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bDipartimento di Fisica, Università di Torino & I. N. F. N. — sezione di Torino,

Via P. Giuria 1, I-10125 Torino, Italy

E-mail: matteo.beccaria@le.infn.it, galvagno@to.infn.it,

ahasan@gradcenter.cuny.edu

Abstract: Conformal theories with a global symmetry may be studied in the double

scaling regime where the interaction strength is reduced while the global charge increases.

Here, we study generic 4d N = 2 SU(N) gauge theories with conformal matter content

at large R-charge QR → ∞ with fixed ’t Hooft-like coupling κ = QR g
2
YM. Our analysis

concerns two distinct classes of natural scaling functions. The first is built in terms of

chiral/anti-chiral two-point functions. The second involves one-point functions of chiral

operators in presence of 1
2 -BPS Wilson-Maldacena loops. In the rank-1 SU(2) case, the

two-point sector has been recently shown to be captured by an auxiliary chiral random

matrix model. We extend the analysis to SU(N) theories and provide an algorithm that

computes arbitrarily long perturbative expansions for all considered models, parametric

in the rank. The leading and next-to-leading contributions are cross-checked by a three-

loops computation in N = 1 superspace. This perturbative analysis identifies maximally

non-planar Feynman diagrams as the relevant ones in the double scaling limit. In the

Wilson-Maldacena sector, we obtain closed expressions for the scaling functions, valid for

any rank and κ. As an application, we analyze quantitatively the large ’t Hooft coupling

limit κ � 1 where we identify all perturbative and non-perturbative contributions. The

latter are associated with heavy electric BPS states and the precise correspondence with

their mass spectrum is clarified.
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1 Introduction and summary of results

The large charge limit of conformal quantum theories with a global symmetry is an in-

teresting regime where important simplifications may occur and novel exact results may

be obtained [1–3].1 The simplest example is that of the O(2) invariant scalar model in

three dimensions, see e.g. [9], where an effective theory captures the dynamics of opera-

tors with large O(2) charge ∼ n. Exact results are obtained in the double scaling limit

n → ∞ with fixed κ ∝ n2 g where g is the quartic coupling of the Wilson-Fisher fixed

point [10–13]. For instance, the anomalous dimension γn of the composite operator ϕn is

exactly linear in κ, i.e. γn−n ∝ κ, with a computable coefficient [10]. In this model higher

order corrections in κ are associated with suppressed diagrams in the double scaling limit.2

Although the anomalous dimension γn is inherently associated with a two-point function,

similar results have been recently extended to more general higher point functions with

one anti-holomorphic insertion of ϕn [14].

In this paper we focus on another class of models where the large global charge limit

is very interesting, i.e. four-dimensional N = 2 superconformal theories [15]. The most

common example is conformal super-QCD (SQCD) with gauge group SU(N) and 2N hy-

permultiplets in the fundamental representation considered at large global charge in [16–18].

In this class of models the global symmetry is identified with the R-symmetry. Besides,

thanks to N = 2 extended supersymmetry, it is possible to compute non-trivial observables

at high perturbative order using localization methods [19]. In some cases non perturbative

1The idea of a large charge/weak coupling compensation is closely related to the solvability of the

BMN limit in AdS/CFT [4, 5] and, more generally, to the coherent-state effective theory description of

“semiclassical” string states [6, 7] and its role in capturing the strong coupling regime [8].
2An equivalent statement is that an exact saddle point analysis is possible in the double scaling limit.
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results may be obtained, as we shall illustrate. In a typical setup, the large charge limit is

approached with the Yang-Mills coupling g → 0 while the R-charge n grows as 1/g2. The

corresponding ’t Hooft-like double scaling limit is then

4π2 κ = n g2 = fixed, with n→∞, (1.1)

where κ is the new coupling. Perturbatively in κ we can neglect instanton contributions

because we stay at weak-coupling for any finite κ. Notice also that the gauge group rank

N is kept fixed in the double scaling limit (1.1). Further scaling regimes involving both κ

and N have not been investigated yet.

1.1 Large R-charge observables

We shall consider two related but distinct sets of observables that will not trivialize at large

R-charge. The first set (or sector) emerges naturally in the study of extremal correlators of

chiral primaries, i.e. higher point functions with only one anti-Coulomb branch operator.

The simplest case is that of two-point functions between a chiral primary and its antiholo-

morphic counterpart. In conformal N = 2 SQCD they have been computed in the double

scaling limit (1.1) in [17, 20] by applying localization methods [21–23]. One considers the

normalized ratio between the two-point functions 〈OnOn〉 in the N = 2 theory and in the

N = 4 SYM universal parent theory when On is a chiral primary with R-charge ∝ n→∞.

This ratio is used to define the following scaling function depending on the fixed coupling

κ and the gauge group rank (the position dependence is fully controlled by superconformal

Ward identities [24] and drops in the ratio)

FO(κ;N) = lim
n→∞

FOn (g;N)
∣∣
κ=fixed

, with FOn (g;N) =
〈OnOn〉N=2

〈OnOn〉N=4
. (1.2)

Technically, the explicit matrix model computation of FO(κ;N) is challenging because in

the large n limit it becomes hard to disentangle the map from S4 — where the matrix

model lives — to flat space [23, 25–27]. We remind that this step is non-trivial because

the preserved supersymmetry on S4 is only osp(4|2) ⊂ su(2|2) and mixing generically

occurs, breaking the original flat space u(1)R. Nevertheless, for certain classes of chiral

primaries On, it is possible to compute efficiently the perturbative expansion of the function

FO(κ;N) by exploiting the integrable structure of the N = 2 partition function. In the

simplest example, On is the maximal multi-trace operator On = Ωn ≡ (trϕ2)n where ϕ is

a complex combination of the two real scalar field belonging to the N = 2 vector multiplet.

The two-point functions 〈Ωn Ωn〉 are then captured by an integrable Toda-chain [23, 28].

By exploiting this peculiar structure it is possible to control the R-charge dependence and

evaluate the scaling function (1.2) at high perturbative order [20]. Later, this approach

based on decoupled semi-infinite Toda equations has been generalized to broader classes

of primaries and is believed to be a general feature of Lagrangian N = 2 superconformal

theories [29].

A second sector of observables arises in the study of one-point functions of chiral scalar

operators O in presence of a circular 1
2 -BPS Maldacena-Wilson loop W. For a circle of
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theory NF NS NA

A 2N 0 0

B N − 2 1 0

C N + 2 0 1

D 4 0 2

E 0 1 1

Table 1. The five families of N = 2 superconformal theories with SU(N) gauge group and matter

in fundamental (F), symmetric (S) and anti-symmetric representations (A), cf. [32].

radius R in R4 it reads

W =
1

N
tr P exp

{
g

∫

S1

ds

[
i A(x) · ẋ(s) +

R√
2

(ϕ+ ϕ)

]}
, (1.3)

where g is the Yang-Mills gauge coupling and A is the SU(N) gauge field. Exploiting

conformal invariance and placing the chiral operator O in the center of the loop, one can

apply localization methods to compute 〈OW〉 [30]. Again, one may consider the large

R-charge limit by taking O → On as above and define the ratio [31]

FOW(κ;N) = lim
n→∞

FOW,n(g;N)
∣∣
κ=fixed

, with FOW,n(g;N) =
〈OnW〉N=2

〈OnW〉N=4
, (1.4)

in analogy with (1.2). For the sake of brevity, we shall name in the following 〈OW〉 a

one-point Wilson function and FOW(κ;N) a one-point Wilson scaling function.

In this paper, we shall consider the observables (1.2) and (1.4) in the two (sim-

plest and next-to-simplest3) cases when the chiral primaries On are the towers (trϕ2)n

or trϕ3 (trϕ2)n (the second choice is non-trivial for N ≥ 3). We shall denote the associ-

ated scaling functions by F (2)(κ;N) and F (3)(κ;N) respectively, and similarly for Wilson

scaling functions. Their properties will be considered not only in conformal SQCD, but

also in a more general set of superconformal N = 2 models with SU(N) gauge group,

obtained by imposing that the 1-loop coefficient of the beta function vanishes (see (A.17)).

These have a specific matter content in the fundamental, symmetric or anti-symmetric

representations [32], see table 1.

Theory A isN = 2 conformal SQCD. Theories D and E are quite interesting since they

admit a holographic dual of the form AdS5 × S5/Γ with a suitable discrete group Γ [33].

Localization computations in these models have been recently fully discussed in [34]. For

SU(2) the only meaningful model is A, while for SU(3) we have the identifications

A ≡ C ≡ D, B ≡ E, (1.5)

so that we can restrict to the A and B models. For N > 3 there are no more accidental

identifications.
3Here, simplicity refers to the S4 mixing, see for instance [20, 29].
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1.2 Previous results and open questions

Let us overview what is known about the large R-charge observables (1.2) and (1.4) and

emphasize several open issues.

In the SU(2) SQCD theory, i.e. the A model, the longest expansion of the two-point

scaling function FA (2)(κ; 2) has been computed in [20], while the one-point Wilson scaling

function F
A (2)
W (κ; 2) has been considered later in [31]. These explicit calculations show

that — at least up to order O(κ11) — one has (i) the equality

FA (2)(κ; 2) = F
A (2)
W (κ; 2) ≡ F (κ; 2), (1.6)

and (ii) a simple exponentiation structure in terms of simple ζ-numbers

logF (κ; 2) =− 9 ζ(3)

2
κ2 +

25 ζ(5)

2
κ3 − 2205 ζ(7)

64
κ4 +

3213 ζ(9)

32
κ5 − 78771 ζ(11)

256
κ6

+
250965 ζ(13)

256
κ7 − 105424605 ζ(15)

32768
κ8 +

265525975 ζ(17)

24576
κ9

− 12108123027 ζ(19)

327680
κ10 +O(κ11). (1.7)

Besides, (iii) the expansion (1.7) has been conjectured in [31] to admit the closed integral

representation (Jn are Bessel functions)

logF (κ; 2) = 4

∫ ∞

0

dt

t2
J0(2t

√
κ) + 2 t

√
κJ1(2t

√
κ)− κ t2 − 1

et + 1
. (1.8)

The relation (1.6) shows that there is a puzzling connection between the two-point and one-

point Wilson sectors. Notice that the conjectured form (1.8) is very interesting because it

gives access to the non-perturbative (within the large R-charge limit framework) large κ

regime. Remarkably, (1.8) has been proved for the two-point scaling function in [35] (GKT)

by a dual description which is a chiral random matrix model of the Wishart-Laguerre type.

Such dual description involves matrices whose rank is related to the number of operator

insertions n, so that the double scaling limit (1.1) corresponds to the usual ’t Hooft limit

for the random matrix model.

In the higher rank SU(N) SQCD theory, with N > 2, things are less simple. The

scaling function F (∆) has been computed by the Toda equation in [20] at O(κ10). In the

SU(3) case, the first orders of the weak-coupling expansion read

logFA (2)(κ; 3) =− 9 ζ(3)

2
κ2 +

425 ζ(5)

36
κ3 − 17885 ζ(7)

576
κ4 +

5565 ζ(9)

64
κ5

+

(
1925 ζ(5)2

3456
− 2668897 ζ(11)

10368

)
κ6

+

(
32984237 ζ(13)

41472
− 5005 ζ(5) ζ(7)

864

)
κ7 +O(κ8), (1.9)

with similar results for SU(N). In the N ≥ 3 theories, one can also consider the tower

associated with O = (trϕ3)(trϕ2)n, i.e. the function F (3)(κ;N). One finds for N = 3, 4
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the expansions

logFA (3)(κ; 3) =− 9 ζ(3)

2
κ2 +

100 ζ(5)

9
κ3 − 15925 ζ(7)

576
κ4 +

147 ζ(9)

2
κ5

+

(
1925 ζ(5)2

3456
− 8599591 ζ(11)

41472

)
κ6

+

(
3177031 ζ(13)

5184
− 5005 ζ(5) ζ(7)

864

)
κ7 +O(κ8),

logFA (3)(κ; 4) =− 9 ζ(3)

2
κ2 +

955 ζ(5)

92
κ3 − 429289 ζ(7)

17664
κ4 +

78057 ζ(9)

1280
κ5

+

(
293062 ζ(5)2

475571
− 68971014343 ζ(11)

423464960

)
κ6

+

(
387146868537 ζ(13)

846929920
− 28131103 ζ(5) ζ(7)

4755710

)
κ7 +O(κ8). (1.10)

Now the exponentiation is no more in terms of simple ζ-numbers with the exception of the

ζ(3)k terms that are fully resummed by the single ζ(3) term in the above expansions.

For the higher rank one-point Wilson scaling functions the scenario is even more un-

settled. The only available result is the SU(3) result for the A model with expansion [20]

logF
A (2)
W (κ; 3) =− 9 ζ(3)

2
κ2 +

175 ζ(5)

18
κ3 − 12005 ζ(7)

576
κ4

+
1491 ζ(9)

32
κ5 − 2247091 ζ(11)

20736
κ6 +O(κ7). (1.11)

Comparing (1.11) with (1.9) we see that (1.6) is certainly false in SU(N) for N > 2, i.e.

FA (2)(κ;N) 6= F
A (2)
W (κ;N), N > 2. (1.12)

Nevertheless, (1.11) strongly suggests an exponentiation similar to (1.7).

Thus, in summary, at higher rank, one is led to ask the following list of open questions

to be addressed in the generic SU(N) case and depending on the specific tower On and

A–E model:

Q1: Is there any relation between F (κ;N) and FW(κ;N), i.e. between the two-point and

one-point Wilson sectors? Why does (1.6) hold in SU(2), but not in SU(N > 2)? Is

there any modified version of it that may work for higher rank?

Q2: Is it true that logFW(κ;N) may always be written as a series of simple ζ-numbers?

Q3: Is it possible to provide an all-order resummation, as in (1.8), valid for any of F (κ;N)

and FW(κ;N)?

Q4: Does the GKT dual matrix model keep playing a role in answering the above ques-

tions, even at generic N?

– 5 –
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1.3 Summary of results

The analysis presented in this paper will consider and solve the previous open issues. In

summary, our main results will be the following

1. It is possible to compute F (∆)(κ;N) in any model and for both ∆ = 2, 3 by a suitable

extension of the GKT dual matrix model that captures the higher rank case. This

leads to an efficient algorithm that computes the perturbative expansion in κ at any

desired order with rather moderate (computational) effort.

2. Using standard field-theoretical supergraph techniques on flat space we compute the

two and three loops contributions to F (∆)(κ;N), i.e. the terms proportional to ζ(3)

and ζ(5) respectively, and we give a hint of the generic ζ(2` − 1) term. This dia-

grammatical analysis of the double scaling limit matches the matrix model results,

and is particularly useful to identify the class of diagrams contributing to that limit.

These turn out to be specific maximally non-planar insertions of certain polygonal

loop diagrams. This is nicely opposite to what happens in the standard large N limit.

3. There is indeed a close relation between the two-point and one-point Wilson sectors.

For the SU(2) theory we shall prove the equality (1.6). For SU(N) with N > 2 we

shall prove the relation

F
(2)
W (κ;N) = F

(3)
W (κ;N) ≡ FW(κ;N). (1.13)

4. In the Wilson sector, we shall also provide an efficient algorithm to compute the all-

order expansion of FW(κ;N) in powers of κ based again on the higher rank extension

of the dual matrix model. As a corollary of the construction, we shall prove the

exponentiation of FW(κ;N) in terms of a series of simple ζ-numbers.

5. Finally, we shall give very strong evidence for general resummations, similar to (1.8),

for all the five SCFT’s and parametrical in N . From them, one can extract the

perturbative (κ� 1) and non-perturbative (κ� 1) expansions logFW(κ;N).

The last item in the above list will be our main result and is definitely non-trivial

since such resummations are possible by a combination of (i) our proof that the higher

rank dual matrix model may capture the Wilson scaling function together with (ii) our

proof of exponentiation. Such a result allows to explore the physics of the large κ regime.

The reason why it may be interesting is that in the large n limit (implicit at fixed κ) the

path-integral computing the scaling function is dominated by field configurations that are

saddles of the modified N = 2 action taking into account the On insertion. As remarked

in [35], this means that the relevant point in moduli space has vacuum expectation values

growing like g
√
n.4 In the double scaling limit, this means that the hypermultiplet and

short W-multiplet will have a mass ∼ √κ, while magnetic BPS states, with mass ∼ g−2√κ,

will decouple. At large κ, the electric BPS states will then lead to contact terms and

4The correct dimension is provided by a suitable infrared cutoff, like the inverse radius of the sphere in

radial quantization.

– 6 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
0

exponentially suppressed contributions vanishing like ∼ exp(−c√κ). The non-perturbative

contribution extracted from any resummation generalizing (1.8) and parametric in N will

then be a direct probe into such a heavy BPS regime.

Plan of the paper. In section 2 we briefly summarize the matrix model tools that are

needed to discuss the large R-charge limit in the five superconformal theories in table 1.

In section 3 we consider the extremal correlator sector and the two-point functions in the

double scaling limit. We review the GKT solution for the rank-1 SU(2) gauge theory and

generalize it to the higher rank case clarifying several technical issues. As an outcome,

we provide specific results for the ABCDE models in terms of long expansions valid at

weak coupling in the double scaling coupling κ. Section 4 is devoted to a diagrammatical

check/interpretation of the results obtained in section 3. By using conventional Feynman

diagram analysis in N = 1 super space, we identify the precise loop diagrams that give the

leading order and next-to-leading order expansion of the scaling functions. In particular, we

show that it is an insertion characterized by the maximally non-planar topology. Section 5

moves to the second sector of observables, i.e. one-point functions of chiral operator in

presence of a 1
2 -BPS Wilson-Maldacena loop. We begin by collecting explicit data for the

SU(3) and SU(4) theories in order to extend the amount of explicit calculations and explore

new features of the higher rank case. Then, in section 6, we prove such features and obtain

closed expressions for the one-point Wilson scaling functions that are valid in all the treated

cases, i.e. for all ABCDE models at generic N and for both types of large R-charge towers.

Finally, section 7 is devoted to the analysis of the resummations presented in section 6 in

the above heavy BPS regime, i.e. for κ� 1, where we give a full account of the computed

non-perturbative corrections. Their detailed structure allows to match the spectrum of

heavy BPS states relevant in this regime.

2 Matrix model description of the five SU(N) theories

In this brief section, we summarize the matrix model description of the five SU(N) theories

with matter content as in table 1.5 Aspects of these theories related to the properties of

their extremal correlators have been recently discussed in [29].

Action. For a general N = 2 theory with gauge group SU(N), the partition function on

a four sphere obtained by localization can be written as6

ZS4 =

∫
[da] exp

(
−8π2

g2
tr a2

)
Z1-loop|Zinst|2, (2.1)

5The analysis of [32] identifies additional three cases, but they exist only for specific values of N . Notice

that they involve matter fields in the rank-3 antisymmetric representation. Although we do not consider

them in this paper, all of our methods are applicable to them without any additional complications.
6Sometimes it may be convenient to rescale the matrix a in order to make the Gaussian part of the

action read simply e− tr a2 .
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where [da] is the standard measure over the conjugacy classes of traceless Hermitian ma-

trices reading (aµ are the N eigenvalues of a )

[da] =

n∏

µ=1

daµ
∏

ν<µ

(aµ − aν)2δ

(∑

µ

aµ

)
. (2.2)

For a N = 2 superconformal theory with matter in the representation R of SU(N), the

interacting action in Z1-loop = e−Sint is conveniently written as

Sint(a) = − logZ1-loop = −
∞∑

m=2

(−1)m
ζ(2m− 1)

m

(
TrR a

2m − Tradj a
2m
)
. (2.3)

The difference of traces in (2.3) stands for the replacement of N = 4 virtual exchanges

of adjoint hypermultiplets by similar exchanges of matter hypermultiplets transforming

in R [34]. For the fundamental representation, we shall simply write Trfund ≡ tr. The

combination of traces appearing in Sint(a) can be expressed as

TrR a
2m − Tradj a

2m = Tr′R a
2m = C ′(b1...b2m) a

b1 . . . ab2m , (2.4)

where

C ′b1...b2m = Tr′R Tb1 . . . Tb2m . (2.5)

The indices bi = 1 . . . N2−1 run over the gauge algebra. See appendix A for our conventions

and for a systematic discussion of how to express the differences in (2.3) in terms of traces

in the fundamentals (see also [34]). This procedure yields the explicit form of (2.3) for the

SU(N) models with the matter content listed in table 1.

Finally, the factor Zinst in (2.1) takes into account the instanton corrections. In this

paper they will not play any role while studying the double scaling limit. For this reason,

we simply drop Zinst.

Observables. As we mentioned in the Introduction, we shall primarily be interested in

two classes of flat space correlation functions in such superconformal field theories. The

first are two-point functions between a chiral primary O(x), with conformal weight ∆(O),

and its conjugate. From conformal invariance we have (rank dependence is understood)7

〈
O(x) Ō(y)

〉
=

GOŌ(g)

(x− y)2∆(O)
. (2.6)

The other class of observables will be one-point function of a chiral primary operator O in

the presence of Wilson loop (1.3). In general it is given by:

〈O(x)W〉 =
AO(g)

(2π‖x‖C)∆(O)
, (2.7)

where ‖x‖C is a distance between x and the circle C, invariant under the SO(1, 2)× SO(3)

subgroup of the conformal symmetry preserved by the Wilson loop, see appendix A of [30].

7Notice that N = 1 superconformal invariance is enough to protect the dimension ∆(O) of chiral

operators against radiative corrections, as first discussed in full generality in [36].
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Both GOŌ(g) and AO(g) are non-trivial coupling dependent functions. They encode

the information about the above correlation functions that is not fixed by conformal sym-

metry and from henceforth, with a little abuse of language, we will refer to them simply

as two-point and one-point Wilson functions.

For a N = 2 theory on S4, they can be evaluated using the partition function (2.1).

Our focus will be on the Coulomb branch operators. For SU(N) gauge group, they are

generated by trϕn with 2 ≤ k ≤ N with ϕ being one of the two complex combinations

of the two scalars in the vector multiplet. Ignoring instanton corrections, the recipe for

computing GOŌ(g) is simple. Given two Coulomb branch operators O(ϕ) and Ō(ϕ) we

can compute GOŌ(g) on S4 by inserting O at the north pole and Ō at the south pole. This

corresponds to inserting O(a) Ō(a) in the sphere partition function (2.1)

〈
O(N) Ō(S)

〉
S4 =

1

ZS4

∫
[da]O(a)Ō(a) exp

(
−8π2

g2
tr a2

)
Z1-Loop. (2.8)

The naive operators O(a) are not correct to reproduce flat space correlators due to con-

formal anomalies inducing a peculiar mixing on the sphere [23, 25, 26].8 In general, the

matrix model chiral operator O has to be replaced by its normal ordered version defined

in : O : [27], i.e.

: O : = O +
∑

∆(O′)<∆(O)

cO,O′(g)O′, (2.9)

where the coefficients cO,O′(g) are determined by requiring the orthogonality condition with

smaller dimensional operators 〈: O : O′〉S4 = 0. Writing the explicit form of (2.9) is clearly

a major complication in the double scaling limit where the dimension of the considered

operators grows arbitrarily. Indeed, apart from some simple cases, the mixing coefficients

are not known in closed form. Nevertheless, we will see that a suitable dual matrix model

description can be used to overcome this technical difficulty.

For observables involving the 1
2 -BPS Wilson loop, we have to supplement (2.8) and (2.9)

with the correct replacement rule for the unit radius Wilson loop (1.3), i.e. [19]9

W(a) =
1

N
tr e2πa . (2.10)

3 Extremal two-point functions at large R-charge in SU(N) theories

In this section, we generalize the GKT dual matrix model approach [35] in order to go

beyond the rank-1 SU(2) case and compute the large R-charge limit of extremal two-point

functions in the general SU(N) superconformal theories discussed in section (2). Our main

results (3.28) will lead to a computational algorithm able to produce long perturbative

expansions of the scaling functions. These, in principle, may be useful to derive (or check

proposed) all-order resummations.

8See for instance [37] for a detailed discussion of the mixing with the identity operator. Notice also that,

as we remarked in the Introduction, there is not enough supersymmetry on S4 to protect from this mixing.
9Several explicit field-theoretical verifications of the matrix model map can be found in [27, 30, 34, 38].
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3.1 Review of the SU(2) Grassi-Komargodski-Tizzano solution

We are interested in evaluating the two-point function (2.6) in the special case O = (trϕ2)n.

To this aim, we want to determine G2n(τ, τ̄) in (τ is the complexified gauge coupling,

Im τ = 4π
g2 )

〈
(trϕ2(x))n(trϕ2(y))n

〉
=
G2n(τ, τ̄)

(x− y)4n
. (3.1)

To apply localization methods [19, 23] one starts by considering the infinite matrix M
defined by

Mnm =
1

ZS4

∂n+mZS4 [τ, τ̄ ]

∂nτ∂mτ̄
, (3.2)

where ZS4 is given by (2.1). We shall denote by M(n) the n × n truncation with matrix

indices running in the range 0, . . . , n− 1. As shown in [23], it is possible to prove that

G2n(τ, τ̄) =
detM(n+1)

detM(n)
, (3.3)

where the determinant ratio disentangles the mixing that occurs on S4. In the SU(2) case,

the large R-charge limit of (3.3) may be determined by the approach in [35]. However, the

derivation cannot be naively extended to the higher rank SU(N) case. As a preparation to

the necessary changes, we now briefly summarize the GKT strategy.

The first step is to use the so-called Andréief identity, see for instance Lemma 3.1

in [39], which converts detM(n) from the determinant of a matrix with each elements

defined as an integral to an integral of determinants:

det
kl

∫
dµ(y) fk(y)gl(y) =

1

N !

∫ N−1∏

j=0

dµ(yj) det
kl

(fk(yl)) det
mn

(gm(yn)), (3.4)

where fk, gk with k ∈ {0, · · · , N − 1} are two sets of N -functions and dµ(y) is the measure

of integration. The relevant measure for detM(n) is dµ(a) = [da]Z1-loop(a). For the SU(2)

gauge group the space of conjugacy classes of Hermitian matrices is one dimensional and we

parameterize it by a. As a result the measure is da e−4π Im τa2
a2Z1-loop(a). The derivative

w.r.t. both τ and τ̄ brings down a factor of a2. Hence, the functions fk and gl are simply

fk(a) = a2k and gl(a) = a2l. From

det
kl
a2l
k det
mn

a2n
m =

(
det
kl
a2l
k

)2

=
∏

k<l

(a2
k − a2

l )
2, (3.5)

we have

detM(n) =
1

n!

∫ ∞

0

n−1∏

j=0

dxj
√
xje
−4π Im τxjZ1-loop(

√
xj)
∏

k<l

(xk − xl)2, (3.6)
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where in the last step we changed variables of integration to xj = a2
j . Due to the presence

of Vandermonde determinant
∏
k<l(a

2
k − a2

l )
2 the above expression can be recognized as

a matrix integral. However in this case the eigenvalues are a2
j (i.e. xj) and not aj . As a

result this expression doesn’t come from an integral over Hermitian matrices but rather

over positive matrices W , i.e. a Wishart-Laguerre matrix model [40]. From

n−1∏

j=0

√
xj = exp


1

2

n−1∑

j=0

log xj


→ exp

(
1

2
tr logW

)
, (3.7)

we see that we are to compute the dual matrix model partition function
∫

[dW ] e−V (W ), V (W ) = 4π Im τ trW − 1

2
tr logW − tr logZ1-loop

(√
W
)
. (3.8)

For this treatment to valid the 1-loop partition function must depend only on the conjugacy

classes of W , i.e.

Z1-loop(W ) = Z1-loop(trW, trW 2, · · · ). (3.9)

This statement is trivially true for SU(2) theories but as we shall see this will pose novel

problems in the higher rank case.

Double scaling limit of the dual matrix model. To evaluate the scaling function

F (2)(κ;N) we need M(n) in the limit (1.1). The potential in (3.8) is then

V (W ) =
n

4π2 κ
trW − 1

2
tr log(W )− tr logZ1-loop

(√
W
)
. (3.10)

In this expression the first factor depends on n while the other two factors are single trace

deformations that contribute at a sub-leading order in n. As explained in [35], in the double

scaling limit the typical eigenvalue of W is ∼ κ. This combined with the trace structure

of V allows for a 1
n expansion of logM(n) i.e.

logM(n) =

∞∑

k=0

n2−kCk(κ). (3.11)

We can now compute M(n) by treating the factor Z1-loop as a perturbation around the

Gaussian matrix model, i.e. around the N = 4 theory, detM(n) = 〈Z1-loop(W )〉. For a

single trace operator O, we can replace
〈
eO
〉
→ e〈O〉 up to terms that are subleading at

large n. Since Z1-loop is single trace, we have simply

log detM(n) = log 〈Z1-loop(W )〉 n→∞= 〈logZ1-loop(W )〉+O (1) . (3.12)

The expectation value in the r.h.s. can be evaluated by integrating Z1-loop weighted by the

joint eigenvalue distribution function for positive matrices. The eigenvalue distribution is

governed by Marčenko-Pastur law [41]. In the large n limit the result is then

log detM(n)
n→∞

= n

∫ 4

0
dx ρ(x)Z1-loop(4π2 κx) +O(1), with ρ(x) =

1

2π

√
4

x
− 1.

(3.13)
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Using this expression we compute the log of (3.3) while keeping in mind that n and κ have

to be varied together. Subtracting the N = 4 contributions the final result is:

F (2)(κ; 2) =

∫ 4

0
ρ(x)

(
logZ1-loop(4π2 κx) + κ∂κZ1-loop(4π2 κx)

)
. (3.14)

Finally, by using the series expansion for logZ1-loop, it is possible to resum (3.14) in the

form (1.8).

3.2 Higher rank extension for SU(N) theories

Now we turn to a generalization of the GKT approach which enables us to compute both

F (2)(κ,N) and F (3)(κ,N) for any N . We begin with F (2)(κ,N), while the extension to

F (3)(κ,N) will be obvious once we are done. Again we start by writing detM(n) as an

integral of a determinant

detM(n) =
1

n!

∫ n−1∏

i=0

[dai] e
−4π Im τ tr a2

iZ1-loop(ai)
∏

j<i

(tr a2
i − tr a2

j )
2. (3.15)

We can see from this expression that the positive matrix ensemble emerges once again. The

eigenvalues of this matrix are tr
(
a2
i

)
. But unlike the rank one case there are additional

variables since an SU(N) matrix has N − 1 independent eigenvalues. To make progress,

we need to separate tr
(
a2
i

)
out of the rest of these variables. To start, we consider the

N = 4 theory by setting Z1-loop → 1. In this case, tr a2
i is already separated. We go from

Cartesian coordinates for eigenvalues to polar coordinates after which tr a2 becomes the

radial coordinate. Hence,

detM(n) =
CnN
n!

∫ ∞

0

n−1∏

j=0

dxj

√
xN

2−3
j e−4π Im τxj

∏

k<l

(xk − xl)2, (3.16)

where xj = tr a2
j and CN is an integral over the (N − 1)-sphere, CN = 1

2

∫
SN−1 dΩD(Ω),

where D(Ω) is (implicitly) determined by polar decomposition

δ(tr a)
∏

ν<µ

(aµ − aν)2 =

( N∑

µ=1

a2
µ

)N2−N−1
2

D(Ω). (3.17)

As a result, the previous treatment based on the Wishart-Laguerre type matrix model

generalizes straightforwardly to SU(N) N = 4 theory

detM(n) =
CnN
n!

∫
[dW ] e−V (W ), V (W ) = 4π Im τ trW − N2 − 3

2
tr logW. (3.18)

This fails to be the case when we consider N = 2 theories because Z1-loop is not a function

of just tr
(
a2
)

but rather depends on (products of ) tr ak with 2 ≤ k ≤ N . This means that

in (3.16), Z1-loop is a function not only of radial variable xi but also of angular variables
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Ωi. At this stage Z1-loop is not an observable in the matrix model, but it becomes such

after integrating out the angular variables. Hence, we define the quantity Z1-loop by

Z1-loop =

∫

SN−1

n−1∏

i=0

dΩiD(Ωi)Z1-loop(xi,Ωi). (3.19)

The important point is that this is a class invariant function in the matrix model, cf. (3.9),

Z1-loop = Z1-loop(trW, trW 2, · · · ), (3.20)

because Z1-loop is a symmetric function of xi and any symmetric function of xi can be

converted into function of traces of powers of W . Now, for a general function K(x,Ω) of

the form

K(x,Ω) = exp

(∑

k

fk(Ω)x2k

)
, (3.21)

we can write

K(W ) =
1

CnN

∫

SN−1

n−1∏

i=0

dΩiD(Ωi)K(xi,Ωi) = exp


∑

~k

f~k

n#~k−1S(~k)

∏

k∈~k

tr
(
W k
)

 , (3.22)

where #~k is the number of non-zero entries of ~k and S(~k) is a symmetry factor which takes

into account the degeneracies of entries of k. Both it and n#~k−1 have been included for

the later convenience.

Defining the angular expectation value ⟪f⟫ of f(Ω) to be,

⟪f⟫ =
1

CN

∫

SN−1

dΩD(Ω) f(Ω), (3.23)

it is possible to show that in the large n limit:10

f~k =

{
⟪fk⟫ if ~k = (k)

⟪∏
k∈~k(fk − ⟪fk⟫)⟫ if #~k > 1

(3.24)

The explicit calculation of the relevant angular integrals is explained in appendix B.

We can now treat the double scaling limit perturbatively. In this limit the typical

eigenvalue of the matrix W is of the order of coupling κ, as a result tr
(
W k
)

contributes on

the order of nκk. Hence, any operator with #~k-traces contributes as n#~kκ
∑
k∈~k k. It is clear

from (3.24) that f~k is independent of n. This, combined with the explicit factor of 1

n#~k−1

in (3.22), means that higher trace operators are suppressed by just the right power of n

in K(W ) and they contribute to the same order as single trace operators. Thus, this large

n limit receives corrections from non-planar diagrams even at leading order. Moreover to

10In other words, K(W ) in the large n limit is analogous to the effective action resulting from a path

integral with tadpoles.
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the leading order in 1
n we can again replace

〈
eK(W )

〉
→ e〈K(W )〉. Setting K to be Z1-loop we

see that

log detM(n) = log 〈Z1-loop〉 n→∞= 〈log(Z1-loop)〉+O(1). (3.25)

Using the large n limit of Marčenko-Pastur law, cf. (3.13),

〈log(Z1-loop)〉 =

∫ 4

0
dx ρ(x) Z1-loop

∣∣∣∣
W→4π2 κx

, with ρ(x) =
1

2π

√
4

x
− 1, (3.26)

we can obtain F (2)(κ,N) in the same fashion as in the SU(2) case

logF (2)(κ,N) =

∫ 4

0
ρ(x)

(
logZ ′1-loop(4π2 κx) + κ ∂κZ ′1-loop(4π2 κx)

)
,

Z ′1-loop(x) =
∑

i

cix
i, ci =

∑

~k,
∑
k∈~k k=i

f~k

S(~k)
. (3.27)

Hence, our final formula reads

logF (2)(κ;N) =

∞∑

j=1

cj
(j + 1)22jΓ

(
j + 1

2

)
√
π Γ(j + 2)

(4π2 κ)j , (3.28)

where the various Γ-functions come from elementary integrals of the Marčenko-Pastur

distribution.

3.3 Application to the five N = 2 superconformal SU(N) gauge theories

Let us summarize and illustrate in detail how (3.28) may be applied to the specific N = 2

theories in section (2) in order to obtain the scaling functions F (∆)(κ,N). The relevant

steps are:

1. Take the interacting action Sint(a), cf. (2.3), and convert trR(◦) into traces in the

fundamental representation using the general relations derived in [34]. This allows

to write

Sint = −
∞∑

n=2

σn(a), (3.29)

where σn(a) is a homogeneous polynomial in the traces tr
(
ak
)

evaluated in the fun-

damental representation.

2. Compute the coefficients {cn} defined by

f̃ (2)(κ;N) =
∞∑

n=2

cn κ
n = log⟪ exp

( ∞∑

n=2

σn(a) (4π2κ)n

)
⟫, (3.30)

where the angular bracket denotes angular integration and can be computed as in

appendix B.
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3. The scaling function for the (trϕ2)n tower is obtained from, cf. (3.28),

logF (2)(κ,N) =

∞∑

n=2

(n+ 1) 22n Γ
(
n+ 1

2

)
√
π Γ(n+ 2)

cn (4π2κ)n. (3.31)

4. The scaling function for the trϕ3 (trϕ2)n tower is similarly obtained as,

logF (3)(κ,N) =

∞∑

n=2

(n+ 1) 22n Γ
(
n+ 1

2

)
√
π Γ(n+ 2)

dn (4π2κ)n, (3.32)

where now (the denominator may be found in (B.4) )

f̃ (3)(κ;N) =

∞∑

n=2

dn κ
n = log

⟪[tr(a3
)
]2 exp

(∑∞
n=2 σn(a) (4π2κ)n

)⟫
⟪[tr(a3)]2⟫ . (3.33)

3.3.1 Explicit expansions

Let us give explicit expansions of log F (∆)(κ;N), ∆ = 2, 3, valid for generic models and

rank. For any of the five models their structure is

logF (2)(κ;N) = f
(2)
3 ζ(3)κ2 + f

(2)
5 ζ(5)κ3

+

[
f
(2)
32 ζ(3)2 + f

(2)
7 ζ(7)

]
κ4 +

[
f
(2)
3,5 ζ(3) ζ(5) + f

(2)
9 ζ(9)

]
κ5

+

[
f
(2)
33 ζ(3)3 + f

(2)
52 ζ(5)2 + f

(2)
3,7 ζ(3) ζ(7) + f

(2)
11 ζ(11)

]
κ6

+

[
f
(2)
32,5

ζ(3)2 ζ(5) + f
(2)
5,7 ζ(5) ζ(7) + f

(2)
3,9 ζ(3) ζ(9) + f

(2)
13 ζ(13)

]
κ7

+

[
f
(2)
34 ζ(3)4 + f

(2)
3,52 ζ(3) ζ(5)2 + f

(2)
32,7

ζ(3)2 ζ(7) + f
(2)
72 ζ(7)2 + f

(2)
5,9 ζ(5) ζ(9)

+ f
(2)
3,11 ζ(3) ζ(11) + f

(2)
15 ζ(15)

]
κ8 + · · · (3.34)

where f
(2)
◦ = f

(2)
◦ (N). Notice that (i) the first ζ(3) term is absent in the E model, and (ii)

all terms involving powers of ζ(3) or products of ζ(3) with other ζ functions are absent

in both the A and E models. The same structure of the expansion and special vanishing

properties hold for the second tower, i.e. for log F (3)(κ;N). In this case we shall denote

the coefficients as f
(3)
◦ . The explicit results for each model are collected in appendix C. Up
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to the κ4 term (κ5 in the E model) they read

log FA (2)(κ;N) =− 9 ζ(3)

2
κ2 +

25(2N2 − 1) ζ(5)

N(N2 + 3)
κ3

− 1225(8N6 + 4N4 − 3N2 + 3) ζ(7)

16N2(N2 + 1)(N2 + 3)(N2 + 5)
κ4 + · · · ,

log FB (2)(κ;N) =− 9(N − 3)(N − 2)(N + 1) ζ(3)

4N(N2 + 1)
κ2

+
25(N − 2)(2N4 − 6N3 − 15N2 + 15) ζ(5)

2N2(N2 + 1)(N2 + 3)
κ3

+

[
315(N − 3)(N − 2)(N + 2)(N + 3) ζ(3)2

4(N2 + 1)2(N2 + 3)(N2 + 5)

− 245(N−2)(40N6−172N5−564N4−120N3+1185N2+480N−945) ζ(7)

32N3(N2 + 1)(N2 + 3)(N2 + 5)

]
κ4 + · · · ,

log FC (2)(κ;N) = − 9(N − 1)(N + 2)(N + 3) ζ(3)

4N(N2 + 1)
κ2

+
25(N + 2)(2N4 + 6N3 − 15N2 + 15) ζ(5)

2N2(N2 + 1)(N2 + 3)
κ3

+ κ4

[
315(N − 3)(N − 2)(N + 2)(N + 3)ζ(3)2

4(N2 + 1)2(N2 + 3)(N2 + 5)

− 245(N+2)(40N6+172N5−564N4+120N3+1185N2−480N−945)ζ(7)

32N3(N2 + 1)(N2 + 3)(N2 + 5)

]
κ4 + · · · ,

log FD (2)(κ;N) =− 9(2N2 − 3) ζ(3)

N(N2 + 1)
κ2 +

50(5N4 − 2N3 − 15N2 + 8N + 15) ζ(5)

N2(N2 + 1)(N2 + 3)
κ3

+

[
315(N − 3)(N − 2)(N + 2)(N + 3)ζ(3)2

(N2 + 1)2(N2 + 3)(N2 + 5)

− 735(42N6 − 40N5 − 168N4 + 240N3 + 315N2 − 320N − 315)ζ(7)

8N3(N2 + 1)(N2 + 3)(N2 + 5)

]
κ4 + · · · ,

log FE (2)(κ;N) = 0 · ζ(3)κ2 − 100(N − 2)(N + 2) ζ(5)

N(N2 + 1)(N2 + 3)
κ3

+
3675(N − 2)(N + 2)(N2 − 2) ζ(7)

N2(N2 + 1)(N2 + 3)(N2 + 5)
κ4

− 15876(N − 2)(N + 2)(7N4 − 25N2 + 36) ζ(9)

N3(N2 + 1)(N2 + 3)(N2 + 5)(N2 + 7)
κ5 + · · · , (3.35)

and, for the tr
(
a3
)

tower,

log FA (3)(κ;N) =− 9 ζ(3)

2
κ2 +

25(N − 1)(N + 1)(2N4 + 45N2 + 105) ζ(5)

N(N2 + 5)(N2 + 7)(N2 + 9)
κ3

− 1225(8N8 + 260N6 + 281N4 − 378N2 + 693) ζ(7)

16N2(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)
κ4 + · · · ,
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log FB (3)(κ;N) =−
9(N − 3)(N4 −N3 + 9N2 − 35N − 70) ζ(3)

4N(N2 + 5)(N2 + 7)
κ2

+
25(2N7 − 10N6 + 31N5 − 320N4 − 168N3 + 1800N2 + 1575N − 3150) ζ(5)

2N2(N2 + 5)(N2 + 7)(N2 + 9)
κ3

+

[
315(N − 3)(N + 3)(N6 + 90N4 − 471N2 − 8260) ζ(3)2

4(N2 + 5)2(N2 + 7)2(N2 + 9)(N2 + 11)

−
245(40N9−252N8+580N7−13860N6−19475N5+87822N4+204030N3−238140N2−440055N+436590) ζ(7)

32N3(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)

]
× κ4 + · · · ,

log FC (3)(κ;N) =−
9(N + 3)(N4 +N3 + 9N2 + 35N − 70) ζ(3))

4N(N2 + 5)(N2 + 7)
κ2

+
25(2N7 + 10N6 + 31N5 + 320N4 − 168N3 − 1800N2 + 1575N + 3150) ζ(5)

2N2(N2 + 5)(N2 + 7)(N2 + 9)
κ3

+

[
315(N − 3)(N + 3)(N6 + 90N4 − 471N2 − 8260) ζ(3)2

4(N2 + 5)2(N2 + 7)2(N2 + 9)(N2 + 11)

−
245(40N9+252N8+580N7+13860N6−19475N5−87822N4+204030N3+238140N2−440055N−436590) ζ(7)

32N3(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)

]
× κ4 + · · · ,

log FD (3)(κ;N) =−
9(2N4 + 31N2 − 105) ζ(3)

N(N2 + 5)(N2 + 7)
κ2

+
50(5N6 − 6N5 + 160N4 − 114N3 − 900N2 + 840N + 1575) ζ(5)

N2(N2 + 5)(N2 + 7)(N2 + 9)
κ3

+

[
315(N − 3)(N + 3)(N6 + 90N4 − 471N2 − 8260) ζ(3)2

(N2 + 5)2(N2 + 7)2(N2 + 9)(N2 + 11)

−
2205(14N8−40N7+770N6−1160N5−4879N4+11440N3+13230N2−24640N−24255) ζ(7)

8N3(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)

]
κ4 + · · · ,

log FE (3)(κ;N) = 0 · ζ(3)κ2 −
300(N4 + 19N2 − 140)ζ(5)

N(N2 + 5)(N2 + 7)(N2 + 9)
κ3

+
11025(N − 2)(N + 2)(N4 + 33N2 − 154) ζ(7)

N2(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)
κ4

−
7938(41N8 + 1745N6 − 19474N4 + 73200N2 − 123552)ζ(9)

N3(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)(N2 + 13)
κ5 + · · · . (3.36)

Of course, specialization of (3.35) to SU(2) is in full agreement with (1.7). Also, special-

ization of (3.35) and (3.36) to SU(3) agrees with (1.9) and (1.10). The SU(3) and SU(4)

expansions at order O(κ10) are collected in appendix D.

Remark 1. There is a simple formal duality between B and C models expressed by the

relations

logFB (∆)(κ;N) = logFC (∆)(−κ;−N), ∆ = 2, 3, (3.37)

that are consequence of the specific matter content in table 1.

Remark 2. The expansions (3.35) and (3.36) show that the two-point scaling functions do

not exponentiate in the simple way as in the SU(2) theory, i.e. log F (∆) is not a simple series

linear in the ζ-numbers. This makes any attempt to a full resummation little promising.

Nevertheless, our approach makes it easy to resum special contributions. The example of

the first non-trivial terms, i.e. those proportional to simple powers of ζ(5), is treated in

appendix E.
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4 Three loop diagram analysis in N = 1 superspace

As first mentioned in [17], there is a special interest in understanding the topology of

Feynman diagrams in the large charge limit of chiral correlators in N = 2 theories with

SU(N) gauge group. Here we will show that the diagrams contributing to the double

scaling limit are specific maximally non-planar diagrams.

We consider a four dimensional Euclidean spacetime and follow the N = 1 superspace

formalism as well as the diagrammatic difference between N = 2 and N = 4. Indeed the

scaling functions in (1.2) precisely account for the matter content of the difference theory.

We refer to appendix A for the complete expression of the Lagrangian and Feynman rules

(see [34] for a more detailed description of the tools). We limit our analysis to the diagrams

contributing the maximal transcendentality at each perturbative order.

4.1 Tree level

Our previous discussion has concerned correlation functions for a specific class of chiral

operators that we can generically write as O∆,n(x) = Φ∆ (trϕ2)n(x), where Φ∆ = trϕ∆.

Such operators have scaling dimension ∆ + 2n and can be written as

O∆,n = R(O)
a1...a∆+2n

ϕa1 . . . ϕa∆+2n , (4.1)

where R(O) is a totally symmetric tensor, whose expression is encoded in the trace struc-

ture.11

We study the flat space correlation function between a chiral and an antichiral operator.

According to (2.6), we can write

〈O∆,n(x)O∆,n(0)〉 =
GOŌ(g, n,N)

(4π2x2)∆+2n
, (4.2)

where the 2-pt coefficient GOŌ is captured by the matrix model. Our aim is to provide

a direct field theory analysis that identifies all the Feynman diagrams contributing to the

correlator (4.2) and surviving the double scaling limit (1.1).

We start with the N = 4 result for the correlator 〈O∆,n(x)O∆,n(0)〉N=4, which corre-

sponds the denominator of (1.2). In this case the correlator is not only of the form (4.2),

but also is closed with tree level propagators only

〈
ϕa(x)ϕ̄b(0)

〉
=

δab

4π2x2
, (4.3)

so that it reads

〈O∆,n(x)O∆,n(0)〉N=4 =

(
g2

8π2

)2n+∆

(2n+ ∆)! R(O) ·R(O) 1

(4π2x2)∆+2n
, (4.4)

namely it corresponds to the full contraction of the R(O) tensors, as reported in figure 1.

11Note the difference between R(O) defining the full operator O∆,n and R(∆) which defines Φ∆, and so

specifies the tower.
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Φ∆ (trϕ2)n Φ̄∆ (trϕ̄2)n

Figure 1. The N = 4 result is the full tree level contraction of this diagram. The chiral operator

is placed in x, the anti-chiral in 0.

Even though the Feynman diagram analysis can be pursued for any Φ∆, in this paper

we will write explicit results for the towers Φ2 and Φ3. Note that for ∆ = 2 we simply

reabsorb Φ2 = trϕ2 inside (trφ2)n in order to simplify the notation. Thus the operators

we focus on are

O2,n = (trϕ2)n , O3,n = trϕ3(trϕ2)n . (4.5)

Their tree level contraction, dropping the space-time dependence, are (see [17, 20])

G
(2)
N=4(g, n,N) =

(
g2

8π2

)2n

n!
Γ
(
N2−1

2 + n
)

Γ
(
N2−1

2

) , (4.6)

G
(3)
N=4(g, n,N) =

(
g2

8π2

)2n+3
1

4
da1a2a3

1

4
da1a2a3 n!

Γ
(
N2−1

2 + n+ 3
)

Γ
(
N2−1

2 + 3
) , (4.7)

where 1
4dabc := R(3) is the totally symmetric 3-indices tensor defining trϕ3 (see (A.10)).

The generalization for any O∆,n easily follows. This operator is specified by a certain

Φ∆, thus by a totally symmetrized tensor R(∆). Its tree level contraction turns out to be:

G
(∆)
N=4(g, n,N) =

(
g2

8π2

)2n+∆

R(∆) ·R(∆) n!
Γ
(
N2−1

2 + n+ ∆
)

Γ
(
N2−1

2 + ∆
) . (4.8)
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2ℓ

a1

a2a2ℓ

C ′
a1...a2ℓ Φ∆ (trϕ2)n Φ̄∆ (trϕ̄2)n

ℓ

n− ℓ

Figure 2. Generic 2`-legs diagram with its color factor in the difference theory. The straight lines

represent ϕ, ϕ̄ fields, the dashed line generically represents the hypermultiplet loop. On the right

we see how to insert it in the maximal non planar way, which gives the leading order in the double

scaling limit.

4.2 N = 2 corrections and maximally non-planar diagrams

Our goal here is to identify the class of diagrams contributes to the leading order in n

providing the double scaling limit for each perturbative order. We claim a general behavior

for any operator O∆,n and for any transcendentality ζ(2` − 1) contributing to g2` order,

following a very simple reasoning. If we want to reproduce the leading terms g2`n`, at g2`

order there is a unique way to obtain a n` term to achieve the correct double scaling limit,

that is a diagram with a hypermultiplet loop with 2` adjoint chiral legs. It is built up with

` Q̃ΦQ and ` Q†Φ†Q̃† vertices, represented in figure 4. Each vertex brings a g factor.

Then, the only way to get a n` scaling is to insert this diagram inside ` out of n pairs of

traces, see figure 2. Hence, the only contribution in the double scaling limit comes from

this 2`-leg diagram inserted in a maximally non-planar way.

We motivate this statement and we provide a formal computation for the generic `-

loops contribution and for a general O∆,n tower. In the next subsections we prove it for the

two loops (` = 2) and three loops (` = 3) cases, specifically for the O2,n and O3,n towers

and making a direct comparison with the matrix model computations.

The diagram in figure 2 can be factorized into three contributions: the Feynman loop

integral W2`(g, x), a symmetry factor S(`, n) and the color factor KΦ(N, `). We discuss

separately each of them.

Loop integral. We have a factor of (±i
√

2g) for each vertex, while the superspace inte-

gral can be mapped to the evaluation of the L-loop contribution of ladder diagrams to the
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four-point function in φ3-theory, which was computed in [42]. This analogy was exploited

in appendix B of [27] for the ` = 2, 3 cases, in general this integral is always finite and yields

W2`(g, x) = 2`g2` (2`)!

(`!)2
ζ(2`−1)

(−1)`

(16π2)`
1

(4π2x2)2`
= (−1)`

(2`)!

(`!)2
ζ(2`−1)

(
g2

8π2

)̀
1

(4π2x2)2`
,

(4.9)

where ζ(2`− 1) is the Riemann zeta function, which counts the transcendentality order of

the perturbative expansion. Note that the insertion of these diagrams preserves the space-

time structure of the propagator, so that the structure of the correlator (4.2) is correctly

preserved. Therefore, from now on, we simply drop the spacetime dependence.

Symmetry factor. The important contribution is `!(`− 1)!, due to the number of inde-

pendent hypermultiplet loops. Then, the only way to obtain a leading n` contribution is

to insert the 2`-leg diagram inside the maximal number of trϕ2 tr ϕ̄2 pairs. So we have

S(`, n) = `! (`− 1)!

(
n

`

)2

. (4.10)

Color factor. The color factor is the more involved part, since we are considering the

maximal non-planar diagram. We provide a recipe to capture the leading order in n and

we test it for the first non trivial orders.

The color factor from the open 2`-legs diagram in the difference theory precisely re-

produces the trace combination C ′a1...a2`
that we already found in the matrix model ex-

pansion (2.5). (see appendix A for the explanation of its diagrammatic origin). After the

non-planar insertion of this diagram like in figure 2, the leading order will be the contrac-

tion of the C ′a1...a2`
color factor with the Φ∆Φ̄∆ part of the correlator, defined by the tensor

R(∆). We clarify this statement with the two specific examples.

The Φ(2) result is particularly easy, C ′a1...a2`
can be contracted only with color delta

functions. We obtain a totally contracted, fully symmetrized tensor

C ′(a1a1...a`a`)
:= C ′(2`) . (4.11)

The Φ(3) result is more involved, since we need to contract C ′a1...a2`
with the two R(3)

tensors defining the operators. We obtain a tensor that can be formally written as

R(3) · C ′2` ·R(3) . (4.12)

In the next section we compute this tensor in the ` = 2 and ` = 3 cases. After this contrac-

tion we are left with n − ` pairs of untouched traces that will be contracted analogously

to the N = 4 case. After the ratio with the N = 4 contribution (4.6), we can write the

explicit results for the Φ(2) and Φ(3) towers

K(2)(N, `) =
(n− `)!
n!

Γ
(
N2−1

2

)

Γ
(
N2−1

2 + `
)C ′2`,

K(3)(N, `) =
(n− `)!
n!

Γ
(
N2−1

2 + 3
)

Γ
(
N2−1

2 + `+ 3
)R

(3) · C ′2` ·R(3)

R(3) ·R(3)
. (4.13)
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The generalization for a generic tower Φ(∆) immediately follows

K∆(N, `) =
(n− `)!
n!

Γ
(
N2−1

2 + ∆
)

Γ
(
N2−1

2 + `+ ∆
)R

(∆) · C ′2` ·R(∆)

R(∆) ·R(∆)
. (4.14)

Total result. In total we get a very compact expression for the generic `-loops result

with transcendentality ζ(2`− 1) of the correlator (1.2) in the double scaling limit

F (2)
∣∣
ζ(2`−1)

= (−1)`
(2`)!

(`!)2

ζ(2`− 1)

2` `
κ`

Γ
(
N2−1

2

)

Γ
(
N2−1

2 + `
)C ′2`,

F (3)
∣∣
ζ(2`−1)

= (−1)`
(2`)!

(`!)2

ζ(2`− 1)

2` `
κ`

Γ
(
N2−1

2 + 3
)

Γ
(
N2−1

2 + `+ 3
)R

(3) · C ′2` ·R(3)

R(3) ·R(3)
. (4.15)

The generalization for a generic tower Φ(∆) is

F (∆)
∣∣
ζ(2`−1)

= (−1)`
(2`)!

(`!)2

ζ(2`− 1)

2` `
κ`

Γ
(
N2−1

2 + ∆
)

Γ
(
N2−1

2 + `+ ∆
)R

(∆) · C ′2` ·R(∆)

R(∆) ·R(∆)
. (4.16)

Now we can enforce this statement providing an explicit computation at two and three

loops order for the Φ(2) and Φ(3) towers. In particular, we will see that the color factor

worked out in (4.15) precisely reproduces the matrix model results.

4.3 Two loop diagrams: F (∆)
∣∣
ζ(3)

As explained before, the unique contribution at g4 order in the double scaling limit is

represented by the first diagram of figure 3. In the Φ(2) tower the color factor of this

diagram must be totally self-contracted, generating a totally symmetrized expression (fol-

lowing (4.11)):

C ′(a,a,b,b) = C ′(4) (4.17)

The Φ(3) tower is defined by the tensor Ra1a2a3 = 1
4d

a1a2a3 . The total color factor will be

a sum over all the possible way of contracting C ′ with two R(3) tensors

R(3) · C ′4 ·R(3) =
1

4
da1a2a3

1

4
da1a2a3C ′(b,b,c,c) +

1

4
da1a2b1

1

4
da1a2b2C ′(b1,b2,c,c)

+
1

4
da1b1c1

1

4
da1b2c2C ′(b1,b2,c1,c2). (4.18)

To evaluate (4.17) and (4.18) we follow the procedure of appendix A, using (A.18)

and (A.11). The final result in terms of rational functions in N is obtained using Form-

Tracer [43].

Substituting ` = 2 inside (4.16), the two loops results for the two towers are

F (2)
∣∣
ζ(3)

=
3 ζ(3)κ2

N4 − 1
C ′4,

F (3)
∣∣
ζ(3)

=
3 ζ(3)κ2

(N2 + 5)(N2 + 7)

R(3) · C ′4 ·R(3)

R(3) ·R(3)
, (4.19)
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theory C ′(4)

R(3) · C ′4 ·R(3)

R(3) ·R(3)

A −3

2
(N4 − 1) −3

2

(
N2 + 5

) (
N2 + 7

)

B −3(N2 − 1)(N + 1)(N − 2)(N − 3)

4N
− 3(N − 3)

(
N4 −N3 + 9N2 − 35N − 70

)

4N

C −3(N2 − 1)(N − 1)(N + 2)(N + 3)

4N
− 3(N + 3)

(
N4 +N3 + 9N2 + 35N − 70

)

4N

D −3(2N2 − 3)(N2 − 1)

N
−3
(
2N4 + 31N2 − 105

)

N

E 0 0

Table 2. Theory dependent coefficients determining the two-loop ζ(3) contribution to the scaling

functions F (∆) for the two towers with ∆ = 2, 3.

a1

a3

a4

a2

a3

a5

a1 a6

a2

a4

C ′
a1a2a3a4

C ′
a1a2a3a4a5a6

Figure 3. Box and exagon diagram contributing to 2 and 3 loops order, with their color factors.

where the color factors for all the SU(N) conformal theories are reported in table 2. We

see a perfect match with the ζ(3) terms of the matrix model results in (3.35).

4.4 Three loop diagrams: F (∆)
∣∣
ζ(5)

The three loops case is technically more involved, but conceptually it is all encoded inside

the generalized (4.16) formula. Now the diagram to be inserted has an exagon shape, see

figure 3 inserted in the maximally non-planar way. Substituting ` = 3 inside (4.16), the

three-loops results for the two towers are

F (2)
∣∣
ζ(5)

= −20

3
ζ(5)κ3 1

(N4 − 1)(N2 + 3)
C ′6,

F (3)
∣∣
ζ(5)

= −20

3
ζ(5)κ3 1

(N2 + 5)(N2 + 7)(N2 + 9)

R(3) · C ′6 ·R(3)

R(3) ·R(3)
, (4.20)

where again the color factors are explicitly computed for all the SU(N) conformal theories,

using the same procedure as before, and are reported in table 3 for both the towers.

Again we find a perfect match with the ζ(5) coefficients of the matrix model expres-

sions (3.35).
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theory C ′6
R(3) · C ′6 ·R(3)

R(3) ·R(3)

A − 15(N4−1)(2N2−1)
4N − 15(N−1)(N+1)(2N4+45N2+105)

4N

B − 15(N−2)(N2−1)(2N4−6N3−15N2+15)
8N2 − 15(2N7−10N6+31N5−320N4−168N3+1800N2+1575N−3150)

8N2

C − 15(N+2)(N2−1)(2N4+6N3−15N2+15)
8N2 − 15(2N7+10N6+31N5+320N4−168N3−1800N2+1575N+3150)

8N2

D − 15(N2−1)(5N4−2N3−15N2+8N+15)
2N2 − 15(5N6−6N5+160N4−114N3−900N2+840N+1575)

2N2

E 15(N2−1)(N2−4)
N

45(N4+19N2−140)
N

Table 3. Theory dependent coefficients determining the three loop ζ(5) contribution to the scaling

functions F (∆) for the two towers with ∆ = 2, 3.

4.5 Summary of the diagrammatical analysis

In summary, we have confirmed our previous claim by explicit calculations and comparison

with the matrix model results (3.35). The ζ(2`−1) g2` contributions to the scaling function

F (∆)(κ;N) for ` = 2, 3 and ∆ = 2, 3 come indeed from a diagram with a hypermultiplet

loop with 2` adjoint chiral legs that is inserted into the tree diagram, see figure 2, in a

maximally non-planar way. The pattern is reasonably preserved at higher perturbative

orders, since this is the only way to produce the necessary power of n needed to survive the

double scaling limit. This analysis provides a intriguing evidence of the duality between the

rank of the gauge group N and the number of the operator insertions n, as suggested in [35].

5 One-point Wilson functions: collecting more data for SU(3) and SU(4)

theories

The second class of observables that we are going to discuss are one-point Wilson functions

for which we want to analyze the double scaling limit. As we pointed out in the Introduc-

tion, the available data for the one-point Wilson scaling function is limited to the SU(2)

case and the A model with SU(3) gauge group. In this section, we exploit localization to

collect additional explicit data for all models in the SU(3) and SU(4) theories and for both

the (trϕ2)n and trϕ3 (trϕ2)n large R-charge chiral primaries. This work will be useful to

formulate some conjectures that we shall prove by using the higher rank dual matrix model.

5.1 One-point Wilson scaling functions for the two SU(3) theories

Let us recall that in the SU(3) A model one obtains at finite n [31] (ζn ≡ ζ(n))12

F
A (2)
W,n (g; 3) = 1− 9n (n+ 4) ζ3

32π4
g4

+
25n (254 + 927n+ 850n2 + 375n3 + 42n4) ζ5

2304 (2 + 3n+ 3n2)π6
g6 + · · · , (5.1)

12We only write the contributions that are going to survive in the scaling limit. These are the tran-

scendentality structures that appear in the expansion of exp(−Sint). That this happens in general will be

proved later.
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and then, taking the limit (1.4), one has

F
A (2)
W (κ; 3) = 1− 9 ζ3

2
κ2 +

175 ζ5

18
κ3 +

(
81 ζ2

3

8
− 12005 ζ7

576

)
κ4

+

(
1491 ζ9

32
− 175 ζ3 ζ5

4

)
κ5

+

(
− 243 ζ3

3

16
+

30625 ζ2
5

648
+

12005 ζ3 ζ7

128
− 2247091ζ11

20736

)
κ6 + · · · , (5.2)

that may be exponentiated in the simple form (1.11). Repeating the calculations in [31]

for the B model we find13

F
B (2)
W,n (g; 3)= 1− 25n (12n4 + 3n3 + 104n2 − 117n+ 142) ζ5

1152π6(3n2 + 3n+ 2)
g6

+
1225n (12n5 + 27n4 + 110n3 + 109n2 − 74n+ 296) ζ7

36864π8 (3n2 + 3n+ 2)
g8

− 147n(108n6 + 459n5 + 1443n4 + 3135n3 + 1577n2 + 2646n+ 5032)ζ9

32768π10 (3n2 + 3n+ 2)
g10

+ · · · (5.3)

In the limit (1.4) we get

FB
W(κ; 3) = 1− 50 ζ5

9
κ3 +

1225 ζ7

36
κ4 − 1323 ζ9

8
κ5 +

(
1250 ζ2

5

81
+

1960805 ζ11

2592

)
κ6

+

(
− 30625 ζ5 ζ7

162
− 17688385ζ13

5184

)
κ7 + · · · , (5.4)

and, remarkably, (5.4) can once again be written in exponential form in terms of simple

ζ-numbers

FB
W(κ; 3) = exp

(
− 50ζ5

9
κ3 +

1225 ζ7

36
κ4 − 1323 ζ9

8
κ5 +

1960805 ζ11

2592
κ6

− 17688385 ζ13

5184
κ7 + · · ·

)
. (5.5)

Comparing with (1.11), we also remark that we have model dependence, as it would be

natural to expect.

Similar calculations may be done by considering the other large R-charge tower

trϕ3 (trϕ2)n. Now, in the A model we find

F
A (3)
W,n (g; 3) =1− 9 (n+ 1) (n+ 6) ζ3

32π4
g4 (5.6)

+
5 (15060 + 33926n+ 26460n2 + 9559n3 + 1725n4 + 105n5) ζ5

1152 (20 + 12n+ 3n2)π6
g6 + · · · ,

13We checked until n = 14 that is dimension 28 where mixing is rather hard. This is possible because N

is fixed as explained in [31].
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and then, taking the limit (1.4),

F
A (3)
W (κ; 3) = 1− 9 ζ3

2
κ2 +

175 ζ5

18
κ3 +

(
81 ζ2

3

8
− 12005 ζ7

576

)
κ4 (5.7)

+

(
1491 ζ9

32
− 175 ζ3 ζ5

4

)
κ5

+

(
− 243 ζ3

3

16
+

30625 ζ2
5

648
+

12005 ζ3 ζ7

128
− 2247091ζ11

20736

)
κ6

+

(
1575 ζ2

3 ζ5

16
− 2100875 ζ5 ζ7

10368
− 13419 ζ3 ζ9

64
+

5400395 ζ13

20736

)
κ7 + · · · ,

that can be written in exponentiated form as

F
A (3)
W (κ; 3) = exp

(
− 9 ζ3

2
κ2 +

175 ζ5

18
κ3 − 12005 ζ7

576
κ4 +

1491 ζ9

32
κ5

− 2247091 ζ11

20736
κ6 +

5400395 ζ13

20736
κ7 + · · ·

)
. (5.8)

Remark. At finite n, the expansions (5.1) and (5.6) are similar but non-trivially related.

As expected there is no obvious transformation of n relating the two towers. Nevertheless,

in the scaling limit, the expression (5.7) is equal to (5.2) (and of course the same holds for

the exponentiated form), i.e.

F
A (2)
W (κ; 3) = F

A (3)
W (κ; 3). (5.9)

which will turn out to be a special case of the universality relation (1.13), to be proved

later.

To confirm (1.13), we also evaluate the scaling function F
(3)
W in the B model. In this

case, we find

F
B (3)
W,n (g; 3) = 1− 5 (4440 + 9944n+ 5400n2 + 2581n3 + 465n4 + 60n5) ζ5

1152π6(3n2 + 12n+ 20)
g6 (5.10)

+
175 (18480 + 50414n+ 37867n2 + 19531n3 + 5819n4 + 945n5 + 84n6) ζ7

36864π8 (3n2 + 12n+ 20)
g8

− 21(520800+1609864n+1578564n2+915854n3+351435n4+80976n5+11151n6+756n7) ζ9
32768π10 (3n2 + 12n+ 20)

g10 + · · ·

The scaling limit gives again the same result as for the (trϕ2)n tower of operators, i.e.

F
B (2)
W (κ; 3) = F

B (3)
W (κ; 3), (5.11)

supporting the claim that (1.13) has a chance to hold in any model.

5.2 Scaling functions for the SU(4) theories

We have also analyzed the five ABCDE theories for SU(4) gauge group. In this case they

are all distinct. The analysis is computationally rather demanding and we did not collect

long expansions. Nevertheless, we checked exponentiation in all cases, at least up to terms
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∼ ζ(9), as well as the validity of the tower-independence (1.13) — hence from now on we

shall drop the tower label. The first 4 terms of the five scaling functions are

logFA
W(κ; 4) = −9 ζ(3)

2
κ2 +

325 ζ(5)

36
κ3 − 41405 ζ(7)

2304
κ4 +

9429 ζ(9)

256
κ5 + · · · ,

logFB
W(κ; 4) =

3 ζ(3)

8
κ2 − 1675 ζ(5)

144
κ3 +

70315 ζ(7)

1024
κ4 − 1055873 ζ(9)

3072
κ5 + · · · ,

logFC
W(κ; 4) = −39 ζ(3)

8
κ2 +

1375 ζ(5)

144
κ3 − 57085 ζ(7)

3072
κ4 +

115325 ζ(9)

3072
κ5 + · · · ,

logFD
W(κ; 4) = −21 ζ(3)

4
κ2 +

725 ζ(5)

72
κ3 − 88445 ζ(7)

4608
κ4 +

58751 ζ(9)

1536
κ5 + · · · ,

logFE
W(κ; 4) = 0 · ζ(3)κ2 − 100 ζ(5)

9
κ3 +

1225 ζ(7)

18
κ4 − 343 ζ(9)κ5 + · · · . (5.12)

Notice that the expansions obey the following relations to be proved and generalized in the

next section

logFA
W(κ; 4)− 2 logFC

W(κ; 4) + logFD
W(κ; 4) = 0,

logFB
W(κ; 4)− logFC

W(κ; 4) + logFD
W(κ; 4)− logFE

W(κ; 4) = 0. (5.13)

Summary of the extended (higher rank) explicit results. In summary, by consid-

ering the SU(3) and SU(4) theories, we have collected strong evidence that the one-loop

Wilson scaling functions are (i) independent on which tower is used and (ii) exponentiate

in a sum of simple ζ-numbers. This last feature is very promising and hints for a simple

relation with the interacting action of the model. Also, it seems a good starting point to

attempt to derive all-order resummations. In the next section, we shall prove these claims.

6 One-point Wilson functions from the dual matrix model

Our main tool will again be a dual matrix model of Wishart-Laguerre type. The dual

matrix model serves the same purpose as the in the two-point functions we dealt with

earlier: it takes care of mixing induced by localization. However, the emergence of matrix

model is more subtle in the case of the one-point Wilson functions. Instead of being an

exact solution to the mixing problem, it is an asymptotic solution in the large R-charge

limit. To set the stage for the general treatment we turn back to SU(2) result (1.6) and

give a proof that will be the basis for its SU(N) generalization.

The main idea behind our proof is to define a truncated version En(a) of the Wilson

loop matrix model operator W(a) defined in (2.10). This amounts to the splitting

W(a) = En(a) + ∆n(a), En(a) =

n∑

k=0

(2π)2k

(2k!)
a2k, ∆n(a) =

∞∑

k=n+1

(2π)2k

(2k!)
a2k, (6.1)

where, in this SU(2) case a is the first of two eigenvalues of the traceless Hermitian matrix.

Since En(a) only has terms up to degree n we can write it as

En(a) =
(2π)2n

(2n!)
φn +

n−1∑

k=0

ckφk. (6.2)
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Here φn =: (tr a2)n : is the operator (including mixing) that corresponds to (trϕ2)n in

the matrix model. As a result of mixing described by (2.9), it is a polynomials in a2 with

the leading term a2n.

By definition of φn, we can exploit orthogonality to lower dimensional operators and

write

〈φnEn〉 =
(2π)2n

(2n!)
〈φn φn〉 . (6.3)

The prefactor on the r.h.s. of (6.3) is the same for both N = 4 and N = 2 theories and

cancels in the ratio defining the scaling functions. In light of this (1.6) is equivalent to

the statement that in the large n limit we can approximate 〈φnW〉 by the first non-zero

term in its series expansion, i.e. ∆n contributes to F
(2)
W (κ, 2) at a subleading order in n.

Appendix F sets out a sufficient condition for this to hold. Applied to this case it reads

lim
n→∞

1

n2

〈
a2n+2k+2 φn

〉

〈a2n+2k φn〉
= 0. (6.4)

This condition is indeed satisfied in the double scaling limit, but we leave the demonstration

of this fact to section (F.1).

6.1 Generalization to SU(N) theories

Another way of framing the proof in last section is that instead of directly dealing with

one-point Wilson functions, we can also consider a sequence of two-point functions that

converges to it in the large n limit. Furthermore, we can expect (as shown later in the

double scaling limit) that the large n limit is again determined by the contribution of

the first term in the Wilson loop’s expansion that has a non-zero two-point function with

φn. For SU(N) this term is the one proportional to tr a2n. As a result we would like to

prove that

lim
n→∞

〈φnW〉 =
1

N
lim
n→∞

〈
φn tr a2n

〉
. (6.5)

Using the results in appendix F we see that a sufficient condition for this to be the true

is that

lim
n→∞

1

n2

〈
φn tr a2n+2k+2

〉

〈φn tr a2n+2k〉 → 0. (6.6)

We leave the verification that this is indeed the case to section (F.2).

At a first glance the situation is markedly different from the previous study of extremal

two-point functions. Because tr a2n can’t be reduced to a function of tr a2 for N > 2, we

can’t deal with mixing by simply writing the two-point function in (6.5) as a determinant.

Another way of stating this is to recall the change to polar variables from aµ and note that

unlike φn, tr an is a non-trivial function of angular variables and this function is strongly

dependent of n. Remarkably, as we shall see shortly, it is this strong dependence of angular

part on n that ensures that for large n the mixing problem can be solved by an “effective”

matrix integral.
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Large n limit of the angular integrals. Changing to polar coordinates, we have

〈
φn tr a2n

〉
=

1

ZS4

∫
rn−1dr dΩ rN

2−3D(Ω)φn(r)r2nAn(Ω) exp
(
−4π Im τ r2

)
Z1-loop(r,Ω).

(6.7)

Here, An(Ω) is determined by restricting tr a2n to the sphere tr a2 = 1. The idea now is

to use it in the large n limit to do the angular integration first. To illustrate the idea in a

clear fashion we first consider the U(N) case. Since tr a2n =
∑N

µ=1 a
2n
µ , when a is a point

on the unit sphere, we have aµ ≤ 1 and so, in the large n limit, tr a2n vanishes almost

everywhere except around the 2N points where one of the coordinates is ±1 and all others

are 0. Moreover, it goes to zero extremely quickly around these points. As a result we

can treat the angular integral by saddle point approximation around these points. Besides,

each of these 2N points gives the same result.

Although for SU(N) the situation is somewhat more complicated due to the tr a = 0

constraint, the angular integral is still well approximated by a saddle saddle point approx-

imation around the points that maximize tr a2n.

The constrained extrema of tr a2n are studied in appendix G. Here, we just state the

relevant results. The set of point that maximize tr a2n is the same for all n > 2. There are

2N such points, one being:

a0 =

(
1√

N (N − 1)
,

1√
N (N − 1)

, · · · , 1√
N (N − 1)

,−
√
N − 1

N

)
. (6.8)

The other ones are related by a permutation of coordinates to either a0 or −a0. Since,

tr an0 = [N(N − 1)]−
n
2 ((N − 1) + (1−N)n), (6.9)

any even symmetric function of aµ (i.e. any function of traces of a invariant under a→ −a)

takes the same value on any of these points. As a result, to the leading order in n, we have

〈
φn tr a2n

〉
=

cn
ZS4

∫
dr rN

2−2 φn(r)r2n exp
(
−4π Im τ r2

)
Z1-loop(ra0) + · · · , (6.10)

where cn is a constant that is the same for both N = 2 and N = 4 theories. It can

be determined straightforwardly from saddle point approximation but it irrelevant to our

results so we shall not compute it.

The large n effective matrix model. Equation (6.10) gives us an effective partition

function for the large n limit, which given by

Zeff =

∫
dr rN

2−2 exp
(
−4π Im τ r2

)
Z1-loop(ra0). (6.11)

This leads us to a much simpler “SU(2) like” matrix model where we have a much better

hope of solving the mixing problem. In fact the salient details are exactly the same:

• There a single variable r.
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• φn(r) has the leading term r2n and the subleading terms are determined by the

condition that
〈
φn r

2k
〉

= 0 for k < n.

• The theory has a single parameter τ and a derivative of Zeff with respect to τ brings

down a factor of r2.

As a result we can write down the determinant formula:

〈
φn tr a2n

〉
=
cn detM(n+1)

cn−1 detM(n)
, with Mkl =

1

Zeff

∂k+lZeff

∂τk∂τ̄ l
. (6.12)

The only difference from the GKT result for SU(2) is the presence of cn in the above

expression. But cn gets no contribution from Z1-loop to the leading order in n. As a result

they are same both for N = 4 and N = 2 theories and disappear when taking the ratio of

the correlation function for the two theories.

At this stage, using the dual matrix model and following the same step as for SU(2),

we can straightaway write the result for F
(2)
W (κ,N). It is

F
(2)
W (κ,N) =

∫ 4

0
dx ρ(x)

(
logZ1-loop(4π2 κx a0) + κ ∂κZ1-loop(4π2 κx a0)

)
, (6.13)

where a0 is in (6.8).

6.2 Universality of large n limit

We point out another feature of the result obtained above, tying up a loose end in the

previous discussion. The factor of rN
2−2 in the SU(2) like action in (6.11) which is a

remnant of the SU(N) theory we started with doesn’t play any part in it (6.13). This

factor contributes to the logW term of the potential for effective matrix model and has

two related effects:

• It changes the N = 4 results.

• It changes the eigenvalue distribution of the matrix W we are integrating over. But

this change doesn’t affect the large n result and changes only the subleading correction

of order 1
n in F

(2)
W (κ,N).

This remains true if we insert any function O(a) in the partition function Zeff or equivalently

change φn(a) to O(a)φn(a). The only effect will be to change cn and contribute to logW

term in the dual matrix model with a coefficient proportional to R-charge of O, i.e.

〈O φnW〉N=2

〈O φnW〉N=4
= F

(2)
W (κ,N), (6.14)

as long as R-charge of the terms in O(a) is bounded. The previous relation (1.13) is

nothing but a direct consequence of (6.14) and is thus proved. The tower-independent

scaling function FW is provided by the r.h.s. of (6.13).
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6.3 Application to the five N = 2 superconformal SU(N) gauge theories

We now apply the master formula (6.13) to the ABCDE models. We straightaway obtain

logFA
W (κ;N) = −

9ζ(3)

2
κ2 +

25(N2 −N + 1)ζ(5)

3(N − 1)N
κ3 −

245(N2 −N + 1)2ζ(7)

16(N − 1)2N2
κ4

+
189(3N6 − 9N5 + 19N4 − 23N3 + 19N2 − 9N + 3)ζ(9)

20(N − 1)3N3
κ5

−
847(N2 −N + 1)(N6 − 3N5 + 7N4 − 9N3 + 7N2 − 3N + 1)ζ(11)

16(N − 1)4N4
κ6 + · · · ,

logFB
W (κ;N) =

9(N − 3)(N − 2)ζ(3)

4(N − 1)N
κ2 −

25(N − 2)(3N3 − 10N2 + 10N − 5)ζ(5)

2(N − 1)2N2
κ3

+
245(N − 2)(33N5 − 169N4 + 355N3 − 395N2 + 221N − 63)ζ(7)

32(N − 1)3N3
κ4

−
189(N − 2)(331N7 − 2332N6 + 7252N5− 12950N4 + 14294N3− 9828N2 + 3828N− 765)ζ(9)

40(N − 1)4N4
κ5

+
2541(N−2)(123N9−1109N8+4547N7−11126N6+17906N5−19698N4+14838N3−7419N2+2217N−341)ζ(11)

32(N − 1)5N5

× κ6+· · · ,

logFC
W (κ;N) =−

9(3N2 − 7N + 6)ζ(3)

4(N − 1)N
κ2 +

25(N4 − 4N3 + 10N2 − 15N + 10)ζ(5)

2(N − 1)2N2
κ3

−
245(3N6 − 17N5 + 63N4 − 155N3 + 249N2 − 251N + 126)ζ(7)

32(N − 1)3N3
κ4

+
189(9N8 − 66N7 + 324N6 − 1106N5 + 2646N4 − 4424N3 + 5076N2 − 3819N + 1530)ζ(9)

40(N − 1)4N4
κ5

−
2541(N10−9N9+55N8−240N7+762N6−1778N5+3054N4−3825N3+3405N2−2045N+682)ζ(11)

32(N − 1)5N5
κ6+· · · ,

logFD
W (κ;N) =−

9(N2 − 3N + 3)ζ(3)

(N − 1)N
κ2 +

50(N4 − 5N3 + 14N2 − 22N + 15)ζ(5)

3(N − 1)2N2
κ3

−
245(N6 − 7N5 + 29N4 − 75N3 + 123N2 − 125N + 63)ζ(7)

8(N − 1)3N3
κ4

+
189(3N8 − 27N7 + 148N6 − 532N5 + 1302N4 − 2198N3 + 2532N2 − 1908N + 765)ζ(9)

10(N − 1)4N4
κ5

−
847(N10−11N9+75N8−345N7+1122N6−2646N5+4566N4−5730N3+5105N2−3067N+1023)ζ(11)

8(N − 1)5N5
κ6+· · ·

logFE
W (κ;N) =−

100(N − 2)2ζ(5)

3(N − 1)N
κ3 +

245(N − 2)2(N2 − 2N + 2)ζ(7)

(N − 1)2N2
κ4

−
189(N − 2)2(41N4 − 164N3 + 308N2 − 288N + 144)ζ(9)

5(N − 1)3N3
κ5

+
847(N − 2)2(N2 − 2N + 2)(23N4 − 92N3 + 156N2 − 128N + 64)ζ(11)

2(N − 1)4N4
κ6 + · · · . (6.15)

Of course, specialization of (6.15) to SU(2), SU(3), and SU(4) reproduces perfectly the

previous partial results (1.7), (1.11), (5.5), and (5.12).

Remark. We now easily understand the reason behind the two constraints (5.13). To this

aim, we remark that the main formula (6.13) shows that logFW is linear in the interacting

action. This allows to prove that for any N we have exactly

logFA
W(κ;N)− 2 logFC

W(κ;N) + logFD
W(κ;N) = 0,

logFB
W(κ;N)− logFC

W(κ;N) + logFD
W(κ;N)− logFE

W(κ;N) = 0. (6.16)
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Indeed, the interacting action is linear in the number of fundamental, symmetric and

antisymmetric representations and these numbers obey the above relations. There are also

constant terms appearing in the rewriting of traces in terms of traces in the fundamental,

but these terms drop since the sum of coefficients in (6.16) is zero.

6.3.1 All-order resummation of the one-loop Wilson scaling functions

As a further application of the formula (6.13) we can extend fixed N expansions like (5.3)

and (5.5) as far as needed. In particular, for those two SU(3) models one finds the long

expansions

logFA
W(κ; 3) =− 9ζ(3)

2
κ2 +

175ζ(5)

18
κ3 − 12005ζ(7)

576
κ4 +

1491ζ(9)

32
κ5 − 2247091ζ(11)

20736
κ6

+
5400395ζ(13)

20736
κ7 − 568668815ζ(15)

884736
κ8 +

261350914825ζ(17)

161243136
κ9

− 8943246419107ζ(19)

2149908480
κ10 +

1552522828675ζ(21)

143327232
κ11

− 10606464907364417ζ(23)

371504185344
κ12 +

14121732251822125ζ(25)

185752092672
κ13

− 8742217069824025ζ(27)

42807066624
κ14 +

2464280244310231795ζ(29)

4458050224128
κ15

− 3437685880746945869965ζ(31)

2282521714753536
κ16

+
392539284372606415825ζ(33)

95105071448064
κ17 + · · · ,

logFB
W(κ; 3) =− 50ζ(5)

9
κ3 +

1225ζ(7)

36
κ4 − 1323κ5ζ(9)

8
+

1960805κ6ζ(11)

2592

− 17688385ζ(13)

5184
κ7 +

142167025ζ(15)

9216
κ8 − 2834936114725ζ(17)

40310784
κ9

+
17410184710919ζ(19)

53747712
κ10 − 18006386209175ζ(21)

11943936
κ11

+
164517685436679575ζ(23)

23219011584
κ12 − 1560309607284420125ζ(25)

46438023168
κ13

+
4547264436973375ζ(27)

28311552
κ14 − 861837268172768598385ζ(29)

1114512556032
κ15

+
133626553771108660672025ζ(31)

35664401793024
κ16

− 144697635847665710153575ζ(33)

7925422620672
κ17 + · · · . (6.17)

We remind that in the SU(2) theory, the analogous expansion is (1.7), cf. also (1.6), and

one has the all-order series coefficients

logFA
W(κ; 2) =

8√
π

∞∑

n=1

(−1)n
4n − 1

(n+ 1)2 n!
Γ

(
n+

3

2

)
ζ(2n+ 1)κn+1, (6.18)
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leading to the following integral representation14

logFA
W(κ; 2) = 4

∫ ∞

0

dt et

t (et − 1)2

[
−3 + 4 J0

(
t
√
κ
)
− J0

(
2 t
√
κ
)]
. (6.19)

For the SU(3) expansions in (6.17), guided by (6.18), we easily find

logFA
W(κ; 3) =

4√
π

∞∑

n=1

(−1)n
3−n (−1− 21+2n + 31+2n)

(n+ 1)2 n!
Γ

(
n+

3

2

)
ζ(2n+ 1)κn+1,

(6.20)

logFB
W(κ; 3) =

4√
π

∞∑

n=1

(−1)n
3−1−n (−1+32+2n−41+n−41+2n)

(n+ 1)2 n!
Γ

(
n+

3

2

)
ζ(2n+1)κn+1,

as can be checked by reproducing (6.17).15 The sums in (6.20) can be written in integral

form by using the identity

∫ ∞

0
dt

tp et

(et − 1)2
= p! ζ(p), p > 1, (6.21)

and we obtain

logFA
W(κ; 3) = 4

∫ ∞

0

dt et

t (et − 1)2

[
−7 + 6 J0

(
t
√

κ
3

)
+ 3 J0

(
2 t
√

κ
3

)
− 2 J0

(
t
√

3κ
)]
,

(6.22)

logFB
W(κ; 3) = 2

∫ ∞

0

dt et

t (et − 1)2

[
− 5 + 4 J0

(
t
√

κ
3

)
+ 4 J0

(
2 t
√

κ
3

)

− 4 J0

(
t
√

3κ
)

+ J0

(
4 t
√

κ
3

) ]
,

with a structure close to the SU(2) expression (6.19).

It is now a straightforward exercise to repeat the same analysis for a general SU(N)

gauge group. The final result is remarkably neat. Let us introduce the notation

J̃0(x) = J0(x)− 1. (6.23)

Then, for the five models we obtain (of course, only 3 expressions are independent thanks

to (6.16))

A model.

logFA
W(κ;N) = 4

∫ ∞

0

dt et

t (et − 1)2

[
N J̃0

(
t

√
2 (N−1)κ

N

)
+N (N−1) J̃0

(
t

√
2κ

N (N−1)

)

− (N − 1) J̃0

(
t

√
2N κ

N − 1

)]
. (6.24)

14Notice that the successive derivation of (6.19) in [35] was done independently and with a different

method strongly suggesting that there are no non-perturbative ambiguities in the reconstruction from the

weak-coupling expansion, at least in the half-plane Re(κ) > 0.
15We checked agreement with many more terms, a task that is possible due to (6.13).
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B model.

logFB
W(κ;N) =

∫ ∞

0

dt et

t (et − 1)2

[
2 (N − 1)(N − 2) J̃0

(
t

√
2κ

N (N − 1)

)

+N (N − 1) J̃0

(
t

√
8κ

N (N−1)

)

+ 2 (N − 1) J̃0

(
t (N − 2)

√
2κ

N (N − 1)

)
+ 2 (N − 2) J̃0

(
t

√
2 (N − 1)κ

N

)

− 4 (N − 1) J̃0

(
t

√
2N κ

N − 1

)
+ 2 J̃0

(
t

√
8 (N − 1)κ

N

)]
. (6.25)

C model.

logFC
W(κ;N) =

∫ ∞

0

dt et

t (et − 1)2

[
2 (N − 1)(N + 2) J̃0

(
t

√
2κ

N (N − 1)

)

+ (N − 2) (N − 1) J̃0

(
t

√
8κ

N (N − 1)

)

+ 2 (N − 1) J̃0

(
t (N − 2)

√
2κ

N (N − 1)

)
+ 2 (N + 2) J̃0

(
t

√
2 (N − 1)κ

N

)

− 4 (N − 1) J̃0

(
t

√
2N κ

N − 1

)]
. (6.26)

D model.

logFD
W(κ;N) = 2

∫ ∞

0

dt et

t (et − 1)2

[
4 (N − 1) J̃0

(
t

√
2κ

N (N − 1)

)

+ (N − 2) (N − 1) J̃0

(
t

√
8κ

N (N − 1)

)

+ 2 (N − 1) J̃0

(
t (N − 2)

√
2κ

N (N − 1)

)
+ 4 J̃0

(
t

√
2 (N − 1)κ

N

)

− 2 (N − 1) J̃0

(
t

√
2N κ

N − 1

)]
. (6.27)

E model.

logFE
W(κ;N) = 2

∫ ∞

0

dt et

t (et − 1)2

[
(N − 1)2 J̃0

(
t

√
8κ

N (N − 1)

)

+ 2 (N − 1) J̃0

(
t (N − 2)

√
2κ

N (N − 1)

)

− 2 (N − 1) J̃0

(
t

√
2N κ

N − 1

)
+ J̃0

(
t

√
8 (N − 1)κ

N

)]
(6.28)
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As a final remark, it may be interesting to stress that, the function log FW(κ;N) admits a

finite non-trivial limit when N →∞. This can be verified using (6.9), which shows that in

this limit the traces at the saddle point are simply tr an0 = ±1.16 This can also be seen from

the explicit expansion in (6.15) Taking this limit in the above expressions and defining,

cf. (6.23),

J̃1(x) = xJ1(x)− x2

4
, (6.29)

we can write following representations for the N →∞ limit of the scaling functions

logFA
W(κ;∞) = 4

∫ ∞

0

dt et

t (et − 1)2

[
J̃0(
√

2κ t) + J̃1(
√

2κ t)

]
,

logFB
W(κ;∞) = −2

∫ ∞

0

dt et

t (et − 1)2

[
J̃0(
√

2κ t)− J̃0(2
√

2κ t)− 3 J̃1(
√

2κ t)

]
,

logFC
W(κ;∞) = 6

∫ ∞

0

dt et

t (et − 1)2

[
J̃0(
√

2κ t) + J̃1(
√

2κ t)

]
,

logFD
W(κ;∞) = 8

∫ ∞

0

dt et

t (et − 1)2

[
J̃0(
√

2κ t) + J̃1(
√

2κ t)

]
,

logFE
W(κ;∞) = 2

∫ ∞

0

dt et

t (et − 1)2

[
J̃0(2

√
2κ t) + 4 J̃1(

√
2κ t)

]
. (6.30)

Such large charge and large N simultaneous limit, with N � n, has been recently consid-

ered also in O(N) invariant scalar theories [44].

7 The heavy BPS regime of one-point Wilson functions

As we remarked at the end of the Introduction, the large κ expansion of the expres-

sions (6.24)–(6.28) is potentially rather interesting since non-perturbative corrections of

the form ∼ exp(−c√κ) are expected to be present and associated with heavy electric BPS

states (matter hypermultiplets and reduced vector multiplet) with masses ∼ √κ in the

double scaling limit. Hence, the large κ limit probes the weak coupling BPS states in the

moduli space point selected by the relevant saddle point associated with the large R-charge

insertion. In this section, we present the tools that are needed to compute the κ� 1 expan-

sion of (6.24)–(6.28) and discuss the detailed matching with the mass spectrum of heavy

BPS states.

7.1 Large κ expansion and non-perturbative corrections

The example of SU(2) has been discussed in [35]. Here, we want to present some general

expressions that may be used for all other cases. To this aim, it will be enough to revisit

the SU(2) case and work out the SU(3) A and B models. All other cases may be treated

16Here we point out that this is the case for U(N) for any N . As N →∞, the SU(N) saddle point moves

closer and closer to the U(N) saddle point, as should be the case since both U(N) and SU(N) theories have

the same large N limit.
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by the same formulas. It is convenient to write the resummed scaling function (6.24) for

N = 2, 3 and (6.25) for N = 3 in the form

logFA
W(κ; 2) = 4

[
4B(
√
κ)− B(2

√
κ)

]
,

logFA
W(κ; 3) = 4

[
6B
(

1√
3

√
κ

)
+ 3B

(
2√
3

√
κ

)
− 2B(

√
3
√
κ)

]
,

logFB
W(κ; 3) = 2

[
4B
(

1√
3

√
κ

)
+ 4B( 2√

3

√
κ)− 4B(

√
3
√
κ) + B

(
4√
3

√
κ

)]
, (7.1)

where the regulated B function is

Bη(x) =

∫ ∞

0

dt et

t (et − 1)2
tη [J0(t x)− 1], η > 0, (7.2)

and the limit η → 0 is taken in (7.1).17 The large x expansion of this function has

a perturbative part BP plus a non-perturbative contribution BNP that is exponentially

suppressed at large x. The perturbative part can be computed easily by Mellin transform

methods and amounts to

BP,η(x) =
x2

4
(log x− log 2 + γE − η−1) +

1

12
(log x+ 12 log(A)− log 2− 1), (7.3)

where A is Glaisher’s constant (log A = 1
12−ζ ′(−1)). Notice that the singular term ∼ x2η−1

always correctly cancels in the combinations appearing in (6.24)–(6.28).18 Remarkably, the

terms in (7.3) exhaust all contributions that are not exponentially suppressed as κ → ∞,

i.e. there are no algebraically decaying inverse powers of κ.

The non-perturbative part is regular for η → 0. To determine it we can write

(
1

x
B′(x)

)′
=

∞∑

p=1

p

∫ ∞

0
dt e−p t

t

x
J2(tx) =

1

x3

∞∑

p=1

[
2p− p2(2p2 + 3x2)

(p2 + x2)3/2

]
. (7.4)

where we applied a simple differential operator to get a convergent sum. In particular,

this expression can be evaluated at η = 0. To extract the non-perturbative part of the

infinite sum, we convert it into a contour integral using the standard kernel π cot(π p) and

deforming the p integration contour over the semi-infinite line [i x,+i∞), see e.g. [45]. This

gives the representation

BNP(x)=

∞∑

m=1

e−2πmx

( √
x

2πm3/2
+

11

32π2m5/2

1√
x
− 31

1024π3m7/2

1

x3/2
+

177

16384π4m9/2

1

x5/2

− 7125

1048576π5m11/2

1

x7/2
+

102165

16777216π6m13/2

1

x9/2
+ · · ·

)
. (7.5)

17The η → 0 limit is finite since the integrand of the combinations in (7.1) have no singularities at t = 0.
18Just to give an example, for the A model one has, cf. (6.24),

N

[√
2 (N − 1)κ

N

]2

+N (N − 1)

[√
2κ

N (N − 1)

]2

− (N − 1)

[√
2N κ

N − 1

]2

= 0.
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Applying (7.3) and (7.5) to the specific cases in (7.1) we then obtain

logFA
W(κ; 2) =− 4 log(2)κ+

1

2
log κ+ 12 log A− 4

3
log 2− 1

+
8κ1/4

π
e−2π

√
κ

(
1 +

11

16π

1√
κ
− 31

512π2

1

κ
+ · · ·

)
+ · · · ,

logFA
W(κ; 3) =− 2 (3 log 3− 2 log 2)κ+

7

6
log κ+ 28 log A− 4

3
log 2− 11

6
log 3− 7

3

+
4 (27κ)1/4

π
e−2π

√
κ
3

(
1 +

11

16π

√
3

κ
− 93

512π2

1

κ
+ · · ·

)
+ · · · ,

logFB
W(κ; 3) =− 2 (3 log 3− 4 log 2)κ+

5

12
log κ+ 10 log A +

1

6
log 2− 13

12
log 3− 5

6
+

+
4 (27κ)1/4

3π
e−2π

√
κ
3

(
1 +

11

16π

√
3

κ
− 93

512π2

1

κ
+ · · ·

)
+ · · · , (7.6)

where we have written the perturbative part plus the first terms of the leading non-

perturbative correction. The subleading non-perturbative corrections are rather different

in the two SU(3) models and can be studied from the higher order terms with m ≥ 2

in (7.5). Of course the first of (7.6) agrees with GKT result, see their eq. (4.21). Notice

that, as remarked in [35], the term ∼ (e−2π
√
κ)2 cancels in logFW(κ; 2). Actually, one can

check that all even powers of ∼ e−2π
√
κ cancel, but that this does not happen for higher

rank gauge groups, even considering only the A model.

7.2 Identification of the relevant BPS spectrum at large κ

To conclude this section, we give a quantitative explanation of the various terms appearing

in the resummation formulae for the scaling functions, eqs. (6.24)–(6.28). To this aim one

can consider the κ � 1 limit and, in particular, the non-perturbative corrections. From

the expansion (7.5), we can identify the N -dependent coefficient of t in the J̃0 functions

with the exponent in the exponentially suppressed terms. This is in turn proportional to

the mass of degenerate heavy states. Their multiplicity is proportional to the N -dependent

prefactors of the J̃0 functions. The peculiar algebraic dependence on N allows to identify

the origin of the various terms in the resummed scaling functions.

The J̃0 functions in (6.24)–(6.28) appear always as a group with positive (integer)

coefficients and argument ∼ √κ proportional to

1√
N(N − 1)

, or

√
N − 1

N
. (7.7)

Besides, there is a single negative term common to all models and reading

− 4 (N − 1) J̃0

(
t

√
2N κ

N − 1

)
. (7.8)

The quantities in (7.7) are the components of a0 in (6.8). This is not surprising be-

cause (6.13) shows that a0 is indeed the relevant point on the sphere tr a2 = 1 governing

the large n contributions to the Wilson scaling function. As a consequence, we can read

the mass spectrum by expanding Φ around
√
κ a0.
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Hypermultiplets. Hypermultiplets get mass from the Yukawa-type coupling and the

associated heavy states turn out to be in correspondence with the positive contributions

with Bessel function arguments proportional to (7.7). Let us look in detail to the A model

case. From the term ∼ Q̃ΦQ and replacing Φ → √κ a0 we get a mass spectrum with

2N × (N − 1) masses ∼
√

κ
N(N−1) and 2N × 1 masses ∼

√
κ (N−1)

N , cf. (6.8), in agreement

with the positive contributions in (6.24). The same exercise should be repeated for the

other models taking into account the representation content. As a consistency check, we can

verify that in all ABCDE models the ratio between the sum of the prefactors of positive

terms and the sum of dimensions of matter representations is constant, i.e. independent on

N . For instance, in the A model we have

4N + 4N(N − 1) = 4N2 = 2× [2N dim ] , (7.9)

and, similary, in the other models we have, cf. table 1,19

B : 2 (N − 1)(N − 2) +N(N − 1) + 2 (N − 1) + 2 (N − 2) + 2 = 3N (N − 1)

= 2× [(N − 2) dim + dim ] ,

C : 2 (N − 1)(N + 2) + (N − 2)(N − 1) + 2 (N − 1) + 2 (N + 2) = 3N (N + 1)

= 2×
[
(N + 2) dim + dim

]
,

D : 8 (N − 1) + 2 (N − 2)(N − 1) + 4 (N − 1) + 8 = 2N (N + 3)

= 2×
[
4 dim + 2 dim

]
,

E : 2(N − 1)2 + 4(N − 1) + 2 = 2N2 = 2×
[
dim + dim

]
. (7.10)

W -multiplet. The common term (7.8) is instead due to the heavy states in the model-

independent gauge sector. In this case the mass spectrum can be computed by considering

the quartic coupling ∼ tr[W,Φ]2 where W = W aT a are the SU(N) gauge fields. The

U(N − 1) unbroken gauge symmetry at Φ =
√
κ a0 predicts (N − 1)2 massless gauge

bosons. The remaining N2 − 1 − (N − 1)2 = 2 (N − 1) fields are massive W -bosons in

the effective large n limit. They are associated with the hermitian traceless W matrices

W
(`)
ij = 1√

2
(δi,`δj,N + δi,Nδj,`) and W̃

(`)
ij = i√

2
(δi,`δj,N − δi,Nδj,`),for ` = 1, . . . , N − 1.

The common mass is obtained evaluating the commutator with a0. This gives a factor N

times the repeated component of a0, i.e. N × 1√
N(N−1)

=
√

N
N−1 , in agreement with (7.8),

including multiplicity.
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A Field theory action and Feynman rules

We work in N = 1 superspace formalism and we consider the diagrammatic difference of

the N = 2 SYM theory with respect to the N = 4 theory. We schematically review these

techniques and our conventions.

The N = 2 theory contains both gauge fields, organized in an N = 2 vector multiplet,

and matter fields, organized in hypermultiplets. In terms of N = 1 superfields

Vector(N=2) =
(
V,Φ

)
adjoint of SU(N)

Hyper(N=2) =
(
Q, Q̃

)
representations R, R̄ of SU(N) , (A.1)

where V is a N = 1 vector superfield, Φ, Q, Q̃ are N = 1 chiral superfields.

In the Fermi-Feynman gauge we separate the part of the action which only involves

the adjoint fields

Sgauge =

∫
d4x d2θ d2θ̄

(
− V a�V a + Φ†aΦa +

i

4
gfabc

[
D̄2(DαV a)

]
V b (DαV

c)

+ 2 igfabc Φ†aV bΦc + · · ·
)
, (A.2)

where the dots stand for higher order vertices and fabc are the structure constants of

SU(N).

The action for the matter part, again in the Fermi-Feynman gauge, is

Smatter =

∫
d4x d2θ d2θ̄

(
Q†uQu + 2g Q†uV a(T a) vu Qv + Q̃u Q̃†u − 2g Q̃u V a(T a) vu Q̃

†
v + · · ·

+ i
√

2g Q̃uΦa(T a) vuQv θ̄
2 − i

√
2g Q†uΦ† a(T a) vu Q̃

†
v θ

2
)
, (A.3)

where by T a we denote the SU(N) generators in the representation R, and u, v =

1, . . . dimR includes the cases in which R is reducible, namely it contains several copies

of a given irreducible representation.

In figure 4 we draw the Feynman rules that we need in the present paper.

The total action for the N = 2 theory is simply

SN=2 = Sgauge + Smatter . (A.4)

The N = 4 SYM theory can be seen as a particular N = 2 theory containing a vector

multiplet and an hypermultiplet, both in the adjoint representation of the gauge group. So

the field content is:

Vector(N=4) =

{
Vector(N=2) =

(
V,Φ

)
adj of SU(N)

Hyper(N=2) =
(
H, H̃

)
adjoint of SU(N) ,
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v

u

a

= ig
√

u

v

a

= −ig
√

Figure 4. Feynman rules involving Φ, Q and Q̃ chiral fields, with solid, dashed and dotted lines

respectively.

b c

− =

b bc c

TrR(T bT c) Tradj(T
bT c) Tr′R(T

bT c) = C ′
bc

Q

Q̃

H

H̃

Figure 5. One-loop correction to Φ propagator in the difference theory. The color factor is

proportional to the β0 coefficient, so it vanishes for conformal theories.

Thus we can write

SN=4 = Sgauge + SH , (A.5)

where SH has the same structure as Smatter with Qu, Q̃u replaced by Ha,H̃a and the

generator components (Ta)
v
u by the structure constants ifabc.

From (A.4) and (A.5) it is easy to realize that the total action of our N = 2 theory

can be written as

SN=2 = SN=4 − SH + Smatter . (A.6)

Given any observable A of the N = 2 theory, which also exists in the N = 4 theory, we

can write

∆A = AN=2 −AN=4 = Amatter −AH . (A.7)

Thus, if we compute the difference with respect to the N = 4 result, we have to consider

only diagrams where the hypermultiplet fields, either of the Q, Q̃ type or of the H, H̃ type,

propagate in the internal lines, and then take the difference between the (Q, Q̃) and the

(H, H̃) diagrams. This procedure reduces in a significant way the number of diagrams to

be computed. The first simple example is the 1-loop correction to the chiral Φ propagator.

The two diagrams involving Qs and Hs fields have the same Feynman rules and generate

the same loop integral, but differ in their color structure. The color combination precisely

accounts for the C ′ tensor that we find in the matrix model, see figure 5.

We can generalize this fact for higher order corrections: the only contributions to the

difference theory come from a series of building blocks, made of hypermultiplet loops with

insertions of adjoint lines, coming from Φ or V fields, see figure 6. The number of insertions

of adjoint lines counts the power of g and specifies the rank of the color tensor, which is

always of the form C ′, which we found inside the perturbative expansion of the matrix

model, see equation (2.5).
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a1

a2a3

C ′
a1a2a3

a1

a3

a2a4

C ′
a1a2a3a4

a1

a2a5

a4 a3

C ′
a1a2a3a4a5

a1

a4

a2a6

a5 a3

C ′
a1a2a3a4a5a6

Figure 6. Building blocks until g6 order. The overlapped wavy/solid lines stand for generic adjoint

fields (Φ or V ).

ai bi
c

ai

aj

bi

bj

Figure 7. The diagrams arising from the building block C ′(4), with color factors C ′ai,c,bi,c
and

C ′ai,aj ,bi,bj
respectively. Only the box diagram on the right contributes to the leading order in the

double scaling limit.

Each Feynman diagram is built from these building blocks, after suitable contraction

of the adjoint lines. As an example we easily build all the diagrams coming at order

g4, contributing to chiral/anti-chiral correlators. Since all the diagrams built from C ′(2)

and C ′(3) vanish due to conformal symmetry [27] and since we have two ways to close the

building block C ′(4), there exist two possible diagrams at this order, see figure 7.

The next orders will be more and more involved. Diagrams built from C ′(4), C
′
(5), C

′
(6)

will appear at g6 order (see [34] for a g6 analysis).

A.1 Evaluation of the color factors

The generators Ta with a = 1, . . . , N2 − 1 of the su(N) Lie algebra satisfy the algebra

[
Ta , Tb

]
= ifabc Tc . (A.8)

Generators in the fundamental representation are indicated by ta; they are Hermitean,

traceless N ×N matrices that we normalize by setting

tr tatb =
1

2
δab . (A.9)

We introduce the totally symmetric tensor dabc as the symmetrized trace of 3 generators:

tr
({
ta , tb

}
tc
)

=
1

2
dabc , (A.10)
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Traces of a higher number of generators in the fundamental representation are determined

by reducing contractions using the following fusion/fission identities:

tr (taM1taM2) =
1

2
tr M1 tr M2 −

1

2N
tr (M1M2) , (A.11)

tr (taM1) tr (taM2) =
1

2
tr (M1M2)− 1

2N
tr M1 tr M2 , (A.12)

where M1 and M2 are arbitrary (N ×N) matrices.

In a generic representation R we have

TrR TaTb = iR δab , (A.13)

where iR is the index of R. Higher order traces define a set of cyclic tensors

Ca1...am = TrR Ta1 . . . Tam . (A.14)

In our computations we encounter the particular combination of traces introduced in (2.5),

namely

C ′a1...am = TrR Ta1 . . . Tam − Tradj Ta1 . . . Tam , (A.15)

and in particular:

C ′a1a2
= (iR − iadj) δa1a2 = (iR −N) δa1a2 = −β0

2
δa1a2 (A.16)

where β0 the one-loop coefficient of the β-function of the corresponding N = 2 gauge

theory. In superconformal models, one has β0 = 0. If we consider a representation R made

of NF fundamental, NS symmetric and NA anti-symmetric representations, we have:

β0 =
(
NF +NS(N + 2) +NA(N − 2)− 2N

)
= 0 (A.17)

Solutions of this equation for NF , NS and NA determine the 5 superconformal theories for

SU(N) gauge group in table 1.

Higher order C ′ tensors can be computed in terms of fundamental traces using the

formula (see appendix A of [34] for more details):

C ′a1...am =
[
(NF + 2m−1

(
NS −NA

)
+N

(
NS +NA − (1 + (−1)m)

)]
trTa1 . . . Tam

+
m−1∑

p=1

(
m

p

)(
NS +NA

2
− (−1)m−p

)
trTa1 . . . Tap trTap+1 . . . Tam . (A.18)

which can be further reduced using (A.11).

B Angular integration over SU(N)

An important step in the concrete application of (3.28) is the calculation of the angular

integration ⟪◦⟫ over the sphere SN−1 with traceless constraint. It is closely related to the

N = 4 expectation value with SU(N) gauge group

〈O(a)〉N=4 = N

∫
dNa

N∏

µ<ν

(aµ − aν)2 δ(tr a) e− tr(a2)O(a), (B.1)
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where N is taken such that 〈1〉N=4 = 1, and we have rescaled the matrix a in order to

have Gaussian measure ∼ e− tr a2
as above. To make the relation clear, let us consider a

homogeneous function O(λ a) = λdO O(a). We can introduce polar coordinates and write20

〈O(a)〉N=4 = CN ⟪O(a)⟫
∫ ∞

0
dr e−r

2
rN(N−1)+N−2+dO . (B.2)

Fixing CN by the requirement ⟪1⟫ = 1 gives the explicit formula

⟪O(a)⟫ = 〈O(a)〉N=4
Γ
(

1
2(N2 − 1)

)

Γ
(

1
2(N2 − 1 + dO)

) . (B.3)

Using the results in [27] it is easy to compute this formula for operators O(a) with large

dimension dO. Examples are

⟪tr(a2
)p
X⟫ = ⟪X⟫, ⟪tr(a4

)⟫ =
2N2 − 3

N(N2 + 1)
, ⟪tr(a3

)2⟫ =
3(N − 2)(N + 2)

N(N2 + 1)(N2 + 3)
,

⟪tr(a6
)⟫ =

5(N4 − 3N2 + 3)

N2(N2 + 1)(N2 + 3)
, ⟪tr(a3

)
tr
(
a5
)⟫ =

15(N − 2)(N + 2)(N2 − 2)

N2(N2 + 1)(N2 + 3)(N2 + 5)
,

(B.4)

and so on.

C Weak-coupling expansion of the scaling functions: Higher order terms

In this appendix, we give the terms in (3.34) for the A and E models, keeping only the

non-vanishing quantities. We avoid writing down similar expansions for the BCD, however

these results are available upon request.

C.1 Scaling function F (2)(κ;N)

We define

P (2)(k) = 2k
Γ
(
N2+1

2 + k
)

Γ
(
N2+1

2

) , (C.1)

which will be useful in making all the formulas more compact.

Model A.

f
(2)
3 =−9

2
, (C.2)

f
(2)
5 =

25
(
2N2 − 1

)

N (N2 + 3)
,

f
(2)
7 =−1225

(
8N6 + 4N4 − 3N2 + 3

)

16N2P (2)(3)
,

20Notice that a factor r−1 comes from the δ function.
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f
(2)
9 =

1323
(
26N8 + 28N6 − 3N4 + 6N2 − 9

)

4N3P (2)(4)
,

f
(2)
11 =−17787

(
122N10 + 280N8 + 48N6 − 15N4 + 45

)

16N4P (2)(5)
,

f
(2)
5,5 =

5775(N − 2)(N + 2)
(
N6 −N4 − 43N2 − 37

)

2 (N2 + 3)P (2)(5)
,

f
(2)
13 =

552123
(
N2 + 1

) (
34N10 + 110N8 − 29N6 + 20N4 − 15

)

8N5P (2)(6)
,

f
(2)
5,7 =−15015(N − 2)(N + 2)

(
22N8 + 11N6 − 1167N4 − 531N2 + 705

)

2N (N2 + 3)P (2)(6)
,

f
(2)
15 =−41409225

(
540N14+3780N12+4676N10+440N8+329N6−735N4+735N2+315

)

512N6P (2)(7)
,

f
(2)
7,7 =

1576575(N2 − 4)

64N2P (2)(3)P (2)(7)

(
98N14 + 928N12 − 4151N10 − 44359N8 − 42036N6 + 26754N4

+ 14553N2 − 16299
)
,

f
(2)
5,9 =

675675(N−2)(N+2)
(
23N10 + 70N8 − 1455N6 − 1335N4 + 192N2 − 855

)

4N2 (N2 + 3)P (2)(7)
.

Model E.

f
(2)
5 =−100

(
N2 − 4

)

NP (2)(2)
, (C.3)

f
(2)
7 =

3675
(
N4 − 6N2 + 8

)
ζ(7)

N2P (2)(3)
,

f
(2)
9 =−15876

(
7N6 − 53N4 + 136N2 − 144

)
ζ(9)

N3P (2)(4)
,

f
(2)
11 =

1067220
(
N2 − 4

) (
3N6 − 13N4 + 33N2 − 48

)

N4P (2)(5)
,

f
(2)
5,5 =

23100
(
N2 − 4

) (
N6 + 26N4 − 121N2 − 626

)

P (2)(2)P (2)(5)
,

f
(2)
13 =−8281845

(
N2 − 4

) (
11N8 − 43N6 + 112N4 − 320N2 + 640

)

N5P (2)(6)
,

f
(2)
5,7 =−1801800

(
N2 − 4

)2 (
N6 + 43N4 − 121N2 − 883

)

NP (2)(2)P (2)(6)
,

f
(2)
15 =

289864575(N−2)(N+2)
(
143N10− 275N8− 708N6+ 2880N4+ 4800N2− 34560

)

16N6P (2)(7)
,

f
(2)
7,7 =

4729725(N2−4)

4N2P (2)(3)P (2)(7)

(
31N12 + 1924N10 − 8334N8 − 68608N6 + 316415N4

+ 498684N2 − 3764112
)
,

f
(2)
5,9 =

2027025(N2−4)
(
27N10+ 1553N8 − 14171N6 + 11887N4 + 159104N2 − 521280

)

N2P (2)(2)P (2)(7)
.
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C.2 Scaling function F (3)(κ;N)

We define, similarly to what we did before:

P (3)(k) = 2k
Γ
(
N2+5

2 + k
)

Γ
(
N2+5

2

) . (C.4)

Model A.

f
(3)
3 = −9

2
,

f
(3)
5 =

25
(
2N6 + 43N4 + 60N2 − 105

)

NP (3)(3)
,

f
(3)
7 = −1225

(
8N8 + 260N6 + 281N4 − 378N2 + 693

)

16N2P (3)(4)
,

f
(3)
9 =

1323
(
26N10 + 1154N8 + 2129N6 − 213N4 + 765N2 − 3861

)

4N3P (3)(5)
,

f
(3)
11 = −17787

(
122N12+ 6950N10+ 24848N8+ 8085N6− 12645N4+ 15345N2 + 32175

)

16N4P (3)(6)
,

f
(3)
5,5 =

5775

2P (3)(3)P (3)(6)

(
N14 + 88N12 + 15N10 − 18088N8 − 39661N6 + 1053540N4

+ 4281405N2 + 4399500
)
,

f
(3)
13 =

552123
(
N2 − 1

)

8N5P (3)(7)

(
34N12 + 2424N10 + 17285N8 + 29655N6 + 24450N4

+ 41145N2 + 16575
)
,

f
(3)
5,7 = − 15015

(
N2 − 1

)

2NP (3)(3)P (3)(7)

(
22N14 + 2323N12 + 6951N10 − 473938N8 − 1641088N6

+ 30589515N4 + 136118115N2 + 144364500
)
,

f
(3)
15 = − 41409225

512N6P (3)(8)

(
540N16 + 45624N14 + 445760N12 + 771476N10 + 62225N8

+ 212520N6 − 739410N4 + 1434300N2 + 508725
)
,

f
(3)
7,7 =

1576575

64N2P (3)(4)P (3)(8)

(
98N20+ 13168N18+ 195787N16− 1872045N14− 38053705N12

+ 100653479N10 + 2925371701N8 + 6196842921N6

− 4983588981N4 − 7790105043N2 + 11951297820
)
,

f
(3)
5,9 =

675675

4N2P (3)(3)P (3)(8)

(
23N18 + 2775N16 + 14758N14 − 564239N12 − 2460606N10

+ 41052509N8 + 170225310N6 + 132265575N4

+ 70609635N2 + 273142260
)
. (C.5)
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Theory E.

f
(3)
5 = −300

(
N4 + 19N2 − 140

)

NP (3)(3)
,

f
(3)
7 =

11025
(
N6 + 29N4 − 286N2 + 616

)
ζ(7)

N2P (3)(4)
,

f
(3)
9 =

7938
(
41N8 + 1745N6 − 19474N4 + 73200N2 − 123552

)

N3P (3)(5)
,

f
(3)
11 =

533610
(
17N10 + 1022N8 − 11221N6 + 49278N4 − 150936N2 + 274560

)

N4P (3)(6)
,

f
(3)
5,5 =

69300
(
N12 + 92N10 + 2936N8 − 6402N6 − 389297N4 + 198070N2 + 14709800

)

P (3)(3)P (3)(6)
,

f
(3)
13 = − 552123

N5P (3)(7)

(
451N12 + 37030N10 − 335741N8 + 1002420N6 − 2721600N4

+ 14421120N2 − 42432000
)
,

f
(3)
5,7 = − 5405400

NP (3)(3)P (3)(7)

(
N14+ 123N12+ 5062N10− 24814N8− 691079N6+ 3421571N4

+ 28187136N2 − 161534800
)
,

f
(3)
15 =

289864575

16N6P (3)(8)

(
377N14 + 41078N12 − 212527N10 − 1183248N8

+ 12210960N6 − 39049920N4 + 8148480N2 + 223257600
)
,

f
(3)
7,7 =

14189175

4N2P (3)(4)P (3)(8)

(
31N18 + 5386N16 + 319785N14 + 1056052N12

− 55231871N10 − 54950742N8 + 4657773463N6

− 8789685416N4 − 165039789408N2 + 691827702720
)
,

f
(3)
5,9 =

6081075

N2P (3)(3)P (3)(8)

(
27N16 + 4355N14 + 232522N12

− 1340066N10 − 29934729N8 + 223699871N6 + 827329700N4

− 12426876800N2 + 38840613120
)
. (C.6)

D Explicit expansions for the 2-point functions at low rank

In this appendix, we report the O(κ11) expansions of logF (∆)(κ;N) for ∆ = 2, 3, N = 3, 4,

i.e. the SU(3) and SU(4) theories, and for all the models A and E. For SU(3) model E is

the same as model B. There is of course agreement in the cases dealt with at lower order

in (1.10).
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D.1 SU(3)

Model A.

logFA (2)(κ; 3) =− 9κ2ζ(3)

2
+

425κ3ζ(5)

36
− 17885κ4ζ(7)

576
+

5565κ5ζ(9)

64

+ κ6

(
1925ζ(5)2

3456
− 2668897ζ(11)

10368

)

+ κ7

(
32984237ζ(13)

41472
− 5005ζ(5)ζ(7)

864

)

+ κ8

(
35035ζ(7)2

2304
+

146575ζ(5)ζ(9)

6144
− 2245755655ζ(15)

884736

)

+ κ9

(
− 1519375ζ(5)3

4478976
− 546184925ζ(11)ζ(5)

5971968
− 3488485ζ(7)ζ(9)

27648

+
669686057755ζ(17)

80621568

)

+ κ10

(
8083075ζ(7)ζ(5)2

1492992
+

4074100745ζ(13)ζ(5)

11943936
+

77643709ζ(9)2

294912

+
2905703801ζ(7)ζ(11)

5971968
− 29805018472801ζ(19)

1074954240

)
+O

(
κ11
)

(D.1)

logFA (3)(κ; 3) =− 9κ2ζ(3)

2
+

100κ3ζ(5)

9
− 15925κ4ζ(7)

576
+

147κ5ζ(9)

2

+ κ6

(
1925ζ(5)2

3456
− 8599591ζ(11)

41472

)

+ κ7

(
3177031ζ(13)

5184
− 5005ζ(5)ζ(7)

864

)

+ κ8

(
35035ζ(7)2

2304
+

146575ζ(5)ζ(9)

6144
− 1660676875ζ(15)

884736

)

+ κ9

(
−3488485ζ(7)ζ(9)

27648
− 203900125ζ(5)ζ(11)

2239488
+

29779203025ζ(17)

5038848

)

+ κ10

(
77643709ζ(9)2

294912
+

1084748665ζ(7)ζ(11)

2239488
+

12054174275ζ(5)ζ(13)

35831808

− 81777816230539ζ(19)

4299816960

)
+O

(
κ11
)

(D.2)

Model B.

logFB (2)(κ; 3) =− 25κ3ζ(5)

18
+

1225κ4ζ(7)

144
− 1323κ5ζ(9)

32

+ κ6

(
1925ζ(5)2

864
+

1952335ζ(11)

10368

)

+ κ7

(
−25025ζ(5)ζ(7)

864
− 17402099ζ(13)

20736

)

+ κ8

(
875875ζ(7)2

9216
+

75075ζ(5)ζ(9)

512
+

136961825ζ(15)

36864

)

+ κ9

(
− 1519375ζ(5)3

559872
− 257382125ζ(11)ζ(5)

373248
− 2977975ζ(7)ζ(9)

3072

− 1325476118395ζ(17)

80621568

)
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+ κ10

(
40415375ζ(7)ζ(5)2

746496
+

4722594305ζ(13)ζ(5)

1492992
+

20369349ζ(9)2

8192

+
6846364525ζ(7)ζ(11)

1492992
+

1959930123437ζ(19)

26873856

)
+O

(
κ11
)

(D.3)

logFB (3)(κ; 3) =− 25κ3ζ(5)

9
+

1225κ4ζ(7)

72
− 1323κ5ζ(9)

16
+ κ6

(
1925ζ(5)2

864
+

3908905ζ(11)

10368

)

+ κ7

(
−25025ζ(5)ζ(7)

864
− 34947341ζ(13)

20736

)

+ κ8

(
875875ζ(7)2

9216
+

75075ζ(5)ζ(9)

512
+

138263125ζ(15)

18432

)

+ κ9

(
−2977975ζ(7)ζ(9)

3072
− 1547635375ζ(5)ζ(11)

2239488
− 2696833678825ζ(17)

80621568

)

+ κ10

(
20369349ζ(9)2

8192
+

41167100975ζ(7)ζ(11)

8957952
+

28566741775ζ(5)ζ(13)

8957952

+
32217517886983ζ(19)

214990848

)
+O

(
κ11
)

(D.4)

D.2 SU(4)

Model A.

logFA (2)(κ; 4) =− 9κ2ζ(3)

2
+

775κ3ζ(5)

76
− 1968575κ4ζ(7)

82688
+

4979583κ5ζ(9)

82688

+ κ6

(
205590ζ(5)2

141151
− 24811876551ζ(11)

152145920

)

+ κ7

(
438160723ζ(13)

942080
− 3750747ζ(5)ζ(7)

282302

)

+ κ8

(
547389173331ζ(7)2

17814385408
+

110482515ζ(5)ζ(9)

2258416
− 623128271382045ζ(15)

451812524032

)

+ κ9

(
− 263656250ζ(5)3

425470629
− 978640180375ζ(11)ζ(5)

5732656896
− 119950027197ζ(7)ζ(9)

523952512

+
5207730821398105ζ(17)

1235840139264

)

+ κ10

(
7360327975ζ(7)ζ(5)2

1015157992
+

37291512115ζ(13)ζ(5)

63519744
+

237530487051ζ(9)2

551528960

+
2282495988773ζ(7)ζ(11)

2829914112
− 68597690492349161ζ(19)

5203537428480

)
+O

(
κ11
)

(D.5)

logFA (3)(κ; 4) =− 9κ2ζ(3)

2
+

955κ3ζ(5)

92
− 429289κ4ζ(7)

17664
+

78057κ5ζ(9)

1280

+ κ6

(
293062ζ(5)2

475571
− 68971014343ζ(11)

423464960

)
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+ κ7

(
387146868537ζ(13)

846929920
− 28131103ζ(5)ζ(7)

4755710

)

+ κ8

(
8779133363ζ(7)2

608730880
+

7550829ζ(5)ζ(9)

330832
− 57815474734017ζ(15)

43362811904

)

+ κ9

(
− 296509070ζ(5)3

3642398289
− 372030392019ζ(11)ζ(5)

4504608512
− 51442391ζ(7)ζ(9)

456320

+
28934892829055213ζ(17)

7219908182016

)

+ κ10

(
95215713593ζ(7)ζ(5)2

145695931560
+

26266560937331ζ(13)ζ(5)

90092170240
+

58925478183ζ(9)2

264665600

+
6682311515022143ζ(7)ζ(11)

16216590643200
− 2375425254570780269ζ(19)

192530884853760

)
+O

(
κ11
)

(D.6)

Model E.

logFE (2)(κ; 4) =− 300κ3ζ(5)

323
+

3675κ4ζ(7)

646
− 11907κ5ζ(9)

437
+ κ6

(
4324320ζ(5)2

2399567
+

899514ζ(11)

7429

)

+ κ7

(
−56216160ζ(5)ζ(7)

2399567
− 7791069ζ(13)

14858

)

+ κ8

(
184459275ζ(7)2

2399567
+

486486000ζ(5)ζ(9)

4093379
+

31105689615ζ(15)

13788224

)

+ κ9

(
− 177866832000ζ(5)3

40987003927
− 71209238100ζ(11)ζ(5)

126894749
− 189189000ζ(7)ζ(9)

240787

− 183399698911ζ(17)

18857424

)

+ κ10

(
186760173600ζ(7)ζ(5)2

2157210733
+

17296663956ζ(13)ζ(5)

6678671
+

91270827648ζ(9)2

45179245

+
24923233335ζ(7)ζ(11)

6678671
+

69791717567ζ(19)

1654160

)
+O

(
κ11
)

(D.7)

logFE (3)(κ; 4) =− 60κ3ζ(5)

23
+

735κ4ζ(7)

46
− 51597κ5ζ(9)

667
+ κ6

(
1840608ζ(5)2

475571
+

7252014ζ(11)

20677

)

+ κ7

(
−23927904ζ(5)ζ(7)

475571
− 322623873ζ(13)

206770

)

+ κ8

(
78513435ζ(7)2

475571
+

123243120ζ(5)ζ(9)

475571
+

9169675515ζ(15)

1323328

)

+ κ9

(
− 2226407040ζ(5)3

404710921
− 22130316780ζ(11)ζ(5)

17596127
− 814773960ζ(7)ζ(9)

475571

− 1136214410617ζ(17)

36722352

)

+ κ10

(
44416820448ζ(7)ζ(5)2

404710921
+

529221183348ζ(13)ζ(5)

87980635
+

11411072264592ζ(9)2

2551438415

+
147166606587ζ(7)ζ(11)

17596127
+

74162582637ζ(19)

532208

)
+O

(
κ11
)

(D.8)
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E Resummation of ζ(5)k contributions in the two-point functions of the

SU(3) theories

It seems very interesting to explore the large κ behaviour of the expansions (3.35)

and (3.36). As we recalled in the introduction, this is possible in the SU(2) model A,

see (1.8). For SU(N) with N > 2 this seems a very hard task since multiple products of

ζ-number appear even after taking the logarithm of F or G. Nevertheless, let us show how

to resum all terms proportional to ζ(5)k in the two SU(3) theories. For the SU(N) A and

E models the ζ(3) terms are already resummed, i.e. they appear as a single term in log F

and logG. This is not true in the other BCD models. For SU(3), this is the case thanks

to the identifications (1.5). Of course, we are not claiming that this partial resummation is

dominant in any sense. We just show that such contributions may be resummed and this

might hopefully hint at some structure or generalizations.

F (2) scaling function. Let us begin with the scaling function F (2) in the B model, that

turns out to be the simplest. We can write the function f̃ (2)(κ; 3) in (3.30) as

exp f̃B (2)(κ; 3)|ζ(5) =
∞∑

n=0

1

n!
(−10 ζ(5)κ3)n ⟪[tr(a3

)
]n[tr

(
a5
)
]n⟫. (E.1)

In SU(3) we have tr
(
a5
)

= 5
6 tr

(
a2
)

tr
(
a3
)
. Hence, cf. the first relation in (B.4),

exp f̃B (2)(κ; 3)|ζ(5) =

∞∑

n=0

1

n!

(
−5 ζ(5)κ3

3

)n
⟪[tr(a3

)
]2n⟫. (E.2)

For general N the expression of

tn = ⟪[tr(a3
)
]2n⟫, (E.3)

has not a simple dependence on n. Indeed

t1 =
3(N − 2)(N + 2)

N(N2 + 1)(N2 + 3)
,

t2 =
27(N − 2)(N + 2)(N4 + 19N2 − 140)

N2(N2 + 1)(N2 + 3)(N2 + 5)(N2 + 7)(N2 + 9)

t3 =
405(N − 2)(N + 2)(N8 + 62N6 + 969N4 − 20632N2 + 80080)

N3(N2 + 1)(N2 + 3)(N2 + 5)(N2 + 7)(N2 + 9)(N2 + 11)(N2 + 13)(N2 + 15)
.

(E.4)

Nevertheless, for N = 3 one has a simpler result (that may also be obtained by an explicit

angular parametrization of the matrix a)

SU(3) : tn =
Γ
(
n+ 1

2

)

6n
√
π (n+ 1)!

. (E.5)

Plugging this in (E.2) gives

exp f̃B (2)(κ; 3)|ζ(5) = exp

(
−5 ζ(5)

36
κ3

) [
I0

(
5 ζ(5)

36
κ3

)
+ I1

(
5 ζ(5)

36
κ3

)]
, (E.6)
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where In are modified Bessel functions of the first kind. To get log F from (3.31) we have

to solve the problem of expressing F in (3.31) in terms of f̃ in (3.30). This problem will

re-appear in every model and its solution is model independent. From the Mellin transform

of the Marčenko-Pastur weight we find the following relation (we omit the N variable that

plays no role in the relation)

log F (2)(κ)
∣∣∣
ζ(5)

=

∫ 1

0
dt f̃(4κ t1/3)

∣∣∣
ζ(5)

t−5/6

3π
√

1− t1/3
. (E.7)

Hence, in the B model we have

log FB (2)(κ; 3)
∣∣∣
ζ(5)

=
1

3π

∫ 1

0

dt t−5/6

√
1− t1/3

{
log

[
I0

(
80 ζ(5)

9
κ3 t

)
+ I1

(
80 ζ(5)

9
κ3 t

)]
− 80 ζ(5)

9
κ3 t

}
. (E.8)

The small κ expansion of this expressions indeed reproduces all the ζ(5)k terms we already

presented in (D.3) and generates them for higher order

log FB(κ; 3)
∣∣
ζ(5)

=− 25 ζ(5)

18
κ3 +

1925 ζ(5)2

864
κ6 − 1519375 ζ(5)3

559872
κ9 + 0 · κ12

+
673253125 ζ(5)5

80621568
κ15 − 11816582421875 ζ(5)6

835884417024
κ18 +O(κ21). (E.9)

In the A model, one finds that in SU(3)

exp f̃A (2)(κ; 3)|ζ(5) =

∞∑

n=0

1

n!

(
5 ζ(5)

8
κ3

)n
⟪(1− [tr

(
a3
)
]2
)n⟫. (E.10)

Expanding and using (E.5) we find

exp f̃A (2)(κ; 3)|ζ(5) =
∞∑

n=0

1

n!

(
5 ζ(5)

8
κ3

)n
2F1

(
1

2
,−n, 2;

2

9

)

= exp

(
5 ζ(5)

9
κ3

) [
I0

(
5 ζ(5)

72
κ3

)
+ I1

(
5 ζ(5)

72
κ3

)]
. (E.11)

To prove this one needs to compute the series

f(x) =
∞∑

n=0

xn

n!
2F1(1/2,−n, 2, 2/9) =

∞∑

n=0

cnx
n. (E.12)

Using the recursion properties of the hypergeometric function, one shows that the sequence

{cn} obeys

9 (n+ 2)(n+ 3) cn+2 − (16n+ 33) cn+1 + 7 cn = 0, c0 = 1, c1 =
17

18
. (E.13)

Thus, f(x) = x−1 g(x) where g(x) solves the differential problem

9x g′′(x)− 16x g′(x) + (7x− 1) g(x) = 0, g(0) = 0, g′(0) = 1. (E.14)
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The solution is

g(x) = e
8x
9 x

[
I0

(x
9

)
+ I1

(x
9

)]
, (E.15)

and this gives the result in (E.11). So, similarly to (E.8), this gives

log FA (2)(κ; 3)
∣∣∣
ζ(5)

=
1

3π

∫ 1

0

dt t−5/6

√
1−t1/3

{
log

[
I0

(
40 ζ(5)

9
κ3 t

)
+ I1

(
40 ζ(5)

9
κ3 t

)]
+

320 ζ(5)

9
κ3 t

}
. (E.16)

The first terms of the expansion at small κ are

log FA (2)(κ; 3)
∣∣∣
ζ(5)

=
425 ζ(5)

36
κ3 +

1925 ζ(5)2

3456
κ6 − 1519375 ζ(5)3

4478976
κ9 + 0 · κ12

+
673253125 ζ(5)5

2579890176
κ15 − 11816582421875 ζ(5)6

53496602689536
κ18 +O(κ21).

(E.17)

Comparing (E.8) and (E.16) one notices the nice relation

log FA (2)(21/3κ; 3)
∣∣∣
ζ(5)
− log FB (2)(κ; 3)

∣∣∣
ζ(5)

= 25 ζ(5)κ3. (E.18)

F (3) scaling function. The analysis of the F (3) scaling function is very similar. Our

results are

log FA (3)(κ; 3)
∣∣∣
ζ(5)

=
1

3π

∫ 1

0

dt t−5/6

√
1− t1/3

{
log

[(
20ζ(5)

9
κ3 t

)−1

I1

(
40ζ(5)

9
κ3 t

)]
+

320ζ(5)

9
κ3 t

}

=
100 ζ(5)

9
κ3 +

1925 ζ(5)2

3456
κ6 + 0 · κ9 − 422524375 ζ(5)4

2579890176
κ12 + 0 · κ15

+
11816582421875 ζ(5)6

106993205379072
κ18 − 69981778826171875 ζ(5)8

739537035580145664
κ24 +O(κ27), (E.19)

and, for the B model,

log FB (3)(κ; 3)
∣∣∣
ζ(5)

=
1

3π

∫ 1

0

dt t−5/6

√
1− t1/3

{
log

[(
40ζ(5)

9
κ3 t

)−1

I1

(
80ζ(5)

9
κ3 t

)]
− 80ζ(5)

9
κ3 t

}

= −25 ζ(5)

9
κ3 +

1925 ζ(5)2

864
κ6 + 0 · κ9 − 422524375 ζ(5)4

161243136
κ12 + 0 · κ15

+
11816582421875 ζ(5)6

1671768834048
κ18 − 69981778826171875 ζ(5)8

2888816545234944
κ24 +O(κ27), (E.20)

and, remarkably, we have again

log FA (3)(21/3κ; 3)
∣∣∣
ζ(5)
− log FB (3)(κ; 3)

∣∣∣
ζ(5)

= 25 ζ(5)κ3. (E.21)
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F Asymptotics of one-point Wilson functions

In this technical appendix, we collect various results that are needed in the proof of (6.13)

and (6.14).

We start by proving a bound that we will use to to ensure the validity of approximating

one-point functions in the presence of Wilson loop with a sequence of two-point functions.

Let Ωn be a sequence of operators with R-charge growing linearly with n and moreover Ωn

is orthogonal to all operators with lesser R-charge than it. Let O be an operator have a

series expansion:

O(a) =
∑

r

Tr(a). (F.1)

Where Tn has the same R-charge as Ωn. Let us assume that there exist n0, such that for

n ≥ m ≥ n0
∣∣∣∣
〈Tn+1 Ωm〉
〈Tn Ωm〉

∣∣∣∣ ≤
c

n
, (F.2)

with c a constant, then for n > n0

|〈Tn+k Ωn〉| ≤ |〈Tn Ωn〉|
|c|kn!

(n+ k)!
⇒

∞∑

k=1

|〈Tn+k Ωn〉| ≤ |〈Tn Ωn〉|
∞∑

k=1

|c|kn!

(n+ k)!
. (F.3)

In the n→∞ limit we have n!
(n+k)! → n−k so that

lim
n→∞

∞∑

k=1

|〈Tn+k Ωn〉| ≤ lim
n→∞

|〈Tn Ωn〉|
|c|
n

∞∑

k=0

|c|k
nk

. (F.4)

The geometric series in the expression above converges to 1, so that

lim
n→∞

∞∑

k=1

|〈Tn+k Ωn〉| ≤ lim
n→∞

|〈Tn Ωn〉|
|c|
n
. (F.5)

This equation tells us that if (F.2) is satisfied, then in the large n limit, the sum of

contributions of Tr with r > n in 〈OΩn〉 is suppressed by 1
n compared to that of Tn. In

addition Tr with r < n are orthogonal to Ωn so we can treat the large n limit of one-point

function 〈ΩnO〉 as the limit of a sequence of two-point functions, i.e.

lim
n→∞

〈ΩnO〉 = lim
n→∞

〈Ωn Tn〉 . (F.6)

F.1 Wilson one-point functions for SU(2)

Now we verify that this bound is satisfied in the case of Wilson loop for SU(2). In this

case Tn(a) = (2a)2n

(2n)! and Ωn = φn =: (tr a2)n := (2a2)n + · · · . So,

∣∣∣∣
〈Tn+k+1 Ωn〉
〈Tn+k Ωn〉

∣∣∣∣ =
1

(2n+ 2k + 1)(2n+ 2k + 2)

〈
(2a2)n+k+1 φn

〉

〈(2a2)n+k φn〉
, (F.7)
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where we recall that ±a are the two eigenvalues of the SU(2) matrix. Although it is not

possible to evaluate
〈
(2a)2n+2k Ωn

〉
exactly, with some effort we can extract the qualitative

large n behavior, which is all we need to verify (F.2). The leading term in φn is just a2n.

As a result we are looking for the large n behavior of
〈
a4n+2k

〉
. This is still a hard quantity

to compute in a N = 2 theory. But this problem can be neatly sidestepped in the double

scaling limit where we are taking the large n-limit while simultaneously dialing down the

coupling g2 ∼ 1
Im τ . In this regime the leading n behavior is entirely determined by the

N = 4 theory. As a result

〈
(2a2)n+k+1 Ωn

〉

〈(2a2)n+k Ωn〉
∼
〈
(2a2)2n+k+1

〉
N=4

〈(2a2)2n+k〉N=4

∼ (4n+ 2k)

Im τ
. (F.8)

Hence,

∣∣∣∣
〈Tn+k+1 Ωn〉
〈Tn+k Ωn〉

∣∣∣∣ ∼
1

(n+ k) Im τ
. (F.9)

Which is exactly the bound on growth we need to satisfy (F.2).

F.2 SU(N) generalization

Now we consider the case of SU(N). Since the odd terms in the expansion of Wilson loop

don’t contribute to the two-point function with φn we can safely ignore those and consider

O be the sum of even terms in Wilson loop. So, Tn = tr a2n

(2n)! . Hence,

∣∣∣∣
〈Tn+k+1 Ωn〉
〈Tn+k Ωn〉

∣∣∣∣ =
1

(2n+ 2k + 1)(2n+ 2k + 2)

〈
tr
(
a2n+2k+2

)
φn
〉

〈tr(a2n+2k)φn〉
. (F.10)

The r.h.s. can be dealt using the same saddle point approximation that we employed in

section (6.1). After keeping only the leading term in n the result is

〈Tn+k Ωn〉 ∼ cn+k

∫
dr rN

2−2+4n+2k exp
(
−4π Im τr2

)
Z1-loop(r tr a0). (F.11)

Once again the result is an integral whose behavior the weak coupling limit we can estimate

by ignoring the Z1-loop, hence

∣∣∣∣∣

〈
tr
(
a2n+2k+2

)
Ωn

〉

〈tr(a2n+2k) Ωn〉

∣∣∣∣∣ ∼
cn+k+1

cn+k

N2 − 2 + 4n+ 2k

Im τ
. (F.12)

In the large n limit, cn+k and cn+k+1 contribute at the same order in n, while the N2 in

the expression above can be ignored. Hence we get the same result as in the SU(2) case:

∣∣∣∣
〈Tn+k+1 Ωn〉
〈Tn+k Ωn〉

∣∣∣∣ ∼
1

(n+ k) Im τ
. (F.13)

Which justifies our approximation of one-point Wilson function by a sequence of two-point

functions in the main text.
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G Constrained extrema of tr a2n for the SU(N) dual matrix model

To obtain an effective matrix model (6.11), we need to do a saddle point integral around

the maxima of tr a2n subject to the two constraints tr a = 0 and tr a2 = 1. Using Lagrange

multiplier σ and λ respectively for the two constraints we find that the extrema of tr a2n

are given by

a2n−1
µ − 2λ aµ − σ = 0. (G.1)

This equation tell us that aµ are all roots of the same degree 2n− 1 polynomial. This

polynomial has only three non-zero term in degree 2n− 1, 1 and 0. As a result we can use

Descartes’ rule of signs to conclude that at most three of aµ are distinct. Since tr a = 0

constraint imposes that at least two of them have to be different, the possible number of

distinct aµ is 2 or 3. We will deal with both these cases separately, but before that we

eliminate λ and σ from (G.1). Summing over µ in (G.1) gives us σ = tr a2n−1

N . Multiplying

by aµ and then summing over µ results in 2λ = tr a2n. Hence we need to solve

a2n−1
µ − tr a2n aµ −

tr a2n−1

N
= 0. (G.2)

Now we consider the case of two distinct aµ. Up to a permutation of coordinates we can

write:

aµ = α for 1 ≤ µ ≤ k, aµ = β for k + 1 ≤ µ ≤ N. (G.3)

Imposing tr a = 0 and tr a2 = 1 results in

α = ±
√

(N − k)

kN
, β = ∓

√
k

N(N − k)
. (G.4)

These α and β solve the extremization equation (G.3) for any k. The resulting tr a2n is

tr a2n = k

(√
(N − k)

kN

)2n

+ (N − k)

(√
k

N(N − k)

)2n

. (G.5)

Notice that the expression above is invariant under k → N − k. Between the possible

values of k i.e. 1 ≤ k ≤ N − 1, tr a2n takes the highest value at k = 1 or k = N −
1. These correspond to the ±a0 used for the computation of one-point function in the

presence of Wilson loop. Taking into account the N extrema obtained from each of them

by permutation of coordinates there are 2N such candidates for the global maxima. So at

this stage our candidate for the maximum value of tr a2n is

tr
(
a2n

0

)
= [N(N − 1)]−n((N − 1) + (1−N)2n). (G.6)

To prove that it is indeed the global maximum we need to consider the extrema with

three distinct αµ and show that for them tr a2n does not exceed (G.6) . To this aim let

us label the distinct values of aµ by α > β > γ and let k and l be the multiplicities of α
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and γ. Some algebra shows that as a result of (G.2) we must have β = 0. So α = −γ and

k = l. Imposing tr a2 = 1 gives us

α =
1√
2k

(G.7)

The resulting a again satisfies (G.2) for any integer 1 ≤ k ≤ N
2 . The resulting tr a2n is

tr a2n = (2k)1−n (G.8)

Which is indeed less than the maximum we found earlier in (G.6) for N > 3. For N = 3,

it less than (G.6) for n > 2 and again we have the same result in large n limit.
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