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ABSTRACT: Conformal theories with a global symmetry may be studied in the double
scaling regime where the interaction strength is reduced while the global charge increases.
Here, we study generic 4d N/ = 2 SU(NV) gauge theories with conformal matter content
at large R-charge Q)r — oo with fixed 't Hooft-like coupling k = Qr g%M. Our analysis
concerns two distinct classes of natural scaling functions. The first is built in terms of
chiral/anti-chiral two-point functions. The second involves one-point functions of chiral
operators in presence of %—BPS Wilson-Maldacena loops. In the rank-1 SU(2) case, the
two-point sector has been recently shown to be captured by an auxiliary chiral random
matrix model. We extend the analysis to SU(N) theories and provide an algorithm that
computes arbitrarily long perturbative expansions for all considered models, parametric
in the rank. The leading and next-to-leading contributions are cross-checked by a three-
loops computation in N/ = 1 superspace. This perturbative analysis identifies maximally
non-planar Feynman diagrams as the relevant ones in the double scaling limit. In the
Wilson-Maldacena sector, we obtain closed expressions for the scaling functions, valid for
any rank and k. As an application, we analyze quantitatively the large 't Hooft coupling
limit k£ > 1 where we identify all perturbative and non-perturbative contributions. The
latter are associated with heavy electric BPS states and the precise correspondence with
their mass spectrum is clarified.
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1 Introduction and summary of results

The large charge limit of conformal quantum theories with a global symmetry is an in-
teresting regime where important simplifications may occur and novel exact results may
be obtained [1-3].} The simplest example is that of the O(2) invariant scalar model in
three dimensions, see e.g. [9], where an effective theory captures the dynamics of opera-
tors with large O(2) charge ~ n. Exact results are obtained in the double scaling limit
n — oo with fixed k o« n? g where ¢ is the quartic coupling of the Wilson-Fisher fixed
point [10-13]. For instance, the anomalous dimension +, of the composite operator ¢™ is
exactly linear in &, i.e. v, —n x k, with a computable coefficient [10]. In this model higher
order corrections in & are associated with suppressed diagrams in the double scaling limit.?
Although the anomalous dimension 7, is inherently associated with a two-point function,
similar results have been recently extended to more general higher point functions with
one anti-holomorphic insertion of @" [14].

In this paper we focus on another class of models where the large global charge limit
is very interesting, i.e. four-dimensional N' = 2 superconformal theories [15]. The most
common example is conformal super-QCD (SQCD) with gauge group SU(N) and 2N hy-
permultiplets in the fundamental representation considered at large global charge in [16-18].
In this class of models the global symmetry is identified with the R-symmetry. Besides,
thanks to N/ = 2 extended supersymmetry, it is possible to compute non-trivial observables
at high perturbative order using localization methods [19]. In some cases non perturbative

!The idea of a large charge/weak coupling compensation is closely related to the solvability of the
BMN limit in AdS/CFT [4, 5] and, more generally, to the coherent-state effective theory description of
“semiclassical” string states [6, 7] and its role in capturing the strong coupling regime [8].

2An equivalent statement is that an exact saddle point analysis is possible in the double scaling limit.



results may be obtained, as we shall illustrate. In a typical setup, the large charge limit is
approached with the Yang-Mills coupling g — 0 while the R-charge n grows as 1/¢2. The
corresponding 't Hooft-like double scaling limit is then

4% k = ng* = fixed, with n — oo, (1.1)

where k is the new coupling. Perturbatively in k we can neglect instanton contributions
because we stay at weak-coupling for any finite k. Notice also that the gauge group rank
N is kept fixed in the double scaling limit (1.1). Further scaling regimes involving both x
and N have not been investigated yet.

1.1 Large R-charge observables

We shall consider two related but distinct sets of observables that will not trivialize at large
R-charge. The first set (or sector) emerges naturally in the study of extremal correlators of
chiral primaries, i.e. higher point functions with only one anti-Coulomb branch operator.
The simplest case is that of two-point functions between a chiral primary and its antiholo-
morphic counterpart. In conformal N = 2 SQCD they have been computed in the double
scaling limit (1.1) in [17, 20] by applying localization methods [21-23]. One considers the
normalized ratio between the two-point functions (0, 0,,) in the N' = 2 theory and in the
N =4 SYM universal parent theory when O,, is a chiral primary with R-charge oc n — oo.
This ratio is used to define the following scaling function depending on the fixed coupling
r and the gauge group rank (the position dependence is fully controlled by superconformal
Ward identities [24] and drops in the ratio)

B <On@n>N:2

Oy .. 1 Oy . : Oy . \rnens
FO(k;N) = lim F?(g; N vith B0 N) = 10,0, 8=

Jim rfixed * (1.2)
Technically, the explicit matrix model computation of F©(x; N) is challenging because in
the large n limit it becomes hard to disentangle the map from S* — where the matrix
model lives — to flat space [23, 25-27]. We remind that this step is non-trivial because
the preserved supersymmetry on S* is only osp(4]2) C su(2|2) and mixing generically
occurs, breaking the original flat space u(1)r. Nevertheless, for certain classes of chiral
primaries O,,, it is possible to compute efficiently the perturbative expansion of the function
FO(k; N) by exploiting the integrable structure of the ' = 2 partition function. In the
simplest example, O, is the maximal multi-trace operator O,, = Q,, = (tr ¢?)" where ¢ is
a complex combination of the two real scalar field belonging to the A’ = 2 vector multiplet.
The two-point functions (€2, Q,) are then captured by an integrable Toda-chain [23, 28].
By exploiting this peculiar structure it is possible to control the R-charge dependence and
evaluate the scaling function (1.2) at high perturbative order [20]. Later, this approach
based on decoupled semi-infinite Toda equations has been generalized to broader classes
of primaries and is believed to be a general feature of Lagrangian A/ = 2 superconformal
theories [29].

A second sector of observables arises in the study of one-point functions of chiral scalar
operators O in presence of a circular %—BPS Maldacena-Wilson loop W. For a circle of



THEORY Np Ng Ny
A 2N 0 O
B N—-21 0
C N+2 0 1
D 4 0 2
E 0 1 1

Table 1. The five families of A" = 2 superconformal theories with SU(/V) gauge group and matter
in fundamental (F), symmetric (S) and anti-symmetric representations (A), cf. [32].

radius R in R? it reads

W:;[trpexp{g /S ds [iA(x)-¢(5)+f§(go+go)]}, (1.3)

where ¢ is the Yang-Mills gauge coupling and A is the SU(N) gauge field. Exploiting
conformal invariance and placing the chiral operator O in the center of the loop, one can
apply localization methods to compute (OW) [30]. Again, one may consider the large
R-charge limit by taking O — O,, as above and define the ratio [31]

(O, WWN=2

O/ .. T O .
Fyolis N) = lim_ Fyo(9i N)| (W)=

with  Fyy . (g; N) = (1.4)

rk=fixed ’
in analogy with (1.2). For the sake of brevity, we shall name in the following (OW) a
one-point Wilson function and FV(?}(H; N) a one-point Wilson scaling function.

In this paper, we shall consider the observables (1.2) and (1.4) in the two (sim-
plest and next-to-simplest®) cases when the chiral primaries O,, are the towers (tr ¢*)"
or tr @3 (tr p?)™ (the second choice is non-trivial for N > 3). We shall denote the associ-
ated scaling functions by F®)(k; N) and F®)(k; N) respectively, and similarly for Wilson
scaling functions. Their properties will be considered not only in conformal SQCD, but
also in a more general set of superconformal AN/ = 2 models with SU(N) gauge group,
obtained by imposing that the 1-loop coefficient of the beta function vanishes (see (A.17)).
These have a specific matter content in the fundamental, symmetric or anti-symmetric
representations [32], see table 1.

Theory A is N' = 2 conformal SQCD. Theories D and E are quite interesting since they
admit a holographic dual of the form AdSs x S°/I" with a suitable discrete group I' [33].
Localization computations in these models have been recently fully discussed in [34]. For
SU(2) the only meaningful model is A, while for SU(3) we have the identifications

A=C=D, B=E, (1.5)

so that we can restrict to the A and B models. For N > 3 there are no more accidental
identifications.

3Here, simplicity refers to the S* mixing, see for instance [20, 29)].



1.2 Previous results and open questions

Let us overview what is known about the large R-charge observables (1.2) and (1.4) and
emphasize several open issues.

In the SU(2) SQCD theory, i.e. the A model, the longest expansion of the two-point
scaling function FA () (k;2) has been computed in [20], while the one-point Wilson scaling
function Fx(Q)(H;Q) has been considered later in [31]. These explicit calculations show
that — at least up to order O(k!') — one has (i) the equality

FAO(k:2) = Fis P (k;2) = F(k;2), (1.6)
and (ii) a simple exponentiation structure in terms of simple (-numbers

C9(B) 2, 2BUB) 5 22050(7) 4 3213¢(9) 5 TSTTLC(LL) g

log F(r:2) == =5 2 " 64 32 256
250965¢(13) 105424605¢(15) 265525075¢(17)
256 32768 24576
12108123027 C(19) 44 4
. . 1.
327630 K+ O (1.7)

Besides, (iii) the expansion (1.7) has been conjectured in [31] to admit the closed integral
representation (.J, are Bessel functions)

> 2 2 2 k21
logF(Fu;2)=4/ % Jo(2tv/k) + t\/jfg tR) — Kt —1
0

(1.8)

The relation (1.6) shows that there is a puzzling connection between the two-point and one-
point Wilson sectors. Notice that the conjectured form (1.8) is very interesting because it
gives access to the non-perturbative (within the large R-charge limit framework) large x
regime. Remarkably, (1.8) has been proved for the two-point scaling function in [35] (GKT)
by a dual description which is a chiral random matrix model of the Wishart-Laguerre type.
Such dual description involves matrices whose rank is related to the number of operator
insertions n, so that the double scaling limit (1.1) corresponds to the usual 't Hooft limit
for the random matrix model.

In the higher rank SU(NN) SQCD theory, with N > 2, things are less simple. The
scaling function F(®) has been computed by the Toda equation in [20] at O(k'°). In the
SU(3) case, the first orders of the weak-coupling expansion read

log PA®) (s 3) — — 9S0) 2 425C0) 5 NTSSSCD) 4 5563G(9) 5

K K K K
2 36 576 64
1925¢(5)*  2668897¢(11)Y ¢
3456 10368
32984237 ¢(13)  5005((5)C(T)\ - 8
( 11472 864 " Ok, 9

with similar results for SU(N). In the N > 3 theories, one can also consider the tower
associated with O = (tr %) (tr ¢?)", i.e. the function F®)(k;N). One finds for N = 3,4



the expansions

9¢(3) , 100¢(5) 5 15925¢(7) ,  147¢(9)
AB) (. 9) — _ 2 3 4 5
log F**' (k3 3) 5 + 9 " s + 5 K
L (1925¢(5)  8599501C(11)\ g
3456 A1472 "
3177031 ¢(13)  5005((5)¢(7)\ .
< 5184 864 K+ O,
3) ., 955C(5) 4 429280C(7) ,  T8057((9)
1 FA( ) 4 C( 3 4 5
°8 (mid) == =)= n"+ 92 " 7664 T 1m0 "
L (293062¢(5)* 68971014343 C(11)\
475571 423464960
387146868537 ¢(13)  28131103¢(5)C(T)\ - .
O%). (110
+( 846929920 4755710 R+ 0. (110)

Now the exponentiation is no more in terms of simple (-numbers with the exception of the
¢(3)* terms that are fully resummed by the single ¢(3) term in the above expansions.

For the higher rank one-point Wilson scaling functions the scenario is even more un-
settled. The only available result is the SU(3) result for the A model with expansion [20]

9¢(3) o, 175¢(5) 5 12005¢(7) 4
5 "t TIg T 5 °
1491¢(9) 5 2247091¢(11)

32 T T 20736

log Ff\‘,@) (k;3) =—

+ O(x"). (1.11)
Comparing (1.11) with (1.9) we see that (1.6) is certainly false in SU(N) for N > 2, i.e.
FA@ (o N) £ FP (s N), N>2. (1.12)

Nevertheless, (1.11) strongly suggests an exponentiation similar to (1.7).

Thus, in summary, at higher rank, one is led to ask the following list of open questions
to be addressed in the generic SU(N) case and depending on the specific tower O,, and
A-E model:

Q1: Is there any relation between F'(k; N) and Fyy(k; N), i.e. between the two-point and
one-point Wilson sectors? Why does (1.6) hold in SU(2), but not in SU(N > 2)7 Is
there any modified version of it that may work for higher rank?

Q2: Is it true that log Fyy(k; N) may always be written as a series of simple (-numbers?

Q3: Is it possible to provide an all-order resummation, as in (1.8), valid for any of F(x; N)
and Fyy(k; N)?

Q4: Does the GKT dual matrix model keep playing a role in answering the above ques-
tions, even at generic N7



1.3 Summary of results

The analysis presented in this paper will consider and solve the previous open issues. In
summary, our main results will be the following

1. It is possible to compute F(®)(k; N) in any model and for both A = 2,3 by a suitable
extension of the GKT dual matrix model that captures the higher rank case. This
leads to an efficient algorithm that computes the perturbative expansion in x at any
desired order with rather moderate (computational) effort.

2. Using standard field-theoretical supergraph techniques on flat space we compute the
two and three loops contributions to F(®)(k; N), i.e. the terms proportional to ¢(3)
and ((5) respectively, and we give a hint of the generic ((2¢ — 1) term. This dia-
grammatical analysis of the double scaling limit matches the matrix model results,
and is particularly useful to identify the class of diagrams contributing to that limit.
These turn out to be specific mazimally non-planar insertions of certain polygonal
loop diagrams. This is nicely opposite to what happens in the standard large N limit.

3. There is indeed a close relation between the two-point and one-point Wilson sectors.
For the SU(2) theory we shall prove the equality (1.6). For SU(N) with N > 2 we
shall prove the relation

FQ (k; N) = FSY (5 N) = Fw(; N). (1.13)

4. In the Wilson sector, we shall also provide an efficient algorithm to compute the all-
order expansion of Fyy(x; N) in powers of k based again on the higher rank extension
of the dual matrix model. As a corollary of the construction, we shall prove the
exponentiation of Fyy(k; N) in terms of a series of simple (-numbers.

5. Finally, we shall give very strong evidence for general resummations, similar to (1.8),
for all the five SCFT’s and parametrical in N. From them, one can extract the
perturbative (k < 1) and non-perturbative (k > 1) expansions log Fyy(k; N).

The last item in the above list will be our main result and is definitely non-trivial
since such resummations are possible by a combination of (i) our proof that the higher
rank dual matrix model may capture the Wilson scaling function together with (ii) our
proof of exponentiation. Such a result allows to explore the physics of the large x regime.
The reason why it may be interesting is that in the large n limit (implicit at fixed ) the
path-integral computing the scaling function is dominated by field configurations that are
saddles of the modified N/ = 2 action taking into account the O,, insertion. As remarked
in [35], this means that the relevant point in moduli space has vacuum expectation values
growing like g/n.* In the double scaling limit, this means that the hypermultiplet and
short W-multiplet will have a mass ~ \/x, while magnetic BPS states, with mass ~ g2/,
will decouple. At large k, the electric BPS states will then lead to contact terms and

4The correct dimension is provided by a suitable infrared cutoff, like the inverse radius of the sphere in
radial quantization.



exponentially suppressed contributions vanishing like ~ exp(—c+/k). The non-perturbative
contribution extracted from any resummation generalizing (1.8) and parametric in N will
then be a direct probe into such a heavy BPS regime.

Plan of the paper. In section 2 we briefly summarize the matrix model tools that are
needed to discuss the large R-charge limit in the five superconformal theories in table 1.
In section 3 we consider the extremal correlator sector and the two-point functions in the
double scaling limit. We review the GKT solution for the rank-1 SU(2) gauge theory and
generalize it to the higher rank case clarifying several technical issues. As an outcome,
we provide specific results for the ABCDE models in terms of long expansions valid at
weak coupling in the double scaling coupling . Section 4 is devoted to a diagrammatical
check/interpretation of the results obtained in section 3. By using conventional Feynman
diagram analysis in N' = 1 super space, we identify the precise loop diagrams that give the
leading order and next-to-leading order expansion of the scaling functions. In particular, we
show that it is an insertion characterized by the maximally non-planar topology. Section 5
moves to the second sector of observables, i.e. one-point functions of chiral operator in
presence of a %—BPS Wilson-Maldacena loop. We begin by collecting explicit data for the
SU(3) and SU(4) theories in order to extend the amount of explicit calculations and explore
new features of the higher rank case. Then, in section 6, we prove such features and obtain
closed expressions for the one-point Wilson scaling functions that are valid in all the treated
cases, i.e. for all ABCDE models at generic N and for both types of large R-charge towers.
Finally, section 7 is devoted to the analysis of the resummations presented in section 6 in
the above heavy BPS regime, i.e. for k > 1, where we give a full account of the computed
non-perturbative corrections. Their detailed structure allows to match the spectrum of
heavy BPS states relevant in this regime.

2 Matrix model description of the five SU(IN) theories

In this brief section, we summarize the matrix model description of the five SU(V) theories
with matter content as in table 1.° Aspects of these theories related to the properties of
their extremal correlators have been recently discussed in [29].

Action. For a general N' = 2 theory with gauge group SU(N), the partition function on

a four sphere obtained by localization can be written as®

82
Zga = /[da] exp<—g2 tr a2) Zl_loop]ZinSt\Q, (2.1)

5The analysis of [32] identifies additional three cases, but they exist only for specific values of N. Notice
that they involve matter fields in the rank-3 antisymmetric representation. Although we do not consider
them in this paper, all of our methods are applicable to them without any additional complications.

5Sometimes it may be convenient to rescale the matrix a in order to make the Gaussian part of the

_ 2
action read simply e” ® ",



where [da] is the standard measure over the conjugacy classes of traceless Hermitian ma-
trices reading (a, are the N eigenvalues of a )

n
[da] = H day H (ay — a,,)25(z au> . (2.2)
pn=1 v<ph M

For a N' = 2 superconformal theory with matter in the representation R of SU(N), the

interacting action in Zi_jpop = e~ Sint g conveniently written as

o0
2m —1
Sint(a) = - IOg Zl—loop - - Z (—1)m<-(’rn) (TI'R an — Tradj a2m) . (23)
m=2

The difference of traces in (2.3) stands for the replacement of N' = 4 virtual exchanges
of adjoint hypermultiplets by similar exchanges of matter hypermultiplets transforming
in R [34]. For the fundamental representation, we shall simply write Trg;,g = tr. The
combination of traces appearing in Siy(a) can be expressed as

2 2 /2 / b bam
Trr a®™ — Tryqja”™ = Trg a™™ = C(blmem) a’...a”m, (2.4)

where
Cglh_bm = Tr%z Ty, ... Ty, - (2.5)

The indices b; = 1... N?>—1 run over the gauge algebra. See appendix A for our conventions
and for a systematic discussion of how to express the differences in (2.3) in terms of traces
in the fundamentals (see also [34]). This procedure yields the explicit form of (2.3) for the
SU(NN) models with the matter content listed in table 1.

Finally, the factor Zi,g in (2.1) takes into account the instanton corrections. In this
paper they will not play any role while studying the double scaling limit. For this reason,
we simply drop Zingt.

Observables. As we mentioned in the Introduction, we shall primarily be interested in
two classes of flat space correlation functions in such superconformal field theories. The
first are two-point functions between a chiral primary O(x), with conformal weight A(O),
and its conjugate. From conformal invariance we have (rank dependence is understood)”
A Gool9)

(O(x)O(y)) = (@ y)?A0) (2.6)
The other class of observables will be one-point function of a chiral primary operator O in
the presence of Wilson loop (1.3). In general it is given by:

Ao(9)
Ox)W) = —— 2.7
where [|z||c is a distance between = and the circle C, invariant under the SO(1,2) x SO(3)

subgroup of the conformal symmetry preserved by the Wilson loop, see appendix A of [30].

"Notice that A = 1 superconformal invariance is enough to protect the dimension A(Q) of chiral
operators against radiative corrections, as first discussed in full generality in [36].



Both Gpp(g) and Ap(g) are non-trivial coupling dependent functions. They encode
the information about the above correlation functions that is not fixed by conformal sym-
metry and from henceforth, with a little abuse of language, we will refer to them simply
as two-point and one-point Wilson functions.

For a A/ = 2 theory on S%, they can be evaluated using the partition function (2.1).
Our focus will be on the Coulomb branch operators. For SU(N) gauge group, they are
generated by tr¢™ with 2 < k < N with ¢ being one of the two complex combinations
of the two scalars in the vector multiplet. Ignoring instanton corrections, the recipe for
computing Gpp(g) is simple. Given two Coulomb branch operators O(y¢) and O(p) we
can compute G (g) on S* by inserting O at the north pole and O at the south pole. This

corresponds to inserting O(a) O(a) in the sphere partition function (2.1)

2
(O(N) @(S)>S4 = 2154 /[da] O(a)O(a) exp<—892 tr a2> Z1-Loop- (2.8)

The naive operators O(a) are not correct to reproduce flat space correlators due to con-
formal anomalies inducing a peculiar mixing on the sphere [23, 25, 26].% In general, the
matrix model chiral operator O has to be replaced by its normal ordered version defined
in:O:[27], ie.

10:=0+ Y cool90 (2.9)
A(0)<A(0)

where the coefficients co o/(g) are determined by requiring the orthogonality condition with
smaller dimensional operators (: O : O0’) g4 = 0. Writing the explicit form of (2.9) is clearly
a major complication in the double scaling limit where the dimension of the considered
operators grows arbitrarily. Indeed, apart from some simple cases, the mixing coefficients
are not known in closed form. Nevertheless, we will see that a suitable dual matrix model
description can be used to overcome this technical difficulty.

For observables involving the 3-BPS Wilson loop, we have to supplement (2.8) and (2.9)
with the correct replacement rule for the unit radius Wilson loop (1.3), i.e. [19]°

1
W(a) = N tre?™ (2.10)

3 Extremal two-point functions at large R-charge in SU(IV) theories

In this section, we generalize the GKT dual matrix model approach [35] in order to go
beyond the rank-1 SU(2) case and compute the large R-charge limit of extremal two-point
functions in the general SU(NN) superconformal theories discussed in section (2). Our main
results (3.28) will lead to a computational algorithm able to produce long perturbative
expansions of the scaling functions. These, in principle, may be useful to derive (or check
proposed) all-order resummations.

8See for instance [37] for a detailed discussion of the mixing with the identity operator. Notice also that,
as we remarked in the Introduction, there is not enough supersymmetry on S* to protect from this mixing.
9Several explicit field-theoretical verifications of the matrix model map can be found in [27, 30, 34, 38].



3.1 Review of the SU(2) Grassi-Komargodski-Tizzano solution

We are interested in evaluating the two-point function (2.6) in the special case O = (tr ¢?)".
To this aim, we want to determine Go,(7,7) in (7 is the complexified gauge coupling,
Im7t = ‘;—’;)

_ Gon (T s ?)

<(tr 902($))n(tr¢2(y))n> (@ — gy

(3.1)

To apply localization methods [19, 23] one starts by considering the infinite matrix M
defined by

1 0"t Zga[r, 7]

Mpym=——-—2"—"—, 3.2
nm Zs4 8n7-6m7—- ( )
where Zgs is given by (2.1). We shall denote by M, the n x n truncation with matrix
indices running in the range 0,...,n — 1. As shown in [23], it is possible to prove that
det M, 41)
G ,T) = ———~, 3.3
(75 7) det ./\/l(n) (3:3)

where the determinant ratio disentangles the mixing that occurs on S%. In the SU(2) case,
the large R-charge limit of (3.3) may be determined by the approach in [35]. However, the
derivation cannot be naively extended to the higher rank SU(N) case. As a preparation to
the necessary changes, we now briefly summarize the GKT strategy.

The first step is to use the so-called Andréief identity, see for instance Lemma 3.1
in [39], which converts det M) from the determinant of a matrix with each elements
defined as an integral to an integral of determinants:

N-1

dst [ ant) ) = 7 [ 11 dnto) dston) detlomt) 0

where fi, gr with k € {0,--- , N —1} are two sets of N-functions and du(y) is the measure
of integration. The relevant measure for det M, is du(a) = [da]Z1.100p(a). For the SU(2)
gauge group the space of conjugacy classes of Hermitian matrices is one dimensional and we
parameterize it by a. As a result the measure is da e =47 ™ m2a2Z1_100p (a). The derivative
w.r.t. both 7 and 7 brings down a factor of a?. Hence, the functions fi, and g; are simply
fr(a) = a®* and g;(a) = a®. From

2
21 m 2\ _ 2 22
dkelt ay, (}ne;f a, = <d§t ak> = H(ak —aj)?, (3.5)
k<l
we have

1 [ 4r 1 2

detM(n) = [/ H dxj ije_ " In7—mjzl-loop(\/ij) H(xk - .CE[) s (36)
mJoo o k<l
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where in the last step we changed variables of integration to x; = ajz. Due to the presence

of Vandermonde determinant [, <l(a% — a?)? the above expression can be recognized as

a matrix integral. However in this case the eigenvalues are a? (i.e. ;) and not aj. As a

result this expression doesn’t come from an integral over Hermitian matrices but rather
over positive matrices W, i.e. a Wishart-Laguerre matrix model [40]. From

n—1 n—1
1 1
H VT = exp 3 Z logz; | — exp<2 trlog W), (3.7)
Jj=0 7=0
we see that we are to compute the dual matrix model partition function
1
/ [W]e= ™), V(W) = drmrte W = S trlog W — trlog Ziionp (\/W> . (38)

For this treatment to valid the 1-loop partition function must depend only on the conjugacy
classes of W, i.e.

Zl—loop(W) = Zl—loop(tr W’ tr W27 e ) (3'9)

This statement is trivially true for SU(2) theories but as we shall see this will pose novel
problems in the higher rank case.

Double scaling limit of the dual matrix model. To evaluate the scaling function
F®(k; N) we need My in the limit (1.1). The potential in (3.8) is then

n
472 K

In this expression the first factor depends on n while the other two factors are single trace

1
V(W) tr W — B trlog(W) — trlog Zi-100p (\/ W) . (3.10)

deformations that contribute at a sub-leading order in n. As explained in [35], in the double
scaling limit the typical eigenvalue of W is ~ k. This combined with the trace structure
of V allows for a % expansion of log M, i.e.

oo
log M) = an_kck(li). (3.11)

k=0
We can now compute M, by treating the factor Zj o0, as a perturbation around the
Gaussian matrix model, i.e. around the N' = 4 theory, det M(,) = (Z1100p(W)). For a

0)

single trace operator O, we can replace <eo> — €9 up to terms that are subleading at

large n. Since Zi.jo0p is single trace, we have simply
log det M,y = log ( Z1.100p(W)) "= (log Z1.100p(W)) + O (1). (3.12)

The expectation value in the r.h.s. can be evaluated by integrating Z.j,0p weighted by the
joint eigenvalue distribution function for positive matrices. The eigenvalue distribution is
governed by Marcenko-Pastur law [41]. In the large n limit the result is then

4
log det M, e n/ dz p(2) Z1300p (4 72 k) + O(1), with p(z) = 2177\/?
0
(3.13)

- 11 -



Using this expression we compute the log of (3.3) while keeping in mind that n and « have
to be varied together. Subtracting the NV = 4 contributions the final result is:

4
FO(k;2) = / p(x) ( 108 Z1100p (4 T2 ) + KOk Z1100p (4 T2 m:)) (3.14)
0

Finally, by using the series expansion for log Zj.joep, it is possible to resum (3.14) in the
form (1.8).

3.2 Higher rank extension for SU(/V) theories

Now we turn to a generalization of the GKT approach which enables us to compute both
F®(k,N) and F®) (s, N) for any N. We begin with F?)(k, N), while the extension to
F®)(k, N) will be obvious once we are done. Again we start by writing det M, as an
integral of a determinant

n—1
1 —amlmT ra2
det M) = n'/ H[dai]e AmimTt ’LZl_lOOp(ai)H(tra? —tra?)Q. (3.15)
1=0 j<i

We can see from this expression that the positive matrix ensemble emerges once again. The
eigenvalues of this matrix are tr (a?). But unlike the rank one case there are additional
variables since an SU(N) matrix has N — 1 independent eigenvalues. To make progress,
we need to separate tr (a?) out of the rest of these variables. To start, we consider the
N = 4 theory by setting Zj.joop — 1. In this case, tr a? is already separated. We go from
Cartesian coordinates for eigenvalues to polar coordinates after which tr a® becomes the
radial coordinate. Hence,

n—1
Cy > 23 —4rImTx;
det M) = nﬂv/o [T daj\fa)"Petmimmes T (e — a)?, (3.16)
j=0 k<l

where x; = tr a? and Cy is an integral over the (N — 1)-sphere, Cy = %fSNfl dQ D(Q),
where D(£2) is (implicitly) determined by polar decomposition

N N272N71
d(tra) H(au —a,)? = (Zai) D(Q). (3.17)

As a result, the previous treatment based on the Wishart-Laguerre type matrix model
generalizes straightforwardly to SU(N) A = 4 theory

2

det M, = CN/[dW] e VW VW) =drImTtr W — ———

trlogW.  (3.18)

n!

This fails to be the case when we consider N' = 2 theories because Z1-100p 1s nOt a function
of just tr (aQ) but rather depends on (products of ) tr ¥ with 2 < k& < N. This means that
in (3.16), Zi_00p is a function not only of radial variable x; but also of angular variables

- 12 —



;. At this stage Zj_1p0p is not an observable in the matrix model, but it becomes such
after integrating out the angular variables. Hence, we define the quantity Zi.jp0p by

n—1
Zl—loop = /SN—l H dQZ D(Qz) Zl-loop(xia Qz) (319)
i=0

The important point is that this is a class invariant function in the matrix model, cf. (3.9),
Z1100p = Ztoop(tr W, tr W2, ), (3.20)

because Zi.joop is a symmetric function of x; and any symmetric function of z; can be
converted into function of traces of powers of W. Now, for a general function K (z,$2) of
the form

K(z,Q) = exp (Z fk(sz)x%) , (3.21)
k

we can write

1 n—1 f"
K(W) = %/gNl H}de(Qi)K(zi,Qi) = exp %Mgtr(wk) . (3.22)
= €

where #k is the number of non-zero entries of k and S(k) is a symmetry factor which takes
into account the degeneracies of entries of k. Both it and n#*=1 have been included for
the later convenience.

Defining the angular expectation value (f) of f(£2) to be,

1

(=g

/ dQD(Q) £(), (3.23)
SNfl

it is possible to show that in the large n limit:'®

o= { (fr) if k = (k)
O M ez (e — () if #E > 1

The explicit calculation of the relevant angular integrals is explained in appendix B.

(3.24)

We can now treat the double scaling limit perturbatively. In this limit the typical
eigenvalue of the matrix W is of the order of coupling k, as a result tr (Wk) contributes on

the order of nk*. Hence, any operator with #E—traces contributes as n#Fx>=kei ¥ Tt is clear
1

n#k—1

in (3.22), means that higher trace operators are suppressed by just the right power of n

from (3.24) that f; is independent of n. This, combined with the explicit factor of

in (W) and they contribute to the same order as single trace operators. Thus, this large
n limit receives corrections from non-planar diagrams even at leading order. Moreover to

10T other words, K(W) in the large n limit is analogous to the effective action resulting from a path
integral with tadpoles.
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the leading order in % we can again replace <€K(W)> — kW), Setting K to be Zi_1o0p We

see that
log det M () = 10g (Z1.100p) " = (108(Z1-100p)) + O(1). (3.25)
Using the large n limit of Marcenko-Pastur law, cf. (3.13),

1 /4
, with plx) =—4/——1, (3.26)

4
(08(Z110p)) = [ 42 p(2) Ztso L

W—47n2 kx

we can obtain F(®)(x, N) in the same fashion as in the SU(2) case
4
log F®(k, N) = / p(x) ( 10g Z] 100p (4 7 Ka) + K D21 100p (4 72 mc)) ,
0

Zi-loop(x) = Z Cixia ¢ = Z Sf(%) . (327)

k7zkel€ k=i

Hence, our final formula reads

log F

Z (j + 1)2%T (j + )(479/-@)3', (3.28)

VTT(j+2)

where the various I'-functions come from elementary integrals of the Maréenko-Pastur
distribution.

3.3 Application to the five N' = 2 superconformal SU(N) gauge theories

Let us summarize and illustrate in detail how (3.28) may be applied to the specific N' = 2
theories in section (2) in order to obtain the scaling functions F(®)(k, N). The relevant
steps are:

1. Take the interacting action Sint(a), cf. (2.3), and convert trg (o) into traces in the
fundamental representation using the general relations derived in [34]. This allows
to write

Sint = Z Un (329)

where 0, (a) is a homogeneous polynomial in the traces tr (ak) evaluated in the fun-
damental representation.

2. Compute the coefficients {¢,} defined by

N) = ni; en K" = log << exp <Z on(a) (47%K) ) >> (3.30)

where the angular bracket denotes angular integration and can be computed as in
appendix B.

— 14 —



3. The scaling function for the (tr )" tower is obtained from, cf. (3.28),

n—|—1)22"F(n+ 3)
I'(n+2)

log F®) (i, N) Z cn (A72K)"™. (3.31)
n=2

4. The scaling function for the tr ¢? (tr ©?)" tower is similarly obtained as,

00 2n 1
log F®) (k, N) = b )2 D et )

2,.\n
= Vrl(n+2) dn (A77K)", (3.32)

where now (the denominator may be found in (B.4) )

(lr(a®) exp (552 o) (4r20)"))

(B)H H (0]
o N) Zd =log (@)

(3.33)

3.3.1 Explicit expansions

Let us give explicit expansions of log F(®) (k; N), A = 2,3, valid for generic models and
rank. For any of the five models their structure is

log F (r; N) = £ ¢(3) k2 + £ ¢ (5) kP

fé?il (3) A1) + 12 ¢(15) | #5 + - (3.34)

where {2 = f(()Q)(N). Notice that (i) the first ((3) term is absent in the E model, and (ii)
all terms involving powers of ((3) or products of ((3) with other ¢ functions are absent
in both the A and E models. The same structure of the expansion and special vanishing
properties hold for(t)he second tower, i.e. for log F(3)(/1; N). In this case we shall denote
3

the coefficients as fs”’. The explicit results for each model are collected in appendix C. Up
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to the x* term (x° in the E model) they read

_9¢B3) o 25(2N* —1)¢((5) 4
2 N(N?+3)
1225(8NS +4N* —3N2 +3)¢(7) ,
T IGNZ(NZ+ 1)(NZ+3)(N2+5)
IN —3)(N =2)(N +1)¢(3) »
AN(N2 +1)
25(N —2)(2N* — 6N3 — 15N2 +15) ((5) 4
2N2(NZ+ 1)(N2 + 3) "
315(N — 3)(N — 2)(N + 2)(N + 3)¢(3)?
4(N2 +1)2(N2 + 3)(N2 +5)
245(N —2) (40N —172N° —564N*—120N3+1185N2+480N —945) ¢(7)
- 32N3(N2 +1)(N2 + 3)(N2 4 5)
IN - DHIV+2)(N+3)¢B) »
4N(N2 +1)
25(N + 2)(2N* + 6N3 — 15N2 +15) ((5) 4
ON2(N2 1 1)(N2 + 3) "
A [315(N —3)(N —2)(N +2)(N + 3)¢(3)?
4(N2 +1)2(N2 + 3)(N2 +5)
245(N +2)(40NS+172N° —564N*+120N3 41185 N2 —480N —945)((7)] 4
B 32N3(N2 + 1)(N2 + 3)(N2 + 5) ]“ L
9(2N%2 -3)(¢(3) 5 50(5N*—2N3 —15N? +8N +15)((5) 4
Nver1 T N2(N2 + 1)(N2 + 3) "
315(N — 3)(N — 2)(N + 2)(N + 3)¢(3)?
[ (N2 +1)2(N?2+3)(N2+5)
735(42N°% — 40N® — 168N* + 240N3 + 315N? — 320N — 315)¢(7)] 4
N SN3(N2 + 1)(N2 + 3)(N2 + 5) } e

log FA®) (k; N) =

log FB (2)(n; N)=-

/€4+"‘,

log FC(Q)(N;N) = —

log FP (2)(,%; N)=-

~ 100(N = 2)(N +2)¢(5) 4
N(N2+1)(N?+3)
3675(N —2)(N +2)(N?2-2)¢(7) 4
N2(NZ+1)(N2+3)(N2+5)
15876(N — 2)(N + 2)(7TN* — 25N2 + 36) ¢(9) I
N3 (N2 +1)(N?2+43)(N?2+5)(N2+417) ’

log FE@(k; N) =0-¢(3) k2

(3.35)

and, for the tr(a3) tower,

9¢(3) 25(N — 1)(N + 1)(2N* + 45N? +105) ¢(5) -

A (3 . _ 2 3

log FA®(; N) = = == + NN +5) (N2 £ T)(N2 +9) g
_ 1225(8N® 4+ 260N° + 281N* — 378N? + 693) ((7) 4

6N2(N2 1 5) (N2 + 7) (N2 + 9)(N2 +11) 7
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log FB® (s: N) = 9(N — 3)(N* — N3 +9N? — 35N — 70) ¢(3) 2
AN(N2 +5)(N2+7)
25(2N7 — 10N + 31N5 — 320N4 — 168N3 + 1800N2 + 1575N — 3150) ¢(5) 5
+ 2N2(N2 4 5)(N2 + 7)(N2 + 9) "
315(N — 3)(N + 3)(NS + 90N* — 471 N2 — 8260) ¢(3)>
4(N2 4 5)2(N2 +7)2(N2 + 9)(N2 + 11)

245(40N° —252N84+-580N7 — 13860 N6 — 19475 N° +87822 N4 +204030 N3 — 238140 N 2 — 440055 N +436590) ¢(7)

B 32N3(N2 + 5)(N2 + 7)(N2 4 9)(N2 4 11)

x k* + -,
9(N + 3)(N* + N3 + 9N? + 35N — 70) ¢(3)) ,
AN(NZ 1 5)(N2 1 7) "
N 25(2N7 + 10N% + 31N5 4+ 320N* — 168N3 — 1800N? 4 1575N + 3150) ¢(5) 3
2N2(N2 +5)(N2 +7)(N2 +9)
315(N — 3)(N + 3)(NS + 90N+ — 471 N2 — 8260) ¢(3)?
4(N2 +5)2(N2 4+ 7)2(N2 + 9)(N2 + 11)
245(40N° +252N8 +580N7 + 13860 N6 — 19475 N> —87822 N+ 4204030 N3 +238140N2 — 440055 N —436590) ¢(7)
- 32N3(N2 + 5)(N2 + 7)(N2? + 9)(N2 + 11)

log F€ (3)(5;N) =—

x rt + -,
9(2N* 4+ 31N2 —105)¢(3) ,
NNZ 15 (N2+7)
N 50(5N% — 6N5 + 160N* — 114N3 — 900N? + 840N + 1575) ¢(5) 3
N2(N2 + 5)(N2 +7)(N2 +9)
315(N — 3)(N + 3)(N6 + 90N* — 471 N2 — 8260) ¢(3)2
(N2 4+ 5)2(N2 4 7)2(N2 4+ 9)(N2 +11)
2205(14N8 —40N74+770NS —1160N° —4879N* +11440N3 413230 N2 —24640N —24255) ¢(7)
- 8N3(N2 4+ 5)(N2 + 7)(N2 + 9)(N2 +11)
~ 300(N* + 19N? — 140)¢(5) 3
N(N2 +5)(N2+T7)(N2+9)
11025(N — 2)(N + 2)(N* 4+ 33N2 — 154) ¢(7) 4
N2(N2 4 5)(NZ + (N2 + ) (N2 + 11)
7938(41N® + 1745N6 — 19474N* + 73200N2 — 123552)¢(9) 5
T M ANN AN LN LI+ 13)

log FP 3 (; N) = —

4
[ R

log FE®)(1; N) = 0-¢(3) 2

(3.36)

Of course, specialization of (3.35) to SU(2) is in full agreement with (1.7). Also, special-
ization of (3.35) and (3.36) to SU(3) agrees with (1.9) and (1.10). The SU(3) and SU(4)
expansions at order O(x'%) are collected in appendix D.

Remark 1. There is a simple formal duality between B and C models expressed by the
relations
log FB®) (5; N) =1og FC®) (—k; —N), A =23, (3.37)

that are consequence of the specific matter content in table 1.

Remark 2. The expansions (3.35) and (3.36) show that the two-point scaling functions do

not exponentiate in the simple way as in the SU(2) theory, i.e. log F(&)

is not a simple series
linear in the (-numbers. This makes any attempt to a full resummation little promising.
Nevertheless, our approach makes it easy to resum special contributions. The example of
the first non-trivial terms, i.e. those proportional to simple powers of ((5), is treated in

appendix E.
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4 Three loop diagram analysis in ' = 1 superspace

As first mentioned in [17], there is a special interest in understanding the topology of
Feynman diagrams in the large charge limit of chiral correlators in N' = 2 theories with
SU(N) gauge group. Here we will show that the diagrams contributing to the double
scaling limit are specific maximally non-planar diagrams.

We consider a four dimensional Euclidean spacetime and follow the N = 1 superspace
formalism as well as the diagrammatic difference between N’ = 2 and N/ = 4. Indeed the
scaling functions in (1.2) precisely account for the matter content of the difference theory.
We refer to appendix A for the complete expression of the Lagrangian and Feynman rules
(see [34] for a more detailed description of the tools). We limit our analysis to the diagrams
contributing the maximal transcendentality at each perturbative order.

4.1 Tree level

Our previous discussion has concerned correlation functions for a specific class of chiral
operators that we can generically write as Oa () = ®a (tr ¢?)"(z), where ®p = trp?.
Such operators have scaling dimension A + 2n and can be written as

Oan = RO @ ptatan (4.1)

CLl‘..(ZA+2nSD

where R(©) is a totally symmetric tensor, whose expression is encoded in the trace struc-
ture.'!

We study the flat space correlation function between a chiral and an antichiral operator.
According to (2.6), we can write

(OAn(2)Oan(0)) = M |

(4.2)
where the 2-pt coefficient G5 is captured by the matrix model. Our aim is to provide
a direct field theory analysis that identifies all the Feynman diagrams contributing to the
correlator (4.2) and surviving the double scaling limit (1.1).

We start with the ' = 4 result for the correlator (Oa ,,(2)Oa »(0))n=4, which corre-
sponds the denominator of (1.2). In this case the correlator is not only of the form (4.2),
but also is closed with tree level propagators only

b 5ab
(¢"(@)2"(0)) = 75 (4.3)
so that it reads
92 2n+A 1
Val _ O O

namely it corresponds to the full contraction of the R(©) tensors, as reported in figure 1.

1 Note the difference between R(©) defining the full operator Oa,, and R™®) which defines PA, and so
specifies the tower.
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CI)A (trgpz)” (I)A (tr(;,‘Z)n

Figure 1. The A/ = 4 result is the full tree level contraction of this diagram. The chiral operator
is placed in z, the anti-chiral in 0.

Even though the Feynman diagram analysis can be pursued for any ® A, in this paper
we will write explicit results for the towers ®5 and ®3. Note that for A = 2 we simply
reabsorb ®5 = tr ? inside (tr $?)" in order to simplify the notation. Thus the operators
we focus on are

Oy = (tr @2)” , O3z, =tr 903(‘51" @2)” ) (4.5)

Their tree level contraction, dropping the space-time dependence, are (see [17, 20])

2\2n I <N2_1 +n)
2 g 2
GE\/):4(g,n, N) = <87r2> n! e (4.6)
2 \ 2043 r N2_1+n+3)
(3) g 1 1 alasa. ( 2
N)= | =— —dgianan — A2 , 4.
G/\/:4(g7na ) <87T2> 4 1a2a3 4 n r <N22—1 +3) ( 7)

where Tdgpe 1= R®) is the totally symmetric 3-indices tensor defining tr 3 (see (A.10)).
The generalization for any Oa , easily follows. This operator is specified by a certain
P A, thus by a totally symmetrized tensor R(2). Its tree level contraction turns out to be:

2

82

r (Nz_l +n+ A)
()

(4.8)

2n+A
G\ (g, N) = ( > RA) . R®) ;1
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Figure 2. Generic 2¢-legs diagram with its color factor in the difference theory. The straight lines
represent ¢, @ fields, the dashed line generically represents the hypermultiplet loop. On the right
we see how to insert it in the maximal non planar way, which gives the leading order in the double
scaling limit.

4.2 N =2 corrections and maximally non-planar diagrams

Our goal here is to identify the class of diagrams contributes to the leading order in n
providing the double scaling limit for each perturbative order. We claim a general behavior
for any operator Oa , and for any transcendentality ((2¢ — 1) contributing to g% order,
following a very simple reasoning. If we want to reproduce the leading terms g*n’, at g%
order there is a unique way to obtain a n‘ term to achieve the correct double scaling limit,
that is a diagram with a hypermultiplet loop with 2¢ adjoint chiral legs. It is built up with
14 @@Q and £ QT(PT@T vertices, represented in figure 4. Each vertex brings a g factor.
Then, the only way to get a n’ scaling is to insert this diagram inside ¢ out of n pairs of
traces, see figure 2. Hence, the only contribution in the double scaling limit comes from
this 2¢-leg diagram inserted in a mazimally non-planar way.

We motivate this statement and we provide a formal computation for the generic ¢-
loops contribution and for a general O , tower. In the next subsections we prove it for the
two loops (¢ = 2) and three loops (¢ = 3) cases, specifically for the Oy, and O3, towers
and making a direct comparison with the matrix model computations.

The diagram in figure 2 can be factorized into three contributions: the Feynman loop
integral Wa(g, ), a symmetry factor S(¢,n) and the color factor K®(N,¢). We discuss

separately each of them.

Loop integral. We have a factor of (j:i\/§g) for each vertex, while the superspace inte-
gral can be mapped to the evaluation of the L-loop contribution of ladder diagrams to the
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four-point function in ¢3-theory, which was computed in [42]. This analogy was exploited
in appendix B of [27] for the £ = 2, 3 cases, in general this integral is always finite and yields

20 —nt 1 20 2\
Wl ) = 2% R 02~ S s oy = (10301 () (-

(4.9)

where ((2¢ — 1) is the Riemann zeta function, which counts the transcendentality order of
the perturbative expansion. Note that the insertion of these diagrams preserves the space-
time structure of the propagator, so that the structure of the correlator (4.2) is correctly
preserved. Therefore, from now on, we simply drop the spacetime dependence.

Symmetry factor. The important contribution is ¢!(¢ — 1)!, due to the number of inde-
pendent hypermultiplet loops. Then, the only way to obtain a leading n‘ contribution is
to insert the 2/-leg diagram inside the maximal number of tr ¢? tr ? pairs. So we have

S(e,n) =0 (¢ —1)! (’;)2 . (4.10)

Color factor. The color factor is the more involved part, since we are considering the
maximal non-planar diagram. We provide a recipe to capture the leading order in n and
we test it for the first non trivial orders.

The color factor from the open 2/{-legs diagram in the difference theory precisely re-
produces the trace combination Cj, ., that we already found in the matrix model ex-
pansion (2.5). (see appendix A for the explanation of its diagrammatic origin). After the
non-planar insertion of this diagram like in figure 2, the leading order will be the contrac-
tion of the Cy, .,
R(®). We clarify this statement with the two specific examples.

color factor with the ®A® A part of the correlator, defined by the tensor

The ®@ result is particularly easy, C" can be contracted only with color delta

ag...azy
functions. We obtain a totally contracted, fully symmetrized tensor
Céalal...agag) = Cé2f) N (411)
The ®®) result is more involved, since we need to contract Coy. ay, With the two R®)
tensors defining the operators. We obtain a tensor that can be formally written as
R®.ch, - RO (4.12)

In the next section we compute this tensor in the £ = 2 and ¢ = 3 cases. After this contrac-
tion we are left with n — ¢ pairs of untouched traces that will be contracted analogously
to the N = 4 case. After the ratio with the N' = 4 contribution (4.6), we can write the
explicit results for the @2 and ®®) towers

RN CEE)

K@)(N,0) = : 2 . (4.13)
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(A)

The generalization for a generic tower @' immediately follows

N2-1

(4.14)

Total result. In total we get a very compact expression for the generic ¢-loops result
with transcendentality ((2¢ — 1) of the correlator (1.2) in the double scaling limit

po 0oy, T (%)
ey @2 26" p (a4

!
0267

N2—1
20120 -1) F( 2 +3> R®.Cy, - RO

F®) = (-1 K (4.15)
‘C(QZ—I) (g!>2 2y r (N22_1 v 3> RB) . ROB)
The generalization for a generic tower ®(®) is
D (M=l A (A) 1 (A
FO| gy = (=1) 2 (4.16)

2 2t¢ " F<N22—1_|_£+A) RA) . R(A)

Now we can enforce this statement providing an explicit computation at two and three
loops order for the ®2 and ®®) towers. In particular, we will see that the color factor
worked out in (4.15) precisely reproduces the matrix model results.

4.3 Two loop diagrams: F(A)‘C(g)

As explained before, the unique contribution at g* order in the double scaling limit is
represented by the first diagram of figure 3. In the ®® tower the color factor of this
diagram must be totally self-contracted, generating a totally symmetrized expression (fol-
lowing (4.11)):

The ®®) tower is defined by the tensor R%1%203 = id‘“”%. The total color factor will be
a sum over all the possible way of contracting C’ with two R®) tensors

1 1 1 1
R(B) ’ Cz’l ’ R(3) = ZdGIGZU«S 1da1a2a30Eb7b7c70) + Zdalazln Zda1a2bz CZbl,bmc,c)

1 1
+ deblcl Zdalb%zcgbhbm (4.18)

c1,¢2)"

To evaluate (4.17) and (4.18) we follow the procedure of appendix A, using (A.18)
and (A.11). The final result in terms of rational functions in N is obtained using Form-
Tracer [43].

Substituting ¢ = 2 inside (4.16), the two loops results for the two towers are

3¢(3) K2
F(Q)‘g(g) - ]\% i 1 Ci,
3¢(3) K2 R®) .} - RG)

3) _
POl = Vs sy (V237 RO RO (4.19)
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3 .. R®)
THEORY C’E4) %
3 4 3 2 2
A —5 (Nt =1) -5 (N2 +5) (N2 +7)
B C3(NP-D(N+1)(N=2)(N=3)  3(N-3)(N' - N’ +9N? - 35N —70)
4N 4N
C C3(NP-D(N-D(N+2)(N+3) 3N +3) (N + N° +9N? + 35N —70)
4N 4N
b C3(2N? =3)(N? - 1) 3 (2N 4+ 31N? - 105)
N N
E 0 0

Table 2. Theory dependent coefficients determining the two-loop ((3) contribution to the scaling
functions F(®) for the two towers with A = 2, 3.

ai ag
—
ay ay \v .
— i
. e
N e as . a
V,‘ o ? /" A 2
e \ %
as . S a \ v
—
as / N ay
_)_/ ...... (......\_)_
! !
Ca1a2a3a1 Calaga;;tua;,ag

Figure 3. Box and exagon diagram contributing to 2 and 3 loops order, with their color factors.

where the color factors for all the SU(N) conformal theories are reported in table 2. We
see a perfect match with the ((3) terms of the matrix model results in (3.35).

4.4 Three loop diagrams: F(A)‘C(5)

The three loops case is technically more involved, but conceptually it is all encoded inside
the generalized (4.16) formula. Now the diagram to be inserted has an exagon shape, see
figure 3 inserted in the maximally non-planar way. Substituting ¢ = 3 inside (4.16), the
three-loops results for the two towers are

20 1
F® - _ = 3 /
o = 5 O e
20 1 R® . L. R®
3) - _= 3 6
ol = =3O s s (V259) RO . RO (4.20)

where again the color factors are explicitly computed for all the SU(V) conformal theories,
using the same procedure as before, and are reported in table 3 for both the towers.

Again we find a perfect match with the ((5) coefficients of the matrix model expres-
sions (3.35).
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THEORY Ct R -Gy RY
6 R®) . RO
A _15(NY-1)(2N2-1) _ I5(N—1)(N+1)(2N*+45N>+105)
4N 4N
B _ 15(N—2)(N2—1)(2N*—6N3—15N2415) _15(2N7—10N6+31N5—320N4—168N3+1800N2+1575N—3150)
8N?2 SN2
15(N+2)(N2—1)(2N*+6N3—15N2+15 15(2N"+10N®+31N°4+320N*—168 N> —1800N2+1575N+3150
C
- SN2 - 8N?
D 15(N2—1)(5N*—2N®—15N2+8N+15) 15(5N°—6N°+160N*—114N°®—900N>+840N +1575)
o 2N? - 2N?
E 15(N2—1)(N2—4) 45(N*+19N?—-140)
N N

Table 3. Theory dependent coefficients determining the three loop ¢(5) contribution to the scaling
functions F(®) for the two towers with A = 2, 3.

4.5 Summary of the diagrammatical analysis

In summary, we have confirmed our previous claim by explicit calculations and comparison
with the matrix model results (3.35). The ¢(2¢/—1) g?* contributions to the scaling function
F®)(k: N ) for £ = 2,3 and A = 2,3 come indeed from a diagram with a hypermultiplet
loop with 2¢ adjoint chiral legs that is inserted into the tree diagram, see figure 2, in a
maximally non-planar way. The pattern is reasonably preserved at higher perturbative
orders, since this is the only way to produce the necessary power of n needed to survive the
double scaling limit. This analysis provides a intriguing evidence of the duality between the
rank of the gauge group N and the number of the operator insertions n, as suggested in [35].

5 One-point Wilson functions: collecting more data for SU(3) and SU(4)
theories

The second class of observables that we are going to discuss are one-point Wilson functions
for which we want to analyze the double scaling limit. As we pointed out in the Introduc-
tion, the available data for the one-point Wilson scaling function is limited to the SU(2)
case and the A model with SU(3) gauge group. In this section, we exploit localization to
collect additional explicit data for all models in the SU(3) and SU(4) theories and for both
the (tr ¢?)™ and tr¢? (tr p?)" large R-charge chiral primaries. This work will be useful to
formulate some conjectures that we shall prove by using the higher rank dual matrix model.

5.1 One-point Wilson scaling functions for the two SU(3) theories
Let us recall that in the SU(3) A model one obtains at finite n [31] (¢, = ((n))*?

Inn+4)Cs 4
32 4
+25n(254+927n+850n2+375rﬁ+42n4)<5 6,
PN

2304 (2 4+ 3n +3n?) xS

Fiy 2 (g:3) =1 -

. (5.1)

12We only write the contributions that are going to survive in the scaling limit. These are the tran-
scendentality structures that appear in the expansion of exp(—Sint). That this happens in general will be
proved later.
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and then, taking the limit (1.4), one has

1 1¢2 12
Fy‘%(g)(/{ﬂ):l—%/@—s— 75Cs K3 (8 (3 005C7> !

2 18 8 576
1491¢  175¢3G5 5
* ( 32 x )"
243¢3  30625¢2  12005(3¢r  2247091C11 Y\ g
_ — e 2
* ( 16 648 128 20736 )° T 62

that may be exponentiated in the simple form (1.11). Repeating the calculations in [31]
for the B model we find!'3

25n (12n* + 3n3 4+ 104n2 — 117n + 142) (5 4
- 115279 (3n2 + 3n + 2) g

122570 (12n° + 27n* + 11003 + 10902 — 74n + 296) (7
* 36864 75 (3n2 + 3n + 2) g

147n(108n5 + 45905 + 1443n* + 31350 + 157702 + 26461 + 5032)Cy 10
- 32768 710 (3n2 + 3n + 2) g

4. (5.3)

F?(g:3)=1

In the limit (1.4) we get

50¢s 5 1225Cr , 1323 1250¢2 1960805 C1q
FB(1:3) =1 3 4_ 5 5 6
w(r:3) T g "\ Ts T )"
30625 Cs C; 17688385C13\ o
_ - . 4
< 162 sisd ) T (5.4)

and, remarkably, (5.4) can once again be written in exponential form in terms of simple
¢-numbers

, 122 132 ]
}711/?}(/4&7 3) — exp < . 509C5 K)S + 32 C7 :"124 - 3 83 49 KZ5 + 962?3; Cll K;6
G )

5184 (5:5)

Comparing with (1.11), we also remark that we have model dependence, as it would be
natural to expect.

Similar calculations may be done by considering the other large R-charge tower
tr o3 (tr p?)”. Now, in the A model we find

9n+1)(n+6
Fy ' (g;3) =1 - ( 3)2(#4 )G (5.6)

. 5(15060 4 33926n + 26460n? + 9550n° + 1725n* +1050°) G5 5,
1152 (20 + 120 + 3n2) 0 g

)

13We checked until n = 14 that is dimension 28 where mixing is rather hard. This is possible because N
is fixed as explained in [31].

— 95—



and then, taking the limit (1.4),

9 175 81¢2 12005
F;“;(3)(n;3):1—§3n2+wc%3+( 5 _ C7> K (5.7)

8 576
1491¢o  175C3Gs) 5
* ( 32 1+ )"

N ( 243 (3 N 30625¢2 12005 (3 (7 2247091@) 6

16 648 128 20736
(1575 3¢ 2100875(5 ¢ 13419C3 o , 5400395 C13> 7

16 10368 64 20736

that can be written in exponentiated form as

AG) 9Cs o  175C; 4 12005¢; , 1491¢y -
F M = _—— — - 7
W (K 3) exp( 5 K+ T — K+ 35 "
9247001 ¢y 4 . 5400395 Ci3 -
—7I{ 75 oo .
20736 20736

(5.8)

Remark. At finite n, the expansions (5.1) and (5.6) are similar but non-trivially related.
As expected there is no obvious transformation of n relating the two towers. Nevertheless,
in the scaling limit, the expression (5.7) is equal to (5.2) (and of course the same holds for
the exponentiated form), i.e.

A (2 A (3
Fiy P (r;3) = Fy @ (5:3). (5.9)
which will turn out to be a special case of the universality relation (1.13), to be proved
later.
To confirm (1.13), we also evaluate the scaling function F&j) in the B model. In this
case, we find

5 (4440 + 9944n + 540002 4 2581n° + 465n* +60n°) ¢
1152 75(3n2 + 12n + 20) g
N 175 (18480 4 50414n + 37867n% + 19531n° + 5819n* + 945n° + 84n8) (7 4
36864 7 (3n2 + 12n + 20) g
21(520800+1609864n +1578564n> +915854n> +351435n* +-80976n° +11151n° +756n") (s 19
- 32768 710 (3n2 + 12n + 20) gt

@ (g:3) =1 -

(5.10)

The scaling limit gives again the same result as for the (tr ©?)" tower of operators, i.e.
FE®(k;3) = FE® (k;3), (5.11)
supporting the claim that (1.13) has a chance to hold in any model.

5.2 Scaling functions for the SU(4) theories

We have also analyzed the five ABCDE theories for SU(4) gauge group. In this case they
are all distinct. The analysis is computationally rather demanding and we did not collect
long expansions. Nevertheless, we checked exponentiation in all cases, at least up to terms
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~ ((9), as well as the validity of the tower-independence (1.13) — hence from now on we
shall drop the tower label. The first 4 terms of the five scaling functions are

log FA (s 4) = _9g2(3) 2 32532(5) . 41420356 i(?) A 942295é(9) .

log FB (1:4) = 3c8(3) 2 167154 1(5) . 7031105251(7) L 10553%773;(9) .

tog FS (e 4) = é(s) e 137154 i(5) 5 5703%57?7) L 115?33? 2¢(9) .
log FD (s 4) = 21 i(s) 2 7257;“(5) . 884212502(7) A 58715513é(9) .

log Fyy(r;4) =0+ ((3) k* — 100¢6) 5, 128560 0 ay309)m% 4 - (5.12)

9 18

Notice that the expansions obey the following relations to be proved and generalized in the
next section

log Fiy(k;4) — 2 log FS)(k;4) 4 log B (k;4) = 0,
log FB(k;4) — log ES(k; 4) + log F9 (k;4) — log F&(k;4) = 0. (5.13)

Summary of the extended (higher rank) explicit results. In summary, by consid-
ering the SU(3) and SU(4) theories, we have collected strong evidence that the one-loop
Wilson scaling functions are (i) independent on which tower is used and (ii) exponentiate
in a sum of simple (-numbers. This last feature is very promising and hints for a simple
relation with the interacting action of the model. Also, it seems a good starting point to

attempt to derive all-order resummations. In the next section, we shall prove these claims.

6 One-point Wilson functions from the dual matrix model

Our main tool will again be a dual matrix model of Wishart-Laguerre type. The dual
matrix model serves the same purpose as the in the two-point functions we dealt with
earlier: it takes care of mixing induced by localization. However, the emergence of matrix
model is more subtle in the case of the one-point Wilson functions. Instead of being an
exact solution to the mixing problem, it is an asymptotic solution in the large R-charge
limit. To set the stage for the general treatment we turn back to SU(2) result (1.6) and
give a proof that will be the basis for its SU(N) generalization.

The main idea behind our proof is to define a truncated version E,(a) of the Wilson
loop matrix model operator W(a) defined in (2.10). This amounts to the splitting

_ - (2% o o 2o oy
W(a) = E,(a) + Ap(a), Ey(a) g kD a®,  Ap(a) E k) a®”,  (6.1)
k=0 k=n-+1

where, in this SU(2) case a is the first of two eigenvalues of the traceless Hermitian matrix.
Since Ey(a) only has terms up to degree n we can write it as

E,(a) =

(2m)2n =
@nl) ¢n + kzo CkPr- (6.2)
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Here ¢, =: (tra®)" : is the operator (including mixing) that corresponds to (tr ¢?)" in
the matrix model. As a result of mixing described by (2.9), it is a polynomials in a? with
the leading term a®".

By definition of ¢,, we can exploit orthogonality to lower dimensional operators and
write

(271.)271

(on En) = (2n)) (Pn Pn) - (6.3)

The prefactor on the r.h.s. of (6.3) is the same for both N' =4 and N' = 2 theories and
cancels in the ratio defining the scaling functions. In light of this (1.6) is equivalent to
the statement that in the large n limit we can approximate (¢, W) by the first non-zero
term in its series expansion, i.e. A, contributes to Fx)(m, 2) at a subleading order in n.
Appendix F sets out a sufficient condition for this to hold. Applied to this case it reads

2n+2k+2
L {7 0n) oy, (6.4)

lim —~———>—+

a2 (a2n¥2k )
This condition is indeed satisfied in the double scaling limit, but we leave the demonstration
of this fact to section (F.1).

6.1 Generalization to SU(N) theories

Another way of framing the proof in last section is that instead of directly dealing with
one-point Wilson functions, we can also consider a sequence of two-point functions that
converges to it in the large n limit. Furthermore, we can expect (as shown later in the
double scaling limit) that the large n limit is again determined by the contribution of
the first term in the Wilson loop’s expansion that has a non-zero two-point function with
¢n. For SU(N) this term is the one proportional to tra®”. As a result we would like to
prove that

_ 1

lim (¢, W) =

— lim
n—0o0 n—oo

(¢ tra®). (6.5)
Using the results in appendix F we see that a sufficient condition for this to be the true

is that

) 1 <¢n tr a2n+2k+2>
lim —
n=sco n, <¢n tr a2n+2k>

0. (6.6)

We leave the verification that this is indeed the case to section (F.2).

At a first glance the situation is markedly different from the previous study of extremal
two-point functions. Because tra®” can’t be reduced to a function of tra? for N > 2, we
can’t deal with mixing by simply writing the two-point function in (6.5) as a determinant.
Another way of stating this is to recall the change to polar variables from a,, and note that
unlike ¢,,, tra™ is a non-trivial function of angular variables and this function is strongly
dependent of n. Remarkably, as we shall see shortly, it is this strong dependence of angular
part on n that ensures that for large n the mixing problem can be solved by an “effective”
matrix integral.
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Large n limit of the angular integrals. Changing to polar coordinates, we have

<¢n tra2”> = Zi

/ Py dQrN T D(Q) 60 (1)1 An () exp (—4m T T 1) Zisgop(r, Q).
S4

(6.7)

Here, A, () is determined by restricting tr a®” to the sphere tra? = 1. The idea now is

to use it in the large n limit to do the angular integration first. To illustrate the idea in a
N 2

p=1 Q"
on the unit sphere, we have a, < 1 and so, in the large n limit, tr a®" vanishes almost

clear fashion we first consider the U(N) case. Since tra?" = 3 , when a is a point
everywhere except around the 2N points where one of the coordinates is +1 and all others
are 0. Moreover, it goes to zero extremely quickly around these points. As a result we
can treat the angular integral by saddle point approximation around these points. Besides,
each of these 2N points gives the same result.

Although for SU(N) the situation is somewhat more complicated due to the tra = 0
constraint, the angular integral is still well approximated by a saddle saddle point approx-
imation around the points that maximize tr a®".

The constrained extrema of tr a®® are studied in appendix G. Here, we just state the
relevant results. The set of point that maximize tr a®” is the same for all n > 2. There are
2N such points, one being:

1 1 1 N-—-1 (6.8)
apg = ) y T s . .
AN D NN - NN o) N
The other ones are related by a permutation of coordinates to either ag or —ag. Since,
traj = [N(N —1)]72((N — 1)+ (1 - N)"), (6.9)

any even symmetric function of a,, (i.e. any function of traces of a invariant under a — —a)
takes the same value on any of these points. As a result, to the leading order in n, we have

<<bn tr a2"> = % /dr rN?=2 G (r)r?" exp(—47r ImTrQ)Zl_loop(rao) 4+ (6.10)
S

where ¢, is a constant that is the same for both ' = 2 and N' = 4 theories. It can
be determined straightforwardly from saddle point approximation but it irrelevant to our
results so we shall not compute it.

The large n effective matrix model. Equation (6.10) gives us an effective partition
function for the large n limit, which given by

Zep = /dr pN? -2 exp(—47rIm7r2)Z1_100p(ra0). (6.11)

This leads us to a much simpler “SU(2) like” matrix model where we have a much better
hope of solving the mixing problem. In fact the salient details are exactly the same:

e There a single variable r.
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e ¢,(r) has the leading term r?>" and the subleading terms are determined by the

condition that <¢n T2k> =0 for k < n.

e The theory has a single parameter 7 and a derivative of Z.g with respect to 7 brings
down a factor of 2.

As a result we can write down the determinant formula:

cn, det M(n+1) 1 O Z.g

o tra2t) = , ith = = O et
<¢ e > Cn—1 det./\/l(n) W Mi Zeoft oTkor!

(6.12)
The only difference from the GKT result for SU(2) is the presence of ¢, in the above
expression. But ¢, gets no contribution from Zj_j,0p to the leading order in n. As a result
they are same both for N/ =4 and N = 2 theories and disappear when taking the ratio of
the correlation function for the two theories.

At this stage, using the dual matrix model and following the same step as for SU(2),
we can straightaway write the result for F%)(m, N). It is

4
Fx)(/ﬁ}, N) = /0 dx p(x) ( log Z1.100p (4 T’ KTag) + K 0x Z1-100p (4 Tk a0)>, (6.13)
where qq is in (6.8).

6.2 Universality of large n limit

We point out another feature of the result obtained above, tying up a loose end in the
previous discussion. The factor of ¥N°~2 in the SU(2) like action in (6.11) which is a
remnant of the SU(N) theory we started with doesn’t play any part in it (6.13). This
factor contributes to the log W term of the potential for effective matrix model and has
two related effects:

e It changes the N/ = 4 results.

e [t changes the eigenvalue distribution of the matrix W we are integrating over. But
this change doesn’t affect the large n result and changes only the subleading correction
of order 1 in F)Sg)(li, N).

This remains true if we insert any function O(a) in the partition function Zeg or equivalently
change ¢n(a) to O(a)pn(a). The only effect will be to change ¢, and contribute to log W
term in the dual matrix model with a coefficient proportional to R-charge of O, i.e.

<O bn W>N:2

as long as R-charge of the terms in O(a) is bounded. The previous relation (1.13) is
nothing but a direct consequence of (6.14) and is thus proved. The tower-independent
scaling function Fyy is provided by the r.h.s. of (6.13).
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6.3 Application to the five N/ = 2 superconformal SU(N) gauge theories
We now apply the master formula (6.13) to the ABCDE models. We straightaway obtain

log FA (1 N) = — 9¢(3) 24 25(N?% — N +1)¢(5) 3 245(N% — N +1)2¢(7) 4
2 3(N - 1)N 16(N — 1)2N?2
N 189(3N6 — 9N® + 19N* — 23N3 + 19N? — 9N + 3)¢(9) 5
20(N —1)3N3
847(N2? — N + 1)(N® —3N® 4+ 7TN* —9N3 + 7TN2 — 3N + 1)¢(11) 4
- 16(N — 1)4N4 AR
log FB (x; N) = 9(N — 3)(N —2)¢(3) W2 25(N — 2)(3N3 — 10N2 + 10N — 5)¢(5) 3
4(N —1)N 2(N —1)2N?2
N 245(N — 2)(33N° — 169N* + 355N3 — 395N2 + 221N — 63)¢(7)
32(N —1)3N3
189(N — 2)(331N7 — 2332N6 + 7252 N5 — 12950 N4 + 14294 N3 — 9828 N2 + 3828 N — 765)¢(9) &
- 40(N — 1)4N4 "
2541(N —2)(123N°% —1109N8 +4547N7 —11126 N6 +17906 N® — 19698 N4 +14838 N3 —7419N2 +2217N —341)((11)
+ 32(N —1)5N5

)

/{4

X KO4- - s
log FS (1 N) = — 9(3N2 — TN +6)¢(3) W24 25(N* — 4N3 + 10N2? — 15N + 10)¢(5) 3
4N —1)N 2(N —1)2N2
245(3NC — 17N5 + 63N* — 155N3 + 249N2 — 251N + 126)¢(7) 4
- 32(N — 1)3N3 "
N 189(9N® — 66N + 324N6 — 1106 N® + 2646 N4 — 4424N3 + 5076 N2 — 3819N + 1530)¢(9) 5
40(N — 1)4N4
2541(N10—9NO+55N8 —240N7 +762N6 — 1778 N° +3054N* —3825N3 +3405N2 —2045N +682)¢(11) 4
- 32(N — 1)5N° R
log D (1 N) — — 9(N? — 3N +3)¢(3) 2 50(N* — 5N3 + 14N2 — 22N + 15)¢(5) 3
(N-1)N 3(N —1)2N2
245(N6 — 7N5 + 29N* — 75 N3 + 123N2 — 125N +63)¢(7) 4
- 8(N — 1)3N3 "
N 189(3N8 — 27N7 4 148N6 — 532N° + 1302N* — 2198 N3 + 2532N2 — 1908 N + 765)¢(9) 5
10(N — 1)4N4
847(N0—11N9+75N8 —345N7+1122N6—2646 N°+4566N* —5730N2+5105N2 —3067N +1023)¢(11)
- 8(N — 1)°N© AR
~ 100(N —2)%¢(5) 3 245(N — 2)2(N2? — 2N + 2)¢(7) L
3(N —1)N (N —1)2N2
189(N — 2)2(41N* — 164N3 4 308N?2 — 288N + 144)¢(9) 5
- 5(N — 1)3N3 "
N 847(N —2)2(N? — 2N +2)(23N* — 92N3 + 156 N2 — 128N + 64)¢(11) W (6.15)
2(N — 1)4N4

)

log FE‘V(/@; N) =

Of course, specialization of (6.15) to SU(2), SU(3), and SU(4) reproduces perfectly the
previous partial results (1.7), (1.11), (5.5), and (5.12).

Remark. We now easily understand the reason behind the two constraints (5.13). To this
aim, we remark that the main formula (6.13) shows that log Fyy is linear in the interacting
action. This allows to prove that for any N we have exactly

log Ff(k; N) — 2 log ES(k; N) + log FR(k; N) = 0,
log B (k; N) — log FS)(r; N) + log FR(r; N) — log Fi(r; N) = 0. (6.16)
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Indeed, the interacting action is linear in the number of fundamental, symmetric and
antisymmetric representations and these numbers obey the above relations. There are also
constant terms appearing in the rewriting of traces in terms of traces in the fundamental,
but these terms drop since the sum of coefficients in (6.16) is zero.

6.3.1 All-order resummation of the one-loop Wilson scaling functions

As a further application of the formula (6.13) we can extend fixed N expansions like (5.3)
and (5.5) as far as needed. In particular, for those two SU(3) models one finds the long
expansions

1%Rﬂm$=%§%9+wif%§m?%whf Mﬁgmézﬂgﬂgn)ﬁ
5400395¢(13)H7__ 568668815@“(15)Hg_+ 261350914825((17)R9
20736 884736 161243136
__89432464191075(19)ﬁm+1552522828675@(21)H11
2149908480 143327232
B 106064649073644174(23)fJQ 141217322518221254(25)I{13
371504185344 185752092672
B 8742217069824025@‘(27)Hl4_+_24642802443102317954(29)H/15
42807066624 4458050224128
3437685880746945869965¢ (31) 14
a 2282521714753536
392539284372606415825((33)R17 o
95105071448064 ’
B 50((5)H3+ 1225@(7)H%__ 1323k°¢(9)  1960805£5¢(11)

9 36 8 2592
__17688385((13)K7_+ 142167025((15)H§__ 2834936114725¢(17) 4
5184 9216 40310784

17410184710919((19)}$0__ 18006386209175((21)ﬁ_/11

53747712 11943936
164517685436679575((23)K12__1560309607284420125@(25)K13

23219011584 46438023168
4547264436973375C(27)f§4__ 861837268172768598385{(29)595

28311552 1114512556032
133626553771108660672025¢(31) 14

35664401793024
_»144697635847665710153575{(33)H17%_

7925422620672

log BB (k;3) =

(6.17)

We remind that in the SU(2) theory, the analogous expansion is (1.7), cf. also (1.6), and
one has the all-order series coefficients

log Fi(k;2) =

ﬂ‘oo

}:(—n”(gﬁibiml’cm+g> C(2n +1) k" (6.18)
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leading to the following integral representation'*

1ogFV$(n;2):4/Ooot(jt_€t1)2 [=3+4Jo (tvk) —Jo (2tVK)]. (6.19)

For the SU(3) expansions in (6.17), guided by (6.18), we easily find

4 o0 . 3—n (_1 _ 21+2n + 31+2n) 3 gl
(6.20)

N 3—1—n (71+32+2n741+n741+2n)
(n+1)2n!

log BB (k;3) = \;1% Z(—l) F(’rH— g) ¢(2n+1)k" T,
n=1

as can be checked by reproducing (6.17).1> The sums in (6.20) can be written in integral
form by using the identity

[ee) tP et
/0 dtm =p!¢(p), p>1 (6.21)

and we obtain

1ogm(m;3):4/0w“;t_etl)2 ~7+6.0 Wg) 3 (2t\/§) —2y (tv3r)],

(6.22)
log FB (r;3) = 2 /Ooot(ecft_etw [—5+4J0 (t\/g) +4.J (2t\/§)

— 4y (V3R ) + o (4t\/§)},

with a structure close to the SU(2) expression (6.19).
It is now a straightforward exercise to repeat the same analysis for a general SU(N)
gauge group. The final result is remarkably neat. Let us introduce the notation

Jo(z) = Jo(z) — 1. (6.23)

Then, for the five models we obtain (of course, only 3 expressions are independent thanks
to (6.16))

A model.
1ogF;‘;(/<;N):4/Ooot(;lt_€tl)2[N%<t 2(]\;1)”)+N(N—1)fo<t N(?Vﬁ—l)>
_(N_1),70<t ffi“)] (6.24)

Notice that the successive derivation of (6.19) in [35] was done independently and with a different
method strongly suggesting that there are no non-perturbative ambiguities in the reconstruction from the
weak-coupling expansion, at least in the half-plane Re(x) > 0.

15We checked agreement with many more terms, a task that is possible due to (6.13).
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~0<75 2(N]; 1)/¢>

Ji
} (6.25)

C model.

log FS (1 N) :/Ooot(e‘ftetw [2(N—1)(N+2)jo<t N(;ﬁ 1))

+2(N_1)fo<t(]\f_2) N(]zvm_l>)+z<w+z>%(t 2<N§1>H>
vt /2] 020
D model
-2 [ sy [
F - - DI s
+2<N—1)fo<t(N—2) N(;K_1)>+4J0<t 2N];1)>
2 -1 do 0y 3] (621)
B model




As a final remark, it may be interesting to stress that, the function log Fyy(x; N) admits a
finite non-trivial limit when N — oco. This can be verified using (6.9), which shows that in
this limit the traces at the saddle point are simply tr ag = +1.'6 This can also be seen from
the explicit expansion in (6.15) Taking this limit in the above expressions and defining,
cf. (6.23),

SC2

Zv

we can write following representations for the N — oo limit of the scaling functions

Ji(x) =z Jy(x) — (6.29)

log F(k;00) = 4 /000 t(dtetQ [jo(\/ﬁ )+ Ji(V2k t)],

1)
log FB (k;00) = —2 /OOO t(jf_etl)z {fo(m t)— Jo(2V2k t) —31(V2k t)],
log Pmio0) =6 [ 8 [vVER )+ AvER ),
log R(mice) =8 [~ (V2R 1)+ AivER 1),
log Fif (15 00) = 2 /OOO t(ecft_etl)Q :fo(m/ﬁ H+4J(V2k t)} (6.30)

Such large charge and large N simultaneous limit, with N < n, has been recently consid-
ered also in O(N) invariant scalar theories [44].

7 The heavy BPS regime of one-point Wilson functions

As we remarked at the end of the Introduction, the large x expansion of the expres-
sions (6.24)-(6.28) is potentially rather interesting since non-perturbative corrections of
the form ~ exp(—c+/k) are expected to be present and associated with heavy electric BPS
states (matter hypermultiplets and reduced vector multiplet) with masses ~ /k in the
double scaling limit. Hence, the large « limit probes the weak coupling BPS states in the
moduli space point selected by the relevant saddle point associated with the large R-charge
insertion. In this section, we present the tools that are needed to compute the k£ > 1 expan-
sion of (6.24)—(6.28) and discuss the detailed matching with the mass spectrum of heavy
BPS states.

7.1 Large x expansion and non-perturbative corrections

The example of SU(2) has been discussed in [35]. Here, we want to present some general
expressions that may be used for all other cases. To this aim, it will be enough to revisit
the SU(2) case and work out the SU(3) A and B models. All other cases may be treated

1Here we point out that this is the case for U(N) for any N. As N — oo, the SU(N) saddle point moves
closer and closer to the U(IN) saddle point, as should be the case since both U(/N) and SU(V) theories have
the same large N limit.
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by the same formulas. It is convenient to write the resummed scaling function (6.24) for
N = 2,3 and (6.25) for N = 3 in the form

log Ffy(s52) = 4 [1B(VR) ~ B2y,
log Fi(k;3) =4 :68 (;g \/E) +3B (jg \/E> - 28(\/5\/5)},
log B (k;3) = 2 :48 <\}§ f) +4B(% V) —4B(V3 k) + B (jg ﬁ) ] (7.1)

where the regulated B function is

B, (x) = /OO A a1, n >0 (7.2)
o t(et—1)2 ’ ’

and the limit » — 0 is taken in (7.1).!17 The large x expansion of this function has

a perturbative part Bp plus a non-perturbative contribution Byp that is exponentially

suppressed at large x. The perturbative part can be computed easily by Mellin transform

methods and amounts to

2

x 1
Bp ,(z) = vy (logz —log2 +vg —n~ ') + D (logx + 12 log(A) — log2 — 1), (7.3)

where A is Glaisher’s constant (log A = & —(¢’(—1)). Notice that the singular term ~ z%n~1
always correctly cancels in the combinations appearing in (6.24)—(6.28).'® Remarkably, the
terms in (7.3) exhaust all contributions that are not exponentially suppressed as k — oo,
i.e. there are no algebraically decaying inverse powers of k.

The non-perturbative part is regular for n — 0. To determine it we can write
1, = o _pt 2p + 322)

where we applied a simple differential operator to get a convergent sum. In particular,
this expression can be evaluated at n = 0. To extract the non-perturbative part of the
infinite sum, we convert it into a contour integral using the standard kernel 7 cot(r p) and
deforming the p integration contour over the semi-infinite line [i , +i 00), see e.g. [45]. This
gives the representation

5 Z@_zmx Nz 11 1 31 1 N 177 1
Ne( P om0 2 1024m m 2 592 1638474 mO2 12
7125 1 N 102165 1 N (7.5)

104857675 m11/2 £7/2 ~ 1677721676 m13/2 £9/2 '

'"The n — 0 limit is finite since the integrand of the combinations in (7.1) have no singularities at ¢t = 0.
18 Just to give an example, for the A model one has, cf. (6.24),

+N(N1)[ N(;’“’“_l)] (Nl)[ JQV]X”;] =0.

2(N-1)k
N{ 2N -1
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Applying (7.3) and (7.5) to the specific cases in (7.1) we then obtain

1 4
log Fiy(k;2) = — 4 log(2)f£+§ logk + 12 log A — 3 log2 —1

grl/t 11 31 1
77r\/E 1 _ —
e <+167T\/E Blon? n )+ :

4 11
long’\X;(ﬁ;B) =—2(3log3 —2log2)k + g log k + 28 log A — 3 log2 — 5 logS—g

4(27k)1/4 = 11 1
| 42T ezﬂ\/;<1+ ER +>+

m 167 Vi 51272 K
5 5 1 13 5
log Fyy(k;3) = —2(3log3 —4log2) k + 5 log k + 10 log A + G log2 — T log3 — 6+

427R)' o 11 \/§ 93 1
7r 1 Z_ = 4. .
LT T S\ eV et )t 06

where we have written the perturbative part plus the first terms of the leading non-
perturbative correction. The subleading non-perturbative corrections are rather different
in the two SU(3) models and can be studied from the higher order terms with m > 2
in (7.5). Of course the first of (7.6) agrees with GKT result, see their eq. (4.21). Notice
that, as remarked in [35], the term ~ (e=2"V%)2 cancels in log Fyy(k;2). Actually, one can
check that all even powers of ~ e~ 27V¥ cancel, but that this does not happen for higher
rank gauge groups, even considering only the A model.

7.2 Identification of the relevant BPS spectrum at large

To conclude this section, we give a quantitative explanation of the various terms appearing
in the resummation formulae for the scaling functions, eqs. (6.24)—(6.28). To this aim one
can consider the x > 1 limit and, in particular, the non-perturbative corrections. From
the expansion (7.5), we can identify the N-dependent coefficient of ¢ in the Jo functions
with the exponent in the exponentially suppressed terms. This is in turn proportional to
the mass of degenerate heavy states. Their multiplicity is proportional to the N-dependent
prefactors of the jo functions. The peculiar algebraic dependence on N allows to identify
the origin of the various terms in the resummed scaling functions.

The Jy functions in (6.24)—(6.28) appear always as a group with positive (integer)
coefficients and argument ~ \/k proportional to

1 N -1
\/ﬁ’ or VT' (7.7)

Besides, there is a single negative term common to all models and reading

_4(N_1)Jo<t f\{”) (7.8)

The quantities in (7.7) are the components of ag in (6.8). This is not surprising be-
cause (6.13) shows that ag is indeed the relevant point on the sphere tra?> = 1 governing
the large n contributions to the Wilson scaling function. As a consequence, we can read
the mass spectrum by expanding ® around +/k ag.
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Hypermultiplets. Hypermultiplets get mass from the Yukawa-type coupling and the
associated heavy states turn out to be in correspondence with the positive contributions
with Bessel function arguments proportional to (7.7). Let us look in detail to the A model

case. From the term ~ @@Q and replacing ® — /kag we get a mass spectrum with
y and 2N x 1 masses ~ %, cf. (6.8), in agreement

2N x (N — 1) masses N«/N(N%l

with the positive contributions in (6.24). The same exercise should be repeated for the
other models taking into account the representation content. As a consistency check, we can
verify that in all ABCDE models the ratio between the sum of the prefactors of positive
terms and the sum of dimensions of matter representations is constant, i.e. independent on
N. For instance, in the A model we have

AN +4N(N —-1)=4N*=2x[2N dim] , (7.9)
and, similary, in the other models we have, cf. table 1,

B:2(N-1)(N-2)+ N(N-1)+2(N—-1)+2(N—-2)+2=3N (N —1)
2 x [(N—-2)dim+dim],

C:2(N-1)(N+2)+(N-2)(N-1)+2(N—-1)+2(N+2)=3N(N+1)
=2x {N—i—Q dlm[\—l—dlmH}

D:8(N—1)+2(N-2)(N-1)+4(N—1)+8=2N (N +3)
=2 [4dimD+2 dim[]],

E:2(N-1)2+4(N—-1)+2=2N?=2x [dimerdimH] (7.10)

W-multiplet. The common term (7.8) is instead due to the heavy states in the model-
independent gauge sector. In this case the mass spectrum can be computed by considering
the quartic coupling ~ tr[W, <I>]2 where W = WT* are the SU(NN) gauge fields. The
U(N — 1) unbroken gauge symmetry at ® = \/kag predicts (N — 1)? massless gauge
bosons. The remaining N? — 1 — (N — 1)?2 = 2(N — 1) fields are massive W-bosons in
the effective large n limit. They are associated with the hermitian traceless W matrices

¢ (¢ ;
Wi(j) = %(5@((5"]\/ + 52‘,]\/5]‘75) and Wi(j) = ﬁ(@jéj}]\[ — 51'7N(5j7g),f01“ £=1,...,N — 1.
The common mass is obtained evaluating the commutator with ag. This gives a factor N
. . 1 o N . .
times the repeated component of ag, i.e. N X TN \/ %1, in agreement with (7.8),

including multiplicity.
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A Field theory action and Feynman rules

We work in A/ = 1 superspace formalism and we consider the diagrammatic difference of
the N'= 2 SYM theory with respect to the A' = 4 theory. We schematically review these
techniques and our conventions.

The N = 2 theory contains both gauge fields, organized in an N/ = 2 vector multiplet,
and matter fields, organized in hypermultiplets. In terms of N' = 1 superfields

Vector(y—g) = (V,®) adjoint of SU(N)
Hyper(y_g) = (Q,@) representations R, R of SU(N), (A.1)
where V is a A = 1 vector superfield, ®, Q, Q are A" = 1 chiral superfields.

In the Fermi-Feynman gauge we separate the part of the action which only involves
the adjoint fields

Sgauge = / d'z d*0 d*0 ( —Veave 4 91t 4 ig f [D*(DV)] VP (Do VE)

+ 2igfabe playbee 4 ... ) (A.2)
where the dots stand for higher order vertices and f%¢ are the structure constants of
SU(N).

The action for the matter part, again in the Fermi-Feynman gauge, is
Smatter :/d4$ d2'9 d2§ (QTUQU +2g QTUVG(TQ);) Qv + @u @L —2g @u Va(Ta)qu) @/L +o
+iv29 QU0 (T%)1Q, 0% — iv2g QM0 (1)1 %), (A.3)

where by 7% we denote the SU(N) generators in the representation R, and w,v =
1,...dimg includes the cases in which R is reducible, namely it contains several copies
of a given irreducible representation.

In figure 4 we draw the Feynman rules that we need in the present paper.

The total action for the A/ = 2 theory is simply

Sn=2 = Sgauge + Smatter - (A4)

The N = 4 SYM theory can be seen as a particular N/ = 2 theory containing a vector
multiplet and an hypermultiplet, both in the adjoint representation of the gauge group. So
the field content is:

Vector(y—g) = (V,®)  adj of SU(N)

Vector nr—gq) = L
V=1 { Hyper(y_y = (H,H) adjoint of SU(N),
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U oo

Figure 4. Feynman rules involving ®, Q and Q chiral fields, with solid, dashed and dotted lines
respectively.

Q H
RN RN RN
b / A c b / A c b / A\ c
S | - [ | I = —  EN—
Q | i ’
Trp(TVT°) Tr i (T'T) Tri(TVT*) = €,

Figure 5. One-loop correction to ® propagator in the difference theory. The color factor is
proportional to the [y coefficient, so it vanishes for conformal theories.

Thus we can write

SN=4 = Sgauge +SH, (A5)

where Sy has the same structure as Smatter With Q, @“ replaced by Ha,ﬁa and the
generator components (7},),) by the structure constants i fup..
From (A.4) and (A.5) it is easy to realize that the total action of our N/ = 2 theory
can be written as
Sn=2 = Sn=4 — S + Smatter - (A.6)

Given any observable A of the N/ = 2 theory, which also exists in the A" = 4 theory, we
can write

AA = ./4/\/':2 - A/\/:4 = Amatter - AH . (A7)

Thus, if we compute the difference with respect to the N' = 4 result, we have to consider
only diagrams where the hypermultiplet fields, either of the Q, @ type or of the H, H type,
propagate in the internal lines, and then take the difference between the (@, C~2) and the
(H, H ) diagrams. This procedure reduces in a significant way the number of diagrams to
be computed. The first simple example is the 1-loop correction to the chiral ® propagator.
The two diagrams involving (s and Hs fields have the same Feynman rules and generate
the same loop integral, but differ in their color structure. The color combination precisely
accounts for the C’ tensor that we find in the matrix model, see figure 5.

We can generalize this fact for higher order corrections: the only contributions to the
difference theory come from a series of building blocks, made of hypermultiplet loops with
insertions of adjoint lines, coming from ® or V fields, see figure 6. The number of insertions
of adjoint lines counts the power of g and specifies the rank of the color tensor, which is
always of the form C’, which we found inside the perturbative expansion of the matrix
model, see equation (2.5).
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Figure 6. Building blocks until g% order. The overlapped wavy/solid lines stand for generic adjoint
fields (@ or V).
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Figure 7. The diagrams arising from the building block CE4), with color factors C” and

a;,c,b;,c
01,0510 respectively. Only the box diagram on the right contributes to the leading order in the

double scaling limit.

Each Feynman diagram is built from these building blocks, after suitable contraction
of the adjoint lines. As an example we easily build all the diagrams coming at order
g*, contributing to chiral/anti-chiral correlators. Since all the diagrams built from C&)
and Cg?)) vanish due to conformal symmetry [27] and since we have two ways to close the

building block CE "t there exist two possible diagrams at this order, see figure 7.

The next orders will be more and more involved. Diagrams built from C’E n E5), {6)

will appear at g5 order (see [34] for a ¢® analysis).

A.1 Evaluation of the color factors

The generators T, with a = 1,..., N2 — 1 of the su(NN) Lie algebra satisfy the algebra
[Ta ’ Tb] = i fabe Tt - (AS)

Generators in the fundamental representation are indicated by t,; they are Hermitean,
traceless N x N matrices that we normalize by setting

1
tr toty = B Oab - (AQ)

We introduce the totally symmetric tensor dg,. as the symmetrized trace of 3 generators:

b ({fas 0} £0) = 3 e (A.10)
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Traces of a higher number of generators in the fundamental representation are determined
by reducing contractions using the following fusion/fission identities:

1 1
tr (taMltaMQ) = 5 tr Ml tr M2 — W tr (MlMQ) N (All)
1 1
e (taM) tr (taMo) = o tr (MyMa) — o tr My tr My, (A.12)

where M; and My are arbitrary (N x N) matrices.
In a generic representation R we have

Trr T,Tp = iR Oap , (A.13)
where i is the index of R. Higher order traces define a set of cyclic tensors

Cal.‘.am = TI'R Tal LT,

am, *

(A.14)

In our computations we encounter the particular combination of traces introduced in (2.5),
namely

! = Trg To, .. Tay, — Tragy Tay - - Ta, (A.15)

ai...am
and in particular:

C;la,Q == (ZR - Zadj) 5a1a2 = (ZR — N) 5(110,2 — 7%

where 3y the one-loop coefficient of the S-function of the corresponding N' = 2 gauge

dayas (A.16)

theory. In superconformal models, one has Sy = 0. If we consider a representation R made
of Ng fundamental, Ng symmetric and N4 anti-symmetric representations, we have:

Bo= (Nr+ Ng(N +2)+ Na(N—-2)—2N) =0 (A.17)

Solutions of this equation for Np, Ng and N4 determine the 5 superconformal theories for
SU(N) gauge group in table 1.

Higher order C’ tensors can be computed in terms of fundamental traces using the
formula (see appendix A of [34] for more details):

Chyam = (NP + 277 (Ns = Na) + N(Ns + Na = (1+ (-1)™)| T, .. T,

N N
+Z< )(+ <—1>m"’>“Ta1- Tay 0Ty Tayy - (A8)

which can be further reduced using (A.11).

B Angular integration over SU(NN)

An important step in the concrete application of (3.28) is the calculation of the angular
integration (o)) over the sphere SV~! with traceless constraint. It is closely related to the
N = 4 expectation value with SU(N) gauge group

(O(@)) et = N /dNa H s(tra) e~ () O(a), (B.1)

pu<v
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where .4 is taken such that (1)yr—4 = 1, and we have rescaled the matrix a in order to

—tra?

have Gaussian measure ~ e as above. To make the relation clear, let us consider a

homogeneous function O(Aa) = A% O(a). We can introduce polar coordinates and write?
(@)1= Cy (Ola)) [ dre pHOr-DIN-2edo, (5.2
0

Fixing Cy by the requirement (1)) = 1 gives the explicit formula

I (3(N%2-1))
I (3(N2—1+do))

(O(a)) = (O(a))n=4 (B.3)
Using the results in [27] it is easy to compute this formula for operators O(a) with large
dimension dpn. Examples are

2_ —

(@) X) = (). (6@ = gy (000D = o g
5(N* — 3N? +3) (tr(a?) tr(a®)) = 15(N — 2)(N + 2)(N2 — 2)

N2(N? +1)(N? +3)° () tr(a)) = N2(N2 +1)(N2 +3)(N2 £ 5)’

(B.4)

(tr(a®)) =

and so on.

C Weak-coupling expansion of the scaling functions: Higher order terms

In this appendix, we give the terms in (3.34) for the A and E models, keeping only the
non-vanishing quantities. We avoid writing down similar expansions for the BCD, however
these results are available upon request.

C.1 Scaling function F®(k; N)

We define
T H + k
PO (k) = 2k(2> , (C.1)
T N241
(*)
which will be useful in making all the formulas more compact.
Model A.
9
17 =35 (C2)
£ 25 (2N? — 1)
> N(N2+3)’
0 _ 1225 (8N° 4+ 4N* — 3N? + 3)
2 =

16N2P(2)(3) ’

20Notice that a factor r~! comes from the § function.
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(2) 1323 (26N® 4 28N° — 3N* + 6N? — 9)
fo"= AN3P(2)(4) ’
(29 17787 (122N*0 4 280N® 4 48N® — 15N + 45)
fi'=- 16N*P?)(5) ’
() DTTH(N —2)(N +2) (N® — N* — 43N? — 37)
fos= 2 (N2 +3) PQ)(5) ’
(2) 552123 (N? +1) (34N'0 + 110N® — 29N°® + 20N* — 15)

fis SN5P(2)(6) ’

() 15015(N —2)(N +2) (22N® + 11N® — 1167N* — 531N? + 705)
fsr == 2N (N2 + 3) P()(6) ’

(2 41409225 (540N +3780N "2 +4676 N4+ 440N®+329N° - 735N "+ 735N +315)
fis == 512N6P(2)(7) ’
2= 1576575(N* — 4) (98N 4+ 928N'2 — 4151N'0 — 44359N® — 42036 N® + 26754 N*

64N2P2)(3)P2)(7)
+ 14553 N? — 16299),
(2)  675675(N —2)(N+2) (23N + 70N® — 1455N° — 1335N* + 192N? — 855)

fas ANZ (N2 +3) PA)(7) '
Model E.
9 100 (N2 — 4
5( )=— N(P(Q)(Q) )’ (C.3)
(2) 3675 (N*—6N? +8) ((7)
= N2P@)(3) ’
(2) 15876 (TN® — 53N* + 136N? — 144) ¢(9)
Joi== N3P(®)(4) ’
(2 1067220 (N? — 4) (3N® — 13N* + 33N? — 48)
hr= N4P2)(5) ’
(2) 23100 (N? —4) (N°+26N* — 121N? — 626)
fss = P®)(2)PO)(5) ’
(2) 8281845 (N? —4) (11N® — 43N° 4+ 112N* — 320N? + 640)
f == N5P(2)(6) ’
(2 1801800 (N2 — 4)* (NS + 43N* — 121N? — 883)
Jsr=- NP2 (2)P2)(6) ’
(2)  289864575(N —2)(N+2) (143N'0— 275 N® — 708 N®+ 2880 N+ 4800N? — 34560)
B 16N6P(2)(7) ’
2= 4729725(N"—4) (31LN'2 + 1924 N0 — 8334N® — 63608 N° + 316415N*

4N2P2)(3)PR)(7)
+ 498684 N* — 3764112),

(2)  2027025(N*—4) (27TN'0+ 1553N® — 14171N° + 11887N* 4 159104 N? — 521280)
J50= N2P2)(2) P2)(7)
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C.2 Scaling function F®(k; N)

We define, similarly to what we did before:

N245
2kF( 2+ +k>

POy =2k >~ C.4
() - ( 7 +5) (C.4)
2
Model A.
3 9

f?E ) = _57

7 _ 25 (2N° + 43N* + 60N? — 105)

5o NP®)(3) ’

o _ 1225 (8N® + 260N° + 281N* — 378 N2 + 693)

[ 16N2P®)(4) ’
0 _ 1323 (26N'0 + 1154 N8 4 2129N6 — 213N* + 765N 2 — 3861)

o 4N3PG3)(5) ’

3y 17787 (122N"2+ 6950 N 104 24848 N®+ 8085 N0 — 12645 N* + 15345N? + 32175)

o 16N4P®)(6) ’

3) 5775 N4 12 10 8 6 4

= 88N'? + 15N — 18088 N® — 39661N° 4 1053540N
J5s 2PB3)(3)PB)(6) (N + T *
+ 4281405N2 + 4399500),
2
(3) _ 552123 (V2 —1) 12 10 8 6 4
5 = NS paIT) (34N'? + 2424N" + 17285 N® + 29655N° + 24450N

+ 41145N?% + 16575),

15015 (N2 — 1
1= ~oNP (3)E3)P 5 ()7) (22N + 2323N'2 4 6951 N'0 — 473938 N® — 1641088 N°

+ 30589515 N 4 136118115N? + 144364500),

41409225
£ = ~S2NSPOE) (540N + 45624 N + 445760N "2 + 771476 N0 + 62225 N

+212520N° — 739410N* + 1434300 > + 508725),

1576575
;Y= AN PO (PG (98N?0+ 13168N '8+ 195787N 16 — 1872045 N * — 38053705 '2

+ 100653479N 0 + 2925371701 N8 + 6196842921 N6

— 4983588981 N* — 7790105043 N2 + 11951297820),

675675
1= N PO PO (23N'® +2775N10 4 14758 N — 564239N'* — 2460606 N '

+41052509N°8 + 170225310N6 + 132265575 N4
+ 70609635N 2 + 273142260). (C.5)
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Theory E.

(3 300 (N*+19N? — 140)

Js NPB®)(3) ’
(3) 11025 (N® 4+ 29N* — 286N? 4 616) ¢(7)
fi= N2PG)(4) ’
(3) 7938 (41N® 4+ 1745N° — 19474N* + 73200N? — 123552)
Jo© = N3PB)(5) ’
(3) 533610 (17N'0 + 1022N® — 11221 N6 4 49278 N* — 150936 N + 274560)
= N4P®3)(6) ’
(3) _ 69300 (N'2 4+ 92N10 + 2936 N® — 6402NC — 389297 N* 4 198070N? + 14709800)
J5s = PB)(3)PG)(6) ’
3) 9552123

o 12 10 8 6 4
13 = T N5 pG) G (451N + 37030 N 335741 N° + 1002420N 2721600 N

+ 14421120N? — 42432000),

3) _ _ 5405400 14 12 10 8 6 4
fs7 = NPOE PO (N™+123N"2 4 5062N 10— 24814N® — 691079N° + 3421571N
+ 281871362 — 161534800),
(3) _ 289864575 . 14 1 10 <
= - + 41078N'?2 — 212527N10 — 1183248 N
Jis 16N6P(3)(8) (
+12210960N° — 39049920N* + 8148480N? + 223257600),
(3) _ 14189175 31N'8 1+ 5386 N6 + 319785N M 1 1056052 N 12
17 = in2pe (4)PB)(8) ( " * "
— 55231871N'0 — 54950742 N® + 4657773463 N°
— 8789685416 N* — 165039789408 N2 + 691827702720),
6081075
= (27N1'® 4 4355 N1 4 23252212

9 N2pB)(3)PB)(8)
— 1340066 N0 — 29934729 N8 + 223699871 N + 827329700 N*
— 12426876800V + 38840613120). (C.6)

D Explicit expansions for the 2-point functions at low rank

In this appendix, we report the O(x!') expansions of log F(®) (xk; N) for A = 2,3, N = 3,4,
i.e. the SU(3) and SU(4) theories, and for all the models A and E. For SU(3) model E is
the same as model B. There is of course agreement in the cases dealt with at lower order
in (1.10).
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D.1 SU(3)
Model A.

log FA®) (x:3) — 9n7((3) | 4255°C(5) _ 17885K"((T) | 5565°C(9)

2 36 576 64
S (1925< 2668897((11))
3456 10368
L (32984237( (13) 5005<(5)<(7))
41472 864
8 (35035< | H65T5C(5)C(9) 2245755655((15))
2304 6144 884736
.\ ,<;9< | 1519375((5)°  546184925C(11)C(5) | 3488485(7)C(9)
4478976 5971968 27648
669686057755 (17)
80621568 )
0 (8083075c(7)<(5)2 A074100745¢(13)¢(5) | 776437006(9)?
1492992 11943936 204912
2005703801¢(7)¢(11) 29805018472801((19)) 0 (s D)
5971068 1074954240
2 3 4 5
log FA @ s 3) — — 20 2@( ). 100/<e () 159255:6g(7) . 147»@24(9)
e (1925( 8599591((11))
3456 41472
L (3177031g (13) 50054(5)g(7)>
5184 864
L (35035( | M6575¢(5)C(9) 1660676875((15))
2304 6144 834736
+K9< 3488485(7)C(9)  203900125¢(5)¢(11) 29779203025((17))
27648 2230488 5038348
10<77643709C( )? | 1084748665¢(T)G(11) | 12054174275((5)G(13)
204912 2230488 35831808
81777816230539¢ (19
T 4200816960 : )> +O(s1) (D-2)

Model B.
25k3¢(5)  1225k4C(7)  1323k°¢(9)

log FB @) (k;3) = —

18 144 32
r (1925<(5)2 N 19523354(11))
864 10368
T (_ 25025¢(5)¢(7) 17402099g(13))
864 20736
g (875875§(7)2 EEONOM 136961825((15))
9216 512 36864
L ( _1519375¢(5)®  257382125¢(11)¢(5)  2977975¢(7)¢(9)
559872 373248 3072
1325476118395¢ (17)
B 80621568 )
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log FB®)(;3) = —

D.2 SU(4)
Model A.

log FA () (k;4) = —

log F4 (3)(&;4) =—

1O<4()415375<(7)<(5)2+ 4722594305( (13)((5) | 20369349¢(9)”

746496 1492992 8192
6846364525¢(7)C(11)  1959930123437¢(19
1@5&%()+ 2%%%;())+O“H) (D:3)
25&34(5)+ 122564¢(T)  1323K°¢(9) o (19254(5)2 3908905((11))
9 72 16 864 10368
T (__25025<(5)<(7)__ 34947341g(13))
864 20736
g (875875((7)2_+ 75075g(5)g(9)_+ 138263125g(15)>
9216 512 18432
o (__29779754(7)g(9)__ 1547635375¢(5)¢(11) 2696833678825((17))
3072 2239488 80621568
10(203693494(9)2 41167100975 (7)¢(11)  28566741775¢(5)¢(13)
8192 8957952 8957952
32217517886983¢(19
2149908484( )> +0(s") (D-4)
9x2¢(3 )<+ T756%¢(5)  1968575k%¢(7) | 4979583x°¢(9)
2 76 82688 82688
o (205590g 24811876551((11))
141151 152145920
T (438160723{ 13) 37507474(5)@(7))
942080 282302
S (5473891733314( )2 N 110482515¢(5)¢(9) 6231282713820454(15))
17814385408 2258416 451812524032
+_K9(4_ 263656250¢(5)°  978640180375¢(11)¢(5)  119950027197¢(7)¢(9)
425470629 5732656896 523952512
5207730821398105¢ (17)
1235840139264 )
10(7360327975((7)4“(5)2‘+ 37291512115¢(13)¢(5)  237530487051¢(9)2
1015157992 63519744 551528960
2282495988773¢(7)¢(11) 68597690492349161C(19)) 0 (1) D5)
2829914112 5203537428480
9x2¢(3)  955K3C(5)  429289kC(7)  T805TKOC(9)
2 92 17664 1280
6 (293062((5)2__ 68971014343((11))
475571 423464960
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T 387146868537¢(13)  28131103¢(5)¢(7)
846929920 4755710
L 8779133363¢(7)? | 7550829¢(5)¢(9)  57815474734017¢(15)
608730880 330832 43362811904
e ~296509070¢(5)®  372030392019¢(11)¢(5)  51442391¢(7)¢(9)
3642398289 4504608512 456320
28934892829055213¢(17)
7219908182016
10 95215713593<(7)g(5)2_+ 26266560937331¢(13)¢(5) ~ 58925478183¢(9)?
145695931560 90092170240 264665600
6682311515022143¢(7)¢(11)  2375425254570780269¢(19) Lo (D.6)
16216590643200 192530884853760 ’
Model E.
3 4 11 5 4324 2 14¢(11
log FB ) (1 4) = — 300s3¢(5) | 3675x*¢(7)  11907x°¢(9) 6 324320¢(5)% 899514 (11)
323 646 437 2399567 7429
7 ~ 56216160¢(5)¢(7)  7791069¢(13)
2399567 14858
8 1844592754(7)2_+ 486486000¢(5)¢(9)  31105689615¢(15)
2399567 4093379 13788224
e ~177866832000¢(5)*  71209238100¢(11)¢(5) 189189000 (7)¢(9)
40987003927 126894749 240787
~ 183399698911¢(17)
18857424
10 186760173600<(7)<(5)2_+ 17296663956¢ (13)¢(5) =~ 91270827648¢(9)?
2157210733 6678671 45179245
24923233335¢(7)¢(11)  69791717567¢(19) -
D.
6678671 + 1654160 O (x) (D7)
, 60K3¢(5)  735k*¢(7)  51597K2¢(9) 1840608¢(5)? ~ 7252014¢(11)
1 FE 3) (. 4) = — o 6
08 (:4) 93 46 667 " 475571 20677
7 ~23927904¢(5)¢(7)  322623873((13)
475571 206770
s 785134354(7)2+ 123243120g(5)<(9)+ 9169675515¢(15)
475571 475571 1323328
e | 2226407040¢(5)®  22130316780¢(11)¢(5)  814773960¢(7)¢(9)
404710921 17596127 475571
1136214410617¢(17)
36722352
10 44416820448((7)§(5)2+ 529221183348¢(13)¢(5) = 11411072264592¢(9)?
404710921 87980635 2551438415
147166606587¢(7)¢(11)  74162582637¢(19) I
0] D.8
17596127 + 532208 +0(+) (D8)

— 49 —



E Resummation of ¢(5)* contributions in the two-point functions of the
SU(3) theories

It seems very interesting to explore the large x behaviour of the expansions (3.35)
and (3.36). As we recalled in the introduction, this is possible in the SU(2) model A,
see (1.8). For SU(N) with N > 2 this seems a very hard task since multiple products of
¢-number appear even after taking the logarithm of F' or G. Nevertheless, let us show how
to resum all terms proportional to ¢(5)* in the two SU(3) theories. For the SU(N) A and
E models the ((3) terms are already resummed, i.e. they appear as a single term in log F
and log G. This is not true in the other BCD models. For SU(3), this is the case thanks
to the identifications (1.5). Of course, we are not claiming that this partial resummation is
dominant in any sense. We just show that such contributions may be resummed and this

might hopefully hint at some structure or generalizations.

F®) scaling function. Let us begin with the scaling function F® in the B model, that
turns out to be the simplest. We can write the function f)(k;3) in (3.30) as

oo

1

exp B ) (k:3)|¢(s) = ;‘) —(=10¢(5) 5%)" ([tr (a”)]" [t (a%)]")- (E.1)
In SU(3) we have tr(a®) = 2 tr(a2)nt_r(a3). Hence, cf. the first relation in (B.4),
o POl = > (- 2D) (). (5.2)
For general N the expression of -
tn = ([tr(a®)]*"), (E.3)

has not a simple dependence on n. Indeed

3(N — 2)(N +2)

NENNE )R T 3)
e 27(N — 2)(N 4 2)(N* + 19N2? — 140)
N2(N2 +1)(N2 4 3)(N2 +5)(N2 + 7)(N2 +9)
by — 405(N — 2)(N + 2)(N® + 62N° + 969N* — 20632N2 + 80080)

N3(N241)(N2+3)(N2+5)(N2+7)(N2+9)(N2+11)(N? + 13)(N2 + 15)
(E.4)

Nevertheless, for NV = 3 one has a simpler result (that may also be obtained by an explicit

angular parametrization of the matrix a)

I'(n+3)

SU(3) : ty = ———22
3) "6 y/m(n+1)!

Plugging this in (E.2) gives
expr(Q)(/i; 3)l¢(5) = exp <—5C(5) /i3> {IO (5C(5) I<&3> + 14 <5C(5) KJ3>:| , (E.6)

36 36
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where I, are modified Bessel functions of the first kind. To get log F' from (3.31) we have
to solve the problem of expressing F' in (3.31) in terms of f in (3.30). This problem will
re-appear in every model and its solution is model independent. From the Mellin transform
of the Mar¢enko-Pastur weight we find the following relation (we omit the N variable that
plays no role in the relation)

t_5/6

<) 3/1—t1/3

1 ~
log F(2)(n)‘<(5) :/0 dt f(4/<ct1/3)‘ (E.7)

Hence, in the B model we have

log FB®)(k;3) ’C(5)

:i 01% {log [10 (803(5),{%) + 1 <8(]g(5)/<3t)] 803(5)5%}. (E.8)

The small x expansion of this expressions indeed reproduces all the ¢(5)* terms we already
presented in (D.3) and generates them for higher order

25¢(5) 1925 ¢(5)? 1519375¢(5)3
B/, . _ 3 6 9 12
log FR(: )|y =~ —qg " + — g4 " ssos72 N TOR
673253125C(5)7 |5 11816582421875((5)% g ’
_ O(k?). (B9
80621568 sasssaairozd © TOUT). (B9)

In the A model, one finds that in SU(3)

5, — 1 (5¢(5) 5\" n
exp PAO 3 = 3 o (P40 R) (0= Im@R)). (o)
n=0
Expanding and using (E.5) we find
exp ,}?A (2)(’f§ 3)|c(5) = Z % <5C8(5) %3>n 2 F1 <;, —n,2; 3)
n=0

= exp (5%(5) K?’) [10 <5§(25) /-@3> + 0 (5%5) ;@3)] . (Ea1)

To prove this one needs to compute the series

fl@)=>" %7: 2F1(1/2,-1,2,2/9) =) cpa™. (E.12)
’ n=0

n=0

Using the recursion properties of the hypergeometric function, one shows that the sequence
{cn} obeys

17
9(n+2)(n+3)cnt2 — (16n+33) cpg1 + 7c, =0, co=1 ¢ = T (E.13)
Thus, f(z) = 27! g(z) where g(x) solves the differential problem
92 g"(x) 1624/ (x) + (Tr — 1) g(z) =0,  g(0) =0, ¢(0)=1. (E.14)
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The solution is
g(z) = €% z [Io (g) +1; <g)} , (E.15)

and this gives the result in (E.11). So, similarly to (E.8), this gives

log FA @) (k;3) ‘C(B)

1 [t ateds 40¢(5) 4 40¢(5) 4 320¢(5) 4
=3/ \/ﬁ {log[I()( 5 © t)—i—h( g " t)]—&— 9 " t}. (E.16)

The first terms of the expansion at small x are

425¢(5) 1925¢(5)? 1519375 ¢(5)3
1 FA (2) N 3 ‘ = 3 6 _ 9 0 . 12
©& W3 o =36t T 3am6 ° VR
673253125 ((5)° 11816582421875 ((5)°
¢(5) 15 ¢(5) H18+O(K21)'
2579890176 53496602689536
(E.17)
Comparing (E.8) and (E.16) one notices the nice relation
log FA () (2135 3) o log FB®)(k; 3) . 25 ¢(5) K°. (E.18)

F®) scaling function. The analysis of the F®) scaling function is very similar. Our
results are

log FA®)(k; 3)‘

¢(5)
1 b et 20¢(5) 5 \ ', [40¢(5) 4 320¢(5)
=3 ; ﬁ {log[<9/{ t> Il<91-£ t> +T/€t

_100¢(5) 5, 1925((5)° o 422524375 ((5)*

k124061

9 " 3456 o 2579890176
11816582421875¢(5)° 5 69981778826171875((5)% ,, o7

- o E.19
106993205379072 T30537035580145661 " O ) (E19)

and, for the B model,

log FB®)(k;3) ‘C(5)

1 b s 40¢(5) 5 \' . [80¢(5) 4 80¢(5) 4
_%Om{log[<gn t> Il<9f<a t> i Kot

L 25¢(5) 4, 1925¢(5)* 4 o _ 422524375((5)" 1

= [ S 0- 0-rl°
9 T Tge MmUY 161243136 tos

11816582421875((5) 14  69981778826171875¢(5)% o, o7
- E.2
1671763834048 ossssiesasozdods " T O (E.20)

and, remarkably, we have again

log FAG) (213, 3 —log FB®)(k:3 = 25((5) K. E.21
0g (27/7k; )4(5> og (K; )<(5> C(5) K (E.21)

~52 -



F Asymptotics of one-point Wilson functions

In this technical appendix, we collect various results that are needed in the proof of (6.13)
and (6.14).

We start by proving a bound that we will use to to ensure the validity of approximating
one-point functions in the presence of Wilson loop with a sequence of two-point functions.
Let €2, be a sequence of operators with R-charge growing linearly with n and moreover €2,
is orthogonal to all operators with lesser R-charge than it. Let O be an operator have a
series expansion:

=Y Ty(a). (F.1)

Where T,, has the same R-charge as €),,. Let us assume that there exist ng, such that for
n>m > ng

‘ (Tnt1 Q) ‘ < E (F.2)
(T, Q) n’
with ¢ a constant, then for n > ng
!CI e[ n!
[Tk )| < (T Q) Zr Tk )| < [T )Y —— w3
k:l
In the n — oo limit we have k) +k), — n~* so that
¢| \
7}3&2| T )| < lim (T Q) nka (F.4)
The geometric series in the expression above converges to 1, so that
c
lim Z| Tt Q)| < lim [(T, Q2 >|‘n‘ (F.5)

This equation tells us that if (F.2) is satisfied, then in the large n limit, the sum of
contributions of T} with » > n in (O Q,,) is suppressed by % compared to that of T,,. In
addition T, with r < n are orthogonal to {2, so we can treat the large n limit of one-point
function (€, O) as the limit of a sequence of two-point functions, i.e.

lim (2, O) = lim (Q,T,). (F.6)

n—oo n—oo

F.1 Wilson one-point functions for SU(2)

Now we verify that this bound is satisfied in the case of Wilson loop for SU(2). In this
case Tp(a) = ((25)), and Q, = ¢, =: (tra®)" := (2a®>)" + ---. So,
) <Tn+k+1 Qn>
<Tn+k Qn)

_ 1 (2a®)" 1 ¢,)
C (2n+2k+1)(2n+ 2k +2) {(2a2)"Tk ¢,,)

(F.7)
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where we recall that +a are the two eigenvalues of the SU(2) matrix. Although it is not
possible to evaluate <(2a)2”+2k Qn> exactly, with some effort we can extract the qualitative
large n behavior, which is all we need to verify (F.2). The leading term in ¢, is just a®"
As a result we are looking for the large n behavior of <a4n+2k>. This is still a hard quantity
to compute in a N' = 2 theory. But this problem can be neatly sidestepped in the double
scaling limit where we are taking the large n-limit while simultaneously dialing down the
coupling ¢? ~ ﬁ In this regime the leading n behavior is entirely determined by the

N = 4 theory. As a result

<(2a2)n+k+l Qn> <(2a2)2n+k+1>N

—y _ (4n+2k)
(a2 +F ) <(2a2)2n+k>N:44 ~ (F.8)
Hence,
(Torg1 ) 1
' <T:+:19n> " (n+k)Im7 (F.9)

Which is exactly the bound on growth we need to satisfy (F.2).

F.2 SU(N) generalization

Now we consider the case of SU(N). Since the odd terms in the expansion of Wilson loop
don’t contribute to the two-point function with ¢, we can safely ignore those and consider

O be the sum of even terms in Wilson loop. So, T;, = té% Hence,
(Tontkt1 D) | 1 <tr(a2n+2k+2) ¢n> (F.10
(T ) | 2n+2k+1)(2n + 2k +2) (tr(a2nt2k) ¢,,) :

The r.h.s. can be dealt using the same saddle point approximation that we employed in
section (6.1). After keeping only the leading term in n the result is

(Tt Q) ~ Cptk / dp pN?—24n+2k exp(—47r Im T?“Q)Zl_loop(T tragp). (F.11)

Once again the result is an integral whose behavior the weak coupling limit we can estimate
by ignoring the Z7_jo0p, hence

< ( 2n+2k+2 0 > Cn+k+1 N2 — 2+ 4n + 2k
(tr(a?nt2k) Q) Cnik ImT ’

(F.12)

In the large n limit, ¢, and c, 41 contribute at the same order in n, while the N 2 in
the expression above can be ignored. Hence we get the same result as in the SU(2) case:

' <Tn+k+1 Qn>
<Tn+k Qn>

Which justifies our approximation of one-point Wilson function by a sequence of two-point

1
T (n+k)Imr

(F.13)

functions in the main text.
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G Constrained extrema of tr a®” for the SU(INV) dual matrix model

To obtain an effective matrix model (6.11), we need to do a saddle point integral around
the maxima of tr a®” subject to the two constraints tra = 0 and tr > = 1. Using Lagrange
multiplier o and A respectively for the two constraints we find that the extrema of tr a®"
are given by

ai"_l —2\a, — o =0. (G.1)

This equation tell us that a, are all roots of the same degree 2n — 1 polynomial. This
polynomial has only three non-zero term in degree 2n — 1,1 and 0. As a result we can use
Descartes’ rule of signs to conclude that at most three of a, are distinct. Since tra = 0
constraint imposes that at least two of them have to be different, the possible number of
distinct a, is 2 or 3. We will deal with both these cases separately, but before that we

eliminate A and o from (G.1). Summing over y in (G.1) gives us 0 = & ai?_l. Multiplying

by a, and then summing over p results in 2\ = tr a®". Hence we need to solve

t 2n—1
-l tra®a, — ) (G.2)

CL# N

Now we consider the case of two distinct a,. Up to a permutation of coordinates we can
write:

a, =a for 1 < pu <k, a, = for k+1<pu < N. (G.3)

Imposing tra = 0 and tra? = 1 results in

B (N — k) ] k
a==+ TN B=F NN R (G.4)

These o and 3 solve the extremization equation (G.3) for any k. The resulting tr a?" is

2n 2n
tra2”2k< (Nkj_vk)> +(N—k:)< N(]\f_k)> . (G.5)

Notice that the expression above is invariant under k& — N — k. Between the possible
values of k ie. 1 < k < N — 1, tra?" takes the highest value at Kk = 1 or k = N —
1. These correspond to the 4ay used for the computation of one-point function in the
presence of Wilson loop. Taking into account the N extrema obtained from each of them
by permutation of coordinates there are 2N such candidates for the global maxima. So at
this stage our candidate for the maximum value of tr a®" is

tr(af") = [N(N —1)]7"((N = 1) + (1 = N)*"). (G.6)

To prove that it is indeed the global maximum we need to consider the extrema with
three distinct a,, and show that for them tra?* does not exceed (G.6) . To this aim let
us label the distinct values of a, by a > 8 > « and let k and [ be the multiplicities of «
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and . Some algebra shows that as a result of (G.2) we must have 5 =0. So « = —v and
k = 1. Imposing tra® = 1 gives us

1
a=— G.7
o (G.7)
The resulting a again satisfies (G.2) for any integer 1 < k < % The resulting tr a®” is
tra®" = (2k)1 7" (G.8)

Which is indeed less than the maximum we found earlier in (G.6) for N > 3. For N = 3,
it less than (G.6) for n > 2 and again we have the same result in large n limit.
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