anomalies, these models
may misinterpret unusual system operations or natural pipeline aging
as anomalies, limiting their real-world applicability.

Researchers have developed mathematical models and probabilistic
approaches for leak detection and localization, but these methods often
have limitations, such as being restricted to single leaks or requiring
sensors at all nodes. The Leak Analytics System (LAS) uses statistical
analysis to detect leaks and approximate their location with some
accuracy [27]. However, analyzing a small number of potential leak lo-
cations limits its applicability, especially in large-scale network failures
due to natural hazards.

A critical oversight in both classical and deep learning-based meth-
ods is the neglect of the random nature of sinks and sources in real-
world gas networks. The variable nature of sinks and sources introduces
additional complexity and statistical variations. An unusual increase in
sink usage due to extreme weather conditions might be erroneously
flagged as a leak by unsupervised techniques. Classical models struggle
to consider such factors due to the vast number of simulation scenarios
required.

We propose a deep learning digital twin solution tailored for leak
detection and localization, accounting for the random nature of sinks
and sources in gas networks. Our method operates effectively with only
a few sensors in large-scale networks. The training and validation of
our method are conducted on simulated scenarios from a complex gas
network. This simulation-based approach facilitates the incorporation
of rare leakage scenarios and accommodates network changes, such as
aging or modifications to the topology.

For comparison with the latest classical models, we chose the gas
network featuring 25 sinks, with 6 selected as variable. Our findings
showcase significantly more robust performance compared to classical
models, even with variable sinks. Our method demonstrates heightened
resilience against sensor noise and disturbances, positioning it as a
more viable option for real-world applications.

2. Methodology

2.1. Gas network

We investigate by delving into a standardized example network
consisting of 38 nodes, 50 pipes, a gas inlet source, and 6 variable
sinks, as illustrated in Fig. 1. This particular network has been pre-
viously employed in studies focused on optimizing algorithms for gas
distribution networks, as referenced in prior works [27]. The pipe
diameters within this network span from 4 to 12 inches, and detailed
specifications can be found in Supplementary Table 1. Notably, the
average distance between adjacent nodes hovers around 100 m, with a
minimum distance of approximately 50 m.

The inlet node of this distribution network serves as the gas reduc-
tion station or pressure regulator node. This component is responsible
for converting high-pressure gas into safe and manageable low-pressure
levels. The primary objective of this pressure reduction station is to
uphold the outlet pressure at a predefined level, thereby ensuring con-
sistent gas delivery across the entire network. Specifically, our target
outlet pressure in this scenario is precisely 5 kPa. Within this network,
we explored six potential leak locations, all strategically positioned at
the junctions. It is worth noting that junctions and pipe connections
emerge as the most probable sites for leakage occurrences, as noted in
prior literature [27–30].
2 
2.2. Gas network simulation

The simulations conducted in this study were executed using the
Pandapipes package in Python. This package uses the Newton–Raphson
method, which adeptly solves for the steady-state flow in gas pipe
networks. Automation was employed to simulate various scenarios, and
the resultant data has been stored for subsequent multivariate analyses.
The Pandapipes package accounts for meteorological conditions such
as ambient and gas temperature and pressure, as well as the thermal
conductivity and thickness of the pipes. In our simulations, we assumed
an ambient temperature of 293 degrees Kelvin at one atmospheric pres-
sure for the surrounding environment, appropriate for above-ground
pipes at sea level. This value should be adjusted for underground
pipes to account for different environmental conditions. Among all the
stored data, only 6 pressure points and 6 flow rates (as illustrated in
Fig. 1) have been chosen for the multivariate and deep learning training
analysis.

Please note that to accurately determine leak locations in a gas
network with ‘‘m’’ variable elements and ‘‘n’’ possible leak sites, it is
essential to have at least ‘‘m + n’’ independent sensor readings. This
requirement arises from the need to solve a set of nonlinear equations
that describe the system’s behavior. Each sensor reading provides an
independent equation, and having ‘‘m + n’’ readings ensures that
we have sufficient information to determine the ‘‘m + n’’ unknown
parameters (i.e., the variable sink usages and potential leak locations).
These readings can be any combination of pressure or flow sensors,
provided they are independent.

2.3. Data pre-processing

All recorded data underwent a comprehensive data normalization
step prior to any multivariate and deep learning analysis. This crucial
step involved linearly mapping all sensor readings to set the mean of
each sensor reading to zero and standardizing the variance to one, a
process known as z-score normalization. Specifically, for each sensor
reading 𝑥𝑖, the normalized value 𝑧𝑖 was calculated using the formula:

𝑧𝑖 =
𝑥𝑖 − 𝜇
𝜎

(1)

where 𝜇 represents the mean of the sensor readings and 𝜎 represents
the standard deviation. This normalization process is essential due to
the significant differences in numerical values between flow meters and
pressure meters. Without normalization, these discrepancies can lead to
poor model performance, as the varying scales can disproportionately
influence the learning process in both multivariate and deep learning
models. By ensuring that all sensor readings are on a common scale, the
normalization step helps to improve the convergence of optimization
algorithms and enhances the generalization capabilities of the models.
Additionally, it mitigates the risk of numerical instability and ensures
that the models treat all input features with equal importance, thereby
facilitating more accurate and robust analysis.

2.4. Deep neural network architectures

The primary goal of this study is to develop a deep learning model
capable of identifying one or multiple leakages within a gas network.
Our proposed approach involves segregating the task of leakage detec-
tion (determining whether there is any leakage) from the processes of
localization and rate detection. The rationale behind this separation lies
in the enhanced robustness achieved by first establishing the presence
or absence of a leakage before delving into its precise localization.

Mathematically, this approach is grounded in probability theory.
For instance, if the chance of identifying no leakage at a location is
represented by 𝑢, then on 𝑇 possible leak locations, the probability
of identifying no leakages is 𝑢𝑇 . This value would be considerably
smaller than 1− 𝑢𝑇 , which represents the probability of having at least
one location with leakage. This substantial difference in probabilities
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Fig. 1. The schematic of the gas network used in this study. Details such as the diameter and length of each pipe are presented in the supplementary information. The possible
leak locations are selected to be the junctions, as these are the most likely sites for leaks [27–30]. The variable sinks are considered to consume gas with rates randomly sampled
from a Gaussian distribution with a mean of 0.0075 kg/s and a variance of 0.001 kg/s.

Fig. 2. (a) The neural network schematic features two residual block stacks connected to an input layer, expanding sensor data dimension to 100 nodes. Output nodes include
one for binary leak detection, and for leak identification, there are nodes equal to possible leak locations for binary classification, along with nodes for estimating leakage rates.
(b) A flowchart illustrating the workflow of the presented deep learning models. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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underscores the challenge of confirming the absence of leakage across
all potential leak locations simultaneously. Therefore, by prioritizing
the initial investigation of the presence or absence of leakage, we
navigate the inherent complexity of verifying a non-leakage scenario
across numerous potential locations. This underscores the robustness
of our approach, ensuring a more reliable foundation for subsequent
localization and rate detection tasks.

The schematic illustrated in Fig. 2 is the architecture of the neural
network employed in this study, comprising two stacks of residual
blocks connected to the input layer. The input layer serves as the gate-
way for passing sensor data into the neural network. The output of the
residual block is then connected to a layer with 100 nodes, effectively
expanding the sensor data dimension to 100 through the nonlinear
mapping of the residual blocks. This strategic mapping enhances the
network’s capability to capture intricate patterns within the sensor
data. In This illustration, the blue ribbon shows the nodes while the
gray and green ribbons show the batch normalization and Exponential
Linear Unit (ELU) activation layer, respectively.

Orange rectangular boxes show the internal structure of the final
layer connected to the aforementioned neural network. For leak detec-
tion, a single node (yellow) is used for binary classification to determine
the presence or absence of a leak in the system. This node is accompa-
nied by a Sigmoid activation function to limit its corresponding output
between 0 and 1. Meanwhile, for leakage identification, the network is
configured to have output nodes (in yellow color) corresponding to the
number of possible leak locations. Each of these nodes is dedicated to
binary classification, discerning the existence of leakage at a specific
location, similar to the leak detection output, these nodes are followed
by a Sigmoid activation function.

Additionally, another set of nodes is incorporated to estimate the
leakage rate (blue color), providing a comprehensive understanding of
the potential leaks detected by the network. This design ensures the
neural network’s versatility in simultaneously addressing leak detec-
tion, identification, and rate estimation tasks within the gas network.

Please note that although the residual block section shares the same
architecture for both the leakage detection and identification networks,
they do not share the same weights and biases. Therefore, we are
indeed dealing with two independent networks.

In summary, the workflow of the presented method is depicted in
the flow chart located at the bottom of Fig. 2. Following the data
normalization process outlined in the previous section, the normalized
data is directed to the leak detection phase. If no leakage is identified
during this initial step, further investigation is unnecessary. However,
should a leakage be detected, the normalized data proceeds to the
leak identification network. This network not only localizes the leakage
but also provides an accurate estimate of its rate. This streamlined
process ensures efficient and effective detection and localization of gas
distribution system leakages.

2.5. Leak detection

2.5.1. Data
To statistically account for the extensive array of operational con-

ditions in the simulated gas network system, we conducted 20,000
simulation scenarios using the Pandapipes package in Python. This
comprehensive dataset comprises 10,000 scenarios representing the
normal operational state of the system, devoid of any leakage, and an
additional 10,000 scenarios introducing leakages with variable rates
ranging from 0.1% to 10% of the total consumption of the network.
Specifically, we allocated 50% of the leakage data, equivalent to 5,000
simulation scenarios, to the range of 0.1% to 1%, while the remaining
5,000 scenarios were assigned to the 1% to 10% range of leakage
rates. This deliberate distribution emphasizes addressing challenging
scenarios where the leakage rate is notably low compared to the overall
gas network consumption. Please note that the simulations used in this

study are steady-state. This means that all gas outflows, including sinks
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and leakages, are assumed to have reached equilibrium. Consequently,
leakages are modeled as sinks with an unknown flow rate.

For the gas network, we incorporated six variable sinks, with
their usages sampled from a Gaussian distribution with a mean of
0.0075 kg/s and a variance of 0.001 kg/s for both normal and leakage
datasets. This meticulous approach is pivotal, as variations in sink
usages can mimic the behavior of leakages, adding complexity to
leakage detection and identification while significantly enhancing the
robustness of the detection method.

2.5.2. Leakages statistics
We considered the possibility of all potential locations experiencing

leaks in each simulation. The number of leakages for each scenario
was randomly selected between one and all possible leak locations. For
instance, in the case of our gas network, there is a 1/6 chance of having
only one leakage, a 1/6 chance of having two leakages, and so on.
This fair selection of the number of leakages aims to create a dataset
that encompasses a broad spectrum of leakage scenarios, accounting
for various circumstances such as large-scale disasters or aging-related
leaks. The probability of each possible leak location being the source
of leakage is formulated as follows:

𝑝 = 1 − 1
𝑇

𝑇
∑

𝑚

𝑇−1𝐶𝑚
𝑇𝐶𝑚

𝑝 = 𝑇 + 1
2𝑇

(2)

In the context of our analysis, let 𝑇 represent the total possible
number of leakage points within a given system, and denote 𝑚 as
the actual number of occurrences of leakage. The term 𝑇𝐶𝑚 signifies
the combination of 𝑚 leakages chosen from the possible 𝑇 leakage
locations. Importantly, 𝑇−1𝐶𝑚 takes into account combinations where
a specific leakage point is excluded from the selection. The division
of this term by the total number of combinations (𝑇𝐶𝑚) provides the
probability that, out of the 𝑚 selected leakage points from the total of
𝑇 , a particular leakage point is excluded. As the selection of the number
of leakage occurrences (𝑚) is a random choice ranging from 1 to 𝑇 , we
can normalize this probability by dividing it by 𝑇 and summing over
all possible values of 𝑚. It is crucial to note that, up to this point, we
have calculated the probability of excluding one specific location; thus,
subtracting this probability from 1 yields the probability of having that
specific location as the point of leakage. This equation can be simplified
and rewritten, as illustrated at the bottom of Eq. (2). This analytical
derivation is used in the next section for dealing with unbalanced data.

2.5.3. Data partitioning strategy and augmentation
To facilitate Neural Network training, we strategically divided the

dataset, allocating 80% for training, 10% for validation, and the re-
maining 10% for testing purposes.

In our pursuit of method robustness and resistance to sensor noise
impact, we incorporated a data augmentation step. This involved intro-
ducing a Gaussian noise with a variance of .05%, .25%, and .5% percent
of the sensor’s average reading to both the training and validation
datasets, effectively tripling their sizes. The rationale behind this aug-
mentation is twofold. Firstly, during the training phase, we anticipate
the neural network learning to effectively ignore noise, thereby en-
hancing its performance in the presence of such disturbances. Secondly,
the expanded dataset resulting from augmentation serves as a powerful
tool to counter overfitting, promoting heightened generalization of the
network.

2.6. Leak identification

The main difference between the leak identification and leak detec-
tion models lies in the composition of their training datasets. The neural
network designated for leak identification exclusively operates with

leakage data, necessitating 20,000 simulation data points concentrated
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solely on leakage scenarios. To ensure a fair and uniform distribution
of leakage rates for the regression tasks, the leakage rate is uniformly
sampled between 0.1% and 10% of the total network consumption. This
deliberate selection enhances the model’s ability to accurately identify
and quantify leakages across a broad spectrum of scenarios.

Please note that the strategies for data augmentation and segmen-
tation are similar between leak detection and identification models.
However, the more intricate output layer of the leak identification
model necessitates additional attention, as elaborated in the following
paragraphs.

2.6.1. Multi-label classification and inherently unbalance data
In the context of the leakage identification network, a critical con-

sideration arises from the potential occurrence of multiple leakages
simultaneously, which transforms the problem into a multi-label classi-
fication task. This complexity is compounded when ensuring fairness in
selecting the number of leakages. As discussed earlier, this inherently
leads to unbalanced data for each label, as outlined in Eq. (2). To
tackle this challenge within the leak identification model, employing a
weighted loss becomes imperative. This approach enables the network
to appropriately weigh the impact of different leakage scenarios based
on their significance. The weights for the weighted binary cross-entropy
loss can be calculated using the probabilities derived in Eq. (2).

On the other hand, it is worth emphasizing that for the leakage
detection network, achieving balanced data is more straightforward.
This has been accomplished by designing 10,000 scenarios representing
normal system operations and an additional 10,000 scenarios intro-
ducing leakage. Consequently, a standard binary cross-entropy loss
function suffices for training the network in this context.

2.7. Neural network training

We implemented all the presented deep learning models using the
TensorFlow open-source package in Python. For training the models,
we utilized the Adam optimizer.

During the training process, two callbacks were employed to mon-
itor progress. The first callback monitored the validation loss to save
the best model based on validation loss criteria. Meanwhile, the second
callback monitored the validation loss. If no improvement occurred
after 20 consecutive epochs of training, it triggered a reduction in the
learning rate by a factor of 0.1. The initial learning rate was set to be
10−3.

3. Results and discussion

3.1. Leak detection

The learning curve of the leak detection model is depicted in
Fig. 3(a1), illustrating the accuracy of both the training and validation
data across 100 epochs. Fig. 3(a2) presents the model’s accuracy on
the testing dataset. Notably, the network demonstrates remarkable
accuracy exceeding 99% for leak rates between 1%–10%. Even for leak
rates of 0.1%–1%, the network maintains an accuracy of around 95%,
showcasing robust performance even with minor leaks. This result is
comparable to the findings presented in [27], with the main distinction
being that our achieved result accounts for 6 variable sinks with a
random consumption pattern.

The confusion matrix for the entire testing dataset, including high
and low leakage rates, is displayed in Figures 3(b1)–(b3) respectively.
An interesting observation is the minimal false positives observed
across all scenarios, with only three instances of normal system states
being misclassified as leaks. As previously discussed, this small occur-
rence may arise from the statistical behavior of variable sinks, which
can resemble leak behavior on selected sensors.

For a clearer visualization of the testing dataset’s topology, we em-

ployed Uniform Manifold Approximation and Projection (UMAP) as a
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form of unsupervised learning to project the testing data corresponding
to low leakage rates and 500 samples of normal system operation
into a two-dimensional plane (Fig. 3(c1)). In this projection, normal
operation is represented in blue, while leakage is shown in orange.
Notably, both normal and leakage states exhibit similar distributions,
occupying almost the same area on the projection plane. Variations in
the projected points arise from the random nature of variable sinks
within the system.

An additional output from the layer connected to the output layer
of the model (with 100 nodes in Fig. 2) provides a nonlinear map, map-
ping input data to a 100-dimensional space. We have also performed
the UMAP projection on the result of this nonlinear map, as depicted in
Fig. 3(c2). Here, it is evident that the majority of leakage data is distinct
from the normal state of the gas network, highlighting the effectiveness
of the discovered nonlinear map by the proposed deep learning model
in distinguishing leaks from normal system states.

We also investigated the impact of noise on the model’s performance
by adding varying levels of noise to the testing set. Fig. 3(d) showcases
the model’s accuracy when evaluated with different levels of noise. For
comparison, we conducted the same test without employing the data
augmentation strategy discussed in the methods section.

Clearly, data augmentation significantly enhances the model’s per-
formance, even in the presence of noisy data, including instances with
noise levels four times higher than those present in the augmented
training and validation datasets.

3.1.1. Test on the generalization of the model
We further evaluated the model’s performance by testing it under

normal scenarios (without leakage) where the mean usage of variable
sinks deviates significantly from that of the training dataset. Specif-
ically, we considered mean values of 0.0085 kg/s and 0.0065 kg/s,
maintaining the variance identical to that of the training data
(0.001 kg/s) for high and low sink usage, respectively. Although the
sink usage pattern has changed (significantly increased or decreased),
these scenarios still represent the normal operation of the system.
Therefore, an ideal leakage prediction model should be able to detect
them as the normal state of the system.

This test serves to assess the model’s ability to discern sink usage
patterns from sensor data to detect leaks effectively. Additionally,
it evaluates the model’s capacity to generalize and make accurate
predictions beyond its training dataset.

The statistical distribution of readings from all 12 sensors is illus-
trated in Fig. 4(a). Here, red denotes higher consumption of variable
sinks, while blue and green represent the distribution of training data
and lower consumption, respectively. Furthermore, orange depicts the
statistical distribution of leakage ranging from 0.1% to 1% in the testing
dataset.

An intriguing observation is that the distribution of leakage across
these sensors predominantly falls between the consumption levels con-
sidered for the training dataset and the higher consumption range.
This was expected, as leaks bear closer resemblance to higher sink
consumption rather than lower.

To assess the network’s ability to detect leaks amidst varying sink
consumption levels, we utilized UMAP to project this data before and
after network application. The results are depicted in Figures 4 (b1)
and (b2) for the original and transformed data, respectively, into 100
dimensions using the proposed model. Notably, Fig. 4(b2) demonstrates
that the network successfully generalized the problem, with all normal
system states projected closely together on the plane while leakage data
was distinctly separated.

For quantitative analysis, we conducted classification over data
with lower and higher consumption levels and depicted the resulting
accuracy in Fig. 4 (b3). As anticipated, almost all instances of lower
consumption were correctly identified as normal system states, with an

accuracy rate nearing 97% for instances of higher consumption.
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Fig. 3. (a1) Learning curve and model accuracy during training across 100 epochs. (a2) Accuracy over the testing dataset. (b1)–(b3) Confusion matrices for all, high leakage rate,
and low leakage rate, respectively. (c1) and (c2) UMAP projections of sensor data before and after model projection, respectively. (d) Sensitivity comparison of the trained model
with and without augmented data across various noise levels.
3.2. Leak identification

As mentioned earlier, the leak identification model aims to localize
leaks and estimate their rates. The learning curve of this model, trained
on augmented leakage data over 500 epochs, is depicted in Fig. 5 (a).
The sudden improvements observed at certain points in the learning
curve result from the reduction of the learning rate facilitated by the
employed callback mechanism.

The accuracy of leak localization, whether there are multiple or
single leakages presented in the gas network, is depicted in Fig. 5
(b1) and (b2), respectively. These results indicate that the proposed
model performs better in identifying leak locations when dealing with
only one leakage in the network. Although the model’s performance is
weaker in scenarios with multiple leakages, it still achieves accuracy
beyond 97% for certain leakage sites. This result, akin to the leak de-
tection findings, demonstrates enhanced performance compared to the
Bayesian analysis method introduced in [27]. However, a significant
difference lies in the neural network’s capability to effectively manage
6 variable sinks while still producing accurate results.

We also examined the impact of sensor noise and data augmentation
on the performance of the proposed model, as shown in Fig. 5 (c). Simi-
lar to the leak detection model, the model trained with augmented data
demonstrates significantly improved robustness against noise. This un-
derscores the importance of our proposed data augmentation technique
in enhancing the final model performance.
6 
The first 20 examples of the testing set are also presented as heat
maps in Fig. 5 (d1)–(d4). Fig. 5 (d1) illustrates the locations of leaks
as heat maps for each testing scenario. Each row of this heat map
represents one of the leakage scenarios from the testing set. Dark red
indicates the presence of a leak at the identified location along the
horizontal axis, while light red signifies no leakage. Predictions made
by the proposed neural network are also depicted alongside the testing
set. It is evident that our method effectively identifies the majority
of leakages. To illustrate further, the difference between the predicted
leak location and the ground truth of the testing set is shown as a heat
map on the right side of the model prediction.

The heat map in Fig. 5 (d2) also portrays the leakage rates for
scenarios involving multiple leakages. Here, the model effectively es-
timates the rates of the leakages. However, upon closer inspection of
the difference between predicted and actual rates, it becomes apparent
that the model encounters challenges in accurately estimating leakages,
particularly at junctions 22 and 24. Notably, these locations exhibit
lower accuracy in leak detection compared to other potential leak sites
(refer to Fig. 5 (b1)).

Figures 5 (d3) and (d4) yield similar outcomes for scenarios where
only one leakage occurs in the system. These figures highlight the
significantly improved performance of the proposed model, not just in
localizing leaks but also in estimating their rates when dealing with
singular leakages. It is worth noting that the majority of leakages
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Fig. 4. (a) Distribution of sensor readings in the presence of leakage (orange), the normal state of the system used in training (blue), higher consumption of variable sinks (red),
nd lower consumption of variable sinks (green). (b1) UMAP projection of sensor data for the normal state (training dataset, lower variable sink consumption, and higher one) and
eakage state of the system before application of the developed model. (b2) UMAP projection of the mapped sensor data to 100 dimensions by the proposed model. (b3) Accuracy
f the classification of higher and lower variable sink consumption. Please note that The flow rates are defined from one junction to another, and this directional definition results
n some flow rates being negative. The negative values indicate the flow direction relative to the defined positive direction between junctions. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
ypically occur at a single location at any given time, with occurrences
f multiple leakages being rare and usually associated with large-scale
atastrophes such as earthquakes.

Similar to the leak detection case, we applied UMAP to the data
here only one leakage occurred. This unsupervised projection was
pplied to both the sensor data and their projection into a 100-
imensional space determined by the last layer of the model before
he output layer. Interestingly, UMAP not only identified the locations
f the leakages but also revealed a correlation between the resulting
rojection of the sensor data and the leakage rates (see Fig. 5 (e1) and
e2)). However, this unsupervised projection has its limitations, as data
ssociated with leak locations at junctions 6 and 18 are projected into
lmost the same location. A similar issue arises for leak locations at
unctions 22 and 24.

On the other hand, our method proves to be useful in improving the
erformance of this unsupervised technique. As depicted in Fig. 5 (e3)
nd (e4), the projected data shows a better separation between the data
oints for each leak location. For instance, the previously mentioned
ssue with leak locations at junctions 6 and 18 was completely resolved,
7 
while a significant improvement is observed in the classification of leak
locations at junctions 22 and 24.

In addition to the discussions on pressure, temperature, and sensor
placement, factors such as meteorological changes affecting precipita-
tion and additional noise in sensor readings are crucial considerations
for our model. These variables can potentially impact the accuracy
and reliability of simulations. Specifically, variations in meteorological
conditions like precipitation can introduce dynamic changes in pressure
within the gas network, influencing system behavior unpredictably.
Furthermore, sensor noise can distort readings, affecting the quality
of data used for training and inference. To mitigate these challenges,
our study employs data augmentation techniques tailored to enhance
the robustness of the model against such variations. By augmenting
simulated data with variations that mirror real-world conditions, our
approach ensures that the model is adequately trained to handle these
environmental and sensor-related factors effectively. Thus, while some
factors require careful consideration in simulation setups, our method-
ology leverages data augmentation to manage and adapt to these
challenges within the digital twin framework for gas network analysis.
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Fig. 5. (a) Learning curve. (b1) and (b2) Accuracy of the testing set for scenarios with multiple and single leakages in the gas network, respectively. (c) Noise sensitivity comparison
of the model trained with and without augmented dataset. (d1) and (d2) Examples of the testing set with multiple leakages and the corresponding predictions from the proposed
deep neural network. (d3) and (d4) Examples of the testing set with single leakage and the corresponding predictions from the proposed deep neural network. (e1) and (e2)
Projection of the single leakage data into a two-dimensional plane using UMAP, with (e1) colored based on the location of the leakage and (e2) each projected point colored
based on the leakage rate. (e3) and (e4) Similar projection using the transformed data of the last layer of the proposed model before the output layer. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
4. Discussion and conclusion

In this study, we propose a novel deep neural network framework
for investigating leakage occurrences within gas distribution systems,
using sparse sensor data collected from operational sensors. The pre-
sented method addresses critical issues such as handling inherently
unbalanced data, the need for a multilabel classifier to simultaneously
detect multiple leakages, and implementing a two-stage neural network
model for leak detection and identification. This two-stage approach
is strategically developed to reduce false positive leak detections. The
developed model has been tested and validated using simulation data
from a standard gas network with the Pandapipes package in Python,
but it can also be applied to results from other steady-state solvers or
real-world data.

Our method effectively manages complex interferences, including
unpredictable consumption patterns and noisy sensor readings, exhibit-
ing high accuracy in detecting leakage presence, pinpointing locations,
and estimating leakage rates. It shows resilience in handling multiple
leakage scenarios, such as those occurring during floods or earth-
quakes, demonstrating its practical utility in diverse and challenging
real-world conditions. The workflow involves an initial deep neural
network for detecting leakages, followed by a separate neural network
for identification, facilitating precise localization and rate estimation of
detected leaks. In addition to the factors discussed, such as pressure,
temperature, sensor placement, meteorological changes, and sensor
noise, it is crucial to acknowledge their potential impact on model
performance in gas network simulations and digital twin development.
These variables introduce complexities that must be carefully consid-
ered during simulation to ensure accurate representation of real-world
conditions. The integration of data augmentation techniques has proven
8 
effective in mitigating the effects of variability and noise encountered
in sensor readings. By enhancing the robustness of the deep learning
models presented in this study, these techniques contribute to their
reliability and applicability in practical settings where environmental
and operational conditions may vary significantly.
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