
Citation: Epicoco, I.; Pulimeno, M.;

Cafaro, M. Parallel and Distributed

Frugal Tracking of a Quantile. Future

Internet 2024, 16, 335. https://

doi.org/10.3390/fi16090335

Academic Editor: Gianluigi Ferrari

Received: 3 August 2024

Revised: 9 September 2024

Accepted: 11 September 2024

Published: 13 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Parallel and Distributed Frugal Tracking of a Quantile †

Italo Epicoco , Marco Pulimeno and Massimo Cafaro *

Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy;
italo.epicoco@unisalento.it (I.E.); marco.pulimeno@unisalento.it (M.P.)
* Correspondence: massimo.cafaro@unisalento.it; Tel.: +39-0832-297371
† The Seventh International Workshop on Systems and Network Telemetry and Analytics (SNTA 2024),

in Conjunction with ACM HPDC 2024. In Proceedings of the 33rd International Symposium on
High-Performance Parallel and Distributed Computing), Pisa, Italy, 3–7 June 2024.

Abstract: In this paper, we deal with the problem of monitoring network latency. Indeed, latency is
a key network metric related to both network performance and quality of service, since it directly
impacts on the overall user’s experience. High latency leads to unacceptably slow response times of
network services, and may increase network congestion and reduce the throughput, in turn disrupting
communications and the user’s experience. A common approach to monitoring network latency takes
into account the frequently skewed distribution of latency values, and therefore specific quantiles
are monitored, such as the 95th, 98th, and 99th percentiles. We present a comparative analysis of the
speed of convergence of the sequential FRUGAL-1U, FRUGAL-2U, and EASYQUANTILE algorithms
and the design and analysis of parallel, message-passing-based versions of these algorithms that
can be used for monitoring network latency quickly and accurately. Distributed versions are also
discussed. Extensive experimental results are provided and discussed as well.

Keywords: latency; quantile; stream; parallel computing; distributed computing

1. Introduction

A key metric for the evaluation of a network service, related to quality of service (QoS)
and network performance, is the network latency. Indeed, network latency may disrupt
the overall user’s experience: when it is sufficiently high, its impact is devastating since it
leads to several problems affecting the user [1,2]. To begin with, the user will experience
unacceptably slow response times; moreover, a high network latency usually increases
congestion and reduces the throughput, resulting in almost useless communications. From a
technical perspective, the message latency is the time required for a data packet to reach its
destination, and it is the sum of several components including transmission, processing,
and queuing delay. Latency fluctuations are due to factors such as the distance, the network
infrastructure and congestion, the signal propagation, and the time required by network
devices to process the data packets in transit. The network latency is measured as the
round-trip time taken by a packet from source to destination across the network. It is
measured in milliseconds (ms), and its impact on the QoS of a service depends on the
specific type of service. For instance, a web server should provide a latency below 100 ms
in order to guarantee a responsive browsing experience when the user loads a web page.
A higher latency is the source of a perceivable delay that, besides being annoying, may
lead to financial losses. In the realm of financial trading, the requirements for latency are
stricter and it is not unusual for these kind of services to strive to provide an extremely low
latency, measured in microseconds. A trader experiencing a delay during trades may easily
decide to switch to a different service. Streaming (video or music) is another fundamental
application requiring low latency; currently, a latency below 100 ms can provide a smooth
streaming experience. Finally, in order to provide a good experience, voice and video calls
require a latency, respectively, below 150 and 200 ms. In practice, the influence of latency on

Future Internet 2024, 16, 335. https://doi.org/10.3390/fi16090335 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090335
https://doi.org/10.3390/fi16090335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6408-1335
https://orcid.org/0000-0002-4201-1504
https://orcid.org/0000-0003-1118-7109
https://doi.org/10.3390/fi16090335
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090335?type=check_update&version=2

Future Internet 2024, 16, 335 2 of 25

the quality of streaming services depends on the type of streaming: one-way streaming of
movies, music, etc., versus multi-way real-time streaming services, such as online gaming
or conference calls.

A common approach to monitoring network latency takes into account the frequently
skewed distribution of latency values, and therefore specific quantiles are monitored, such
as the 95th, 98th, and 99th percentiles [3]. For instance, this is commonly done to precisely
assess the latency of a website [4]. In order to meet customer demand and deliver good QoS
values, highly requested websites (e.g., a search engine) distribute the incoming traffic load
(i.e., the users’ queries) among multiple web server hosts. To compute the overall latency
of a website (across all of the associated web server hosts), quantiles must be precisely
maintained for each host, and a distributed algorithm is necessary to aggregate individual
host responses.

Tracking quantiles on streams is the subject of several studies [5–7] and many dif-
ferent algorithms have been devised for this task [8–20]. Next, we formally define rank
and quantile.

Definition 1 (Rank). Given a multiset S with n elements drawn from a totally ordered universe
set U , the rank of the element x, denoted by R(x), is the number of elements in S less than or equal
to x, i.e.,

R(x) :=
∣∣∣{z ∈ S | z ≤ x}

∣∣∣. (1)

Definition 2 (q-quantile). Given a multiset S with n elements drawn from a totally ordered
universe set U and a real number 0 ≤ q ≤ 1, the inferior q-quantile (respectively, superior
q-quantile) is the element xq whose rank in S is such that

xq ∈ S : R(xq) = ⌊1 + q · (n − 1)⌋ (2)

(respectively, R(xq) = ⌈1 + q · (n − 1)⌉).

For instance, x0 and x1 represent, respectively, the minimum and the maximum element
of the set S, whilst x0.5 represents the median. FRUGAL [21] is an algorithm for tracking a
quantile in a streaming setting; its name reflects the fact that it needs just a tiny amount
of memory for this task. Two variants are available, namely FRUGAL-1U and FRUGAL-
2U; the former uses one unit of memory whilst the latter uses two units of memory in
order to track an arbitrary quantile in a streaming setting. EASYQUANTILE [22] is a recent
frugal algorithm designed for the problem of tracking an arbitrary quantile in a streaming
setting. This work extends [23] as follows: we shall present a comparative analysis of
the speed of convergence of these algorithms; then, we shall design and analyze parallel,
message-passing based versions that can be used for monitoring network latency quickly
and accurately. Moreover, we shall also discuss the design of their distributed versions.
Finally, we shall provide and discuss extensive comparative results.

This paper is organized as follows. Section 2 introduces the sequential FRUGAL-1U
and FRUGAL-2U algorithms. Section 3 presents the sequential EASYQUANTILE algorithm.
Next, we analyze the speed of convergence of the algorithms in Section 4 and present
the design of our parallel, message-passing based versions in Section 5, in which we also
discuss corresponding distributed versions. The algorithms are analyzed in Section 6,
in which we derive their worst case parallel complexity. Experimental results are presented
and discussed in Section 7. Finally, we draw our conclusions in Section 8.

2. The FRUGAL Algorithm

Among the many algorithms that have been designed for tracking quantiles in a
streaming setting, FRUGAL, besides being fast and accurate, also restricts by design the
amount of memory that can be used. It is well known that in the streaming setting, the
main goal is to deliver a high-quality approximation of the result (this may provide either

Future Internet 2024, 16, 335 3 of 25

an additive or a multiplicative guarantee) by using the lowest possible amount of space.
In practice, there is a tradeoff between the amount of space used by an algorithm and
the corresponding accuracy that can be achieved. Surprisingly, FRUGAL-1U only requires
one unit of memory to track a quantile. The authors have also designed a variant for
the algorithm that uses two units of memory, FRUGAL-2U. Algorithm 1 provides the
pseudo-code for FRUGAL-1U.

Algorithm 1 Frugal-1U

Require: Data stream S, quantile q, one unit of memory m̃
Ensure: estimated quantile value m̃

m̃ = 0
for each si ∈ S do

rand = random(0, 1)
if si > m̃ and rand > 1 − q then

m̃ = m̃ + 1
else if si < m̃ and rand > q then

m̃ = m̃ − 1
end if

end for
return m̃

The algorithm works as follows. First, m̃ is initialized to zero, but the authors also
suggest to set it to the value of the first incoming stream item in order to accelerate the
convergence. This variable will be dynamically updated each time a new item si arrives
from the input stream S, and its value represents the estimate of the quantile q being
tracked. The update is quite simple, since it only requires being increased or decreased by
one. Specifically, a random number 0 < rand < 1 is generated by using a pseudo-random
number generator (the call random(0, 1) in the pseudo-code) and if the incoming stream
item is greater than the estimate m̃ and rand > 1 − q, then the estimate m̃ is increased,
otherwise it is decreased. Obviously, the algorithm is really fast and can process an
incoming item in worst-case O(1) time. Therefore, a stream of length n can be processed in
worst-case O(n) time and O(1) space.

Despite its simplicity, the algorithm provides good accuracy, as shown by the au-
thors in [21]. However, the proof is challenging since the algorithm’s analysis is quite
involved. The complexity in the worst case is O(n), since n items are processed in worst
case O(1) time.

Finally, the algorithm has been designed to deal with an input stream consisting of
integer values distributed over the domain [U] = {1, 2, 3, . . . ,U}. This is not a limitation
though, owing to the fact that one can process a stream of real values as follows: fix a
desired precision, say 103, then each incoming stream item with real value can be converted
to an integer by multiplying it by 103 and then truncating the result by taking the floor. If the
maximum number of digits following the decimal point is known in advance, truncation
may be avoided altogether: letting m be the maximum number of digits following the
decimal point, it suffices to multiply by 10m. Obviously, the estimated quantile may be
converted back to a real number by dividing the result by the fixed precision selected or
by 10m.

Next, we present the FRUGAL-2U, shown as pseudo-code in Algorithm 2.
This technique is similar to FRUGAL-1U, but it aims to produce a better quantile

estimate utilising just two units of memory for the variables m̃ (the estimate) and step,
which denotes the update size. It is worth noting that the variable sign can be represented
with only one bit and is used to decide whether the estimate should be incremented
or decremented.

The step size is dynamically increased or decreased on the basis of the values of the
incoming stream items. The update process depends on the function f (x), and works as

Future Internet 2024, 16, 335 4 of 25

follows: if the incoming item falls on the same side of the current estimate, then the variable
step is increased; otherwise, it is decreased. To accelerate the convergence, larger update
values may be used until the estimate is close to the true quantile value; then, extremely
small values are used to increase or decrease step.

Algorithm 2 Frugal-2U

Require: Data stream S, quantile q, one unit of memory m̃, one unit of memory step, a bit
sign

Ensure: estimated quantile value m̃
1: m̃ = 0, step = 1, sign = 1
2: for each si ∈ S do
3: rand = random(0, 1)
4: if si > m̃ and rand > 1 − q then
5: step + = (sign > 0) ? f (step) : − f (step)
6: m̃ + = (step > 0) ? ⌈step⌉ : 1
7: sign = 1
8: if m̃ > si then
9: step + = si − m̃

10: m̃ = si
11: end if
12: else if si < m̃ and rand > q then
13: step + = (sign < 0) ? f (step) : − f (step)
14: m̃ − = (step > 0) ? ⌈step⌉ : 1
15: sign = −1
16: if m̃ < si then
17: step + = m̃ − si
18: m̃ = si
19: end if
20: end if
21: if (m̃ − si) ∗ sign < 0 ∧ step > 1 then
22: step = 1
23: end if
24: end for
25: return m̃

Of course, there is a tradeoff between speed of convergence and estimation stability.
Since this tradeoff is directly related to the f (x) function, the authors set f (x) = 1 to
prevent huge oscillations, and we shall use this definition of f (x) throughout this paper.

Algorithm 2 only updates the estimate when strictly necessary. There are two different
scenarios to be considered: the arrival of stream items greater or smaller than the current
estimate. Since these two cases are symmetric, we shall just cover the former here. In this
particular scenario, an update is required when observing a large stream item. It is worth
noting here that the estimation is updated by at least one, and that the step variable is only
used when positive. The authors describe this as follows:

“The reason is that when algorithm estimation is close to true quantile, FRUGAL-
2U updates are likely to be triggered by larger and smaller (than estimation)
stream items with largely equal chances. Therefore the step is decreased to a
small negative value and it serves as a buffer for value bursts (e.g., a short series
of very large values) to stabilize estimations. Lines 8–11 are to ensure estimation
does not go beyond the empirical value domain when step gets increased to a
very large value. At the end of the algorithm, we reset the step if its value is
larger than 1 and two consecutive updates are not in the same direction. This is to
prevent large estimate oscillations if the step gets accumulated to a large value.”

Future Internet 2024, 16, 335 5 of 25

3. The EASYQUANTILE Algorithm

This algorithm has been designed to be implemented in the data plane, taking into
account stringent constraints on the hardware resources (limited memory and computing
capacity). In particular, it works by updating the quantile estimate m̃ depending on the
actual count of the stream items; updates are performed only if required, i.e., if the estimate
deviates from the true quantile. A key idea is to distinguish between smaller and larger
quantiles using an experimentally determined toggling threshold toggleThreshold, fixed by
the authors at 0.7. For small quantiles, the update is smooth, being based on the average
of the observed stream items, whilst for large quantiles, the update is more drastic, being
based on the current range (max value minus min value).

The algorithm begins initializing the variables used internally, then proceeds deter-
mining the mode of operation, which can be either MAX_MIN if the quantile to be tracked
is greater than the toggling threshold or AVERAGE otherwise. Next, the incoming stream
items are processed. The arrival of a new item si increases the value of count, which keeps
track of the number of observations seen. Only for the first observed item, the quantile
estimate m̃ is set to 1 and the algorithm proceeds waiting for the next incoming item. Other-
wise, for each successive item, the algorithm computes threshold, a dynamically adjusting
threshold given by the product count × quantile. Next, the algorithm dynamically adjusts
the current values of max and min and the current value of sum, which is the sum of the
values of the observations seen so far.

The step of the update is then computed, depending on the mode of operation. The al-
gorithm then selectively updates the quantile estimate depending on the values of countLow
and countHigh. Those variables are initialized to zero and represent, respectively, the num-
ber of items whose value is lesser or greater than the current quantile estimate m̃. This
allows avoiding sorting to infer the rank of the estimate. If the incoming item si is less than
or equal to the quantile estimate m̃, the value of countLow must be increased by one, other-
wise the value of countHigh must be increased by one. Here, the authors take advantage
of the fact that, after seeing the i-th item, the values of countLow and countHigh must be
respectively equal to i × q and i × (1 − q) if m̃ is equal to the true quantile value. Therefore,
if countLow + 1 exceeds the dynamically adjusted threshold value, the current estimate m̃
is greater than the true quantile, and the algorithms updates the estimate by subtracting
the previously computed step size λ. The reason behind the increase in countHigh is that,
immediately after the update, the estimate is less than its previous value and the authors
treat the estimate as if it was an incoming stream item. The other update is symmetric for
the case si > m̃: if countHigh + 1 exceeds count − threshold (i.e., i × (1 − q)), following the
previous argument, the authors update the estimate by adding λ and increasing countLow,
again treating the estimate as a stream item.

Algorithm 3 provides the pseudo-code for EASYQUANTILE.

Future Internet 2024, 16, 335 6 of 25

Algorithm 3 EasyQuantile

Require: Data stream S, quantile q, O(1) units of memory
Ensure: estimated quantile value m̃

mode = 0 ▷ mode of operation: MAX_MIN = 1, AVERAGE = 2
m̃ = 0
max = −∞
min = +∞
sum = 0
count = 0
countLow = 0
countHigh = 0
λ = 0
count = 0
threshold = 0
toggleThreshold = 0.7
if q > toggleThreshold then

mode = 1
else

mode = 2
end if
for each si ∈ S do

count = count + 1
if count ≤ 1 then

m̃ = si
continue ▷ go to the next iteration

end if
threshold = count × quantile
if si < min then

min = si
end if
if si > max then

max = si
end if
sum = sum + si
if mode == 1 then

λ = max−min
count

else
λ = sum

count×(count−1.0) × 2.0
end if
if si ≤ m̃ then

if countLow + 1 > threshold then
m̃ = m̃ − λ
countHigh = countHigh + 1

else
countLow = countLow + 1

end if
else

if countHigh + 1 > count − threshold then
m̃ = m̃ + λ
countLow = countLow + 1

else
countHigh = countHigh + 1

end if
end if

end for
return m̃

Future Internet 2024, 16, 335 7 of 25

4. Speed of Convergence

We experimentally determined the speed of convergence to the true quantile of
FRUGAL-1U, FRUGAL-2U, and EASYQUANTILE by implementing the sequential versions
of the algorithms and keeping track of pairs (m̃i, qi), i = n/100, 2n/100, · · · , 99n/100, n
(i.e., each pair is computed every 1/100 of the input stream, whose length is n). We carried
out our experiments using the synthetic datasets shown in Table 1.

Table 1. Synthetic datasets.

Dataset Distribution Parameters PDF

D1 Uniform [0, 25,000] -10000 10000 20000 30000 40000

0.00001

0.00002

0.00003

0.00004

D2 χ2 α = 5 5 10 15 20

0.05

0.10

0.15

D3 Exponential α = 0.5 2 4 6 8

0.1

0.2

0.3

0.4

0.5

D4 Log-normal α = 1, β = 1.5 2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

0.30

D5 Normal µ = 50, σ = 2 45 50 55 60

0.05

0.10

0.15

0.20

D6 Cauchy α = 10,000, β = 1250 5000 10000 15000 20000

0.00005

0.00010

0.00015

0.00020

0.00025

D7 Extreme Value α = 20, β = 2 20 25 30 35 40

0.05

0.10

0.15

D8 Gamma a = 2, b = 4 5 10 15 20 25 30

0.02

0.04

0.06

0.08

In particular, we performed three sets of experiments. First, we assessed the speed of
convergence by fixing the quantile to be tracked to 0.99 and the dataset size to 10 millions,
and varying the distribution. Next, we fixed the distribution (to the normal distribution),
fixed the quantile to be tracked (to 0.99), and varied the stream size. Finally, we fixed the
distribution (to the normal distribution), fixed the dataset size (to 10 millions), and varied
the quantile to be tracked.

Figures 1 and 2 depict the results obtained varying the distribution.
As shown in Figure 1a, related to the normal distribution, all of the algorithms require

slightly more than 4 million items before converging initially to the true quantile at that
moment, which then slowly rises. The algorithms track the quantile and reach again the
true quantile at about 9 million items, then the algorithms closely follow the true quantile
evolution until the end of the stream.

The behavior depicted for the cauchy distribution in Figure 1b markedly differs
between the FRUGAL-1U and FRUGAL-2U algorithms on the one side, and EASYQUANTILE

on the other. The former closely follow the true quantile up to about 9 million items.
The true quantile then rapidly increases and is reached again just at the end of the stream.
The EASYQUANTILE algorithm consistently exhibits problems in tracking the quantile, even
though sudden jumps present in the plot show that the algorithm periodically converges

Future Internet 2024, 16, 335 8 of 25

but then has difficulties until about 8 million items. At that moment, the true quantile
begins to drift and the algorithm slowly chases it until convergence at the end of the stream.

The uniform distribution, shown in Figure 1c, is characterized by an almost regular
and linear behavior exhibited by all of the algorithms with regard to the tracking of the
true quantile. FRUGAL-1U is the slowest, followed by FRUGAL-2U. Starting from about
1.5 million items, EASYQUANTILE is consistently faster than the others, even though both
FRUGAL-1U and FRUGAL-2U converge to the true quantile at the end of the stream.

Figure 1d is related to the exponential distribution. The behavior of EASYQUANTILE,
starting at about 1 million items, appears to be close to linear and a final sudden jump
allows the algorithm to converge to the true quantile. Both FRUGAL-1U and FRUGAL-2U
exhibit the same behavior and are able to converge 4 times to the true quantile value before
finally converging at the end of the stream.

Regarding the χ2 distribution, depicted in Figure 2a, the behavior of the algorithms is
pretty similar to that observed for the exponential distribution, with the EASYQUANTILE

algorithms exhibiting an almost linear trend starting from about 3 million items. FRUGAL-
1U and FRUGAL-2U, after initially converging at about 6 million items, converge again at
about 8.5 million items and then continue to closely track the true quantile value until the
end of the stream.

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●
● ●

●
●
● ●

●
●
●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
● ●

● ●
●
● ●

●
●
● ●

●
●
●
●
● ●

●
●
●
● ●

●
●
●
● ●

● ●
● ●

●
●

● ●
●
●
●

●

●
●

●

●

●

●

●

●

●

● ●

○

○
○

○

○ ○ ○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○
○ ○

○
○
○ ○

○
○
○
○
○
○
○ ○

○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○ ○

○ ○
○
○ ○

○
○
○ ○

○
○
○
○
○ ○

○
○
○
○ ○

○
○
○
○ ○

○ ○
○ ○

○
○

○ ○
○
○
○

○

○
○

○

○

○

○

○

○

○

○ ○

▲
▲
▲

▲

▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

△ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△
△ △ △ △ △ △ △

△

△

△
△
△
△

△

△
△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

54

Normal distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(a) Normal distribution

●●●

●

○○○

○

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲

▲

▲

▲

▲

▲

▲

▲

▲ ▲

▲

▲

▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲

▲

▲

▲

△ △
△
△
△ △ △ △ △ △ △

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

-200,000

-150,000

-100,000

-50,000

0

50,000

Cauchy distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Cauchy distribution

(c) Uniform distribution

● ● ●
● ●

● ● ●
● ● ●

● ●
●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●
● ● ●

● ●
● ●

● ●
●
●

● ● ●
● ● ● ●

●
● ●

●
● ●

● ●
● ●

●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

○ ○ ○
○ ○

○ ○ ○
○ ○ ○

○ ○
○
○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○ ○ ○ ○

○ ○
○ ○ ○

○ ○
○ ○

○ ○
○
○

○ ○ ○
○ ○ ○ ○

○
○ ○

○
○ ○

○ ○
○ ○

○
○
○
○
○
○
○
○

○
○
○

○
○

○

○

○ ○

○

○
○

○

○
○

○

○

○

○

○

○

○

○

○ ○

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲
▲ ▲

▲
▲
▲
▲ ▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

△ △

△

△

△
△
△ △

△

△

△

△
△
△ △ △ △ △ △ △

△

△

△

△

△
△
△

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

0

2

4

6

8

Exponential distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(d) Exponential distribution

Figure 1. Speed of convergence: normal, cauchy, uniform, and exponential distributions.

Future Internet 2024, 16, 335 9 of 25

● ● ● ●

●

● ● ● ●
● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●
● ● ●

● ●
● ●

● ●
●
● ●

● ●
● ● ●

● ●
● ●

● ●
●
●
●
● ●

●
●
●
●
●

● ● ●
●
●
●

● ● ●

● ●
●
●
●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

○ ○ ○ ○

○

○ ○ ○ ○
○ ○

○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○ ○ ○ ○ ○
○ ○ ○

○ ○
○ ○

○ ○
○
○ ○

○ ○
○ ○ ○

○ ○
○ ○

○ ○
○
○
○
○ ○

○
○
○
○
○

○ ○ ○
○
○
○

○ ○ ○

○ ○
○
○
○

○

○
○

○
○
○
○

○

○
○

○

○

○

○

○

○

○

○

○

○

○ ○

▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲ ▲
▲
▲ ▲

▲
▲ ▲

▲
▲ ▲

▲
▲
▲
▲ ▲

▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

△ △

△

△

△
△
△
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△

△
△ △

△

△

△

△
△

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

0

5

10

15

Chi Squared distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(a) χ2 distribution

●

●

● ● ●

● ●

● ●
●
●
● ● ●

● ● ● ●
● ●

●
●
● ●

● ●
● ●

● ●
● ● ●

●
● ● ●

● ●
● ●

● ● ●
● ●

● ●
●
●

●

● ● ● ● ● ● ● ● ●

● ●
●
● ●

●
●

● ● ● ●

● ●

●
●
●
● ●

● ●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

○ ○

○ ○ ○

○ ○

○ ○
○
○
○ ○ ○

○ ○ ○ ○
○ ○

○
○
○ ○

○ ○
○ ○

○ ○
○ ○ ○

○
○ ○ ○

○ ○
○ ○

○ ○ ○
○ ○

○ ○
○
○

○

○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○
○
○ ○

○
○

○ ○ ○ ○

○ ○

○
○
○
○ ○

○ ○

○

○
○
○
○

○

○

○

○
○

○

○

○

○

○

○

○

○

○ ○

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲
▲ ▲ ▲

▲ ▲
▲ ▲

▲ ▲ ▲ ▲ ▲
▲ ▲

▲
▲
▲
▲ ▲ ▲

▲ ▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

△ △

△

△

△

△

△
△
△ △

△

△

△

△
△
△
△ △

△

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

0

5

10

15

20

25

Gamma distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Gamma distribution

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●
●
●
● ●

●

● ●
●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

○ ○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○
○
○
○ ○

○

○ ○
○
○

○
○

○

○ ○

○

○

○

○

○ ○

○

○

○ ○

▲ ▲
▲
▲
▲
▲
▲

▲

△ △
△ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△

△
△
△
△ △

△

△

△
△
△

△

△

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

0

20

40

60

80

Lognormal distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(c) Log-normal distribution

●

●

● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ● ● ●
●
●
● ●

● ●

● ● ● ● ●
● ●

● ● ●
●
● ● ●

● ●
● ●

● ●
● ●

● ●
● ● ●

● ●
● ●

●
●
●
●
●
●

● ● ● ● ●
●
●
●
● ●

●

●
● ●

●
●
●

●
●
●
●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

● ●

○ ○

○ ○ ○ ○

○ ○ ○
○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○
○
○
○ ○

○ ○

○ ○ ○ ○ ○
○ ○

○ ○ ○
○
○ ○ ○

○ ○
○ ○

○ ○
○ ○

○ ○
○ ○ ○

○ ○
○ ○

○
○
○
○
○
○

○ ○ ○ ○ ○
○
○
○
○ ○

○

○
○ ○

○
○
○

○
○
○
○

○

○

○

○ ○
○
○

○

○

○

○

○

○

○

○ ○

▲ ▲

▲ ▲ ▲ ▲

▲
▲ ▲

▲ ▲ ▲ ▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲

▲ ▲
▲ ▲ ▲ ▲ ▲

▲ ▲ ▲
▲ ▲

▲
▲ ▲ ▲

▲ ▲
▲ ▲

▲ ▲
▲ ▲

▲ ▲
▲
▲ ▲

▲ ▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲

△ △

△

△

△

△
△
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△

△

△

△
△
△
△ △ △

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

18

20

22

24

26

28

Extreme Value distribution - Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(d) Extreme value distribution

Figure 2. Speed of convergence: χ2, gamma, log-normal, and extreme value distributions.

The algorithms’ behaviors for the gamma distribution, shown in Figure 2a, are also
quite similar to that for the χ2 and exponential distributions, which is not surprising owing
to the relationships between the χ2, gamma, and exponential distributions.

In the case of the log-normal distribution, shown in Figure 2c, all of the algorithms
closely track the true quantile until about 5.5 million items. Here, the true quantile value
starts drifting. EASYQUANTILE slowly approaches it with a linear behavior and a sudden
jump at the end, whilst FRUGAL-1U and FRUGAL-2U are faster in adapting, reach again the
true quantile at about 8.5 million items and then closely chase it until the end of the stream.

The extreme value distribution is depicted in Figure 2d. As shown, all of the al-
gorithms exhibit a linear trend. However, FRUGAL-1U and FRUGAL-2U, starting from
about 7.5 million items, modify their behavior and adapt faster than EASYQUANTILE,
better tracking the true quantile until the end of the stream, where, with a sudden jump,
EASYQUANTILE is also able to converge.

Next, we analyze the convergence speed when varying the stream size. Results are
reported in Figure 3. As shown, we used stream sizes equal to 1, 10, 50, and 100 million
items. Note that Figure 3b is a copy of Figure 1a, but is reported here for completeness.
Figure 3a is more interesting than the others (which are quite similar with regard to their
behavior, already discussed with reference to Figure 1a) since it shows that the FRUGAL-1U
estimate goes down up to 200 thousand items instead of being incremented, and the same
behavior is also observed for FRUGAL-2U (up to about 150 thousand items).

Future Internet 2024, 16, 335 10 of 25

(a) Stream size = 1 million

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●
● ●

●
●
● ●

●
●
●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
● ●

● ●
●
● ●

●
●
● ●

●
●
●
●
● ●

●
●
●
● ●

●
●
●
● ●

● ●
● ●

●
●

● ●
●
●
●

●

●
●

●

●

●

●

●

●

●

● ●

○

○
○

○

○ ○ ○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○
○ ○

○
○
○ ○

○
○
○
○
○
○
○ ○

○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○ ○

○ ○
○
○ ○

○
○
○ ○

○
○
○
○
○ ○

○
○
○
○ ○

○
○
○
○ ○

○ ○
○ ○

○
○

○ ○
○
○
○

○

○
○

○

○

○

○

○

○

○

○ ○

▲
▲
▲

▲

▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

△ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△
△ △ △ △ △ △ △

△

△

△
△
△
△

△

△
△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

54

Normal distribution - Stream size 10Milions Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Stream size = 10 millions

● ●

● ●

●

●

● ● ●

● ● ● ● ●

● ● ● ●

●

● ●
●

● ● ● ● ● ● ● ●

● ● ●

● ●
● ● ●

● ● ●
●
●
● ●

● ●
●

● ●
●

● ● ● ●

●
● ● ●

● ●
●
●
●
● ●

●
●
● ●

●
●
●
●
●
●
●
●
●
●
●

● ●

● ●
●
●

●
●

●

● ●

●
●

●

●

●

●

● ●

○ ○

○ ○

○

○

○ ○ ○

○ ○ ○ ○ ○

○ ○ ○ ○

○

○ ○
○

○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○

○ ○
○ ○ ○

○ ○ ○
○
○
○ ○

○ ○
○

○ ○
○

○ ○ ○ ○

○
○ ○ ○

○ ○
○
○
○
○ ○

○
○
○ ○

○
○
○
○
○
○
○
○
○
○
○

○ ○

○ ○
○
○

○
○

○

○ ○

○
○

○

○

○

○

○ ○

▲ ▲

▲ ▲

▲

▲

▲

▲ ▲
▲
▲ ▲ ▲ ▲

▲
▲ ▲ ▲

▲

▲
▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲

▲

▲ ▲ ▲
▲ ▲ ▲

▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲ ▲ ▲

▲ ▲
▲ ▲

▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

△ △

△

△

△

△
△
△
△ △ △ △ △ △ △ △ △ △ △

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 1×107 2×107 3×107 4×107 5×107

46

48

50

52

54

Normal distribution - Stream size 50Milions Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(c) Stream size = 50 millions

●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●
●
● ●

● ●
●
●
● ●

●

● ● ● ● ●
●
● ● ● ●

●
● ●

● ●
●
● ●

●

● ●
●
●
●
●
●
●
●
●
●
● ●

●

● ●
●

●
●
●

●

●
●

●

●

●

●

●

●

● ●

○

○ ○ ○ ○

○

○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○
○ ○

○
○
○ ○

○ ○
○
○
○ ○

○

○ ○ ○ ○ ○
○
○ ○ ○ ○

○
○ ○

○ ○
○
○ ○

○

○ ○
○
○
○
○
○
○
○
○
○
○ ○

○

○ ○
○

○
○
○

○

○
○

○

○

○

○

○

○

○ ○

▲

▲ ▲ ▲ ▲

▲

▲ ▲ ▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲
▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲
▲ ▲ ▲ ▲

▲ ▲ ▲
▲
▲ ▲

▲
▲
▲
▲
▲ ▲

▲
▲

▲
▲
▲ ▲

▲ ▲
▲ ▲ ▲ ▲

▲ ▲
▲
▲
▲
▲ ▲

▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

△ △

△

△

△

△
△
△ △ △ △ △ △ △ △ △ △

△

△

△

△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×107 4×107 6×107 8×107 1×108

46

48

50

52

54

Normal distribution - Stream size 100Milions Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(d) Stream size = 100 millions

Figure 3. Speed of convergence varying the stream size.

Finally, we analyze the convergence speed with regard to the actual quantile being
tracked. In particular, we track equi-spaced quantiles 0.1, 0.2, · · · , 0.8, 0.9, and 0.99. We
note here that the plot for the 0.99 quantile is a copy of Figure 1a but is reported here
for completeness. As shown in Figures 4–6, depicting the results obtained by varying
the quantile, we observe that for smaller quantiles (0.1, 0.2, and 0.3), all of the algorithms
overestimate the true quantile value until convergence at the end of the stream. This
behavior changes starting from the 0.4 quantile on, with an underestimation phase followed
by an overestimation one. Overall, the algorithms are better at tracking higher rather than
smaller quantiles.

Future Internet 2024, 16, 335 11 of 25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
● ●

●

●
● ●

●
●
● ●

●
●
● ●

●

●
●
●
●
●

● ●
● ●

● ●

● ● ● ● ●

● ● ● ● ● ●

● ●

● ●
● ●

● ● ● ● ●

● ●

●
●

●

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○
○

○
○

○
○
○
○ ○

○

○
○ ○

○
○
○ ○

○
○
○ ○

○

○
○
○
○
○

○ ○
○ ○

○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○

○ ○

○ ○
○ ○

○ ○ ○ ○ ○

○ ○

○
○

○

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲
▲

▲
▲

▲
▲
▲
▲
▲

▲

▲
▲ ▲

▲
▲
▲ ▲

▲
▲
▲ ▲

▲
▲

▲
▲
▲ ▲ ▲

▲ ▲

▲

▲ ▲

▲ ▲ ▲ ▲ ▲
▲

▲

▲ ▲ ▲ ▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲
▲ ▲

▲ ▲ ▲ ▲ ▲

▲
▲

▲
▲

▲

△ △ △ △ △ △ △ △ △
△

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

45

46

47

48

49

50

51

Normal distribution - Quantile 0.1 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(a) Quantile = 0.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
● ●

●

●
● ●

●
●
● ●

●
●
● ●

●
●
●
●
● ●

● ●
● ●

● ●

● ● ● ● ●

● ● ● ● ● ●

● ●
●
● ●

● ● ● ● ● ● ● ● ●
●
● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ●
●
●

●

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○
○
○
○
○
○
○
○
○
○
○ ○

○

○
○ ○

○
○
○ ○

○
○
○ ○

○
○
○
○
○ ○

○ ○
○ ○

○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○

○ ○
○
○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○
○
○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○

○ ○ ○ ○ ○

○ ○
○
○

○

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲

▲
▲ ▲

▲
▲
▲ ▲

▲
▲
▲ ▲

▲
▲
▲
▲
▲ ▲

▲ ▲
▲ ▲

▲ ▲

▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲

▲

▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲
▲ ▲

▲

▲ ▲ ▲ ▲
▲
▲
▲ ▲

▲

△ △ △ △ △ △ △ △ △
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

44

46

48

50

Normal distribution - Quantile 0.2 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Quantile = 0.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
● ●

● ●

● ● ● ● ●

● ● ● ● ● ●

● ●
●
● ● ● ● ● ● ● ●

●
● ●

●
● ● ● ● ● ● ●

● ●

● ● ● ●

●
●
● ● ● ●

●
● ●

●

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○ ○

○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○

○ ○
○
○ ○ ○ ○ ○ ○ ○ ○

○
○ ○

○
○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○

○
○
○ ○ ○ ○

○
○ ○

○

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲ ▲
▲ ▲

▲ ▲

▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲

▲

▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲
▲

▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲

▲

△ △ △ △ △ △ △ △ △
△

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

45

46

47

48

49

50

51

Normal distribution - Quantile 0.3 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(c) Quantile = 0.3

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

●
●

●
● ●

● ● ● ● ● ● ● ●
● ●

●
●
● ● ● ● ● ● ●

● ●
●
● ● ●

●
● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ●

● ●
● ● ●

●

○

○

○

○

○ ○

○

○

○

○
○

○

○

○

○

○

○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○
○

○
○ ○

○ ○ ○ ○ ○ ○ ○ ○
○ ○

○
○
○ ○ ○ ○ ○ ○ ○

○ ○
○
○ ○ ○

○
○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○
○ ○ ○ ○ ○

○ ○
○ ○ ○

○

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲ ▲

▲
▲ ▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

△ △
△
△
△
△
△
△
△
△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107
45

46

47

48

49

50

51

52

Normal distribution - Quantile 0.4 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(d) Quantile = 0.4

Figure 4. Speed of convergence varying the quantile: smaller quantiles.

●

●

●

●

●
●

● ●

●

●
●

●
●

●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
●
●
●
●
●

● ●

● ● ● ●

●

● ●
●
● ● ● ●

● ●

● ● ● ● ●
● ●

●
●
● ● ● ●

● ●
● ● ●

●

○

○

○

○

○
○

○ ○

○

○
○

○
○

○
○

○
○
○
○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○
○
○
○
○

○ ○

○ ○ ○ ○

○

○ ○
○
○ ○ ○ ○

○ ○

○ ○ ○ ○ ○
○ ○

○
○
○ ○ ○ ○

○ ○
○ ○ ○

○

▲

▲

▲

▲

▲
▲

▲ ▲

▲

▲
▲

▲
▲

▲
▲
▲
▲
▲
▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲ ▲
▲
▲
▲
▲
▲
▲
▲

▲ ▲

▲ ▲
▲
▲

▲
▲
▲

▲ ▲ ▲ ▲ ▲

▲
▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

Normal distribution - Quantile 0.5 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(a) Quantile = 0.5

● ●

●

●

●

●

●

●

●
●
●

● ●

● ●

● ●

●

● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
●

●

● ● ●

●

● ● ●

● ●

●

● ●

● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

●

○ ○

○

○

○

○

○

○

○
○
○

○ ○

○ ○

○ ○

○

○ ○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○

○

○ ○ ○

○

○ ○ ○

○ ○

○

○ ○

○ ○ ○ ○ ○
○ ○ ○ ○

○ ○ ○ ○ ○
○ ○ ○ ○ ○ ○

○

▲ ▲

▲

▲

▲

▲

▲
▲

▲
▲
▲

▲
▲

▲

▲

▲ ▲

▲

▲
▲

▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲ ▲ ▲

▲

▲ ▲ ▲

▲

▲ ▲
▲
▲ ▲

▲
▲ ▲

▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

△ △
△
△
△
△
△
△
△ △

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

Normal distribution - Quantile 0.6 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Quantile = 0.6
Figure 5. Cont.

Future Internet 2024, 16, 335 12 of 25

● ●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●
● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

● ●

● ●

● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ●

● ● ● ● ●
●

●

○ ○

○

○ ○

○

○

○

○

○

○

○

○

○
○ ○

○

○

○

○

○ ○
○ ○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○
○ ○

○ ○ ○
○ ○ ○

○ ○ ○ ○ ○
○

○

▲ ▲

▲

▲ ▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲ ▲

▲ ▲

▲

▲

▲

▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲ ▲

▲ ▲

▲

▲

▲

▲

▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

△ △
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

Normal distribution - Quantile 0.7 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(c) Quantile = 0.7

● ●

●
●

● ●

● ●

●

● ●

● ● ●
●

●
●
●

● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

● ●

●
●
●

● ● ● ● ●
●
● ●

● ● ●
●

●

○ ○

○
○

○ ○

○ ○

○

○ ○

○ ○ ○
○

○
○
○

○ ○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○

○ ○

○
○
○

○ ○ ○ ○ ○
○
○ ○

○ ○ ○
○

○

▲ ▲

▲
▲

▲
▲ ▲

▲

▲

▲ ▲

▲ ▲ ▲ ▲

▲

▲
▲ ▲

▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲
▲
▲

▲
▲

▲

▲

▲

▲

▲
▲
▲
▲
▲
▲
▲
▲

▲

△ △
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △ △ △ △ △

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

54

Normal distribution - Quantile 0.8 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(d) Quantile = 0.8

Figure 5. Speed of convergence varying the quantile: larger quantiles.

●

●

● ●

●
● ● ●

●
●
●
●

● ● ● ●
● ●

● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
● ●

●
●
●
● ●

●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

● ●

●
●
● ● ● ●

●

○

○

○ ○

○
○ ○ ○

○
○
○
○

○ ○ ○ ○
○ ○

○ ○ ○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○ ○

○
○
○
○ ○

○
○
○
○
○ ○

○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○

○

○ ○

○
○
○ ○ ○ ○

○

▲

▲

▲
▲

▲
▲ ▲ ▲

▲
▲ ▲ ▲

▲
▲ ▲

▲ ▲
▲
▲ ▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲ ▲

▲
▲ ▲

▲
▲ ▲

▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲

▲

▲
▲
▲

▲

△ △
△
△
△
△
△

△
△
△
△
△ △ △ △ △ △ △ △ △ △ △

△
△
△
△
△
△
△
△
△
△ △ △ △ △ △

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

54

Normal distribution - Quantile 0.9 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(a) Quantile = 0.9

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●
● ●

●
●
● ●

●
●
●
●
●
●
● ●

●
●
●
●
●
●
●
●
●
●
● ●

● ●
●
●
● ●

● ●
●
● ●

●
●
● ●

●
●
●
●
● ●

●
●
●
● ●

●
●
●
● ●

● ●
● ●

●
●

● ●
●
●
●

●

●
●

●

●

●

●

●

●

●

● ●

○

○
○

○

○ ○ ○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○
○ ○

○
○
○ ○

○
○
○
○
○
○
○ ○

○
○
○
○
○
○
○
○
○
○
○ ○

○ ○
○
○
○ ○

○ ○
○
○ ○

○
○
○ ○

○
○
○
○
○ ○

○
○
○
○ ○

○
○
○
○ ○

○ ○
○ ○

○
○

○ ○
○
○
○

○

○
○

○

○

○

○

○

○

○

○ ○

▲
▲
▲

▲

▲ ▲ ▲ ▲

▲
▲ ▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲ ▲

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

△ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△ △ △ △ △ △ △ △ △ △ △ △ △

△

△
△
△ △ △ △ △ △ △

△

△

△
△
△
△

△

△
△

△

△

△

● Frugal 1U Estimates

○ Frugal 2U Estimates

▲ EasyQuantile Estimates

△ True quantiles

0 2×106 4×106 6×106 8×106 1×107

46

48

50

52

54

Normal distribution - Quantile 0.99 Convergence Speed

Q
u
a
n
ti
le
v
a
lu
e

(b) Quantile = 0.99

Figure 6. Speed of convergence varying the quantile: largest quantiles.

5. Parallelizing the Frugal Algorithm

In this section, we design parallel, message-passing based versions of algorithms.
Since the parallel design is the same for all of the algorithms, we shall illustrate these with
reference only to FRUGAL-1U. A corresponding distributed version (this also applies to
all of the algorithms) can be easily derived from the parallel one and shall be discussed
along with the parallel one. In order to parallelize FRUGAL-1U, we begin by partitioning
the input among the available processors.

For the parallel version, we assume that the input consists of a dataset S of size n.
Therefore, assuming that p processors are available, the input is partitioned so that each
processor is responsible for either ⌊n/p⌋ or ⌈n/p⌉ items.

For the distributed version, each processor will instead process a sub-stream Si of
length ni, i = 1, · · · , p. Each processor will update locally its own estimate of the quantile q
being sought.

After processing its input, the processors in the parallel version will engage in a
parallel reduction operation, required to aggregate the local estimates obtained. Similarly,
in the distributed version, the processors will send their local information to a designated
processor, which will take care of performing the required aggregation step to obtain the
global estimate associated to the union of the sub-streams ∪p

i=1Si.

Future Internet 2024, 16, 335 13 of 25

The information required for the final aggregation operation is the same for both the
parallel and the distributed version, namely for each processor i = 1, · · · , p, we need a
pair (m̃i, ni), where m̃i and ni are, respectively, the local estimate and the number of items
processed by the i-th processor.

The local results obtained by the processors are aggregated in parallel by performing
a reduction operation in which the weighted average of the local estimates is computed
using the ni as weights. Note that ∑

p
i=1 ni = n. Letting m̃g denote the global estimate for

the input dataset S (parallel case) or the union ∪p
i=1Si (distributed case), it holds that

m̃g =
∑

p
i=1 m̃ini

n
. (3)

Algorithms 4 and 5 provide, respectively, the pseudo-code for the parallel version of
FRUGAL-1U and the user’s defined parallel reduction operator in charge of computing the
global estimate. In Algorithm 4, we assume that the input is a dataset D of size n stored
into an array A. The input parameters are, respectively, A, n, p, and q, where A is the input
array, n the length of A, p the number of processors we use in parallel and q the quantile to
be estimated.

Algorithm 4 Parallel Frugal-1U

Require: A, an array; n, the length of A; p, the number of processors; q, the quantile to be
estimated

Ensure: estimated quantile value m̃
// let id be the rank of the processor (0 ≤ id ≤ p − 1)
le f t = ⌊id n/p⌋
right = ⌊(id + 1) n/p⌋ − 1
m̃id = FRUGAL-1U(A, le f t, right, q)
sizeid = right − le f t + 1

(m̃g, wg) = PARALLELREDUCTION(m̃id, sizeid)
if id == 0 then

return m̃g
end if

The algorithm begins by partitioning the input array; le f t and right are, respectively,
the indices of the first and last element of the array assigned to the process with rank id by
the domain decomposition performed. This is done by using a simple block distribution.
We assume that each process receives as input the whole array A, for instance, every
process reads the input from a file or a designated process reads it and broadcasts it to the
other processes. Therefore, there is no need to use message–passing to perform the initial
domain decomposition.

Next, the algorithm locally estimates the quantile q for its sub-array. The modification
required to the sequential FRUGAL-1U is trivial, and consists of coding a linear scan of the
sub-array using a for loop starting at le f t and ending at right.

Once the local estimates m̃id, id = 0, · · · p − 1 have been found, the processors en-
gage in a parallel reduction operation by invoking the PARALLELREDUCTION algorithm
passing as input the pair (m̃id, sizeid). Its purpose is to determine the global estimate of
the quantile q for the whole array A, and this is done by using the parallel reduction
operator of Algorithm 5. The parallel reduction can be either a standard user’s defined
parallel REDUCTION in which only one of the processors obtains the result at the end of the
computation or it may be an ALL-REDUCTION, which differs because in this case all of the
processors obtain the result at the end of the computation. In practice, an ALL-REDUCTION

is equivalent to a REDUCTION followed by a BROADCAST operation. Here, we choose a
standard REDUCTION in which we assume that the processor with rank equal to zero will
obtain the final result but, in this case, it is trivial to use an ALL-REDUCTION if required.

Future Internet 2024, 16, 335 14 of 25

As shown in Algorithm 5, the parallel reduction takes as input two pairs (m̃i, ni) and
(m̃j, nj) produced by processors i and j and returns the pair (m̃, w), where w = ni + nj and
m̃ = (m̃ini + m̃jnj)/w.

Algorithm 5 Parallel reduction operator

Require: pairs (m̃i, ni) and (m̃j, nj) produced by processors i and j
Ensure: estimated quantile value m̃, weight w

w = ni + nj;
m̃ = (m̃ini + m̃jnj)/w
return (m̃, w)

The corresponding parallel versions for FRUGAL-2U and EASYQUANTILE are obtained
by substituting these algorithms in place of the invocation of FRUGAL-1U in Algorithm 4,
since Algorithm 5 is the same for all of the algorithms. Similar considerations can be used
to derive the distributed versions. It is worth noting here that, from a practical perspective,
the only differences between a parallel algorithm and a distributed one are the following:
(i) the distributed nodes’ hardware may be heterogeneous, whilst a parallel machine is
typically equipped with identical processors; (ii) the network connecting the distributed
nodes is typically characterized by relatively high latency and low bandwidth, whilst,
on the contrary, the interconnection network of a parallel machine provides ultra low
latency and high bidirectional bandwidth; (iii) some of the distributed nodes may fail in
unpredictable ways whilst we expect the nodes of a parallel machine to be always up and
running (except for scheduled maintenance). As a consequence, only the performance may
be affected whilst the accuracy is identical. Here, we are assuming that the distributed
nodes stay up and running during the distributed computation.

6. Analysis of the Algorithm

Here, we derive the parallel complexity of the algorithm (the analysis applies to
FRUGAL-2U and EASYQUANTILE as well). At the beginning, the workload is balanced us-
ing a block distribution; this is done with two simple assignments; therefore, the complexity
of the initial domain decomposition is O(1). Determining a local estimate m̃id invoking the
FRUGAL-1U algorithm requires in the worst case O(n/p) time, since the running time of
the sequential algorithm is linear and the sub-array to be processed consists of either ⌊n/p⌋
or ⌈n/p⌉ items. Determining the weight sizeid requires worst case O(1) time.

The parallel reduction operator is used internally by the PARALLELREDUCTION step.
Since this function is called in each step of the PARALLELREDUCTION and its complexity is
O(1), the overall complexity of the PARALLELREDUCTION step is O(log p) (using, for in-
stance, a binomial tree [14] or even a simpler binary tree). Therefore, the overall parallel
complexity of the algorithm is O(n/p + log p). We are now in the position to state the
following theorem:

Theorem 1. The algorithm is cost-optimal.

Proof. Cost-optimality [24] requires by definition that asymptotically p Tp = T1, where
T1 represents the time spent on one processor (sequential time) and Tp is the time spent
on p processors. The sequential algorithm requires O(n), and the parallel complexity
of the algorithm is O(n/p + log p). It follows from the definition that the algorithm is
cost-optimal for n = Ω(p log p).

We proceed with the analysis of iso-efficiency and scalability. The sequential al-
gorithm has complexity O(n); the parallel overhead is To = p Tp − T1. In our case,
To = p (n/p + log p)− n = p log p. The iso-efficiency relation [25] is then n ≥ p log p.
Finally, we derive the scalability function of this parallel system [26].

Future Internet 2024, 16, 335 15 of 25

This function shows how memory usage per processor must grow to maintain effi-
ciency at a desired level. If the iso-efficiency relation is n ≥ f (p) and M(n) denotes the
amount of memory required for a problem of size n, then M(f (p))/p shows how memory
usage per processor must increase to maintain the same level of efficiency. Indeed, in order
to maintain efficiency when increasing p, we must increase n as well, but on parallel com-
puters, the maximum problem size is limited by the available memory, which is linear in p.
Therefore, when the scalability function M(f (p))/p is a constant C, the parallel algorithm
is perfectly scalable; C p represents instead the limit for scalable algorithms. Beyond this
point, an algorithm is not scalable (from this point of view).

In our case, the function describing how much memory is used for a problem of size
n is given by M(n) = n. Therefore, M(f (p))/p = O(log p) with f (p) given by the iso-
efficiency relation and the algorithm is moderately scalable (again, from this perspective,
related to the amount of memory required per processor).

7. Experimental Results

In this section, we present and discuss the results of the experiments carried out for
the parallel versions of FRUGAL-1U, FRUGAL-2U, and EASYQUANTILE, showing that the
parallel versions of these algorithms are scalable and the parallelization does not affect the
accuracy of the quantile estimates with respect to the estimate done with the sequential
versions of the algorithms.

The tests have been carried out on both a parallel machine and a workstation. The for-
mer is the Juno supercomputer (peak performance 1.134 petaflops, 12,240 total cores, 512 GB
of memory per node, Intel OmniPath 100 Gbps interconnection, lustre parallel filesystem)
kindly made available by CMCC. Each node is equipped with two 2.4 GHz Intel Xeon
Platinum 8360Y processors, with 36 cores each, and some nodes are also equipped with
two NVIDIA A100 GPUs. The source code has been compiled using the Intel C++ compiler
and the Intel MPI library.

The workstation is a HP (Hewlett-Packard) machine equipped with a 24 core Intel
XEON W7-2495X processor and 256 GB of memory, and two NVIDIA RTX 4090 GPUs.

The tests have been performed on the synthetic datasets reported on Table 1. The ex-
periments have been executed, varying the distribution, number of cores, stream length,
and the quantile being tracked. Table 2 reports the default settings for the parameters
used on the parallel machine. On the workstation, the number of cores was 2, 4, 8, and 16
whilst the stream length was 100 millions for strong scalability and 100 millions per core
for weak scalability.

Table 2. Default settings of the parameters.

Parameter Values

quantiles {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}
number of cores P {36, 72, 144, 288}
stream length {25.6B (strong scaling), 45M (weak scaling) }

7.1. Parallel Machine

We begin by providing the results obtained for each algorithm when considered in
isolation. Figure 7 depicts the results for parallel FRUGAL-1U with regard to both strong
and weak scalability. To analyze the strong scalability, we set the length of the input
stream to 25.6 billion items, track the 0.99 quantile, and vary the number of cores and the
distributions. Figure 7a shows the results using a log–log plot of the parallel runtime versus
the number of cores. A straight line with slope −1 indicates good scalability, whereas any
upward curvature away from that line indicates limited scalability. As shown, parallel
FRUGAL-1U exhibits overall strong scaling almost independently from the underlying
input distribution being used.

Future Internet 2024, 16, 335 16 of 25

Next, we discuss the weak scalability. In this case, the problem size increases at
the same rate as the number of processors, with a fixed amount of work per processor.
A horizontal straight line indicates good scalability, whereas any upward trend of that line
indicates limited scalability. In Figure 7b, the amount of work per core is fixed at 45 million
items and we track the 0.99 quantile. Almost all of the distributions considered exhibit
good weak scalability starting from 72 cores.

Figure 8 provides the results obtained for the accuracy, measured using the relative
error between the true and the estimated quantile value. We perform the test for both
distributions (Figure 8a) and quantiles (Figure 8b). As shown, the cauchy distribution
confirms its adversarial character for the algorithm, with a relative error steadily rising
from slightly more than 0.3 on 36 cores to about 0.6 on 288 cores. The other distributions
do not impact the relative error, which is almost zero. This holds true also for the uniform
distribution, whose relative error steadily rises from about 10−5 on 36 cores to about 10−2

on 288 cores.

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

36 72 144 288

2

5

10

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - length 25.6 Billions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○
○

▲

▲

▲
▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶ ✶

✶

36 72 144 288

0.90

0.95

1.00

1.05

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - workload per proc: 45 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 7. Parallel Frugal-1U: strong and weak scalability.

● ● ● ●○ ○ ○

○

▲

▲

▲

▲

△ △ △ △★ ★ ★ ★◆ ◆ ◆ ◆◇ ◇ ◇ ◇✶ ✶ ✶ ✶

36 72 144 288

0.0

0.1

0.2

0.3

0.4

0.5

0.6

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - length: 25.6 Billions, quantile: 0.99

(a) Relative error varying the distributions

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△ △

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

●

●
●

●

36 72 144 288

0.0000

0.0002

0.0004

0.0006

0.0008

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

Frugal-1U - length: 25.6 Billions, distribution: normal

(b) Relative error varying the quantiles

Figure 8. Parallel Frugal-1U: relative error.

Future Internet 2024, 16, 335 17 of 25

Figure 9 depicts the results for parallel FRUGAL-2U with regard to both strong and
weak scalability. As shown, the behavior of this algorithm is substantially equal to that of
FRUGAL-1U with regard to strong scaling. However, weak scalability is consistently worse.
The behavior, with regard to accuracy, shown in Figure 10, is again quite similar to that of
FRUGAL-1U.

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

36 72 144 288

2

5

10

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - length: 25.6 Billions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇
◇

◇
✶

✶

✶

✶

36 72 144 288

0.88

0.90

0.92

0.94

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - workload per proc: 45 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 9. Parallel Frugal-2U: strong and weak scalability.

● ● ● ●○ ○ ○ ○

▲

▲

▲

▲

△ △ △ △★ ★ ★ ★◆ ◆ ◆ ◆◇ ◇ ◇ ◇✶ ✶ ✶ ✶

36 72 144 288

0.0

0.1

0.2

0.3

0.4

0.5

0.6

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - length: 25.6 Billions, quantile: 0.99

(a) Relative error varying the distributions

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△ △

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

●

●
●

●

36 72 144 288

0.0000

0.0002

0.0004

0.0006

0.0008

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

Frugal-2U - length: 25.6 Billions, distribution: normal

(b) Relative error varying the quantiles

Figure 10. Parallel Frugal-2U: relative error.

Figure 11 depicts the results for parallel EASYQUANTILE with regard to both strong and
weak scalability. As shown, EASYQUANTILE exhibits very good strong scaling. Regarding
weak scaling, even though the plot does not show the expected horizontal straight lines, it
is worth noting here that the parallel runtime is between 0.44 and 0.48 s for all of the core
counts. Finally, the accuracy depicted in Figure 12 is extremely good for both distributions
and quantiles.

Future Internet 2024, 16, 335 18 of 25

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

36 72 144 288

1

2

5

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - length: 25.6 Billions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆ ◆

◆◇ ◇

◇

◇

✶

✶

✶

✶

36 72 144 288

0.45

0.46

0.47

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - workload per proc: 45 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 11. Parallel EasyQuantile: strong and weak scalability.

● ● ● ●○ ○ ○ ○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇ ◇ ◇ ◇

✶
✶

✶
✶

36 72 144 288

0.00

0.02

0.04

0.06

0.08

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - length: 25.6 Billions, quantile: 0.99

(a) Relative error varying the distributions

● ● ● ●
○ ○ ○ ○▲ ▲ ▲ ▲△ △ △ △
★ ★ ★ ★

◆ ◆ ◆ ◆◇ ◇ ◇ ◇
✶ ✶ ✶ ✶

●

●

●

●

36 72 144 288

0.0000

0.0001

0.0002

0.0003

0.0004

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

EasyQuantile - length: 25.6 Billions, distribution: normal

(b) Relative error varying the quantiles

Figure 12. Parallel EasyQuantile: relative error.

Having discussed the parallel algorithms’ results in isolation, we now turn our at-
tention to selected experimental results, in which we simultaneously compare all of the
parallel algorithms with regard to the normal distribution.

As shown in Figure 13, EASYQUANTILE scales much better than FRUGAL-1U and
FRUGAL-2U with regard to both strong and weak scaling. Regarding the accuracy FRUGAL-1U
and FRUGAL-2U are slightly better than EASYQUANTILE when tracking the 0.99 quantile, as
shown in Figure 14.

Future Internet 2024, 16, 335 19 of 25

●

●

●

●

○

○

○

○

▲

▲

▲

▲

36 72 144 288

1

2

5

10

procs

e
la
p
s
e
d
ti
m
e

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, length: 25.6 Billions, quantile: 0.99

(a) Strong scalability

●

●
●

●

○

○
○

○

▲ ▲
▲

▲

36 72 144 288

0.5

0.6

0.7

0.8

0.9

procs

e
la
p
s
e
d
ti
m
e

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, workload per proc: 45 Millions, quantile: 0.99

(b) Weak scalability

Figure 13. Normal distribution: strong and weak scalability.

●

●

●

●

○

○

○

○

▲

▲

▲

▲

36 72 144 288

2×10-4

3×10-4

4×10-4

procs

re
la
ti
v
e
e
rr
o
r

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, length: 25.6 Billions, quantile: 0.99

Figure 14. Normal distribution: relative error.

We conclude that the parallel version of EASYQUANTILE is able to accurately track
quantiles, especially higher quantiles, and provides the sought parallel performance as
shown by the strong and weak scalability tests made. Therefore, it is the parallel algorithm
of choice for tracking a quantile in a streaming setting, relying only on O(1) memory.

7.2. Workstation

Here, we present the experimental results obtained on the HP workstation, using 2,
4, 8, and 16 cores. Figure 15 depicts the results related to the strong and weak scalability
of parallel FRUGAL-1U. As shown, the algorithm scales until 8 cores, then the upward
curvature for 16 cores indicates limited scalability. Regarding weak scalability, the upward
trend of the curves indicates limited scalability as well. This is not really surprising,
owing to the fact that the workstation has not been designed for HPC (high-performance
computing), whilst the architecture of a parallel machine is—instead—specifically designed
for HPC. Even though the workstation may certainly be used for this purpose, we can
not expect the same performance level. To better understand the gap between the parallel
machine and the workstation, we also recall here that the former provides weak scalability
using only 45 million items per core, whilst the latter does not provide weak scalability

Future Internet 2024, 16, 335 20 of 25

even using 100 million items per core, more than double the amount of data used for the
parallel supercomputer.

Next, we analyze the relative error of parallel FRUGAL-1U. Figure 16 provides the
results varying, respectively, the distributions and the quantiles. We observe that for almost
all of the distributions, the relative error is quite low and close to zero. Only the uniform
and the cauchy distributions exhibit high relative error, since the estimates obtained by
each processor are already affected by a sufficiently high relative error, owing to the small
size of the sub-stream assigned to each processor, which does not allow achieving a good
estimate (lack of convergence). Regarding the quantiles, varying the processors does not
affect the accuracy; indeed, the corresponding relative errors are very close to zero and do
not change significantly by varying the cores.

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16

0.05

0.10

0.20

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - length 100 Millions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16

0.35

0.40

0.45

0.50

0.55

0.60

0.65

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - workload per proc: 100 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 15. Parallel Frugal-1U on workstation: strong and weak scalability.

● ● ● ●

○

○

○

○

▲

▲

▲

▲

△ △ △ △★ ★ ★ ★◆ ◆ ◆ ◆◇ ◇

◇

◇

✶ ✶ ✶ ✶

2 4 8 16

0.0

0.2

0.4

0.6

0.8

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-1U - length: 100 Millions, quantile: 0.99

(a) Relative error varying the distributions

●
●

●

●

○

○

○

○
▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇ ◇

✶

✶

✶

✶

●

●
●

●

2 4 8 16

0.0000

0.0005

0.0010

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

Frugal-1U - length: 100 Millions, distribution: normal

(b) Relative error varying the quantiles

Figure 16. Parallel Frugal-1U on workstation: relative error.

The parallel FRUGAL-2U presents the same behavior, as shown in Figures 17 and 18,
respectively, for strong/weak scalability and for the accuracy with regard to distributions

Future Internet 2024, 16, 335 21 of 25

and quantiles. In particular, parallel FRUGAL-2U achieves slightly better accuracy results
with regard to parallel FRUGAL-1U, but is not significantly better overall.

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16

0.05

0.10

0.20

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - length: 100 Millions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16

0.35

0.40

0.45

0.50

0.55

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - workload per proc: 100 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 17. Parallel Frugal-2U on workstation: strong and weak scalability.

● ● ● ●

○

○

○

○

▲

▲

▲

▲

△ △ △ △★ ★ ★ ★◆ ◆ ◆ ◆◇ ◇

◇

◇

✶ ✶ ✶ ✶

2 4 8 16

0.0

0.2

0.4

0.6

0.8

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

Frugal-2U - length: 100 Millions, quantile: 0.99

(a) Relative error varying the distributions

●

●

●

●○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆ ◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

● ●

●

●

2 4 8 16

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

Frugal-2U - length: 100 Millions, distribution: normal

(b) Relative error varying the quantiles

Figure 18. Parallel Frugal-2U on workstation: relative error.

Finally, we discuss the results obtained by parallel EASYQUANTILE. Figure 19 depicts
the strong and weak scalability of the algorithm. As shown, the algorithm is characterized
by good strong and weak scalability, taking into account that the overall range of elapsed
time is quite small for the weak scalability case. The accuracy, depicted by Figure 20,
confirms that the parallelization does not impact on the relative error, whose values are
close to zero and practically constant for all of the distributions and quantiles varying the
number of processors (even though the curve related to quantile 0.1 appears to be slightly
increasing, the range of variation is less than 10−3).

Future Internet 2024, 16, 335 22 of 25

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16
0.01

0.02

0.03

0.04

0.05

0.06

0.07

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - length: 100 Millions, quantile: 0.99

(a) Strong scalability, elapsed time

●

●

●

●

○

○

○

○

▲

▲

▲

▲

△

△

△

△

★

★

★

★

◆

◆

◆

◆

◇

◇

◇

◇

✶

✶

✶

✶

2 4 8 16

0.14

0.16

0.18

0.20

0.22

procs

e
la
p
s
e
d
ti
m
e

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - workload per proc: 100 Millions, quantile: 0.99

(b) Weak scalability, elapsed time

Figure 19. Parallel EasyQuantile on workstation: strong and weak scalability.

● ● ● ●○ ○ ○ ○

▲

▲

▲

▲

△ △
△

△

★ ★ ★ ★
◆ ◆

◆
◆

◇ ◇ ◇ ◇✶ ✶ ✶ ✶

2 4 8 16

-0.2

0.0

0.2

0.4

0.6

0.8

procs

re
la
ti
v
e
e
rr
o
r

● normal ○ uniform ▲ cauchy △ exponential

★ chisquared ◆ gamma ◇ lognormal ✶ extremevalue

EasyQuantile - length: 100 Millions, quantile: 0.99

(a) Relative error varying the distributions

● ● ● ●
○ ○ ○

○▲ ▲ ▲
▲△ △ △
△★ ★ ★ ★

◆ ◆ ◆ ◆◇ ◇ ◇ ◇
✶ ✶ ✶ ✶

●

●

●

●

2 4 8 16

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

procs

re
la
ti
v
e
e
rr
o
r

● 0.1 ○ 0.2 ▲ 0.3 △ 0.4 ★ 0.5

◆ 0.6 ◇ 0.7 ✶ 0.8 0.9 ● 0.99

EasyQuantile - length: 100 Millions, distribution: normal

(b) Relative error varying the quantiles

Figure 20. Parallel EasyQuantile on workstation: relative error.

We end this section by comparing the three parallel algorithms simultaneously. Figure 21
shows that EASYQUANTILE scales better than FRUGAL-1U and FRUGAL-2U with regard to
both strong and weak scalability. Regarding the accuracy, Figure 22 shows that FRUGAL-1U
and FRUGAL-2U provide slightly more accurate results in terms of relative error. Overall,
the results are quite similar to those obtained on the parallel supercomputer.

Future Internet 2024, 16, 335 23 of 25

●

●

●

●

○

○

○

○

▲

▲

▲

▲

2 4 8 16

0.01

0.02

0.05

0.10

0.20

procs

e
la
p
s
e
d
ti
m
e

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, length: 100 Millions, quantile: 0.99

(a) Strong scalability

●

●

●

●

○

○

○

○

▲

▲

▲

▲

2 4 8 16

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

procs

e
la
p
s
e
d
ti
m
e

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, workload per proc: 100 Millions, quantile: 0.99

(b) Weak scalability

Figure 21. Normal distribution on workstation: strong and weak scalability.

● ●

●

●

○ ○

○

○

▲

▲

▲

▲

2 4 8 16

0.0002

0.0004

0.0006

0.0008

0.0010

procs

re
la
ti
v
e
e
rr
o
r

● frugal_1u ○ frugal_2u ▲ EasyQ

Distribution: normal, length: 100 Millions, quantile: 0.99

Figure 22. Normal distribution on workstation: relative error.

8. Conclusions

In this paper, we discussed the problem of monitoring network latency. This problem
arises naturally in the context of network services such a web browsing, voice and video
calls, music and video streaming, online gaming, etc. Since a high value of latency leads
to unacceptably slow response times of network services, and may increase network
congestion and reduce the throughput, in turn disrupting communications and the user’s
experience, we discussed how to monitor this fundamental network metric. In particular,
a common approach is based on tracking a specific quantile of the latencies’ values, e.g., the
99th percentile. We compared three algorithms that can track an arbitrary quantile in a
streaming setting, using only a limited amount of memory, i.e., O(1) cells of memory. These
algorithms are FRUGAL-1U, FRUGAL-2U, and EASYQUANTILE.

We discussed their sequential speed of convergence on synthetic data drawn from sev-
eral distributions, then we designed parallel, message-passing based versions, and we also
discussed corresponding distributed versions. We proved theoretically their cost-optimality
by analyzing them, and compared their parallel performance in extensive experimental
tests. The results clearly show that, among the parallel algorithms we designed, the parallel
version of EASYQUANTILE is the algorithm of choice, exhibiting very good strong and

Future Internet 2024, 16, 335 24 of 25

weak scaling with regard to its parallel performance, and extremely low relative error with
regard to the accuracy of the quantile estimate provided.

Author Contributions: Conceptualization, M.C. and I.E.; methodology, M.C., I.E., and M.P.; software,
M.C. and I.E.; validation, M.P. and I.E.; formal analysis, M.C., I.E., and M.P.; investigation, M.C.;
resources, I.E.; writing—original draft preparation, M.C.; writing—review and editing, M.P. and I.E.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this study were synthetically generated according to
the distributions and parameters reported on Table 1.

Acknowledgments: We gratefully acknowledge the CMCC Foundation—Euro Mediterranean Center
on Climate Changes—for providing us with access to the Juno supercomputer.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Caserman, P.; Martinussen, M.; Göbel, S. Effects of End-to-end Latency on User Experience and Performance in Immersive Virtual

Reality Applications. In Proceedings of the Entertainment Computing and Serious Games; van der Spek, E., Göbel, S., Do, E.Y.L., Clua,
E., Baalsrud Hauge, J., Eds.; Springer International Publishing : Cham, Switzerland, 2019; pp. 57–69.

2. Arapakis, I.; Park, S.; Pielot, M. Impact of Response Latency on User Behaviour in Mobile Web Search. In Proceedings of the 2021
Conference on Human Information Interaction and Retrieval, New York, NY, USA, 14–19 March 2021; CHIIR ’21, pp. 279–283.
[CrossRef]

3. Fiedler, U.; Plattner, B. Using Latency Quantiles to Engineer QoS Guarantees for Web Services. In Proceedings of the Quality
of Service—IWQoS 2003; Jeffay, K., Stoica, I., Wehrle, K., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2003;
pp. 345–362.

4. Vitter, J.S. Random Sampling with a Reservoir. ACM Trans. Math. Softw. 1985, 11, 37–57. [CrossRef]
5. Chen, Z.; Zhang, A. A survey of approximate quantile computation on large-scale data. IEEE Access 2020, 8, 34585–34597.

[CrossRef]
6. Luo, G.; Wang, L.; Yi, K.; Cormode, G. Quantiles over Data Streams: Experimental Comparisons, New Analyses, and Further

Improvements. VLDB J. 2016, 25, 449–472. [CrossRef]
7. Buragohain, C.; Suri, S. Quantiles on Streams. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009;

pp. 2235–2240.
8. Masson, C.; Rim, J.E.; Lee, H.K. DDSketch: A Fast and Fully-mergeable Quantile Sketch with Relative-error Guarantees. Proc.

VLDB Endow. 2019, 12, 2195–2205. [CrossRef]
9. Epicoco, I.; Melle, C.; Cafaro, M.; Pulimeno, M.; Morleo, G. UDDSketch: Accurate Tracking of Quantiles in Data Streams. IEEE

Access 2020, 8, 147604–147617. [CrossRef]
10. Cafaro, M.; Melle, C.; Epicoco, I.; Pulimeno, M. Data stream fusion for accurate quantile tracking and analysis. Inf. Fusion 2023,

89, 155–165. [CrossRef]
11. Cormode, G.; Korn, F.; Muthukrishnan, S.; Muthukrishnan, S.; Srivastava, D. Effective Computation of Biased Quantiles over

Data Streams. In Proceedings of the 21st International Conference on Data Engineering, Washington, DC, USA, 5–8 April 2005;
ICDE ’05, pp. 20–31. [CrossRef]

12. Gan, E.; Ding, J.; Tai, K.S.; Sharan, V.; Bailis, P. Moment-based Quantile Sketches for Efficient High Cardinality Aggregation
Queries. Proc. VLDB Endow. 2018, 11, 1647–1660. [CrossRef]

13. Karnin, Z.; Lang, K.; Liberty, E. Optimal Quantile Approximation in Streams. In Proceedings of the 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), New Brunswick, NJ, USA, 9–11 October 2016; pp. 71–78. [CrossRef]

14. Manku, G.S.; Rajagopalan, S.; Lindsay, B.G. Approximate Medians and Other Quantiles in One Pass and with Limited Memory.
SIGMOD Rec. 1998, 27, 426–435. [CrossRef]

15. Greenwald, M.; Khanna, S. Space—Efficient online computation of quantile summaries. In Proceedings of the SIGMOD ’01:
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, CA, USA, 21–24 May
2001; ACM: New York, NY, USA, 2001; pp. 58–66. [CrossRef]

16. Govindaraju, N.K.; Raghuvanshi, N.; Manocha, D. Fast and Approximate Stream Mining of Quantiles and Frequencies Using
Graphics Processors. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore,
MD, USA, 14–16 June 2005; ACM: New York, NY, USA, 2005; SIGMOD ’05, pp. 611–622. [CrossRef]

17. Dunning, T. The T-Dig. Effic. Estim. Distrib. Softw. Impacts 2021, 7, 100049. [CrossRef]
18. Cormode, G.; Karnin, Z.; Liberty, E.; Thaler, J.; Veselý, P. Relative Error Streaming Quantiles. In Proceedings of the 40th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, New York, NY, USA, 20–25 June 2021; PODS’21,
pp. 96–108. [CrossRef]

http://doi.org/10.1145/3406522.3446038
http://dx.doi.org/10.1145/3147.3165
http://dx.doi.org/10.1109/ACCESS.2020.2974919
http://dx.doi.org/10.1007/s00778-016-0424-7
http://dx.doi.org/10.14778/3352063.3352135
http://dx.doi.org/10.1109/ACCESS.2020.3015599
http://dx.doi.org/10.1016/j.inffus.2022.08.005
http://dx.doi.org/10.1109/ICDE.2005.55
http://dx.doi.org/10.14778/3236187.3236212
http://dx.doi.org/10.1109/FOCS.2016.17
http://dx.doi.org/10.1145/276305.276342
http://dx.doi.org/acm.org/10.1145/375663.375670
http://dx.doi.org/10.1145/1066157.1066227
http://dx.doi.org/10.1016/j.simpa.2020.100049
http://dx.doi.org/10.1145/3452021.3458323

Future Internet 2024, 16, 335 25 of 25

19. Zhao, F.; Maiyya, S.; Wiener, R.; Agrawal, D.; Abbadi, A.E. KLL± approximate quantile sketches over dynamic datasets. Proc.
VLDB Endow. 2021, 14, 1215–1227. [CrossRef]

20. Agarwal, P.K.; Cormode, G.; Huang, Z.; Phillips, J.M.; Wei, Z.; Yi, K. Mergeable summaries. ACM Trans. Database Syst. 2013, 38,
1–28. [CrossRef]

21. Ma, Q.; Muthukrishnan, S.; Sandler, M. Frugal Streaming for Estimating Quantiles. In Space-Efficient Data Structures, Streams, and
Algorithms: Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday; Brodnik, A., López-Ortiz, A., Raman, V., Viola, A.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 77–96. [CrossRef]

22. Wang, B.; Chen, R.; Tang, L. EasyQuantile: Efficient Quantile Tracking in the Data Plane. In Proceedings of the 7th Asia-Pacific
Workshop on Networking, New York, NY, USA, 29–30 June 2023; APNET ’23, p. 123–129. [CrossRef]

23. Cafaro, M.; Epicoco, I.; Pulimeno, M. Parallel and Distributed Frugal Tracking of a Quantile. In Proceedings of the Seventh
International Workshop on Systems and Network Telemetry and Analytics, New York, NY, USA, 3–7 June 2024; SNTA ’24, p. 1–6.
[CrossRef]

24. Grama, A.; Karypis, G.; Kumar, V.; Gupta, A. Introduction to Parallel Computing, 2nd ed.; Addison-Wesley Professional: Boston,
MA, USA, 2003.

25. Grama, A.; Gupta, A.; Kumar, V. Isoefficiency: Measuring the Scalability of Parallel Algorithms and Architectures. IEEE Parallel
Distrib. Technol. 1993, 1, 12–21. [CrossRef]

26. Quinn, M.J. Parallel Programming in C with MPI and OpenMP; McGraw-Hill: New York, NY, USA, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14778/3450980.3450990
http://dx.doi.org/10.1145/2500128
http://dx.doi.org/10.1007/978-3-642-40273-9_7
http://dx.doi.org/10.1145/3600061.3600084
http://dx.doi.org/10.1145/3660320.3660332
http://dx.doi.org/10.1109/88.242438

	Introduction
	The Frugal Algorithm
	The EasyQuantile Algorithm
	Speed of Convergence
	Parallelizing the Frugal Algorithm
	Analysis of the Algorithm
	Experimental Results
	Parallel Machine
	Workstation

	Conclusions
	References

