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Abstract: The Internet of Things (IoT) has radically changed the industrial world, enabling the
integration of numerous systems and devices into the industrial ecosystem. There are many areas
of the manufacturing industry in which IoT has contributed, including plants’ remote monitoring
and control, energy efficiency, more efficient resources management, and cost reduction, paving
the way for smart manufacturing in the framework of Industry 4.0. This review article provides
an up-to-date overview of IoT systems and machine learning (ML) algorithms applied to smart
manufacturing (SM), analyzing four main application fields: security, predictive maintenance, process
control, and additive manufacturing. In addition, the paper presents a descriptive and comparative
overview of ML algorithms mainly used in smart manufacturing. Furthermore, for each discussed
topic, a deep comparative analysis of the recent IoT solutions reported in the scientific literature
is introduced, dwelling on the architectural aspects, sensing solutions, implemented data analysis
strategies, communication tools, performance, and other characteristic parameters. This comparison
highlights the strengths and weaknesses of each discussed solution. Finally, the presented work
outlines the features and functionalities of future IoT-based systems for smart industry applications.

Keywords: machine learning; IoT; smart manufacturing; Industry 4.0; additive manufacturing;
predictive maintenance; industrial process control; worker’s health; data safety

1. Introduction

The industrial manufacturing sector has expanded significantly due to continuous
technological advances to simplify production procedures and increase product yield and
quality [1]. Introducing a paradigm capable of connecting all the components involved
in the production process in real-time can improve the product’s quality, the production
plant’s safety, and the control of operating status through predictive maintenance (PdM).
At the same time, it can ensure the safeguard of the operator’s health through constant
monitoring of his physiological and environmental parameters of the workplace. This
paradigm is the Internet of Things (IoT); the data received from the sensors are recorded
in databases and appropriately processed to receive information regarding production
progress, safety, environmental conditions, etc.

The fields of application of the IoT are multiple. In the biomedical field, wearable
devices have been created capable of acquiring clinical data, such as electro-cardiogram
(ECG), electro-encephalogram (EEC), body temperature, and photoplethysmography (PPG)
signals for clinical diagnosis [2]. For example, Bonfanti S. B. et al. [3] designed an IoT
node to collect clinical data and detect atrial fibrillation through an ECG analysis. In the
agricultural sector, IoT introduces Smart Agriculture 4.0, a smart farming method that en-
hances the precision of fertilizer, pesticide, and herbicide applications [4]. Drones facilitate
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weed detection, while robots help farmers milk animals. Numerous parameters are also
monitored to enhance yield, improve environmental conditions, irrigation process, pests
and fertilizers, manage unwanted plants, ground conditions, and greenhouse production
environment, and minimize the cost of process inputs [5]. Generally speaking, the IoT is
widely recognized for improving product warehousing operations’ efficiency, productivity,
safety, convenience, and response time. It also helps address labor shortages in various
logistics and warehouse operations, reduces costs, and has a positive environmental impact.
The picking process represents 50–55% of total warehouse costs and significantly impacts
plant performance. The IoT can improve warehouse visibility and traceability, increasing
picking efficiency [6]. Another area in which the IoT has made a significant contribution is
PdM. This preventive maintenance approach allows planning maintenance interventions
more effectively based on the information acquired from the machine itself. In an era
in which production plants are increasingly critical for the industry’s stability, adopting
PdM techniques allows for maintaining high plant efficiency while reducing maintenance
costs. For this reason, by identifying the deterioration of the equipment, PdM enables the
reduction of the frequency of unplanned maintenance interventions and the probability of
failures to a minimum [7].

The new idea of Industry 4.0 results from the digitalization of the production process,
combined with IoT-based methods (such as smart objects–OS). This new idea, representing
the fourth industrial revolution, views the factory as an adaptable and productive pro-
duction line where the product controls its manufacturing processes [8]. Numerous IoT
applications provide quick benefits by empowering manufacturers to implement digital
transformations from efficiency, automation, competitiveness, and customer-centricity
perspectives. Data from the production chain are used to create new income streams [8].
The Industry 4.0 objective is to move away from the third industrial revolution’s automa-
tion of mass production and toward more flexible and efficient manufacturing. It may be
characterized as a technological revolution emphasizing increasing industrial automation
and digitalization [1]. Smart manufacturing (SM), which uses advanced technologies like
artificial intelligence (AI), IoT, cloud computing, and cyber-physical systems (CPS), is a
result of this industrial digitization (Figure 1) [9,10].
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Figure 1. Information flow on the IoT paradigm. The information acquired by the sensing devices
embedded in the plant or supporting the operator monitoring is transferred to a data-processing
platform through various data-transfer technologies (wired and wireless). The acquired data are
processed to obtain information, including quality of the production process, operator conditions,
machine status, production progress, consumption, air pollution, etc.

Cyber-physical systems (CPS) integrate the physical and digital worlds through in-
formation technology and communication networks. They combine software, hardware,
and physical components to monitor and control real-world processes, creating an inter-
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action between cyberspace and physical elements [11]. The goal of Industry 4.0 is the
sustainable modernization and simplification of industrial processes and production. It
uses cutting-edge technologies such as additive manufacturing, robotics, and IoT [12].

Security has always been a critical element in an industrial context as it prevents
production interruptions, prevents accidents, and improves staff training. Using sensing
devices and data processing through ML methods has resulted in smart personal protective
equipment (PPE) [13] that has helped monitor workers’ health in the workplace and check
that such smart devices are being worn correctly. The challenges in the field of operator
safety are creating more compact, more ergonomic, easily wearable, and self-recharging
devices [14]. With the digitalization of industry, new specific security risks have emerged,
such as data theft and manipulation, attacks on automation systems, and cybersecurity.
The solutions analyzed in this paper aim to overcome implementation difficulties such as
technological complexity, the management of large amounts of data, the evolution of cyber
threats, and threat classification [15].

Additive manufacturing (AM), an essential pillar of digital technology, is a production
method that changes the traditional manufacturing process. AM is a general name for
manufacturing technologies that add material layer by layer to create desired physical
parts. Many of the steps required by traditional production processes have been eliminated
with additive manufacturing [16]. For example, AM removes the need to design the
machining cycle, eliminates the need for bulky machining centers, eliminates the need
to manage chips after machining, and makes maintenance easier and faster [16]. This
technology, which initially emerged as rapid prototyping (RP) systems, has evolved into
direct production by developing various AM processes. Although there are many varieties,
the most prominent AM technologies are stereolithography (SLA), selective laser sintering
(SLS), three-dimensional printing (3DP), laminated object fabrication, and fused deposition
modeling (FDM) [17]. One of the main applications of the IoT paradigm in the field of AM
within smart manufacturing is monitoring the printing process to eliminate or minimize
production defects [18]. For example, using an augmented interface or a digital twin
for conventional AM processes allows for early identification of manufacturing defects,
thus increasing the predictability of the process [19,20]. One real-world example of the
IoT applied to additive manufacturing (AM) is given by the Fast Radius company, now
part of SyBridge Technologies company (Spring Lake Drive Itasca, IL, USA) [21]. In 2018,
the World Economic Forum recognized its Chicago facility as one of the top nine smart
factories worldwide, specialized in AM alongside CNC machining and injection molding.
A key element of Fast Radius’ success is its proprietary IoT platform, which collects data
from every part designed and produced in its virtual warehouse. This data helps teams
identify suitable applications for 3D printing and assess the engineering and economic
feasibility of manufacturing components [21]. The Geico Taikisha Group gives another
example of a real-world IoT application. The Geico Group, a global leader in designing
and building automated auto body paint shops, leveraged IoT digital twin technology to
stay connected with customers by providing access to detailed production data [22]. This
connection allowed Geico to monitor machine performance, identify common issues, and
enhance the performance of paint shop cells for their clients. Customers also benefited from
these digital twin capabilities, enabling them to run live simulations to explore potential
efficiencies, address vulnerabilities, and achieve cost savings. This transparency helped
predict maintenance needs and downtime, reducing costs. Additionally, with smart energy
management features, customers could optimize resource usage for sustainability and
further savings [22].

While Industry 4.0 focuses on integrating smart technologies into manufacturing and
supply chains, a new paradigm called Industry 5.0 will enhance this digital transformation
by fostering deeper collaboration between humans and machines within their digital
ecosystems [23–28]. This partnership combines the precision and speed of industrial
automation with human creativity, innovation, and critical thinking, leading to more
meaningful and efficient outcomes [24]. In other words, the goal of Industry 5.0 is to create
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a balance between automation and human–machine interaction with the idea of supporting
and enhancing human intelligence instead of replacing it [25]. Industry 5.0 is less about
introducing a new industrial revolution and more about enhancing the technologies of
Industry 4.0 by fostering closer collaboration between humans and robots [25]. It builds
on the pillars of Industry 4.0 (AM, augmented reality, autonomous robots, big data and
analytics, cloud connectivity, cybersecurity, horizontal and vertical system integration, IoT,
and digital twins) by emphasizing human creativity and well-being as key components
of industrial processes [24]. The aim is to combine machines’ speed and efficiency with
humans’ imagination and skills.

The following three concepts form the core principles of Industry 5.0 [29]. The first
one, a human-centric industry, focuses on prioritizing human needs and interests in the
production process. Rather than asking how workers can adapt to new technology, Industry
5.0 explores how technology can better serve workers. While robots excel in precision
and endurance, they lack the critical and creative thinking abilities humans bring. The
second concept, a resilient industry, is characterized by robust industrial production, capa-
ble of withstanding disruptions and supporting critical infrastructure during crises. The
pandemic exposed vulnerabilities in manufacturing and supply chains, emphasizing the
need for greater agility and resilience in these systems. Finally, the third one, a sustainable
industry, focuses on minimizing environmental impact by adopting circular economy prac-
tices. Key initiatives include reducing energy use, greenhouse gas emissions, and waste
while preserving natural resources and preventing their depletion and degradation. The
long-term benefits of Industry 5.0 align with its core principles, such as attracting and
retaining talent, achieving energy savings, and enhancing overall resilience. These advan-
tages help businesses stay competitive and relevant by adapting effectively to a changing
world and emerging markets [24]. In conclusion, technology should be tailored to meet
workers’ needs, enhancing their abilities and contributions to industrial processes. New
software tools offer valuable insights to improve manufacturing efficiency and promote
sustainable production. AI-powered soft sensors can help reduce the over-consumption of
raw materials and energy by providing real-time information on product quality, enabling
smarter decision making in production [19,26,30].

Based on previous considerations, this manuscript offers an overview of all the appli-
cations of IoT systems in the industrial field, discussing the different approaches proposed
in the literature and the obtained results. Specifically, the analysis of four macro-topics is
proposed (Figure 2):

• Safety: The safety background is analyzed by extending the concept to the two funda-
mental areas of Industry 4.0, considering safety in the workplace by safeguarding the
health of the operator and cybersecurity to prevent cyber-attacks.

• Predictive maintenance: The various IoT approaches adopted to minimize mainte-
nance costs are discussed, eliminating unwanted downtime and ensuring longer
machine life.

• Process control: the study of IoT techniques to control an industrial process and
prevent divergences or failures.

• Additive manufacturing: IoT applications combined with the production of artifacts
through the 3D-printing process are addressed.
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Also, to support the scientific value of this research work, each section includes the
following information:

• A comparative analysis of the analyzed works is reported, and each research work’s
main features and strengths are compared to the others;

• An overview table is provided, and the main characteristics of each work addressed in
this review paper are defined.

This review paper is divided into several sections as follows. In Section 1, after in-
troducing the discussed topics, the selection method of the scientific articles analyzed in
the review is reported. In particular, the systematic selection of articles related to machine
learning and IoT-based solutions in smart manufacturing is performed by adopting the
PRISMA methodology. Section 2 presents an overview and a comparison of ML algorithms
adopted mainly in smart manufacturing fields. Section 3 analyzes security in the field of
smart manufacturing, considering both operator safety and cybersecurity for data protec-
tion. Section 4 discusses predictive maintenance by analyzing the IoT technologies used
to predict and plan targeted maintenance interventions, eliminating unwanted machine
downtime. In Section 5, the various IoT approaches for process control, adopted to predict
the drifts of the production process, are analyzed. In Section 6, the most recent IoT tech-
nologies in the field of AM are discussed. Finally, in Section 7, comments and conclusions
are reported. At the end of each section, the study is summarized through a summary table
indicating the main elements that make up the IoT application adopted by the authors,
together with a comparative analysis highlighting the strengths and weaknesses.

Selection Method of Analyzed Articles Based on PRISMA Methodologies

Before starting the discussion, defining the criteria used to select and exclude the
most appropriate scientific articles is necessary. The adopted criteria are explicitly defined,
considering many elements of the documents analyzed, such as applicability to the topics
covered, relevance, publication year, and redundancy with other articles. This paper aims to
offer the reader the broadest vision of IoT’s current state of the art in smart manufacturing.
The systematic selection of articles related to ML and IoT-based solutions in the smart
manufacturing field is performed by adopting the PRISMA methodology, enabling readers
to evaluate the reliability and applicability of the selected method [31,32]. The selection
process begins with an evaluation of the title to see if it contains references to the topics
to be covered in this manuscript; it continues with an analysis of the abstract to see if the
content is close to the issues to be covered; finally, we proceed to read and comprehend the
manuscript under investigation. If the manuscript is unclear, the content is explored using
other sources. The flowchart in Figure 3 illustrates the document selection process with
the following steps: the title’s relevance, the abstract’s affinity, and the interest documents’
overall content. Furthermore, this document selection methodology is applied to all the
topics of this review paper.
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For an accurate analysis of smart manufacturing based on IoT applications in the
fields mentioned above, the authors have analyzed 135 documents, divided into review
papers, conference articles, research articles, and web sites. The main sources from which
the articles were acquired are Elsevier, MDPI, IEEE, and Springer, with a small number of
articles from other sources. The diagrams shown in Figure 4 highlight the distribution of
the acquisition sources (Figure 4a) and the distribution of the types of articles analyzed
(Figure 4b).
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2. Description and Comparison of Machine Learning Algorithms for Data Processing in
Smart Manufacturing

This section provides an overview of ML algorithms for data processing adopted in
smart manufacturing, trying to report the main ML algorithms used by the authors. The
selection of documents used to create this section was based on the search for articles and
reviews that are mainly concerned with the topic of ML.

Smart manufacturing is augmenting physical science with modern data analytics to
improve decision making and system performance. As sensors and the IoT become more
widely used, the need for large amounts of industrial data, rapid processing, and the ability
to handle a wide variety of data becomes increasingly necessary [33].

Incorporating ML in manufacturing helps to increase efficiency and improve produc-
tion operations. ML is a smart manufacturing technology that uses production data to
improve industrial facilities’ machine performance. ML is a subfield of artificial intelli-
gence (AI) that uses statistical techniques to let computer systems learn from data without
explicit programming. Numerous tasks, including prediction, classification, clustering,
and optimization, may be carried out using machine learning [34]. ML programs identify
focus areas in the production process to collect data and provide actionable insights for
improvements. The program then provides algorithms with the data required to enable
learning. Once this process is initiated, machines can continuously learn and improve
processes independently without direct programming from human workers. By utilizing
the data collected by machine learning programs, manufacturers can make more informed
production decisions to drive improvement and business growth [34].
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In many smart manufacturing contexts, the use of ML algorithms has contributed
notable advantages, such as the possibility of automating some processes that would
normally require human intervention. For example, PdM combats maintenance schedules
that are not always accurate by using ML algorithms to identify a potential problem before
a failure occurs [35]. Inspection, monitoring, and process control are other areas where
ML has had considerable success, acquiring information from cameras and sensors and
promoting accurate and rapid inspection of parts.

The ML algorithms are classified into four different types: supervised learning, unsu-
pervised learning, semi-supervised learning, and reinforcement learning (Figure 5) [36].
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➢ Supervised learning: This algorithm trains itself using a labeled dataset where each in-
put datum corresponds to a well-defined output. By looking at these labeled examples,
the algorithm can transfer the input attributes to the intended output [37–39]. The clas-
sification is to classify or enumerate the data into predetermined classes or categories.
Generally, the output is a discrete value representing a class or a category. Supervised
MLs include classification and regression algorithms. Classification algorithms pre-
dict a result as a discrete value indicating the object’s membership in a specific class.
Regression algorithms, on the other hand, differ from classification in that the results
are expressed through continuous values. This classification of machine learning
algorithms includes regression algorithms, logistic regression, Naïve Bayes, K-nearest
neighbors (KNN), decision trees, random forest, and XGBoost [40–44].

➢ Unsupervised learning: This is the process of extracting patterns or structures from
data without knowing the outcome. The method is used for an unlabeled data col-
lection to learn an input representation that captures the underlying data structure.
Unsupervised learning is divided into clustering, dimensionality reduction, density
estimation, and anomaly detection [38,45]. Clustering is grouping similar data points
based on specific characteristics or similarities. Dimensionality-reduction techniques
aim to reduce the number of features in a dataset while preserving important infor-
mation. Density estimation involves estimating the probability density function of
a dataset. Anomaly detection identifies data points that deviate significantly from
expected or normal behavior [46]. Examples of unsupervised learning algorithms
are the staked auto-encoder algorithm (SAE) [47], k-means, k-medoids, and fuzzy
c-means [38].

➢ Semi-supervised learning: Semi-supervised learning combines supervised and un-
supervised learning methods, using labeled and unlabeled data to improve model
performance [38]. The main categories of this approach are as follows:

• Self-training: an algorithm that trains a model on labeled data, then uses the
model to label unlabeled instances, integrating them into the labeled dataset and
repeating the process.

• Graph-based methods: Data points are represented as nodes in a graph, propa-
gating labels through it to label unlabeled nodes.
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• Co-training: Multiple models are trained on different subsets of the data, ex-
changing labels for unlabeled instances.

• Multi-view learning: Data are analyzed from different perspectives, and models
work together to optimize overall performance.

➢ Reinforcement learning: This type of ML consists of training an agent through the
feedback obtained from its responses on the application environment [38]. This agent
is assigned rewards and penalties for the activities performed to define a policy that
allows the maximum reward to be assigned [43].

ML is a process by which a computer system is trained to make accurate predictions
using new data. Training, learning, and evaluation are the three basic steps in building
an ML model. The model’s accuracy depends on the quality of the initial data and the
algorithm’s performance. The first step is to acquire input and output data, i.e., features
(input) and labels (output). The second data step is to train the model using the data
from the previous step. In the third step, the performance is evaluated once the algorithm
training is completed. For this performance evaluation, loss functions are used to observe
how much the predicted value diverges from the real value. Two loss functions are used
mainly: the mean absolute error (MAE) and the mean square error (MSE) [48]. Figure 6
schematically shows the operating phases of an ML algorithm.
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Figure 6. Operating scheme of a machine learning algorithm. The first phase involves acquiring
testing and training data, followed by the algorithm training phase, and finally, evaluating the
algorithm’s performance.

The main ML algorithms used in smart manufacturing are described as follows:

✓ Regression algorithms: These predict a numerical value based on other input variables.
They are used in many predictive analytics applications, such as stock price forecasting
in finance, weather forecasting, and market demand assessment. Linear regression
is the simplest type, as it aims to predict a numerical value based on a single input
variable. The algorithm generates a line representing the relationship between the
input variable and the predicted numerical value.

✓ Logistic regression: This is more complex than the linear variant and is used to predict
the value of a binary variable based on other input variables [49]. The algorithm
generates an “S” curve that describes the probability of the output value based on
the input variable. Among the possible applications, for example, is that logistic
regression can predict if a patient will develop a disease based on documented risk
factors (input data).

✓ Naïve Bayes: This is an algorithm based on Bayes’ theorem, which assumes that the
presence or absence of a particular feature in a document is not related to the presence
or absence of other features [49]. The operation of the Naïve Bayes algorithm is based
on estimating the conditional probabilities of the independent variables given the
dependent variables. Simple and fast to execute, this algorithm can, however, suffer
from accuracy problems.

✓ K-nearest neighbors (KNN): This is a classification algorithm based on the charac-
teristics of objects close to the one being classified [49]. In other words, the KNN
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algorithm classifies an object based on its proximity to other known objects. The
operation of the KNN algorithm is based on the estimation of the distance between
the characteristics of the object to be classified and those of the objects already known
to the system. The KNN algorithm, therefore, uses the k objects closest to the object
to be classified to determine its class. The choice of the value of k is made through
various heuristic techniques.

✓ Decision tree algorithm: This is a graphical representation of a set of decision rules
and their consequences [49]. Each internal node of the tree represents a variable, while
each arc starting from an internal node represents a possible value for that variable.
Finally, each leaf of the tree represents the predicted value for the target variable,
starting from the values of the other properties. Decision trees are also used in more
complex algorithms involving their combination.

✓ Random forest: This is a supervised learning algorithm that uses an ensemble tech-
nique to improve the accuracy and stability of the model [44]. It is used for classi-
fication and regression problems to predict a numerical value or a class based on
one or more input variables. The operation of the random forest algorithm involves
creating a set of decision trees, each of which is trained on a random subset of the
data. This model generates a native independence between the trees, which results
in a series of uncorrelated predictions, except in the final combination. The random
forest algorithm is appreciated for its accuracy and flexibility, to the point that it
is widespread in many fields, such as image classification, medical diagnosis, and
fraud detection.

✓ XGBoost: This is a boosting algorithm commonly used for classification and regression
problems. In particular, XGBoost is an advanced form of gradient boosting that im-
proves efficiency and predictive performance through optimizations, such as missing
data handling and regularization [44].

✓ Support vector machine: This is a supervised learning method used primarily for
classification problems, but it can also be adapted for regression. SVM can classify
unlabeled data by using a hyperplane to identify data clustering. The output of SVM
is not, however, nonlinearly separable. When using SVM in data analysis, choosing
the right kernel and parameters is essential for resolving such issues [44,49].

Another subcategory of AI is deep learning (DL), which uses deep neural networks
to handle complex types of data [49]. Unlike traditional ML techniques, DL uses complex
neural network architectures, often with many layers, to extract features and representations
from data [33]. The main differences between DP and ML methods are based on three
different levels: feature learning, model building, and model training. In traditional ML,
in-depth knowledge of the observed phenomenon is necessary because the features are
extracted manually, while DL features are learned from the model. Traditional methods
use the extracted features for model construction to build a data-based model. In contrast,
in the case of DP, a highly hierarchical end-to-end model structure is generated with a
non-linear combination of multiple layers. Finally, regarding model training, the traditional
ML methods train the parameters step by step; instead, DL models train all the parameters
involved simultaneously [33]. Among the DL algorithms, the most used are as follows:

• Convolutional neural networks (CNNs) are widely used as tools for image classifica-
tion thanks to the shape extraction process [50];

• Recurrent neural networks (RNNs) are generally used for speech recognition because
they use sequential or time-series data. In particular, they are mainly used when it
is necessary to make predictions about future outcomes, and they have a significant
capacity for learning nonlinear features and processing time-sequence data [51].

Table 1 reports the main algorithms used in the various areas of smart manufacturing,
highlighting the main applications, characteristics, advantages, and limitations to facilitate
the choice of the most appropriate one depending on the application. For each AI algorithm,
the main use in the field of safety, PdM, and process control is also reported.
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Table 1. ML and DP algorithm used in smart manufacturing for security, predictive maintenance, and process control.

AI
Algorithm

Security Predictive
Maintenance Process Control Characteristics

Worker Security Cybersecurity

Decision Trees
Used for workers’ diagnosis,

disease classification, and
treatment decisions

For classification and
anomaly detection

Used to identify failure
conditions based on decision

criteria

Used to classify or predict
outcomes; interpretable and

easy to
visualize

Easy to interpret and visualize; tend
to overfit and are unstable

Random
Forests

Used for workers’ disease
classification and complex data

processing

For the classification and
management of complex and

non-linear databases

Used to improve forecast
accuracy and reduce the risk

of overfitting

Used to enhance the
robustness and

accuracy of forecasts

More robust and precise than
decision trees but require more time

and computational
resources for processing

SVM
Used for medical

image classification and
diagnosis

Perform malware
classifications and detections

Used to classify machine
operating states and predict

failures based on
historical data

Used for classification and
regression; particularly

effective in
high-dimensional spaces

Very effective in high-dimensional
spaces; require a good choice of

parameters and are
sensitive to noise in the data

KNN
Used for workers’ disease

classification and
identification of
similar patients

Used to recognize
suspicious activities

Used to identify
anomalies in operating data

Non-parametric method that
classifies data based on their

nearest neighbors in the dataset

Simple to implement and intuitive in
its operating logic, but

computationally expensive for
large datasets

CNN
Used for analyzing medical
images, such as MRIs and

X-rays

For image analysis
and network

analysis at a more
advanced level.

Used to analyze thermal or
visual images -

Particularly effective for processing
grid-structured data; they require

large datasets to be trained
effectively and are susceptible

to overfitting

ANN
Used for predicting clinical

outcomes and diagnoses based
on complex data

-

Used to model non-linear
relationships in data and are

useful for
failure prediction

-

They are versatile and can model
complex nonlinear relationships;

they require significant data
pre-processing and may require a

long training phase

Recurrent Neural
Networks (RNN)

and LSTM

Used for analyzing time
sequences, such as patient data

tracked over time
-

Used for time-series
analysis; can capture

long-term dependencies in
operating data

Time-prediction algorithms,
useful for

predicting sequential data
in processes

RNNs work well with sequential and
temporal data but can have problems

with long sequences and are more
difficult to train than other

algorithms; LSTMs solve the sparse
gradient problem and
require considerable

computational resources



Future Internet 2024, 16, 394 12 of 42

3. Overview of IoT System Security Applications in the Industrial Field

Safety has always been fundamental for industries and companies to protect operators
and machines. With the advent of digitalization, which has opened new frontiers and
opportunities, safety (now called cybersecurity) has taken on a new role: preventing
cyber-attacks. Therefore, the introduction of the IoT has enabled the creation of different
approaches to operator safety and cybersecurity [15].

With the introduction of the IoT, security in the industrial sector is divided into two
macro areas: one for monitoring operator health and safety (industrial safety management,
ISM) and the other for data privacy and protection. As part of IoT-based solutions, ISM is
a crucial area with many development opportunities, especially regarding human safety.
However, increasing industrial productivity and product quality is highly dependent on
safety. The operators will be affected psychologically and physically if an accident occurs
at work because of a safety procedure violation [52]. It also damages industry equipment
and infrastructure, disrupting production. As consequence, workers lose confidence in
their equipment and, at the same time, company owners suffer financial losses due to lost
production time and industrial efficiency. As a result, companies stand to lose a lot from
any violation’s type of industrial safety regulations and standard operating procedures
(SOPs) (Figure 7) [52].
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Mobile technology advancements bring more intelligent and connected objects into
our daily lives. The IoT is a movement that is becoming crucial to the networking and
communications industry. However, weak security defaults, inconsistent communication
and protocol standards, and update delivery issues have worsened cybersecurity threats to
critical IoT equipment. Putting a heavy focus on securing the IoT devices in an intrusion
detection system is a workable approach to lower risks and thwart these attacks [53].

X. Zhan et al. propose a clever system framework, highlighted in Figure 8, which uses
digital twin (DT) and IoT technologies to achieve the real-time monitoring of workplace
safety in the warehouse and ensure cyber–physical space synchronization for informa-
tion traceability and visibility [54]. In this work, the authors have created an IoT-based
workplace safety monitoring system (SOSMS) to find anomalous stationarity in cold rooms
and acquire workers’ spatiotemporal information in real time to help managers get a re-
mote overall picture of the safety of personnel. The stacked auto-encoder (SAE) has an
unsupervised deep neural structure intended to detect abnormal steady states in human
movement, which may indicate an impending accident. The model’s automated online
updating mechanism is designed to work with calibration standards to keep up with the
environment’s changing state. Moreover, cyber–physical visibility and spatiotemporal
traceability are improved by DT technology, which replicates actual things in cyberspace,
enabling managers to implement emergency protocols and security monitoring efficiently.
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For operator safety monitoring, Zhang et al. also addressed monitoring workers
during mining operations [55]. They built an industrial IoT-enhanced intelligent crowd
detection system for crowd monitoring for coal mine safety. Firstly, they proposed a
particle swarm optimization–Elman neural network (PE) algorithm to predict the moving
human pose. Secondly, they developed an ADI–LSTM algorithm, an absolute degree of
incidence (ADI) and a long short-term memory (LSTM) neural network. Based on IoT-
enhanced intelligent crowd detection that can predict the position of a moving human
body and the pressure value exerted by machinery during mining through the pressure
acting on the bearings, they evaluated the interaction between machines, people, and
the environment to determine whether they were in a dangerous area. Similarly, in [56],
the authors introduce geofencing technology to implement a digital boundary around
selected geographic locations; this last can be based on several technologies, like the
global positioning system (GPS) or radio frequency identification (RFID) [57], enabling the
implementation of several strategies, such as zone-based safety alert, equipment safety,
emergency response, site-access control, etc. Geofencing technology can improve worker
security, area-based alerts, and activity monitoring within the framework of the construction
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industry. Also, Lelitha K. et al. developed a helmet as a protective device to improve miners’
health management and prevent injuries [58]. The STM32 module uses multiple sensors to
continuously analyze, i.e., the environment’s temperature, humidity, and toxic gases. It also
constantly analyzes the operator’s health, including heart rate and vibrations from blasting
and excavation. Next, a Bluetooth Low Energy (BLE) module transmits the data to the
control center. Their proposed device also has an anti-panic button that alerts the control
unit in the event of an emergency for the operator. They also installed a helmet camera
to monitor and recognize the operator’s gestures; they used the Advanced RISC Machine
(ARM) Cortex-M platform and the TensorFlow Lite microframework to execute Python
programs. The safety of mine workers is not the only area where the IoT has contributed
to numerous innovations; in the construction sector, the IoT has allowed other different
solutions to improve the safety of the construction worker.

In the literature, there are other studies in which the concept of smart technology has
been widely integrated into the design of wearable applications [59]. For workers operating
in dangerous environments, smart vests were created to be worn for their greater safety. The
vest monitors the environmental and biophysical parameters (heart rate, temperature, etc.);
it is also able to self-power by storing energy from movements (piezoelectric transducers),
from the sun, and thermoelectric generators [60]. In the event of an alarm, the information
is sent to a cloud database and then consulted via a web app. For this reason, K. M. Mehata
et al. have developed a helmet and smart band by implementing different sensors that
monitor the safety and health of workers using heart rate sensors, temperature sensors,
accelerometers, and IR sensors to track the vital parameters of the operator [61]. The authors
have used mobile phones for communication and data exchange, which quickly send SMSs
through the Global System Mobile (GSM) module to inform the assigned personnel about
any incidents. The technology also uses an algorithm associated with an accelerometer
that allows predicting the fall of the operator. Similarly, the authors in [62] developed a
creative plan for an independent system that monitors, locates, and alerts construction site
workers in dangerous areas with IoT-based construction vehicles [63]. Their technology
combines three techniques, directional antennas, 40 kHz ultrasonic waves, and 868 MHz
radio frequency, to locate and identify construction workers precisely. A collection of parts
comprises the wearable device’s design: a General Packet Radio Service (GPRS) module,
an activation sensor, an alert actuator, and a radio transceiver (transmitter/receiver). The
wearable gadget has a low-power consumption power-saving strategy that prolongs battery
life by keeping it in deep sleep mode until a radio frequency (RF) field is detected. In
Figure 9, the architecture chosen by the authors is shown.

To monitor the health of construction workers, J. H. Kim et al. also realized an IoT-
based platform using a smart band ready-to-use wearable [64]. The created platform is
intended for builders who work in high temperatures. It consists of two elements: the
overall heat assessment (OHS) and the personal management system (PMS), the latter
of which uses fuzzy theory to assess each worker’s health risk level [65]. At the same
time, the former organizes breaks for teams of workers based on a thermal comfort index
(TCI). A microcontroller unit (MCU) incorporated in the device houses two modules (LoRa
and GPS), three sensors (accelerometer, skin temperature, and PPG), and a power source.
Furthermore, authorized staff may use a PC or smartphone to locate a construction worker’s
position and current state and make any required choices from a distance [66].

The work carried out by Márquez-Sánchez et al. in [67] combines the use of three items
of PPE, a helmet, a bracelet, and a belt that can acquire biophysical and environmental
parameters. The data are then processed through algorithms by a deep convolutional neural
network (DCNN). Similarly, Bontempi et al. in [68] have developed a new concept of PPE,
in particular, gloves that integrate commercial devices, such as an energy collection system,
a UHF-RFID tag for information exchange, and a microcontroller for the recognition of the
correct use of the PPE. The exchange of information is performed by the EPCglobal Class-1
Generation-2 communication protocol.



Future Internet 2024, 16, 394 15 of 42Future Internet 2024, 16, x FOR PEER REVIEW 15 of 44 
 

 

 
Figure 9. Overall representation of the IoT architecture, proposed by the authors in [62]; (a) revers-
ing accident prevention; (b) intelligent warnings to avoid potential dangers; (c) IoT middleware 
platform. 

To monitor the health of construction workers, J. H. Kim et al. also realized an IoT-
based platform using a smart band ready-to-use wearable [64]. The created platform is 
intended for builders who work in high temperatures. It consists of two elements: the 
overall heat assessment (OHS) and the personal management system (PMS), the latter of 
which uses fuzzy theory to assess each worker’s health risk level [65]. At the same time, 
the former organizes breaks for teams of workers based on a thermal comfort index (TCI). 
A microcontroller unit (MCU) incorporated in the device houses two modules (LoRa and 
GPS), three sensors (accelerometer, skin temperature, and PPG), and a power source. Fur-
thermore, authorized staff may use a PC or smartphone to locate a construction worker’s 
position and current state and make any required choices from a distance [66]. 

The work carried out by Márquez-Sánchez et al. in [67] combines the use of three 
items of PPE, a helmet, a bracelet, and a belt that can acquire biophysical and environ-
mental parameters. The data are then processed through algorithms by a deep convolu-
tional neural network (DCNN). Similarly, Bontempi et al. in [68] have developed a new 
concept of PPE, in particular, gloves that integrate commercial devices, such as an energy 
collection system, a UHF-RFID tag for information exchange, and a microcontroller for 
the recognition of the correct use of the PPE. The exchange of information is performed 
by the EPCglobal Class-1 Generation-2 communication protocol. 

With the advancement of technology and the inventiveness of researchers, the con-
cept of smart has not only been applied to jackets but has also been extended to T-shirts, 
as shown in Figure 10. All sensing devices integrated into the shirt for monitoring biolog-
ical parameters are powered by a 380 mAh battery, which is recharged through sunlight, 
temperature, and the body movements of the operator who wears it. Furthermore, gas 
detection sensors can detect the concentrations of carbon dioxide, oxygen, formaldehyde, 
and hydrogen sulfide in the environment in which the worker operates [69,70]. 

(a) 

(b) 

(c) 

Figure 9. Overall representation of the IoT architecture, proposed by the authors in [62]; (a) reversing
accident prevention; (b) intelligent warnings to avoid potential dangers; (c) IoT middleware platform.

With the advancement of technology and the inventiveness of researchers, the concept
of smart has not only been applied to jackets but has also been extended to T-shirts, as
shown in Figure 10. All sensing devices integrated into the shirt for monitoring biological
parameters are powered by a 380 mAh battery, which is recharged through sunlight,
temperature, and the body movements of the operator who wears it. Furthermore, gas
detection sensors can detect the concentrations of carbon dioxide, oxygen, formaldehyde,
and hydrogen sulfide in the environment in which the worker operates [69,70].
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Finally, IoT systems have been able to contribute to worker safety in the agriculture
industry as well. For this purpose, Montanaro et al. in Ref. [71] propose a modular
design to determine worker locations, machines, and obstacles to ensure the safety of the
path of remote-controlled farm machines (RCFM) using specific notifications for timely
interventions of workers on the ground. Figure 11 shows the main features and positioning
functionalities based on passive ultra high frequency–radio frequency identification (UHF-
RFID) technology supported by commercial BLE beacons to monitor and prevent accidents
that may occur when workers are on the ground. UHF-RFID tags were applied on PPE,
such as helmets and jackets, obtaining the best configuration with all four tags positioned
vertically [14]. The worker position is obtained with triangulation through the received
signal strength indicator (RSSI) obtained from the Beacon devices deployed in the field.
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Another way to monitor worker safety is to verify that the operator is wearing PPE,
presenting a new evolution of security strategies. For this reason, Gallo et al. used a
deep learning approach to video streaming analysis with YOLOv4. In their case, when
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an operator is not wearing PPE, an acoustic or light signal is emitted [72]. The important
aspect is that the streaming video is directly analyzed by the device placed in the area.

As said before, the advent of digitalization and the increase in cyber threats have
given a strong incentive to the need to protect information and data, that is, cybersecurity,
which has become a fundamental asset for companies. Cybersecurity encompasses many
practices and strategies to protect data confidentiality, integrity, and availability. It is not
just about adopting advanced technologies but also involves a change of mindset in risk
management and operator training. Today, it is imperative that the actors operating in the
industries understand the importance of cybersecurity as an integral part of their daily
operations, creating a more secure and resilient environment against ever-evolving cyber
threats (Figure 12).
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To strengthen cybersecurity, Abuhasel et al. use upgraded Rivest–Shamir–Adelman
(RSA) and hash signatures to increase the data security of IoT devices [73]. The prime
number of the suggested RSA algorithm is 512 bits. A hash signature is used for device
authentication. An effective clustering method based on node degree, distance to cluster,
residual energy, and fitness (NDRF) is suggested for sensor devices with lengthy network
lifetimes. The Salp Swarm Algorithm (SSA) is implemented to determine the fitness of
sensor nodes. Resource scheduling utilizing the SoftMax Deep Neural Network (DNN) is
proposed to lower latency and communication overhead for IoT devices. SoftMax-DNN
classifies all cluster head requests to determine the optimal resource scheduling based
on processing, storage, and bandwidth needs. The suggested structure performs better
regarding latency, security strength, and energy usage [74].

On the other hand, in [75], Wadsworth et al. provided a method for putting safety
measures on the IoT’s CPS to safeguard the system’s operations. They established a set
of predetermined safety-critical parameter boundary criteria that allow a CPS to function
safely for heating and cooling. Assume it is recommended that the CPS operate beyond
these boundaries. If this happens, the system will immediately cut off all external com-
munications networks and enter a safe operating mode that will remain in place until an
administrator evaluates the system locally and removes it from the safe mode. An IoT
testbed and sample CPS that monitors and regulates a target environment’s temperature
were set up to test and verify this technique. It is also important to be able to classify
and identify hazards; Moradbeikie et al., with the introduction of IoT in industrial control
systems (ICS), managed to differentiate risks by using information from many IoT envi-
ronmental sensors [76]. With the help of the IoT, they suggest a risk management strategy
that recognizes risks based on the physical characteristics of these systems. Four types
of dangers have been identified: random assault, stealth attack, temporary failure, and
permanent failure. To control the risks in the system, risk management consists of three
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main components, risk detection, risk analysis, and system reconfiguration, based on the
data that sensors have collected from the real world.

Peserico et al. discussed the difficulties of maintaining working safety networks and
protocols in IoT ecosystems [77]. First, the adoption of security protocols on wireless
networks and the design aspects of functional safety networks are analyzed. In particular,
Fail Safety over Ether-CAT (FSoE) is discussed, and the results of an extensive test session
with a prototype system built with commercial WiFi-based devices are also provided.

In e-healthcare, IoT-based solutions use medical sensors to record, preserve, analyze,
and capture patients’ day-to-day activities in real-time. These solutions allow for managing
massive amounts of data at a low cost via scalable cloud-enabled storage through analytics
platforms. Patients’ private information is in danger when records are exchanged on
centralized server-based platforms during the transition.

Blockchain is a new generation of safe data technology that is revolutionizing business
and industry [78]. In this regard, Khan et al. in [79] presented an innovative and secure
architecture for the security of e-healthcare data using a distributed ledger technology based
on a blockchain known as BIoMT. Additionally, they created a distributed tiered hierarchy
for medical wireless sensor networks (WSNs) to manage and optimize data. This structure
improves the network resources, and fosters trust in the peer-to-peer (P2P) environment
enabled by blockchain technology. Lastly, the BHIIoT (blockchain for industrial Internet of
Things) safeguards shared resources in blocks kept in an unchangeable blockchain archive
by using the NuCypher threshold re-encryption process. Industry 4.0 introduces additional
security risks beyond conventional industrial networks due to the integration of operating
technology (OT) and IT infrastructures. Defense-in-depth (DiD) tactics provide many levels
of protection, each focusing on a distinct set of menaces to address the complexity of this
issue. Given that data pass through intermediate entities, or middleboxes, before achieving
their purpose, Mosteiro-Sanchez et al. in [80] propose a combination of DiD, a lightweight
end-to-end (E2E) encryption algorithm called attribute-based encryption (ABE), and object
security (e.g., OSCORE) to achieve a comprehensive E2E security method. If middleboxes
are compromised, vulnerable information could be exposed to prospective hackers if not
encrypted along this path. Figure 13 shows how the three security zones are divided.

The absence of a threat database is one of the many obstacles that still need to be
overcome to use a universal approach for threat modeling in smart manufacturing systems.
Consequently, to close this gap and save time and effort, AbuEmera et al. created a rule-
based threat database and component catalog to handle potential security concerns in smart
manufacturing systems [81]. They perform STRIDE (a spoofing, tampering, repudiation,
and information disclosure model that focuses on identifying potential risks in each system
component) based threat modeling against a smart factory use case using Microsoft Threat
Modeling Tool. First, their data flow model of the development process refers to the ENISA
high-level model based on the Purdue model; Figure 14 illustrates the levels that make up
the model. The model comprises production machines, sensing devices, control devices
(HMI and PLC panels), data processing and visualization software, and cloud servers.

Hammad M. et al. improved what was previously called flexible manufacturing sys-
tem (FMS) by defining a new paradigm, the IoT-enabled system, overcoming the previous
limitations of the FMS, such as high initial costs, obsolete technology, integration complex
in the system, and long setup times [82]. IoT-enabled systems allow the analysis of valuable
data continuously gathered from several sources across the industrial ecosystem. This
approach improves decision making, PdM, process optimization, and energy efficiency.
In fact, by facilitating secure communication in an IoT-enabled system representing the
smart manufacturing sector, these solutions provide a unique method of mutual authenti-
cation among the FMS unit, users, and server. Session keys are established to accomplish
this security. Outperforming prior schemes, the authors in [82] devised a technique that
displays strong resilience against numerous security assaults. Its considerable security
benefits outweigh the minor increase in communication overhead compared to various
baseline methods. First, they suggest a plan that permits key agreement and mutual au-
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thentication to strengthen the security of the smart manufacturing sector. The proposal
states that the server will provide mutual authentication among users and the FMS unit
and between the user and the server. During this process, session keys are formed via
the FMS unit, the server, and the user. A physical unclonable function (PUF) is used
with bitwise XOR operations, elliptic curve cryptography (ECC), and cryptographic hash
functions to mitigate resource restrictions and defend against physical tampering attacks in
IoT contexts. Alrowais et al. developed a tool capable of classifying cyber threats through
AI tools, introducing MFO-RELM [83]. It combines advanced optimization techniques and
machine learning algorithms to tackle complex problems. Wu et al. proposed a system
that consists of hybrid routers and an IoT gateway [84]. In addition to supporting BLE and
long-range (LoRa) wireless protocols, the router has a solar energy harvester to increase
its lifespan. LoRa wireless technology may expand the reach of short-range BLE networks
and facilitate essential edge computing functions like initial data processing. However,
Mrabet et al. propose a five-layer architecture that incorporates blockchain technology
(BCT) to capture sensor access control information and machine learning (ML) to detect
cyberattacks [85]. The performance of their architecture was based on the use of some met-
rics such as accuracy, precision, sensitivity, and correlation coefficient (CMM), employing
different machine learning algorithms such as artificial neural network (ANN), decision
tree (DT), random forest, Naive Bayes, AdaBoost, and support vector machine (SVM). Kim
et al. in [86] propose a threat detection system based on edge computing by transferring
a large amount of data to servers processed by deep learning algorithms such as CNN to
make a smart factory less vulnerable to malware attacks.
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3.1. Comparative Analysis in the Case of Worker Safety

The analysis carried out on the IoT paradigm of safety in smart manufacturing has
highlighted the innovative aspects that have significantly improved, on the one hand,
the worker’s safety during the performance of his activities and, on the other, the data
protection from cyber-attacks. In the context of operator protection, many authors have set
themselves the objective of verifying physiological parameters such as PPG, accelerometer,
body temperature, and position. This last parameter is of fundamental importance as
it makes it possible to check anomalous stops made by the operator in high-risk areas
of the industrial plant and dialogue with the machines assisting the operator to prevent
accidents. This communication is made possible thanks to short- and long-range wireless
communication protocols such as BLE, LoRa, WiFi, and GSM platforms that are available
via mobile phones. All the data detected by the sensors are then processed by specific
algorithms specifically designed by the authors and already known in the literature. All
this information is finally sent to a supervisor who monitors the worker’s health status and
presence in dangerous areas. In particular, this technology prevents workers from staying
at high temperatures for long periods in the construction sector.

An extremely important real-world application in the case of worker safety is related
to the health of workers exposed to high temperatures [64,87–89]. As extreme weather wors-
ens due to the climate crisis, increasing heat waves will severely affect workers exposed to
high temperatures. To function properly, the human body must regulate its temperature
within a narrow range since prolonged heat exposure can lead to heat-related illnesses,
including heat cramps, exhaustion, and life-threatening heatstroke. Rising core body tem-
peratures also diminish work capacity, causing discomfort, fatigue, and impaired judgment,
which can result in workplace errors and collapses [90]. To address these dangers, compa-
nies are seeking innovative solutions to protect their workers. Environmental monitoring
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has traditionally been used to prevent heat stress, but advancements in physiological moni-
toring, supported by IoT-based technology, now allow for real-time, personalized safety
measures. This shift from a one-size-fits-all approach to a worker-centric model enhances
both health and productivity in extreme conditions.

One concrete application is the SlateSafety BAND V2 [91]. It uses a photoplethysmog-
raphy (PPG) sensor to monitor heart rate by detecting changes in blood volume through
light reflectance on the skin. It, along with other sensors’ data, represents the foundation
for SlateSafety’s metrics, including real-time heart rate, body temperature, and exertion
levels [91]. The core temperature algorithm, proven accurate in a peer-reviewed study from
the University of Alabama, helps protect workers from heat-related illnesses by reliably
monitoring key physiological indicators [92]. Moreover, this band ensures data protection
through industry-standard protocols and allows organizations to customize biometric
alert thresholds. Its connectivity options, including built-in cellular connectivity and the
SlateSafety GATEWAY V2 for areas with limited service, make it highly versatile. The
SlateSafety GO mobile app allows local data access even in areas without cell connectivity
or power. If connectivity is temporarily unavailable, the device stores data and safety
algorithms, which can be uploaded later for historical analysis [91].

Another real-world application has been proposed by Kenzen company [93]. Kenzen
offers smart PPE with wearable technology and proprietary algorithms to provide real-time
insights to workers, supervisors, and Environmental Health and Safety (EHS) decision-
makers [94]. A wearable device worn on the upper arm monitors a worker’s physiological
responses to heat in real-time. Kenzen also factors in personal details like height, weight,
age, medical history, and environmental conditions to assess each worker’s risk of heat-
related issues, calculating their individual heat susceptibility for more tailored safety
measures. Heat susceptibility refers to an individual’s sensitivity to heat, which increases
their risk for heat-related injuries or illnesses. Workers can be categorized as low, moderate,
or high risk. Machine learning algorithms can detect, adapt to, and notify EHS managers
of site-specific changes that may not be easily noticeable daily. Moreover, they can monitor
vulnerable workers more closely during extreme heat and adjust workloads based on each
person’s risk level [94]. Recently, Garney Construction, a leading water and wastewater
contractor, used these insights to help managers create customized safety procedures for
their worksites across the U.S. [95].

To compare the different solutions proposed in the literature, Table 2 highlights the
main characteristics of the IoT platforms used for monitoring workers’ health in a synthetic
way. The table presents five main elements, among which are the IoT entity or the object
or the set of elements that contribute to creating the smart platform, the communication
technology (therefore, the basis with which all the elements interconnect for the exchange
of data), the recipient of the IoT device, the algorithm used by the authors for the processing
of the data previously acquired, and finally, the cost–benefits and implementations.

Table 2. Comparative analysis of references previously discussed related to the IoT-based workers’
safety applications.

Reference IoT Entity Communication
Technologies

Detected/Inferred
Quantity

Detection
Algorithm

Cost–Benefits and
Implementations

X. Zhan
et al. [54] Sensor node BLE Worker stationary

time SAE Plug-and-play system,
cost-effective fashion

J. Zhang
et al. [55]

Sensor node with
camera N.A.

Machine trajectory
and applied

pressure

Swarm
optimization–Elman
neural network (PE.)

ADI-LSTM

Challenging to fulfil
global performance

optimization standards

K. Lelitha
et al. [58]

Helmets for
mining workers BLE

Hand gestures and
environmental

parameters

Python code and
ARM Cortex-M

Low cost, rapid
implementation of

smart PPE
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Table 2. Cont.

Reference IoT Entity Communication
Technologies

Detected/Inferred
Quantity

Detection
Algorithm

Cost–Benefits and
Implementations

K. M.
Mehata

et al. [61]

Smart band
helmet GSM

Body temperature,
heart rate, and

posture

Algorithm proposed by
the authors

Low-cost smart PPE and
easy implementation

R. Kanan
et al. [62] Wearable band GPRS

Worker position
with respect to the

vehicle

Algorithm proposed by
the authors

Reduces the risk of
accidents on construction
sites with low investment

and operating costs

J. H. Kim
et al. [64] Smart band GPS, LoRa

PPG, body
temperature, and

position
Fuzzy logic

Effective platform to
monitor a worker’s
physiological data

Márquez-
Sánchez
et al. [67]

Smart PPE WiFi, MQTT
Biophysical and
environmental

parameters
DCNN

Significant investment for
companies with excellent

security benefits

T.
Montanaro
et al. [71]

PPE with
UHF-RFID BLE Worker or obstacle

position Position algorithm

Low implementation costs
but with limitations in the
application of RFID tags
for better effectiveness

A.
Bontempi
et al. [68]

PPE with
UHF-RFID

EPCglobal
Class-1

Generation-2

Appropriate PPE
usage N.A.

Low-cost technology and
easy to implement on

other PPE

Gallo
et al. [72]

Sensor node
with camera N.A.

Monitoring that
operators wear

PPE
Deep learning YOLOv4

High performance at
moderate cost of

application

N.A.: Not Available.

3.2. Comparative Analysis Referred to Cybersecurity

Cybersecurity is a complex challenge, given the high interconnectedness and in-
creasing number of devices. The solutions presented highlight the importance of holistic
approaches integrating cryptography, risk management, and robust security protocols
to protect industrial systems from growing cyber threats. Each initiative contributes to
building a more secure and trusted ecosystem, which is essential for the future evolution of
IoT technologies. Security in IoT devices is crucial; millions of devices are connected and
vulnerable to attacks. Security initiatives in IoT ecosystems, innovations in data security,
and approaches to new paradigms are recent strategies studied in the previously analyzed
articles, aiming to ensure data security and system reliability:

- Security Initiatives in IoT Ecosystems: 512-bit RSA and firm hash algorithms are used
to protect IoT data. This approach is combined with effective clustering methods based
on parameters such as node degree, distance, residual energy, and fitness, with the
Salp Swarm Algorithm (SSA) used to determine suitability in the context of the sensor
network. In some cases, for security in CPSs, they put the system into safe mode when
boundary criteria are exceeded, resulting in a rapid response to critical solutions. Risk
management is an essential aspect. It is possible to proactively address emerging
threats by managing risk in three phases: detection, analysis, and reconfiguration.
Finally, a further initiative to ensure cybersecurity concerns the importance of security
protocols in wireless networks.

- Innovations in Data Security: One innovation in data security is blockchain, which
ensures that data is stored securely by strengthening trust in the peer-to-peer system.
Also innovative is the implementation of deep protection combined with an encryption
algorithm to ensure end-to-end security, particularly important context given that
data can pass through vulnerable entities.



Future Internet 2024, 16, 394 23 of 42

- New Paradigm Approaches: Two new cybersecurity paradigms are IIoT-enabled
flexible systems and hybrid edge Ccmputing routers. First, using techniques such as
mutual authentication and key agreement, the new approach overcomes the limita-
tions of previous technologies that improve data analysis and operational efficiency.
The second combines hybrid routing and IoT gateways using technologies such as
BLE and LoRa to extend the reach of networks while facilitating data processing in
edge devices.

Figure 15 briefly outlines these different strategies and technologies.
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Table 3 summarizes the characteristics of the IoT paradigm proposed by the authors
about cybersecurity to protect acquired data. In addition to the entity of the IoT platform
and the communication technology, the application scope, i.e., whether it concerns data
security, threat detection, or authentication methods. Any data decryption algorithms and
ML algorithms used for data processing are also highlighted.

Table 3. Comparative analysis of references previously discussed related to IoT-based data secu-
rity applications.

Reference IoT Entity Communication
Technologies Application Crypting

Algorithm
Detection
Algorithm

K. A.
Abuhasel
et al. [73]

IoT Framework (IoT
sensing devices,

gateways, and fog
services nodes)

LoRa, ZigBee, Sigfox,
WiFi, Bluetooth Data security RSA SoftMax-DNN

A.
Wadsworth

et al. [75]

IoT platform
(Raspberry Pi 3b) Ethernet Threat

detection
Security protocol

block (SPB) N.A.

A.
Moradbeikie

[76]

IoT field and control
layers N.A. Threat

detection N.A. Fuzzy
clustering

G. Peserico
et al. [77]

Secure master and
slave

(Raspberry Pi)
WiFi network Data security FSoE N.A.
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Table 3. Cont.

Reference IoT Entity Communication
Technologies Application Crypting

Algorithm
Detection
Algorithm

A.A.Khan
et al. [79]

Healthcare IIoT
devices N.A, Data security

NuCypher
threshold

re-encryption
(BHIoT)

N.A.

A.Mosteiro-
Sanchez
et al. [80]

OT devices
Profibus, Profinet,

Ethernet/IP or
EtherCAT

Data security ABE N.A.

E.A.
AbuEmera
et al. [81]

SCADA systems WAN Threat
detection N.A. STRIDE-based

threat model

M. Hammad
et al. [82] FMS unit WiFi network Authentication

method

Custom encryption
strategy (ECC +
XOR bitwise +

PUF)

DY thread
model

F. Wu
et al. [84]

IoT gateway
(Raspberry Pi3 B+)
Router (nRF52840)

BLE and LoRa Data security AES 128-b N.A.

H. Mrabet
et al. [85]

Cyber–physical
system (CPS)

BLE, Ethernet, LoRA,
WiFi, Zigbee Threat detection N.A.

ANN, decision
tree, random forest,

Naive Bayes,
AdaBoost, SVM

H. Kim
et al. [86]

Cyber–physical
system (CPS)

BLE, Ethernet, LoRA,
WiFi, Zigbee Threat detection N.A. CNN

N.A.: Not Available.

Differently from Table 2, an additional column (column 5) relating to the decryption
algorithms used to convert encrypted data into their original readable format has been
added. The decryption algorithm is a fundamental process that ensures data security
during transfer. During the analysis of the various research papers reported in this section,
it was possible to observe that different AI algorithms were used; in fact, it is possible to
come across supervised learning algorithms, unsupervised learning algorithms, and deep
learning algorithms.

4. IoT Overview for Predictive Maintenance in Smart Manufacturing

Companies are changing drastically in the smart manufacturing age as a result of
the integration of IoT and digital technology. Before the advent of Industry 4.0, safety
was the main priority, with the goal of shielding machinery and personnel from dangers
and mishaps. However, attention has steadily turned to PM techniques, which maximize
operational effectiveness while guaranteeing safety. Predictive maintenance relies on real-
time data analysis, allowing companies to predict failures and malfunctions rather than
react to them. This approach improves the reliability and efficiency of production processes
and reduces operating costs and downtime, significantly increasing productivity. These
benefits are briefly highlighted in Figure 16. In particular, many companies have adopted
PdM techniques [96]. This approach improves resource management and scheduling
PdM interventions, preventing unplanned and expensive machine downtime. Intelligent
manufacturing and maintenance are now the focus of Industry 4.0 due to the rapid growth
of human civilization from the information age to the smart automation era. The pressing
need to detect upcoming breakdowns and reduce unplanned downtime of industrial
equipment might be met by data-driven intelligent predictive maintenance (IPdM); it is
considered a vital component of the IoT in the future [97].
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Technologies used for predictive maintenance include sensors to monitor the operating
status of components, data analysis algorithms to identify trends and anomalies in tracking
data, and decision support systems to plan maintenance interventions efficiently.

Predictive maintenance is widely used in high-criticality industries such as manu-
facturing, aviation, and energy, where system safety and reliability are paramount. This
approach reduces maintenance costs, improves system availability, and extends their useful
life. Companies adopting smart manufacturing techniques have a competitive advantage
as they can bring higher profit margins, reduced maintenance costs, power savings, and
high-quality products [98]. In popular PdM procedures, a standard maintenance approach
is often implemented for the same defect without considering the machine’s life cycle.
When the same problem occurs at different life cycle stages, using the same maintenance
method will inevitably lead to over- or under-maintenance. Furthermore, most PdM studies
analyze maintenance choices or predict failures [7].

To provide predictive maintenance of a plant, Chen et al. in [99] adopted an IoT
architecture by using smart sensors to monitor the operating status of centrifugal pumps
in real time to predict possible failures and intervene before a component failure occurs,
thus increasing the level of intelligence of the machine. Figure 17 shows the architecture
proposed in Ref. [99]. They started by looking into the typical centrifugal pump failure and
the features of the vibration signals that arise after a failure. The authors’ system comprises
cloud servers, data collectors, and wireless and wired sensors. The wireless sensors are
linked to a collector with sophisticated data communication features and are outfitted with
4G, WiFi, RJ45, RS485, and other data interfaces. The ARM (Advanced RISC Machine)
CPU and LINUX operating systems are built within the collector processor. The test results
showed that the sensors could recognize the signals produced by the centrifugal pump
vibrations to automatically identify equipment faults.

Nangia et al. deduced a PdM approach with IoT sensors to help manufacturing
industries predict machine failures before asset failure occurs [98]. Their work discusses
a case study from the manufacturing industry where the solution is developed using
ML’s binary classification support vector machine (SVM), classification and regression
trees (C&RT), and boosted classification trees (BCT). In the first stage, they identified the
organization’s critical assets; then, they obtained data from IoT sensors positioned on the
machines, which are kept in cloud or database storage. The raw data are pre-processed
in the third stage to generate higher prediction reliability and accuracy. The data are split
into training and test data in the next stage. In the fifth stage, the output is analyzed and
evaluated based on the prediction accuracy of the ML algorithms. In the final stage, the
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model is deployed to the company. To create the PdM model, supervised machine learning
algorithms were applied. During the operational phase of a plant, all the sensors involved
in monitoring record data, and in this regard, Fordal et al. examined the combined use of
value chain and maintenance data to enhance value chain performance via forecasting [100].
The chosen strategy comprises theoretical and practical experiments that provide a fresh
idea for an ANN model with sensor data inputs and a PdM platform. Their work aims
to monitor the correct functioning of the wood-splitting saw in a woodworking company.
Their solution monitors the blade temperature, blade tensioning wheels temperature, and
vibrations because, with the increase in productivity, the wood splitter is subjected to
greater stresses than those designed for, and heating would compromise both the saw’s
mechanical resistance and the product’s quality.
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Figure 17. The architecture proposed by Chen et al. in [99] is divided into three layers. The machines
under observation make up the first stratum. The edge device layer, which mainly comprises sensors
and collectors, makes up the second layer. The Internet service platform, which consists of a cloud
server and software operating on it, defines the third layer. The program occupies the final layer.

Ayvaz et al. developed a PdM system for production lines based on real-time data
acquired from IoT sensors [101]. The system uses machine learning methods to identify sig-
nals of probable failures before they happen. The authors performed a comparative analysis
between the XGBoost algorithm and random forest models, demonstrating that combining
these two models produces better results than the individual algorithms. Figure 18 shows
the architecture proposed by the authors of reference [101].
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In order to identify priority areas and enable digital technologies for IoT deployment,
predictive maintenance, remote examination, and data-management platforms, Gbadamosi
et al. in [102] proposed a strategy for IoT implementation in railway asset maintenance
by adopting a qualitative methodology through a series of focus group workshops. Note-
taking, idea mapping, and audio re-recording were some data-collecting techniques used.
Concept maps were incorporated for modeling and concept analysis, while audio record-
ings were transcribed and utilized for theme analysis.

Existing PdM studies typically concentrate on a predictive model without addressing
maintenance decisions or optimization based on known system breakdown patterns. To
address this issue, Sang et al. in [103] propose a predictive maintenance model for Industry
4.0 (PMMI 4.0), which uses a novel proposed solution PMS4MMC to support an optimized
maintenance planning plan for multiple machine components driven by a data-driven
long short-term memory (LSTM) model for RUL (remaining useful life) estimation [104],
demonstrating the validity of their proposal through a real case study with related data.
Most of the state-of-the-art ML approaches for PdM use various condition monitoring data
such as vibration, current, temperature, etc., and failure data to predict the remaining useful
life (RUL) of components; what is not monitored is the component wear and tear because it
is not easy to identify. Rosati et al. [105] introduced and tested a decision support system
(DSS) powered by IoT, big data, and machine learning (ML) to solve a PdM task involving
advanced processing and measurement machines. Unlike others, their novel approach
relies on a feature extraction strategy and an ML prediction model based on specific topics
collected at the lower and upper levels of the manufacturing system. The IoT sensing
technology is based on Message Queuing Telemetry Transport (MQTT [106]) [107]. After
synchronizing, all the data is gathered and stored in an Azure Blob cloud storage account
and a Structured Query Language (SQL) database. During each MCM production cycle,
feature extraction is performed using trapezoidal numerical integration (TNI) to calculate
a key performance indicator (KPI) for each processing parameter. Within the steel sector,
Ruiz-Sarmiento et al. examine the implementation of a PdM paradigm on the equipment
used in the hot rolling process, which produces steel sheets, while keeping an eye on
the drum deterioration within the heating coils of Steckel rolling mills [108]. Based on a
Bayesian filter, a machine learning technique, this machinery’s progressive deterioration



Future Internet 2024, 16, 394 28 of 42

is estimated and predicted, enabling operators to make well-informed judgments about
maintenance procedures.

Many storage companies adopt the cold chain to store particular products that require
the control of environmental parameters such as temperature, humidity, barometric pres-
sure, carbon dioxide (CO2), and organic compounds. For this purpose, D. Mourtzi et al.
have designed and created a framework for the remote monitoring of refrigeration and cold
storage systems (RCSS) based on the implementation of a wireless sensor network (WSN)
for data acquisition and intelligent algorithms for PdM of these plants [109]. The sensors are
installed inside the cooling space of a refrigerator. More specifically, a WiFi XBee module
has been used. The data are stored and processed by a set of algorithms developed as web
services, constituting the WebSocket cloud platform [110]. F. Civerchi et al. developed the
NGS-PlatOne system to achieve continuous and widespread industrial machinery monitor-
ing via battery-powered IoT sensing devices inside a power plant [111]. Their proposed
system performs temperature and vibration monitoring. The temperature and vibration
control monitoring devices and all other monitoring devices arranged as a sensor node
may abstract the variables under observation and events observed as resources offered via
embedded web services. Consequently, a RESTful paradigm is made possible in the limited
environment by allowing each resource to be handled via the CoAP protocol operating on
6LoWPAN. A simple vibration analysis is carried out in the accelerometer node by analyz-
ing the root mean square (RMS) and peak-to-peak (P2P) characteristics throughout time
periods on each axis. When these values are greater than the programmable thresholds, a
failure event is signaled, and advanced algorithms that perform frequency domain analysis
have not been implemented to process the accelerometer node data due to their complexity.
The authors in [112] propose a novel approach for PdM. In particular, they propose a
way to manage resources by integrating self-learning into genetic algorithm (GA)-based
fog computing. In particular, the algorithm called Fogworkflowsim simulates GA’s cost,
energy, and time performance along with MaxMin, MinMin, RoundRobin, and FCFS [113].
Kudelina et al. propose a new ML approach based on the vibration signal spectrum for
bearing failure prediction [35]. Their study compares the effectiveness of traditional NN
algorithms with a new approach integrating fuzzy logic, achieving a prediction accuracy
of 99.40%. Natanael et al. instead applied the concept of PM to a toothpaste filling plant
by analyzing the information received from the onboard sensors, such as vibrations and
temperature [114]. They used two different ML methods for data processing: random
forest regression and linear regression. The authors also used the Arduino AT MEGA 2560
microcontroller for data acquisition.

Based on the considerations related to ML algorithms discussed in this section, it is
possible to highlight the advantages and critical issues related to their use. For example, the
C&RT algorithm, although easy to implement, is sensitive to imprecise data and subject to
overfitting, an aspect surpassed by the random forest, even if slower and less interpretable.
The boosted classification trees offer better performance and robustness but are more
complex and difficult to implement. The SVM is effective in high-dimensional space but
is not as interpretable as the ANN, which is suitable for modeling complex relationships.
Instead, the DBF algorithm overcomes the problem of interpretability but is sensitive to
unbalanced data. Although simple to implement, linear regression is sensitive to outliers
and complex data. Finally, the fuzzy logic algorithm models uncertainty in a natural way
because it better reflects the complexity and variability of the real world, which is useful
for precise decisions but less used in traditional ML.

Comparative Analysis of Predictive Maintenance Applications

The following discussion shows the different methodologies employed in predictive
maintenance in various industries, highlighting the integration of IoT and machine learning
approaches to improve maintenance practices, reduce downtime, and optimize operational
efficiency. Each study uniquely contributes to the evolving PdM landscape, offering
frameworks, algorithms, and case studies highlighting this technological advancement.
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The key points and contributions of the different field studies are summarized below,
followed by the limitations that a PdM approach may entail.

Most studies exploit IoT technologies, smart sensors, and machine learning techniques,
significantly improving the ability to monitor and predict machine failures in real-time
by focusing on predictive maintenance. This proactive approach improves operational
efficiency by reducing downtime and costs related to unscheduled maintenance. Integrating
advanced data analysis techniques, such as SVM (support vector machine), random forest,
XGBoost, and LSTM, improves the accuracy of failure predictions. Some studies, such
as Fordal et al., show how integrating data from different sources (maintenance and
value chain) can lead to significant performance improvements. The adoption of IoT
and cloud architectures facilitates the expansion of such systems to various industries
and applications, making them adaptable to different operational needs. Finally, creating
models for predicting residual useful life and resource management promotes greater
efficiency and the responsible use of materials.

On the other hand, integrating IoT systems and advanced algorithms can be complex
and require specialized skills and a significant initial investment. In particular, many
approaches and models have been developed for specific situations and may not be easily
transferable to other applications or industries. Although many solutions are scalable in
theory, in practice, there may be technical difficulties in managing and analyzing large
volumes of data without considering that the quality of data collected by sensors can
affect predictions. Issues such as noisy signals or faulty sensors can compromise the results.
Furthermore, the costs associated with IoT monitoring systems and supporting technologies
(e.g., cloud, big data analytics) can be burdensome for companies, especially small and
medium-sized enterprises. Data collection and analysis at large scales can threaten privacy
and security, making additional protection measures necessary, and predictive models,
such as those based on LSTMs, may require an adequate amount of historical data to be
effective, which can be a limitation in contexts with scarce or unreliable data.

In Table 4, a comparative analysis of the IoT paradigm related to predictive mainte-
nance previously analyzed through some proposals found in the literature is illustrated
synthetically. The comparative analysis is based on the nature of the monitored system,
the communication technology for data exchange, the prediction algorithm used by the
authors, and the performances obtained by them.

Table 4. Comparative evaluation of references previously discussed related to IoT-based predic-
tive maintenance.

Reference Monitored System Monitored
Parameters

Communication
Technology

Prediction
Algorithm Performance Cost–Benefits and

Implementations

Nangia
et al. [98]

Monitoring machine
Failures

Temperature,
humidity, pressure,
current, vibration

and other

Ethernet on IIoT
cloud

C&RT
BCT
SVM

89.1% (C&RT) (A)

89.9% (BCT) (A)

89.3% (SVM) (A)

High performance,
complex monitoring
process, improved

using cloud
computing

Chen
et al. [99]

Real-time operating
status of centrifugal

pumps
Vibrations signals

Wired and
wireless

technology (4G,
WIFI)

N.A. 85% (A)
low-cost and

easy-to-implement
solution

Fordal
et al. [100]

Splitting saw
monitoring

Temperature,
vibrations, and
power usage

Ethernet on
IIoT cloud ANN N.A. Entry-level solution to

enable I4.0

Ayvaz
et al. [101]

Monitoring of
production lines

Motion, speed,
weight,

temperature,
current, vacuum,
and air pressure

MQTT

ML
algorithms

Random
forest

98.2% (A)

Complex monitoring
process with

significant cost
savings
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Table 4. Cont.

Reference Monitored System Monitored
Parameters

Communication
Technology

Prediction
Algorithm Performance Cost–Benefits and

Implementations

Sang
et al. [103]

Machine components
for RUL

Global maintenance
data

NGSI REST API
and PERP Proxy FIRMWARE N.A.

High monitoring
performance and

medium investment
costs

Rosati
et al. [105]

Machining centers
and measuring

machine

Acceleration, speed,
and position MQTT RF 0.089 (B)

High performance
with low-cost

investment

Ruiz-
Sarmiento
et al. [108]

Machinery of
production steel

sheets

18 Variables (coiler
temperature, steel
densities, pressure,
and forces in the

roll stand)

Local network
DBF

(discrete
Bayes filter)

2.98 (C)

Complex monitoring
process with

significant cost
savings

D. Mourtzi
et al. [109]

Monitoring of
refrigeration and cold

storage systems
(RCSS)

Temperature,
humidity,

barometric pressure,
eCO2, and organic

compound

WiFi XBee N.A. N.A.
Low-cost, high

fidelity, plug-and-play
solution

F. Civerchi
et al. [111]

Power plant machine
monitoring

Temperature and
vibrations

CoAP protocol on
6LoWPAN P2P and RMS N.A.

Low-cost and
easy-to-implement

solution

Y.K. Teoh
et al. [112]

Condition of
manufacturing

equipment
Physical parameters

Wired, wireless,
and Intranet
connections

GA [115] 95.1% (A)

94.5% (A)

Application with
lower maintenance

costs and lower
energy consumption

K.
Kudelina
et al. [35]

Bearing faults
monitoring Vibrations Wired

connections
Neural

network with
fuzzy logic

99.40%

Plug-and-play
application with
rapid increase in

machine efficiency

D. Natanael
et al. [114]

Monitoring of filling
machine

Temperature and
vibrations

Wired
connections

Random
forest

regression
Linear

regression

88%
59%

Low-cost application
but still under
development

(A) accuracy; (B) MAE: mean absolute error; (C) RMSE: root mean square error; N.A. Not Available.

5. State of the Art on IoT Systems for Industrial Process Control

Process control is another important aspect of smart manufacturing that keeps the
production process within tolerance limits while safeguarding process quality. While
PdM relies on ML algorithms and data analysis to predict machine failures and to allow
for targeted and timely maintenance interventions, on the other hand, process control
monitors and adjusts operating parameters to ensure that a system operates efficiently and
in compliance with the desired standards. Both systems use real-time data. In particular,
predictive maintenance uses sensors to monitor equipment status, while the process control
analyzes data to keep the production process within specific limits. Integrating these
two approaches allows to implement maintenance strategies that reduce downtime and
improve the stability and efficiency of production processes.

The programmable logic controller (PLC), which is mostly used to operate low-level
regulatory feedback control loops, has been a key device of industrial control systems
throughout the automation revolution, despite the enormous recent breakthroughs in
automation technology carried out by the paradigm of Industry 4.0 and its hyperconnected
environment. There is currently no updated version of the PLC that aims to fulfill the needs
of an Industry 4.0-focused control system. Industry 4.0 refers to integrating different digital
technologies in sophisticated information systems and intelligent manufacturing to increase
operational efficiency and output. The idea of industrial cyber–physical systems (ICPSs),
considered the next generation of industrial control systems (ICSs) from a systems and
control viewpoint, is the result of this integration. [116]. Several design concepts mandated
by Industry 4.0 must be considered when automating or digitizing industrial processes
(Figure 19). These principles include the following:
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• Integration of production processes into the value chain, enabling smart factories to
achieve end-to-end management of the entire production process from supply chain
to services and life cycle management.

• Interoperability is the ability of all system components to connect, communicate, and
interact transparently using standardized data and communication models.

• Decentralization, allowing different sub-systems to make decisions locally and au-
tonomously to achieve a final organizational goal.

• Real-time performance, which requires that production processes collect, communicate,
and consolidate data at the proper rates so strategic decisions can be taken timely.

• Modularity allows individual parts to be upgraded, expanded, or replaced with the
most minor disturbance to production operations. This feature enables smart factories
to quickly adjust to changing production needs and physical environments.
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In the last several years, there has been much focus on the Internet of Things (IoT) and
cloud computing because they may provide a fresh method for intelligent sensing, commu-
nication among humans and machines, and the efficient sharing and use of resources when
required. The method used from Khan et al. [117] is based on a private cloud system that
collects data in real time from smart technologies connected to shop floor products. With
the method dictated by gathering shop-floor objects, the research intends to build a generic
framework for information and data capture, processing, and collecting at the periphery of
huge production controllers. The various parts of the developed cyber-physical mechanism
will be implemented in a cloud setting to move towards the Internet of Things. Ioannis
et al. [118] present the architecture, design, practical implementation, and evaluation of
an end-to-end platform that addresses these challenges. The platform offers adjustable
and interoperable methods for gathering, organizing, and directing data streams from
heterogeneous cyber–physical production systems; additionally, it facilitates sophisticated
data analytics using a unique machine learning architecture that uses quantitative rule
mining. Garmaroodi et al. [119] developed a fault-detection system for the CHRIST Os-
motron water purifier using certain sensors and data-mining techniques. Six sensors were
used to gather data every two weeks before and after the system refurbishment, including
good and bad operations. Their research developed two anomaly-detection approaches
in IIoT, specifically for water cleaning systems based on ML and data mining. Bhaskaran
et al. [120] dealt with monitoring and controlling pipeline transportation systems before the
failure that leads to fatal accidents. The NarrowBand Internet of Things (NB-IOT) module,
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which has a high-level engineering interface, embeds the IoT into the Supervisory Control
and Data Acquisition (SCADA) platform to enhance supervisory performance. SCADA
provides local intelligence using an LQR-PID controller in their suggested technique. When
the local intelligence cannot respond to threats in advance, the web server uses an NB-IoT
module to quickly disable its performance.

To connect virtual and real systems, a DT was suggested by Xia et al. to model pro-
duction cells, mimic system behaviors, forecast process faults, and regulate manipulated
variables adaptively [121]. They created a network of connections across the environments,
starting with the production cell that was adjusted to settings like computer-aided applica-
tions, product lifecycle management software, and process control platforms to achieve
almost synchronous controls. With this work, the authors demonstrated that implementing
virtual commissioning as a first step toward system-level digital twinning will accelerate
intelligent control systems’ training, testing, and validation [122]. S. Muruganandam et al.
presented an Operation-Constrained Process Control (OCPC) to eliminate the time delay
errors in the operation cycles of intelligent machines [123]. With the proposed method, the
authors consider the completion time, operation cycles, and efficiency metrics to identify
production errors and time delays. Based on the productivity data, further modifications
or allocations of ordinary operation cycles are defined. Productivity analysis is performed
based on historical data using federated learning [124]. AI indicators are used in IIoT smart
factories to facilitate unattended interventions and streamline production. K. Y. Shin et al.
provide a novel engineering approach in smart manufacturing systems engineering (SMSE)
by achieving smart product quality monitoring systems (SmartPQMS) [125]. This approach
has been implemented in the production cycle of steel and iron.

Comparative Analysis of Process Control Applications

The in-depth analysis of IoT and cloud computing highlights the crucial role of these
tools in optimizing industrial operations and resources. The research mentioned provides a
diverse panorama of applications and methodologies adopted to improve the interaction
between machines and systems, with a strong focus on data collection and analysis. In
particular, using a private cloud provides a solid foundation for making data immediately
accessible and usable for making more informed decisions. At the same time, adopting
an end-to-end approach for data management in cyber–physical systems demonstrates
that continuity and interconnectivity between data are essential to ensure efficiency and
operational speed. The importance of data analytics is further supported by machine learn-
ing and mining techniques that enable the detection of anomalies in systems. This aspect
is particularly critical in industries where even a small imperfection can have significant
consequences. In monitoring and control, using IoT technologies for plant supervision
represents a growing need in the current industrial landscape. Integrating SCADA systems
with NB-IoT networks leads to better failure prevention and smarter and more responsive
asset management. The innovation of digital twinning marks a significant step towards
integrating the physical and virtual worlds. This fusion certainly revolutionizes the moni-
toring of operations and the training and validation of intelligent control systems. Finally,
the importance of adopting quality control and monitoring metrics, now facilitated by
advanced technologies such as AI, allows for the optimization of interactions in smart
factories. The conclusion highlights a central theme: Despite the different methodologies
and research objectives, there is a convergence in the approach to IoT and cloud comput-
ing as tools for innovation and continuous improvement. The digitalization of industrial
processes and advanced data analysis techniques are crucial to improving efficiency and
the ability to respond to emerging issues in production. In this context, smart factories are
the industry’s future, ready to respond to market challenges with agility and precision.
Table 5 summarizes the characteristics of each analyzed reference, with the application
performance shown in the last column.
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Table 5. Comparative analysis of the references proposed in this paper relating to IoT-based process
control solutions.

Reference Monitored Process Application Monitored
Parameters

Inferring
Algorithm Performance

S. I. Khan
et al. [117]

Shop floor
manufacturing process

Production and
quality control

Processing speed,
idle time, parts per

minute, and
processed or

unprocessed parts

N.A. N.A.

I. T. Christou
et al. [118]

Automotive and female
fashion manufacturing

Predictive
maintenance and

quality assessment
N.A. R4RE 3.76%

7.702% (A)

M.S.S.
Garmaroodi
et al. [119]

Water purification
system (CHRIST

Osmotron)
Anomaly detection

Pressure and
electrical

conductivity

SVM (Approach 1)
ANN (Approach 2)

100%
(Approach 1)

P. E. Bhaskaran
et al. [120]

Monitoring of the
transmission system of

the condotte

Lab-scale DCS
(distributed control
system)-based fluid

transportation
system

Flow and pressure SCADA with
NB-IoT 26.2% (C)

K. Xia et al. [121]

Implementation of a DT
to improve the level of

training, process control,
and testing

Automation of
intelligent

production systems

Simulation of
real-life robotic cell

behaviors

Machine learning
(ML)-based

dynamic
scheduling agent

digital engine

N.A.

S.
Muruganandam

et al. [123]

Optimization of
operating cycles (OCPC)

Identification of time
lags and errors
in production

Operational cycle,
completion time,

and output
efficiency metrics

Federated learning 90.181 (B)%

K. Y. Shin
et al. [125]

Monitoring of the steel
and iron

production cycle

Product quality
monitoring systems N.A

SmartPQMS (data
mining, ML, deep

learning, and
reinforcement

learning
technology)

N.A.

(A) MAPE: mean absolute percentage error; (B) efficiency; (C) enhanced performance; N.A.: not available.

6. IoT Systems Applied to Additive Manufacturing

Additive manufacturing (AM) represents another important pillar of the Industry 4.0
paradigm. AM, also known as 3D Printing, is a contemporary technology that enables the
creation of 3D items without traditional production (Figure 20). The process is called “addi-
tive” as it builds material layers one at a time to create final 3D objects [126]. Compared
to traditional manufacturing techniques, AM offers the benefits of printing complicated
forms, shorter production times, less waste, novel features, and cost-effectiveness. As a
result, prototypes, meals, tissues, jewels, buildings, tools, and other items are being made
using this rapidly developing technology. Since AM is a data-intensive manufacturing
area, several ML techniques may be used to tackle problems with selecting, optimizing,
monitoring, controlling, and designing AM process parameters. As a result, researchers’ in-
terest in the breadth of ML applications to tackle AM challenges is expanding quickly [127].
IoT encourages more customization, less material waste, and quick manufacturing in AM
processes. The integration of 3D Printing with cyber–physical systems holds promise for
manufacturing, design, and maintenance procedures. It also gives the user design freedom
and the ability to perform multi-dimensional extrusion [128].
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Another tenet of the Industrial Internet of Things (IIoT) concept is additive manufac-
turing, where sophisticated measuring tools could be needed to track important parameters.
At the same time, artifacts are being produced to assess the deployment site’s environ-
mental indicators. Fedullo et al., in their work, consider the application of IIoT low-power
wide-area network (LPWAN) technologies in an experimental setup of additive manufac-
turing [129]. Their research led to the realization of different objects by designing a powder
bed 3D printer. These objects were sensorized at the start of the realization to monitor
production process and next phase in the destination locations where such artifacts are
inserted. This application required a battery for a considerable duration and the integrated
sensors’ ability to transmit data securely, even at long ranges. The authors also analyzed
two LoRa (long range) end node types: the Microchip RN2483 LoRa Mote and the Tinovi
PM-IO-5-SM LoRaWAN IO Module.

The work conducted by Majeed et al. [130] aims to build a framework that com-
bines big data analytics, additive manufacturing, and sustainable smart manufacturing
technologies that benefit additive manufacturing enterprises. They proposed a big data-
driven sustainable smart additive manufacturing (BD-SSAM) framework that benefited
AM industry leaders in making better decisions for the early lifecycle stage of the product,
presenting an application scenario from the additive manufacturing plant to demonstrate
the suggested framework. Their case study focused on fabricating AlSi10Mg alloy ele-
ments using AM’s selective laser melting (SLM) technique [131]. The results show that
energy consumption and product quality are properly controlled, which benefits sustain-
able smart manufacturing, pollution minimization, and neater realization. A metal additive
manufacturing-based integrated process chain idea for tool manufacture is presented by
Moshiri et al. in [132]. The suggested method describes the key stages for the synergistic
integration of production assets and attempts to take advantage of a completely digitalized
production line. The production line is equipped with a digital infrastructure that collects
and processes data from numerous monitoring sensors to implement corrective measures
and continuously optimize the process. The goal of the proposed work is to fully monitor
the collection of production data to identify responses, manage performance, and ensure
that all goods and equipment are fully traceable. Specifically, working environment condi-
tions were immediately captured through real-time monitoring to provide additional data
processing, feedback (correction), and ongoing production process improvement. In the
field of additive manufacturing, important help is given by the use of digital twins that
allow to obtain a more reliable design method by eliminating any form of waste of both
time and material because they allow to simulate a system or an object, especially when it
is complex. DT is obtained by fusing software, IoT, AI, and virtual models for simulation to
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create increasingly realistic models. Digital models are also able to simulate any failures
through simulations. The goal of the DT method is to optimize the printing process by
obtaining a better consumption of resources and reducing a company’s costs [18].

In this regard, D.R. Gunasegaram et al. explain how using a DT combined with the
3D printing of metal materials allows for cheaper and repeatable printing while ensuring
high quality [133]. In their work, a study was performed on a laser powder bed printing
(L-PBF) process. In fact, they noted that by programming the laser power based on the data
collected by the pyrometer, they were able to avoid hot spots during the manufacturing
phase of the artifact. Still, they dedicated considerable time to modeling and analysis
to collect correlation data. For this reason, they noted that using ML tools raised to a
higher level with physical data could control numerous parameters, allowing them to
eliminate hot spots and other defects. Similarly, DT has been used by J. Haw et al. for the
optimization of the idealization, design, and verification phase of biomedical scaffolds [134].
It is important to note that AM is well suited to biomedical production prostheses since
these prostheses can have extremely complex shapes that would be significantly expensive
to produce with traditional production methods. In the work proposed by L. Guo et al.
in [135], an architecture is created in which a DT model is obtained from the collaboration
between a cloud-edge platform dedicated to 3D additive manufacturing. This architecture,
with an effective data transfer, allows the remote viewing of the progress of the print, and
through the DT, the progress of the print is displayed in a virtual way.

Comparative Analysis of Additive Manufacturing Applications

The advancements in the IoT and additive manufacturing depict a transformative land-
scape in production processes, emphasizing the synergy between data analytics, real-time
monitoring, and smart manufacturing techniques. Incorporating sophisticated measure-
ment tools is paramount in continuously tracking crucial parameters during production
of artifacts and assessing environmental factors at deployment sites. In parallel, the big
data-driven sustainable smart additive manufacturing (BD-SSAM) framework focuses on
improving product lifecycle management, highlighting how the use of data can contribute
to reducing energy consumption, improving product quality, decreasing pollution levels,
and increasing overall efficiency. This approach emphasizes the potential of data-driven
decision making to achieve significant sustainability benefits in the manufacturing sector.

The integration of IoT and LPWAN technologies in additive manufacturing has demon-
strated how using sensor objects, realized by 3D printing, can generate smart products.
These sensors play a crucial role in continuously monitoring production parameters and
evaluating real-world performance once installed. It turns out that effective long-range data
transmission and extended battery life are key to maintaining operational efficiency and
reliability in additive manufacturing environments. In addition, an integrated process chain
for additive metal production was proposed, highlighting the need for the full digitization
and interconnection of production assets. Real-time monitoring is essential to facilitate
continuous process optimization, guarantee product quality, and ensure equipment trace-
ability. This digitization is essential for data acquisition and analysis, leading to informed
corrective decisions during production.

An innovative aspect is the application of digital twins in additive manufacturing opti-
mization. Through IoT, AI, and virtual modeling, DT enables the simulation and prediction
of production outcomes and facilitates proactive maintenance and efficient resource opti-
mization. The integration of DT with 3D printing is proving to be effective in counteracting
production defects through real-time adjustments and machine learning tools to improve
parameter control. Finally, significant progress has been observed in DT application in
designing and verifying biomedical scaffolds, highlighting how additive manufacturing
can tackle complex projects and offer economic advantages over traditional methods. The
collaborative potential of cloud and edge computing emerges as a key factor in enabling
remote monitoring and efficient data transfer in 3D printing processes. The convergence of
IoT, big data, and digital twin technologies within additive manufacturing heralds a new
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era of production methods characterized by increased agility, improved sustainability, and
heightened cost-effectiveness. As these technologies continue to evolve, they promise to
redefine manufacturing paradigms, paving the way for enhanced operational capabilities
and innovation across various industries. The ongoing advancements in these fields exem-
plify the potential for smarter manufacturing solutions and underline the importance of
harnessing data and technology for long-term industrial growth and sustainability. Table 6
summarizes the main topics of the analyzed articles indicating the technological readiness
of the developed application.

Table 6. Summary of the topics covered by the references analyzed.

Reference Topic Technological
Readiness

T. Fedullo et al. [129]

Implementation of IIoT LPWAN technologies
within additive manufacturing products for

information collection during production and at
the point of installation

AM approach has high application potential in the
field of smart manufacturing and is not only for

the creation of intelligent objects

A. Majeed et al. [130]
Realization of a big data-based framework
(BD-SSAM) as a decision-making tool for

companies in the AM field

New framework SSAM for the product
manufacturing cycle that aims to control energy

consumption and quality

M. Moshiri et al. [132]
Complete monitoring of data collection to

optimize the production process through AM,
minimize costs, and improve product quality

A new concept of an integrated and modular
intelligent production system, with full system
monitoring, consumption data analysis, safer

working environment, and scalable and flexible
modular configuration

D. R. Gunasegaram
et al. [133]

Improving the quality of realization using DT
models enhanced with ML tools

The application of DT in AM is mature but still in
the development phase; it is not yet standardized
and requires significant investments in terms of

resources and technical skills, but it allows
significant improvements in production quality

control with considerable adaptability

J. Haw et al. [134] Use of DT as a tool to optimize and improve the
manufacturing phases of biomedical scaffolds

DT in the biomedical field to produce scaffolds is a
technology of considerable importance as it allows
the creation of increasingly ergonomic prostheses,

allowing for a more optimized design

L. Guo et al. [135] Decentralized monitoring of the AM process
using DT

DT is a great tool for decentralizing additive
manufacturing because it allows for production
simulations, optimization of the manufacturing

process, and real-time monitoring

Nowadays, the constant and precise monitoring of the main AM parameters is essen-
tial. Monitoring the printing parameters, combined with the data processing provided by
ML algorithms and DT models, allows for an optimized manufacturing process manage-
ment. This manufacturing paradigm involves the production of higher-quality products,
an essential aspect of market competition. With the quality of the product, another fac-
tor of interest is the minimization of costs linked to the reduction of waste and a greater
production speed.

7. Conclusions and Future Developments

In the last few years, the IoT paradigm has undoubtedly influenced many fields, such
as industry, agriculture, biomedicine, warehousing, construction, etc. These are just some
sectors in which the IoT has significantly contributed, improving manufacturing efficiency,
scheduling maintenance interventions, and safeguarding workers’ health and cybersecurity.
In the framework of Industry 4.0, the IoT has also enabled a more detailed and widespread
control process by providing new control architectures that will allow real-time process
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monitoring so that no drifts could induce a reduction in product quality. It is worth noting
that a fundamental aspect of IoT smart manufacturing applications is the massive presence
of sensing devices directly installed in the plant to gather data, and the development of
ML algorithms to process the data and detect anomalies and risk conditions. Moreover, the
application of IoT strategies requires a significant flow of data, which very often contains
sensitive information. For this reason, cybersecurity architectures are essential to prevent
possible cyber-attacks and data theft.

This paper has provided a targeted vision of the IoT paradigm in the main fields
of smart manufacturing. After an accurate selection of the scientific literature based on
PRISMA method, this paper has presented an overview of IoT applications in manufactur-
ing process control, predictive maintenance, data protection, worker safety, and additive
manufacturing. A comparative analysis has been provided for each covered topic, focus-
ing on architectural aspects, data analysis, and communication technologies, as well as
characteristic aspects of each topic and bringing out strengths and limitations of analyzed
solutions. In this way, the features, functionalities, and real-world applications of IoT in the
framework of smart manufacturing have been outlined.

In the future, to optimize smart manufacturing processes, the goal is to improve the
interactions between IoT systems and ML by enhancing different aspects: data integra-
tion by developing models for data acquisition from various sources (IoT sensors, ERP,
production management systems); improvement of the quality of information for ML;
development of new standards and protocols that facilitate interoperability between IoT
systems and devices; and improvement of predictive models through the use of advanced
ML techniques. Considering security aspects, a starting point of the research will be to
develop encryption protocols and secure access strategies to better ensure privacy and
data security. Taking into account that the implementation of IoT and ML methodologies
needs an in-depth knowledge of several aspects, companies will need to train their staff
by investing time and capital to have skilled operators. With continuous technological
progress, the enhancement of processing software, and the adoption of high-performance
ML algorithms, it will be possible to process an ever-increasing amount of data at a higher
speed, obtaining a more precise and rapid response to input data. In conclusion, in the
near future, the IoT paradigm will be the central cornerstone on which all companies
will revolve.
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15. Aslan, Ö.; Aktuğ, S.S.; Ozkan-Okay, M.; Yilmaz, A.A.; Akin, E. A Comprehensive Review of Cyber Security Vulnerabilities,
Threats, Attacks, and Solutions. Electronics 2023, 12, 1333. [CrossRef]

16. Mecheter, A.; Tarlochan, F.; Kucukvar, M. A Review of Conventional versus Additive Manufacturing for Metals: Life-Cycle
Environmental and Economic Analysis. Sustainability 2023, 15, 12299. [CrossRef]

17. Duman, B.; Süzen, A.A. Modeling of IoT-based additive manufacturing machine’s digital twin for error detection. J. Eng. Sci. Des.
2023, 11, 486–497. [CrossRef]

18. Chigilipalli, B.K.; Karri, T.; Chetti, S.N.; Bhiogade, G.; Kottala, R.K.; Cheepu, M. A Review on Recent Trends and Applications of
IoT in Additive Manufacturing. Appl. Syst. Innov. 2023, 6, 50. [CrossRef]

19. Urhal, P.; Weightman, A.; Diver, C.; Bartolo, P. Robot Assisted Additive Manufacturing: A Review. Robot. Comput.-Integr. Manuf.
2019, 59, 335–345. [CrossRef]

20. Shen, T.; Li, B. Digital Twins in Additive Manufacturing: A State-of-the-Art Review. Int. J. Adv. Manuf. Technol. 2024, 131, 63–92.
[CrossRef]

21. Fast Radius. Available online: https://fastradius.com/expertise/manufacturing-quality-standards/#additive (accessed on 15
October 2024).

22. Geico S.p.a. Available online: https://geico-spa.com/en/innovation/smart-paintshop/ (accessed on 15 October 2024).
23. Industry 5.0—European Commission. Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-

research-and-innovation/industry-50_en (accessed on 14 October 2024).
24. Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from

Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [CrossRef]
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