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Abstract: Micro turbojets are used for propelling radio-controlled aircraft, aerial targets, and personal
air vehicles. When compared to full-scale engines, they are characterized by relatively low efficiency
and durability. In this context, the degraded performance of gas path components could lead to
an unacceptable reduction in the overall engine performance. In this work, a data-driven model
based on a conventional artificial neural network (ANN) and an extreme learning machine (ELM)
was used for estimating the performance degradation of the micro turbojet. The training datasets
containing the performance data of the engine with degraded components were generated using
the validated GSP model and the Monte Carlo approach. In particular, compressor and turbine
performance degradation were simulated for three different flight regimes. It was confirmed that
component degradation had a similar impact in flight than at sea level. Finally, the datasets were
used in the training and testing process of the ELM algorithm with four different input vectors. Two
vectors had an extensive number of virtual sensors, and the other two were reduced to just fuel flow
and exhaust gas temperature. Even with the small number of sensors, the high prediction accuracy of
ELM was maintained for takeoff and cruise but was slightly worse for variable flight conditions.

Keywords: ELM; ANN; compressor; turbine; degradation; microturbine; engine health management

1. Introduction

In operation, engine components face various physical problems, such as blade dam-
age, fouling, erosion, corrosion, excessive tip clearance, combustor damage, worn seals,
and many others. The overall loss of engine performance depends on the type and severity
of the deterioration and the components that are affected [1,2]. Component degradation
means a decrease in its efficiency and flow rate, which leads to an increase in fuel con-
sumption and exhaust gas temperature (EGT). Generally, a deteriorated engine provides
less thrust for a certain amount of fuel or needs more fuel to produce the required thrust.
For the user, predicting the remaining useful life (RUL) is most important because it makes
it possible to plan maintenance and make informed go/no do decisions. The main factors
that prevent the continued operation of the engine are the loss of the surge margin of the
compressor [3] and the exceeding of the maximum operating temperature of the turbine,
i.e., loss of the temperature margin [4].

A reliable model is necessary to simulate engine operation under off-design and
degraded conditions and to predict the loss in performance of engine components. Physics-
based models are used to effectively control a complex non-linear system, such as a gas
turbine, and monitor its performance [5]. There are many model-based or data-driven
diagnostic solutions for full-scale engines and power generation systems [6–8]. Since wear
alters key component parameters, the engine model requires an update or adaptation.
Therefore, significant efforts are focused on robust control systems that are resistant to
component degradation [9–11]. More insight into the wear of compressors and turbines
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is provided by computational fluid dynamics (CFD) calculations, especially if faults are
caused by ingested particles [3,12]. Additionally, Monte Carlo simulations and a zero-
dimensional turbofan model are used for modeling the deposition of particles on turbine
nozzle guide vanes to predict the wear of high-pressure turbines [13].

Microturbines, small turbojets and turboshafts are manufactured in a wide range
of classes [14,15]. They are increasingly used, both in distributed energy systems [16,17]
and in unmanned aerial vehicles (UAV) [18,19]. Microturbines are often operated outside
regular airports or power stations and are thus prone to ingesting environmental particles.
In such conditions, their compressor and turbine may rapidly degrade, so it is essential to
monitor and predict performance degradation [20,21]. Insightful performance analyses of
clean and degraded microturbines can be found in the literature, both for power generation
systems [22,23] and aero-engines [24,25]. For example, it was observed that the performance
of variable speed microturbines is more sensitive to component degradation than constant
speed ones [26]. Coupling sensor data with model predictions facilitates engine parameters
monitoring for fault diagnosis and managing component deterioration [27,28].

The performance parameter (PP) is any operating variable of the engine depending
on the physical condition of its components, which affects the engine output (thrust or
power) and fuel consumption [29]. Engine parameters under off-design and degraded
conditions could be estimated or predicted by machine learning techniques. Among various
approaches, artificial neural networks (ANNs) are widely used for diagnostic purposes
nowadays due to their ability to recognize the complex relations between different physical
parameters with high accuracy. This characteristic is used in engine health monitoring
systems (EHM) to predict the values of the non-measurable performance parameters
defining the health status of main components or the overall engine. The prediction is
based on the values of some other measurable parameters, such as shaft speed, fuel flow,
torque, temperature and pressure in various engine stations, acquired by sensors installed
throughout the powertrain.

Different types of ANN-based techniques are used for fault detection in aircraft en-
gines [6,30,31]. In our earlier project, an ANN-based tool for the performance analysis
and degradation diagnostics of a full-scale turbojet was demonstrated [32,33]. Recently,
many efforts were dedicated to the extreme learning machine (ELM) [34,35], which turns
out to be more efficient than the classical feed-forward neural network but is still less
widespread. Zhao et al. confirmed better performance provided by soft extreme learning
machine (SELM) and improved SELM (ISELM) [36]. To improve numerical stability, a regu-
larization term is often used in ELM diagnostic systems [37–39]. Liu et al. introduced the
optimized ELM based on a restricted Boltzmann machine [40] to predict the EGT trend in
an auxiliary power unit (APU) with the improved stability of ELM solutions when some
input parameters are correlated. Bai et al. applied a long short-term memory (LSTM)
network for fault detection in a three-shaft marine gas turbine [41]. Online sequential
extreme learning machines (OS-ELM) are used for data-driven engine modeling [42–44].
These studies underlined the suitability of artificial intelligence tools to predict engine
performance with high accuracy but still few works deal with the implementation of such
models for micro and small gas-turbine engines.

Traditional engine models base on the thermodynamic description of the gas turbine,
so they are called white box or physics based. Such a model of a micro turbojet [45] was
recently developed and fine tuned in GSP (gas turbine simulation program) [46,47] and
validated with experimental flight data. This model was reused here for generating training
data for an artificial neural network for a planned engine health management system.

In this work, ELM was used to predict component degradation in a micro turbojet.
For this purpose, diverse degradation levels of the compressor and turbine were simulated
in GSP using a Monte Carlo approach to cover a wide range of engine operating conditions,
on the ground and in flight. These simulations were used as an input of neural networks
(ELM and conventional ANN) to predict the degradation level of engine components in
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three flight regimes. Finally, ELM was tested with a reduced input vector including only
the operational parameters that are measured by onboard sensors.

2. Materials and Methods
2.1. Micro Turbojet

The engine studied in this work is JetCat P140 Rxi-B (Table 1), propelling a prototype
aerial target. This engine is also used in radio-controlled (RC) models and some personal
aircraft vehicles (PAV). It is a micro turbojet, controlled by the electronic control unit (ECU),
with a radial compressor, axial turbine, electrical starter and fuel pump [48]. The main shaft
is supported on two high-speed ceramic ball bearings, lubricated with a blend of fuel and
oil in an open system. They have a short life, so the recommended service interval of the
engine is only 25–50 flight hours.

Table 1. Jetcat P140 Rxi-B engine specifications [48].

Parameter Specification

Overall Pressure Ratio 3.4
Air flow rate 0.35 kg/s
Maximum EGT 749 °C
Mass Flow 0.34 kg/s
Maximum Thrust 142 N
Design Speed 125 kRPM
Fuel consumption 7.33 g/s

The propelled aerial target is used for training air defense. This twin-engine aircraft
imitates enemy fighters by offering similar flight parameters, radar cross-section and
thermal signature [49]. The drone is a prototype, recently introduced into service, so the
number of used engines and the availability of fleet-wise data is limited. This aircraft takes
off from a catapult and lands on a parachute, so its engines are less exposed to gas-path
contamination than those of RC aircraft, which often operate from unmaintained runways.
However, in high maneuver missions, rotor–stator contacts are possible, which can lead to
increased tip clearance and reduced efficiency.

The engine model was developed in GSP, which is an object-oriented 0D simulation
environment, where the mean flow properties are calculated only at the inlet and the
output of the components, while the field inside them is not parsed. GSP deployed and
incorporated a set of nonlinear differential equations describing the thermodynamic cycle
and rotor dynamics.

The adopted structure of the engine model (Figure 1) follows the standard turbojet tem-
plate. To precisely model the engine behavior, we set the design parameters of components,
such as the maximum speed, pressure ratio, mass flow rate, fuel flow rate, efficiencies,
and so forth. The model was used to simulate the design point, steady states at various
engine speeds and transient operation, at sea level and in flight conditions [45]. The engine
model was validated with data gathered from bench tests and the flight missions of the
twin-engine aerial target. Residual errors after GSP model tuning with real flight data were
below 3%.

The degradation was simulated by changing the corresponding health parameters
of the components, given by the efficiency η and mass flow W of the compressor and the
turbine. These parameters were chosen because they are affected by component faults,
such as fouling and erosion. The corresponding degradation coefficients ∆η and ∆W were
declared in GSP in percent and served as the map correction factors [47,50], i.e., they were
used to calculate the degraded efficiency ηd and mass flow Wd from the reference values of
η and W, taken from the component maps:

ηd = η(1 +
∆η

100%
) (1)
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Wd = W(1 +
∆W

100%
) (2)

The actual component degradation rate depends on aircraft missions and the envi-
ronment in which it is operated. In civil aircraft, degradation is kept low (1–3%) to avoid
increased fuel consumption, but it can grow to a higher number in the case of volcano ash
encounters. In military helicopters operated in a desert environment, increased component
degradation as high as 10% and short wing life are common. However, there are no reliable
degradation data for micro turbojets. They are known for generally low efficiency and high
manufacturing tolerance. In terms of component degradation, they are similar to small
helicopter engines. In such high-speed systems, most of the physical faults have a higher
impact than in a full-scale turbojet.

Figure 1. Turbojet model in GSP. The digits in fine print are engine stations while the larger ones are
GSP component numbers.

The assumed degradation levels of components were defined in the GSP Monte Carlo
input controller. GSP implements a random generator with inverse normal distribution
to calculate the input parameters for the simulation based on the given mean value and
standard deviation [47]. Their values were selected to cover the possible variation of
efficiency and flow. With the mean value equal −6% and the standard deviation of 2%,
the generated points well covered the three-sigma range, from −12% to 0%. A multi-
component degradation was simulated here because four degradation factors (two for the
compressor and two for the turbine) were randomized at the same time. For these input
data, GSP produced engine model outputs for defined degradation levels, appropriate for
training neural networks. The expected variability of the chosen performance parameters
needed a huge amount of simulated data to completely cover this multidimensional space
by the AI regression model. It was practically impossible to obtain similar datasets from
real flights.

2.2. Prediction of Component Degradation

In this study, component deterioration is considered for the single-stage radial com-
pressor and axial turbine. Their deterioration is quantified by the difference between
the actual component condition parameters and their baseline. From a thermodynamic
perspective, the condition of gas path components is described by isentropic efficiency η
and mass flow W. Even if the degradation of the microturbine causes significant variation
in component flow and efficiency, these parameters cannot be directly measured and so
used to identify the engine health condition. However, some parameters measured by the
sensors installed in the engine, such as temperature, pressure, rotational speed, etc., will be
affected by component degradation and can be used for predicting the engine health status.
Thus, these engine operating parameters are processed by ML models to solve the inverse
problem of calculating the efficiency and mass flow of degraded components.

Figure 2 describes the methodology adopted in this work. The degradation prediction
procedure includes the following steps:
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(a) General data flow

(b) Clean and degraded engine simulation (c) Training and testing ANN/ELM models for several scenarios

Figure 2. Methodology for component degradation prediction.

1. The rig and flight data acquired from a real micro turbojet were used to validate the
GSP model [45]. The validated model was subsequently used to simulate selected
operating conditions to obtain the values of the virtual engine sensors, necessary
to train and test the predictive techniques. The simulated parameters are listed
in Table 2.

2. Three simulated flight regimes, (1) takeoff, (2) cruise and (3) air mission, were defined
by different Mach (M) and altitude (Zp) values (Table 3). Additionally, M and Zp
were randomly distributed in flight regime 3. For each operating regime, the data
generated by GSP embrace 500 operating points: 400 for training, and 100 for testing.
Training and testing data were randomly selected from the same dataset.

3. Both clean and degraded conditions of the compressor and the turbine were simulated.
Two degraded performance parameters, i.e., efficiency and mass flow, were altered
for two components: the compressor and turbine. Each of the four performance
parameters was assigned random values to simulate the different levels of degradation
severity using the GSP Monte Carlo input controller by selecting the mean value (−6%)
and standard deviation (2%). In further analysis, the absolute values of efficiency and
corrected flow were used instead of degradation factors in percent to avoid ambiguity.
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4. From the virtual sensors, four input vectors for training AI models were selected,
as reported in Table 4. Input vector 1 consists of nine virtual sensors used for flight
regimes 1 and 2, excluding speed and ambient conditions, which are constant. Input
vector 2, used for flight regime 3, has a complete set of 12 parameters. Input vector 3,
used for flight regimes 1 and 2, has only two parameters that correspond to the real
sensors installed on the microturbine: W f and EGT. Input vector 4 used for flight
regime 3 includes M, TT1, PT1, W f and EGT.

5. The datasets generated by the GSP were used for training and testing ANN and ELM
models to validate their accuracy in predicting the efficiency η and mass flow W of
both components. There were thus four outputs in each network, and the prediction
models were able to find which component is degraded and to what extent. On this
basis, the operator can classify engine health to a certain damage class.

6. The comparison between ANN and ELM was performed on the same datasets, with
input vectors 1 and 2. After that, the reduced input vectors 3 and 4 were used to verify
the ELM prediction accuracy for all the degraded flight regimes.

Table 2. Virtual sensors: simulated engine parameters.

Symbol Parameter

TT1 ambient total temperature
PT1 ambient total pressure
M Mach number
W f fuel flow
PToutC compressor outlet total pressure
TToutC compressor outlet temperature
PTinT turbine inlet total pressure
TTinT turbine inlet temperature
PToutT turbine outlet total pressure
TToutT turbine outlet temperature
PTN nozzle outlet total pressure
TTN nozzle outlet total temperature
EGT exhaust gas temperature

Table 3. Ambient conditions and non-degraded component performance in simulated flight regimes.

Flight Regime Altitude Air Speed Compressor
Efficiency

Compressor
Mass Flow

Turbine
Efficiency

Turbine
Mass Flow

Zp [m] M ηc Wc [kg/s] ηt Wt [kg/s]

1 Takeoff 0 0 0.740 0.350 0.750 0.359
2 Cruise 3000 0.3 0.738 0.277 0.748 0.284
3 Air mission 3000 ± 700 0.2 ± 0.05 0.735–0.740 0.209–0.350 0.747–0.750 0.212–0.359

Degradation (mean ± std deviation) −6 ± 2% −6 ± 2% −6 ± 2% −6 ± 2%

Table 4. Input vectors for ML models.

Input
Vector

Vector
Length Parameters Flight

Regime ML Model

1 9 W f , PToutC, TToutC, PTinT, TTinT, PToutT, TToutT, PTN, TTN 1 and 2 ANN/ELM
2 12 M, TT1,PT1,W f , PToutC, TToutC, PTinT, TTinT, PToutT, TToutT, PTN, TTN 3 ANN/ELM
3 2 W f , EGT 1 and 2 ELM
4 5 M, TT1, PT1, W f , EGT 3 ELM

2.3. Machine Learning Techniques

Due to their performance and versatility, machine learning methods are more and
more widespread, for different purposes. In our earlier project, nonlinear autoregressive
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with exogenous inputs (NARX) neural networks (adequate for time-series data) were
used to predict the exhaust gas temperature (EGT) with a one-step-ahead approach [51].
Results show a percentage error which almost always remains below 10% in absolute
value. The EGT values were obtained by adopting another artificial intelligence tech-
nique, i.e., multigene genetic programming. NARX was also used to estimate specific fuel
consumption during transient regimes [52]. More in detail, the developed system was
composed of two different ANNs, the first one used to predict some engine parameters
based on flight data and the second to predict the specific fuel consumption based on the
parameters predicted from the first ANN and flight data. Results show good performance
both in healthy and degraded conditions.

We also applied separately ANN and support vector (SVM)-based tools to the case of
a single-spool turbojet for analyzing compressor and turbine degradation [32]. The results
show very good performance, in particular, ANN gives better results in performance
prediction, while SVM leads in engine health status prediction. Recently, we applied feed-
forward neural networks (FFNNs) and kernel principal component analysis (KPCA) to
estimate the degraded performance of the PW200 turboshaft [53].

Here, we focus on modeling JetCat turbojet performance and predicting its component
degradation with AI-based regression algorithms, such as ANN and ELM. Unlike some
other methods, only the current level of degradation is predicted, without taking into
account past or future trends. This approach is well suited for micro turbojets, which
have a short wing life and thus produce too little data to analyze their wear in a wider
time perspective.

2.3.1. ANN-Based Regression

ANNs are machine learning-based tools that implement a virtual version of the human
nervous system and its capacity to learn from experience. A typical ANN is formed by
neurons, arranged in layers. Information fed in an ANN passes through the input layer,
one or more hidden layers, to the output layer. Each neuron in a layer has its weight and is
linked with the neurons of the adjacent layers. Input, hidden and output layers are formed
by the input, hidden and output neurons, respectively. The number of input and output
nodes is equal to the number of features given in input and to the number of variables to
be predicted, respectively. The number of hidden layers and neurons is chosen arbitrarily,
and it directly affects the ANN performance. Figure 3 reports a typical architecture of an
ANN type used in this work.

x1

x2

xn

x3

𝜂c

𝜂t

Wc

Wt

Inputs Outputs

Input Layer Hidden Layer Output Layer

Figure 3. Structure of ANN with one hidden layer.
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Each neuron located in the hidden and output layers works by performing a weighted
sum of the information received from the previous neurons and adding a bias. This process
is described by the following equation:

z =
n

∑
i=1

Wi Ii + b (3)

where z represents the calculation result, Wi is the weight of the link between the neuron
in question and the i-th neuron from which it receives information, Ii is the information
received by the i-th neuron, n is the number of previous neurons that send information
to the neuron in question, and b is the bias. The neuron output is finally subject to an
activation function to normalize it. Weights and biases are computed in the training phase.
During the training process, the ANN is informed with a series of example cases, including
both the input features and the corresponding variables to be predicted. This serves to
lead the ANN to calculate the proper weights and biases to obtain a small error between
predictions and target values.

2.3.2. ELM-Based Regression

Extreme learning machine (ELM), introduced by Huang [34], is one of the most modern
AI-based machine learning approaches. It has the single-layer feed-ahead neural network
(SLFN) architecture in which the weights of hidden layers are randomly set, while the
output ones are analytically determined via linear algebra operations. ELM was firstly
implemented for the single hidden layer feed-forward neural networks and later extended
to the generalized SLFNs, wherein the hidden layer no longer has to be neuron-like.

Unlike the traditional FFNN models, the hidden layer does not need to be tuned in
ELM. The output characteristic of ELM for generalized SLFNs (for one output node case as
an example) is

fL(x) =
L

∑
i=1

βihi(x) = h(x)β (4)

where x is the input vector, β = [β1, ..., βL]
T is the vector of the output weights in the

hidden layer of L nodes, and h(x) = [h1(x), ..., hL(x)] is the hidden layer output mapping.
h(x) virtually maps the records from the d-dimensional center area to the L-dimensional
hidden-layer characteristic area H, and thus, h(x) is certainly a characteristic mapping.

According to Bartlett’s theory, the smaller the norms of weights are, the higher general-
ization performance feedforward neural networks tend to have. We assume that this could
be true for the generalized SLFNs in which the hidden layer is not neuron-like. Unlike
conventional learning algorithms, ELM tends to attain not only the smallest training error,
but also the smallest norm of output weights. We minimize ||Hβ− T ||2 and ||β||, where T
is the target output and H is the hidden-layer output matrix:

H =

 h(x1)
...

h(xN)

 =

 h1(x1) ... hL(x1)
...

...
...

h1(xN) ... hL(xN)

 (5)

The minimum norm least-square technique, as opposed to the traditional iterative
optimization, is used in the implementation of ELM. The output weights can be obtained
by the following formula:

β = H†T (6)

in which H† is the Moore–Penrose generalized inverse of a matrix H. Various techniques
may be used to calculate the Moore–Penrose generalized inverse of a matrix, such as
orthogonal projection, orthogonalization, iterative approach, or singular value decom-
position (SVD). The orthogonal projection may be utilized if HT H is nonsingular and
H† = (HT H)−1HT , or HHT is nonsingular and H† = HT(HHT)−1.
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In this work, the implemented ELM model consists of three layers: the input layer
(input vector 1/2/3), the hidden layers (neurons) and the output layer (ηC and dWC, or ηT
and dWT , Figure 4).

The ELM network was implemented in three steps:

1. Randomly initialize the weights and thresholds of the ELM network and set the
activation function.

2. Calculate the hidden layer output matrix H and its generalized inverse H†.
3. Calculate the output vector.

VIRTUAL 
SENSOR 

DATA

x1

x2

x3

xn

Data 

Normalization

Output 

Layer

Weight and Bias 

values are randomly 

assigned
Input 

Layer

Bias

Output 

weights are 

calculated

Hidden 

Nodes

𝜂c

𝜂t

Wt

Wc

Figure 4. Structure of the ELM network.

3. Results
3.1. Engine Performance Simulations

The engine performance under different degradation conditions was simulated in
GSP. Figure 5 shows the impact of compressor or turbine efficiency on the thrust (F) and
the thrust specific fuel consumption (TSFC) both at sea level (flight regime 1) and cruise
(flight regime 2) for different degradation levels. For only this figure, separate datasets for
each component with the same distribution were generated to analyze the impact of single-
component efficiency. In Figure 5a,c,e, compressor is degraded while the turbine is clean
and vice versa in Figure 5b,d,e . The performance trend is the same for both components.
An increase in efficiency leads to a rise in F and a decrease in TSFC. The variation of
the microturbine performance due to the degradation of the components is similar at
M = 0.3 and sea level. The turbine efficiency has a slightly higher impact on TSFC than
compressor efficiency.

Figure 6 shows the distribution of altitude operating conditions, Mach number and
component degradation factors in flight regime 3, generated by the GSP Monte Carlo
component for training neural networks. The operating points are independent and stored
in a random order, so they do not form a trend or time series. Figure 7 illustrates engine
performance calculated by GSP for these random points. The values are scattered due to
component degradation and variable flight conditions in flight regime 3.
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Figure 5. Thrust and TSFC vs. compressor or turbine efficiency ηc at sea level (flight regime 1) and
cruise conditions (flight regime 2) for different degradation levels.

3.2. ANN and ELM Predictions with Input Vectors 1 and 2

In this section, the predicted performance parameters of the two components is com-
pared with the target virtual sensors data. The relative error is shown to evaluate the
prediction accuracy.

Firstly, the condition at sea level was investigated for both compressor and turbine
degradation (Flight regime 1). Figures 8 and 9 show the results of ANN and ELM predic-
tions for test data in the case of compressor and turbine degradation respectively. The target
and predicted results are compared in subplots a and c, while the percentage prediction
errors are presented in b and d. The curves for the target and predicted data overlay almost
exactly. The error is very low (below 0.1%), so the target, which is plotted first, is usually
covered completely by ELM and ANN data series.
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Figure 6. Flight regime 3: histograms of ambient temperature and pressure, airspeed and degradation
factors, generated by the Monte Carlo method.

0.005 0.006 0.007 0.008 0.009
Fuel flow Wf [kg/s]

0.30

0.32

0.34

0.36

0.38

0.40

Sp
ec

ifi
c 

th
ru

st
 F

s [
km

/s
]

Flight Regime 1
Flight Regime 2
Flight Regime 3

Figure 7. Specific thrust vs. fuel flow for three flight regimes and varying degradation in
both components.



Energies 2022, 15, 7304 12 of 22

0 20 40 60 80 100
Points

0.65

0.7

0.75
2

c

Target
ELM
ANN

0 20 40 60 80 100
Points

-0.02

-0.01

0

0.01

0.02

%
 e

rr
or

 2
c

ELM
ANN

(a) Compressor efficiency (b) Efficiency prediction error

0 20 40 60 80 100
Points

0.28

0.3

0.32

0.34

W
c [

kg
/s

]

Target
ELM
ANN

0 20 40 60 80 100
Points

-0.04

-0.02

0

0.02

0.04

%
 e

rr
or

 W
c

ELM
ANN

(c) Compressor mass flow (d) Mass flow prediction error

Figure 8. Compressor degradation in Flight regime 1 with Input vector 1: comparison between the
target and prediction of the component performance parameters.
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Figure 9. Turbine degradation in flight regime 1 with input vector 1: comparison between the target
and prediction of the component performance parameters.

Figures 10 and 11 show the results of ANN and ELM predictions in flight regime 2
(M = 0.3, Zp = 3000 m), which is the cruise operating condition for the compressor and the
turbine. Good prediction performance is still evident because both ANN and ELM show
low percentage errors.
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Figure 10. Compressor degradation in flight regime 2 with input vector 1: comparison between the
target and prediction of the component performance parameters.
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Figure 11. Turbine degradation in flight regime 2 with input vector 1: comparison between the target
and prediction of the component performance parameters.

Finally, the last scenario analyzed with an extensive input vector (input vector 2) was
the dataset with various Mach and altitude (flight regime 3). Figures 12 and 13 show
the results of ANN and ELM predictions. They are still remarkable, despite variable
flight conditions.
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Figure 12. Compressor degradation in flight regime 3 with input vector 2: comparison between the
target and prediction of the component performance parameters.
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Figure 13. Turbine degradation in flight regime 3 with input vector 2: comparison between the target
and prediction of the component performance parameters.

3.3. ELM Prediction with a Reduced Number of Virtual Sensors (Input Vectors 3 and 4)

It is well known that feature selection, i.e., choosing input parameters, has a significant
impact on the prediction accuracy of neural networks [53,54]. In this section, the prediction
results obtained by ELM with a reduced dataset are reported. The chosen input variables
correspond to the sensors that are installed on the real micro turbojet, i.e., exhaust gas
temperature (EGT) and fuel flow rate. Fortunately, the performance deterioration of the
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aircraft engine mainly affects these two parameters, so they are strongly related to the
efficiencies and flow capacities of the compressor and turbine.

Figures 14 and 15 show the error in the prediction of the components’ performances
under different flight regimes. Reducing the number of input variables decreases the
accuracy of ELM in the case of many sensors. The error in the prediction of the mass flow
for fixed Mach number (flight regimes 1 and 2) is negligible. The prediction is slightly
worse for flight regime 3 with some peaks of error around 6% in the case of mass flow.
These peaks are due to the unbalanced distribution of samples in the training set, given by
the Monte Carlo, which can hinder the performance of ELM severely.

In ideal training sets, samples of different ranges of the target generally obey uniform
distribution, but in Monte Carlo as well as in real flight data, the number of samples of
some classes of target parameters may be several times higher than that of other classes.
Consequently, ELM cannot effectively learn from minority classes and the trained network
often predicts majority class samples more accurately than minorities. This is more critical
than reducing the number of input variables.
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Figure 14. ELM error of compressor degradation prediction with input vector 3 or 4.
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Figure 15. ELM error of turbine degradation prediction with input vector 3 or 4.

The health of components can be classified by comparing the values of their perfor-
mance parameters in healthy and degraded conditions. In our earlier publications [32,53],
we introduced a component degradation class, ranging from 1 to 7, which combines re-
duced efficiency and mass flow in a single number. In this way, the prediction results will
be used to classify component health and to make informed go/no-go decisions.

3.4. Overall Accuracy Metrics

The goodness of fit was evaluated in several ways to compare the results obtained from
the sensitivity analysis and as a measure of the network’s prediction quality. In particular,
the following metrics were used:

• Normalized root mean squared error (NRMSE);
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• Coefficient of determination (CoD);
• Maximum relative absolute error (MaxRAE).

The NMSE is used to measure the average squared difference between the estimated
values and the actual:

NMSE =
1
s

s

∑
i=1

Ei
2 (7)

where
Ei =

ŷi − yi
std(y)

(8)

where ŷi represents the prediction of a parameter, yi is its actual value, s is the number of
observations and std(y) is the standard deviation of the actual values. Normalizing the
mean squared error facilitates the comparison between datasets or models with different
scales. Normalization was done by the variance of ŷi.

Coefficient of determination (CoD) is a measure of the goodness of fit of a model and
can reach one for the perfect fit:

CoD = 1− ∑s
i=1 (yi − ŷi)

2

∑s
i=1 (yi − ỹi)

2 (9)

Relative absolute error (RAE) can range from zero to one. The maximum RAE should
be close to zero for a good model:

MaxRAE =
s

max
i=1

|ŷi − yi|
yi

(10)

Table 5 shows that the implemented prediction methods give good results in all of
the degradation scenarios, as confirmed by high CoD values. At each set of conditions,
the prediction of the degradation level in the compressor and turbine has similar accuracy.

Table 5. Metrics for input vectors 1 and 2 ELM and ANN.

ANN ELM
NMSE CoD MaxRAE NMSE CoD MaxRAE

Degradation of Compressor—Flight Regime 1

ηc Train 2.20 × 10−6 0.999998 1.30 × 10−4 1.13 × 10−8 0.99999999 3.88 × 10−6

Wc Train 8.29 × 10−6 0.999992 3.21 × 10−4 1.68 × 10−6 0.99999832 1.05 × 10−4

ηc Test 4.71 × 10−6 0.999995 1.62 × 10−4 1.91 × 10−8 0.99999998 1.70 × 10−7

Wc Test 9.33 × 10−6 0.999991 3.28 × 10−4 2.15 × 10−6 0.99999783 8.29 × 10−5

Degradation of Compressor—Flight Regime 2

ηc Train 1.41 × 10−5 0.999986 4.52 × 10−4 6.44 × 10−3 0.99264601 3.86 × 10−3

Wc Train 4.39 × 10−5 0.999956 8.18 × 10−4 1.72 × 10−3 0.99832588 5.33 × 10−4

ηc Test 1.92 0.911250 9.45 × 10−2 6.07 × 10−3 0.99291352 3.41 × 10−3

Wc Test 1.77 0.901034 1.03 × 10−1 3.97 × 10−3 0.99614528 4.91 × 10−4

Degradation of Compressor—Flight Regime 3

ηc Train 7.80 × 10−5 0.999922 7.64 × 10−4 2.65 × 10−5 0.99997340 4.78 × 10−6

Wc Train 1.17 × 10−5 0.999988 9.39 × 10−4 2.85 × 10−6 0.99999714 6.13 × 10−4

ηc Test 9.35 × 10−5 0.999906 6.76 × 10−4 2.70 × 10−5 0.99997265 6.78 × 10−6

Wc Test 1.27 × 10−5 0.999987 2.20 × 10−3 5.85 × 10−6 0.99999409 3.13 × 10−4

Degradation of Turbine—Flight Regime 1

ηt Train 6.02 × 10−6 0.999994 2.47 × 10−4 2.36 × 10−7 0.9999998 8.32 × 10−5

Wt Train 5.46 × 10−5 0.999945 1.10 × 10−3 3.90 × 10−5 0.9999609 7.57 × 10−4

ηt Test 8.10 × 10−6 0.999992 2.02 × 10−4 2.69 × 10−7 0.9999997 2.70 × 10−5

Wt Test 7.47 × 10−5 0.999924 7.45 × 10−4 8.93 × 10−5 0.9999096 9.10 × 10−4
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Table 5. Cont.

Degradation of Turbine—Flight Regime 2

ηt Train 3.05 × 10−5 0.999969 6.64 × 10−4 7.12 × 10−2 0.9151199 1.08 × 10−2

Wt Train 2.78 × 10−4 0.999721 1.36 × 10−3 5.53 × 10−3 0.9945780 4.43 × 10−3

ηt Test 1.84 0.923113 8.12 × 10−2 6.62 × 10−2 0.9222553 1.14 × 10−2

Wt Test 1.76 0.942045 9.89 × 10−2 1.07 × 10−2 0.9893549 3.75 × 10−3

Degradation of turbine—Flight Regime 3

ηt Train 1.57 × 10−4 0.999843 1.39 × 10−3 4.88 × 10−5 0.9999509 4.01 × 10−4

Wt Train 8.42 × 10−5 0.999916 3.05 × 10−3 6.44 × 10−5 0.9999354 1.42 × 10−3

ηt Test 2.10 × 10−4 0.999787 8.40 × 10−4 1.22 × 10−4 0.9998769 8.81 × 10−4

Wt Test 1.26 × 10−4 0.999873 1.91 × 10−3 1.33 × 10−4 0.9998660 1.51 × 10−3

Table 5 confirms that the use of extensive input variables leads to high prediction accu-
racy with slightly worse performance in the case of off-design conditions (flight regime 3).
However, the use of few sensors in this flight regime reduces prediction performance
significantly, with MaxRAE reaching 0.089 for turbine efficiency (Table 6).

Table 6. ELM—metrics for reduced input vectors 3 and 4.

Compressor Turbine
NMSE CoD MaxRAE NMSE CoD MaxRAE

Flight Regime 1

η Train 0.5179 0.84124 0.0649 0.4583 0.8596 0.0642
W Train 2.2 × 10−5 0.99998 0.0001 0.0001 0.9999 0.0008
η Test 0.6972 0.81431 0.0631 0.4569 0.8471 0.0416
W Test 2.5 × 10−5 0.99998 0.0001 0.0001 0.9999 0.0006

Flight Regime 2

η Train 0.9838 0.81124 0.0652 0.8632 0.8376 0.0623
W Train 0.0027 0.99741 0.0025 0.0036 0.9965 0.0025
η Test 0.9074 0.80324 0.0733 0.9924 0.8271 0.0449
W Test 0.0043 0.99600 0.0018 0.0060 0.9944 0.0022

Flight Regime 3

η Train 1.5017 0.80201 0.0964 1.3536 0.8040 0.0739
W Train 0.0556 0.94047 0.0487 0.0535 0.9428 0.0477
η Test 1.3805 0.79924 0.0770 2.0305 0.7893 0.0883
W Test 0.0640 0.92574 0.0466 0.0618 0.9285 0.0459

Finally, Table 7 reports the comparison of the training time for ANN and ELM for the
three flight regimes and input Vectors 1 and 2, which is remarkably lower for ELM.

Table 7. Mean training time (in arbitrary CPU units).

Flight Regime ANN ELM

1 3.9 1.65
2 4.7 1.20
3 2.79 0.43

4. Discussion

The degradation of compressors and turbines is an inevitable process, so it is expected
that this tool will help control the margin of acceptable degradation and plan appropriate main-
tenance actions. In previous generation diagnostic systems, engine operation was interrupted
when arbitrary thresholds such as the EGT margin were exceeded by engine state variables.
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Currently, it is possible to predict non-measurable performance parameters of compressors
and turbines, which enables deeper problem analysis and informed decision-making.

Many publications are limited to modeling only compressor degradation or predicting
the overall performance of the engine without considering which component and to what
extent has degraded. In our approach, both main components are worn to different levels
and the same predictor can determine and distinguish their condition. Thanks to the
proposed method, it is possible to determine which component has been degraded and to
what extent. In this way, the method is ready for the various faults and wear scenarios that
occur in the service. Often, from changes in efficiency and flow rate, it is possible to identify
the mechanism or type of damage, e.g., erosion is accompanied by a reduction in efficiency
and an increase in flow rate [7]. We have not prepared relevant data to demonstrate
this but examples of damage classification can be found in other papers [55]. However,
the randomization of parameters in line with the normal distribution allows the expected
range of component parameter deviation to be evenly covered and thus the mapping of
various degradation mechanisms observed in large and diverse populations of engines.
This is another example of the successful application of the Monte Carlo method, commonly
used in engine performance analysis [13,56].

In general, the degradation effects for large and small engines are similar, but micro-
turbines have their unique features because some phenomena do not scale. In addition,
the maps and degradation processes of radial compressors [57,58] differ from the axial
ones that dominate in large engines. Most research on the degradation of microturbines is
focused on power generation systems [59–61], such as Capstone C30, which have an operat-
ing time much longer than micro turbojets used in light aircraft and models. Although the
engine layout is similar for air and ground systems, their designs differ significantly,
e.g., with the type of bearings, the outlet nozzle, and lack of recuperation and generator.
Moreover, the micro turbojets are devoid of any intake protection systems and so are more
susceptible to damage from foreign objects than power-generation microturbines.

For the data generated for three flight regimes, we presented some major relationships
between engine parameters and checked the impact of component efficiency changes on
performance. It was a validation of the simulation rather than an attempt to analyze the
degradation mechanisms of microturbines in depth. GSP and other tools offer ample op-
portunities to study the effects of efficiency and flow rate reduction on engine performance
at various operating points, flight conditions, and mission profiles. This feature can help in
solving operational problems or optimizing the mission of an aging engine fleet.

From the ML perspective, engine diagnostics can use classification or regression,
which differ in details, e.g., the type of metrics used. In our prediction system, regression is
performed, while most ELM applications in engines involve classification, so it is difficult
to compare their results directly. Often, however, both approaches ultimately come down
to classification, i.e., the decision to continue or suspend engine operations. It is similar
in this case, where regression results are then used to assign the component to the proper
health class.

Our observations are in line with other publications, e.g., Xu et. al showed that their
ELM-based model had lower mean absolute error (MAE) and root-mean-square error
(RMSE) and a shorter training time than other models based on other ANNs, i.e., BPNN,
Elman, and LSTM [62]. In particular, their hybrid method based on ELM had RMSE equal
to 0.32%, using the input vector with nine variables, while our ELM model has a maximum
RMSE equal to 0.23% for the same vector length.

Our analysis dealt with simulated data, so under- or overfitting related to noise
was not the case here. With the real data, to avoid these problems, preprocessing the
data and implementing a more advanced version of ELM with regularization may be
necessary. ELM is potentially more prone to overfitting but we obtained very similar errors
in cross-validation when we used different sections of the dataset for training and testing.
Additionally, our experiment with the complete and reduced input vector was designed to
check if ELM has enough data to learn component degradation to avoid underfitting.
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There are some limitations of ELM, which are directly related to the intrinsic features
of the method. In some cases, using random weights can lead to an ill-conditioned ma-
trix [63]. This was not observed here, but there are several new ELM variants without this
drawback that achieve higher numerical stability and prediction accuracy than classical
ELM. The choice of a specific ELM implementation depends on the application and the
characteristics of the input data and typically requires testing. This work was limited to the
classic ELM, as it worked stably and gave satisfactory accuracy. With this demonstration,
one can judge what can be achieved with the basic ELM variant and whether to use this
method instead of a traditional ANN, which is still a first-choice tool.

5. Conclusions

In this paper, ANN and ELM methods were applied to predict the efficiency and mass
flow of the compressor and turbine, which are the main components of a micro turbojet.
A digital twin of the real engine, already validated with experimental data from a test
bench and real flights, gathered in the absence of degradation, was used. The validated
model was subsequently extended to predict degraded engine performance. It was used
to generate a dataset containing engine operating parameters for different degradation
severity conditions with the Monte Carlo technique. A significant rise in the TSFC was
observed when the component efficiency decreased. It was also found that component
degradation in the micro turbojet had a similar impact in a high-altitude flight and at
sea level.

The generated dataset was used to train the developed neural network with the ELM
approach. Different lengths of the input vector were analyzed: an extensive one with a
dozen of sensors and a reduced one with input variables corresponding to the real sensors
installed on the engine. Furthermore, three different flight regimes were tested.

The use of ELM to estimate component degradation is an original contribution of
this work. The analysis underlined that in the presence of many input variables, ELM
has excellent prediction accuracy, comparable with ANN, but with a shorter CPU time.
The reduced number of sensors gives remarkable predictions for mass flow but with
slightly less accuracy (CoD about 80%) for component efficiency. Mean errors are generally
acceptable but they reached 6% in some conditions in the case of off-design flight conditions,
with variable Mach and altitude.

This study contributes to optimizing engine maintenance and ensuring necessary
component performance, essential to completing the flight mission. Clearly, more research
can be conducted in this area. Future work will base on the real flight data collected from
several operated engines. Besides formal arrangements, this may require preprocessing the
data and implementing a more advanced version of ELM with regularization. Undoubtedly,
demonstrating an effective method for the in-service prediction of component degradation
would expand the professional applications of micro turbojets.
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