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a b s t r a c t 

The efficiency of safe, cheap and sustainable zinc-anode batteries is critically affected by the time-dependent 

formation of surface films that can impede the utilization of the active material. Knowledge regarding the nature 

and, in particular, the dynamics of these films is strongly wanting and both theoretical and experimental tools 

to rationalize the empirically observed behaviour are poorly developed. The present investigation concentrates 

on the electrode oscillating behaviour and presents an original experimental monitoring approach – based on 

the joint measurement of electrical and optical quantities - together with its physico-chemical modelling. The 

mathematical model considered is the DIB model of electrochemical phase formation, in its spatially homoge- 

neous version: that is an ODE system coupling the dynamics of morphology and chemistry. The DIB parameters 

correspond to specific working conditions of the anode. Firstly, we analyse a Parameter Identification Problem 

(PIP) based on Fourier regularization. Secondly, a specific PIP is proposed for relaxation oscillations, based on 

the analysis of the geometry of the limit cycle. The results of this work allow a notable step forward in the under- 

standing on zinc-anode instabilities and open up the perspective of closed-loop control of anode activity state, in 

view of battery control, also exploiting the higher sensitivity enabled by jointly transducing electrical and optical 

quantities. 
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(

. Introduction 

The constantly growing demand of electrical energy calls for replace-

ent of production with fossil fuels with sustainable technologies, pri-

arily renewable sources, that are intermittent in nature and thus re-

uire reliable and, again, sustainable storage facilities of appropriate

apacity and power. At this moment, electrochemical energy storage

EES) based on batteries seems the only viable approach for the near

uture, but devices for real-life applications still have to be brought

o the marketable level. Moreover, safe and environmentally friendly

ES chemistries have to be developed and implemented. Among well-

eveloped battery technologies, those based on lead, nickel-cadmium,

ithium and hydrogen can in principle can be employed for large-scale

ES, but they exhibit notable criticalities in terms of cost, durability and

afety. Systems at a lower technology readiness level, that have demon-

trated promising performance at the pilot scale, are redox-flow and

ebra batteries, that nevertheless still exhibit criticalities related to the

aterials employed, as well as complexities in the scale-up for real-life

torage requirements. In this scenario, zinc-based technologies, though
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till scarcely developed in large-scale applications, exhibit probably the

ighest prospect in terms of sustainability, ease of sourcing, intrinsic

afety and cost-effectiveness. Technologies based on zinc-anodes can be

ombined with a variety of green cathodic chemistries, including air

eduction and ion intercalation, and can be built in sealed, flow, electri-

ally and mechanically rechargeable versions. The high appeal of zinc

s an anodic material is currently in part jeopardized by the complex-

ty of its behaviour in battery ambient. Even if this material has been

mployed successfully in many low-power applications, starting from

olta’s first demonstration of a battery in 1799, it still displays several

urprising aspects, especially dynamic ones, that limit its use in high-

ower devices. These peculiarties involve the reactions going on both

uring battery discharge and charge. In brief, metal in many aqueous

mbients exhibits a passivating behaviour, that essentially means that

hen it reacts in the process corresponding to discharge, it generates

eaction products that tend to stop the reaction itself. The electrical

ounterpart of this chemical behaviour, is that the system exhibits a

egative resistance (see Fig. 1 ), that, in turn, opens up a range of elec-

rical instability scenarios, typically giving rise to oscillating behaviour

 Bozzini et al., 1999 ). During recharge, instead, zinc tends to change
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Fig. 1. Current-voltage curves, obtained by linear-sweep voltammetry at 1 mV 

s −1 , for a Zn electrode in contact with a 6 M KOH aqueous solution. 
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ts geometry, forming odd-shaped objects (see Figure 2 ) that eventually

ead to metal crumbing, causing battery capacity loss, and to internal

hort-circuits ( Rossi et al., 2020 ). 

In this paper, we concentrate on some dynamic aspects related to

inc behaviour during battery discharge, that are connected to the ter-

ination of current delivery, still in the presence of even notable frac-

ions of residual active material, of course causing energetic inefficiency:

ore information on these problems, at the materials-science level, can

e found in the following recent publications ( Blanc et al., 2020; Rossi

t al., 2020; Shin et al., 2020; Yu et al., 2020 ). Specifically, we shall

tudy the response of zinc-anodes in the typical battery electrolyte con-

isting of an alkaline aqueous solution, by electrical and optical meth-

ds, detailed below. Electrochemical measurements show a variery of

ynamic scenarios, that have been preliminarity presented in Bozzini

t al. (2019) and will form the object of a dedicated publication. In

his work we focus our interest on the special case of oscillatory be-

aviour, as followed by current oscillations resulting from the applica-

ion of a constant potential, recorded simultaneously with reflectivity

scillations. It is worth noting that the time-dependence of optical re-

ectivity is highly diagnostic of the formation of passivating films at

he zinc-electrolyte interface and, in principle, enables monitoring of

he battery state-of-health and early detection of potentially critical op-

rating regimes. This is the first systematic analysis of coupled electrical-
ig. 2. Scanning electron micrographs of typical unstable Zn growth morphologies. E

dditive, (B) benzyl-phenyl modified polyethyleneimine (BBPEI) 0.1 g L −1 . 

2 
ptical dynamics in electrochemical systems, after their phenomenolog-

cal presentation in Bozzini et al. (2019) . 

Space-time dynamic processes of zinc-anodes can be rationalized in

he framework of the DIB electrochemical phase-formation model that

e have been developing over the last decade ( Bozzini et al., 2018;

013; Lacitignola et al., 2015; 2018; 2019 ). In the specific case of global

lectrodic oscillations, an ODE version of the DIB model can be formu-

ated, in which the two equations describe the dynamics of the mor-

hology of the electrode surface and its degree of coverage with a pas-

ivating film. The source terms in the model contain simple physico-

hemical information on electrokinetics and electrochemically-driven

dsorption, formulated in terms of phenomenological reaction rates. In

articular, we could follow the oscillating regimes of the two unknowns,

hat correlate to the current and reflectivity oscillations observed exper-

mentally reproducing the key details of the dynamic structure of the

rocess and identifying the physical parameters of the model. The dy-

amics of the zinc electrode impacts the time-dependent behaviour of

 battery both during discharge (in which oscillations are characteristic

f aged devices ( Arai, 2015 )) and charge (owing to the presence of an

utocatalytic step in the zinc plating process ( Lacitignola et al., 2017;

hu et al., 2016 )). Electrical battery instability during discharge corre-

ponds to working conditions in the bistable zone of the current-voltage

haracteristic curve ( Figure 1 ) and anticipates the attainment of the cut-

ff voltage (see, e.g. Masri and Mohamad, 2013 ). Oscillatory behaviour

uring recharge can instead be explained with the establishment of lo-

alization processes during zinc plating onto electrodes that exhibit a

istribution of passivated and active areas ( Rossi et al., 2020 ). 

In Section 2 , we present our experimental results. In Section 3 , we

resent a Fourier analysis, based on the DIB model, of an experimental

urrent density time series corresponding to the morphological solu-

ion of the DIB model. Specifically, we study a Parameter Identification

roblem (PIP) based on the Fourier regularization method introduced

n D’Autilia et al. (2017) for modelling oscillating electrochemical data.

his approach avoids the ill-posedness of the usual least-squares cost

unctions, and is able to find an iso-frequency manifold in the parame-

er space, where target oscillatory data and simulations have the same

requency, such that along this manifold the dephasing can be mini-

ized. In Section 4 , the DIB model is used again in a PIP problem, but

ere based on the specific time-profile of the same set of experimen-

al relaxation oscillations. Since the experimental oscillations are of the

elaxation type, we studied the curvature of the limit cycle of the DIB

odel and identified a parameter subregion where an inflexion point is

resent, corresponding to the peculiar class of experimental waveforms.

inally, in Section 5 , the approaches described in Sections 3 and 4 are

mployed jointly for the analysis of current density and reflectivity time

eries, corresponding to the two DIB model solutions: morphological and

hemical, respectively. 
lectrodeposits obtained by galvanostatic plating at 10 mA cm 

−2 for 1 h (A) no 
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Fig. 3. The three experimental time-series studied in this work, obtained with Zn electrode in contact with a 6 M KOH aqueous solution. (A, B) Current density (c.d.) 

(I) time series, obtained by potentiostatic polarization at -1012 mV 𝐻 𝑔∕ 𝐻 𝑔𝑂 : (A) the whole recorded time-series; (B) the quasi-steady oscillation interval analysed, 

after trend removal and normalization. (C) Current density (I) and (D) reflectivity at 470 nm (R 470 ), obtained by potentiostatic polarization at -1020 mV 𝐻 𝑔∕ 𝐻 𝑔𝑂 . (E, 

F) The quasi-steady oscillation intervals of I and R 470 analysed, after trend removal and normalization. 
3 
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. Materials and experimental methods 

As working electrode, we employed the freshly-polished cross-

ection of a high-purity (99.99+%, Goodfellows) zinc (Zn) rod (7.6 mm

n diameter). Polishing was performed before each measurement with

rit papers down to 2500. The electrolyte was a 6M KOH aqueous solu-

ion, prepared with Milli-Q water. The reference electrode was Hg/HgO

nd the counter electrode a high-area Pt wire. Combined electrochemi-

al and electroreflectance measurements were performed with a Versa-

TAT 3F potentiostat, operated potentiostatically in the floating mode,

easuring current density (indicated by 𝐼) time series. In situ elec-

roreflectance was carried out with a self-conctructed spectrometer, de-

cribed in Bozzini et al. (2008) . With the chemistry of interest, in situ

eflectivity measurements, responsive to the formation of passivation

lms, can be carried out in the whole VIS-UV spectral range, but, on

he basis of our results reported in Mele and Bozzini (2015) , to record

eflectivity time-series, we selected the VIS wavelength 470 nm, that is

articularly sensitive to the metal-oxide transition. In fact, even if re-

ectivity at this wavelength is relatively low, though measurable with

 good signal-to-noise ratio, for metallic Zn, it is notably higher for

nO, thus yielding a high chemical contrast, compatible with the dy-

amic range of the detector. Thus, increases of reflectivity at 470 nm

indicated by R 470 ) correspond to the formation of ZnO films and de-

reases to their dissolution, yielding a high surface fraction of metal-

ic Zn. Long-term decreasing trends correspond to progressive elec-

rode roughening, that accompanies the anodic process. In this study,

e concentrate on the analysis of three representative experimental

ime-series, shown in Fig. 3 , one of I recorded at –1012 mV 𝐻 𝑔∕ 𝐻 𝑔𝑂 
nd two of I and R 470 , measured simultaneously by applying − 1020

V 𝐻 𝑔∕ 𝐻 𝑔𝑂 . As expected, the oscillating behaviour occurs in the poten-

ial range where the current-voltage curve exhibits the characteristic S-

hape, corresponding to the active-passive transition. According to our

iscussion in Bozzini et al. (2019) and Mele et al. (2017) , the oscilla-

ions considered in this work are of the self-sustained relaxation type,

nd correspond to the formation of a compact, passivating type of zinc

xide. 

Numerical method : In the next sections, we will solve the parame-

er identification problem (PIP) as a constrained optimization problem,

here the constraint is the DIB model given as an ODE system with os-

illating solutions. To obtain the cost function in the parameter space

ased on the Fourier analysis, we need to solve numerically several times

he ODE system for different choices of the parameters involved. To this

im, as in D’Autilia et al. (2017) , we will apply the explicit Runge-Kutta

ethod of order four (RK4) that has good properties to minimize the nu-

erical dispersion when applied for tracking oscillating solutions (see

he analysis in the Appendix of D’Autilia et al. (2017) ). All numerical

omputations here presented have been implemented in the Matlab en-

ironment ( MATLAB, 2019 ). 

. DIB Parameter Identification for oscillating current-density 

ime series, based on Fourier analysis 

We consider the DIB-PIP minimization problem defined as: 

min 
 𝐶,𝐵)∈Ω

𝐽 ( 𝜂( 𝑡 ) , ̃𝜂( 𝑡 ) , 𝐶, 𝐵) (1)

here 𝜂( 𝑡 ) is solution of 

 

 

 

 

 

𝜂′( 𝑡 ) = 𝑓 ( 𝜂, 𝜃) , 𝑡 ∈]0 , 𝑇 ] 
𝜃′( 𝑡 ) = 𝑔 ( 𝜂, 𝜃) 
𝜂(0) = 𝜂0 , 𝜃(0) = 𝜃0 , 

(2) 

nd where the kinetics are given by: 

( 𝜂, 𝜃) = 𝐴 1 (1 − 𝜃) 𝜂 − 𝐴 2 𝜂
3 − 𝐵( 𝜃 − 𝛼) , (3)

 ( 𝜂, 𝜃) = 𝐶(1 + 𝑘 𝜂)(1 − 𝜃)(1 − 𝛾(1 − 𝜃)) − 𝐷( 𝜃(1 − 𝛾𝜃) + 𝑘 𝜂𝜃(1 + 𝛾𝜃)) . (4)
2 3 

4 
hese nonlinear source terms are the same as in the spatially dependent

IB PDE model introduced in Bozzini et al. (2013) and Lacitignola et al.

2015) and they account for generation (deposition) and loss (corrosion)

f the relevant material during the electrodeposition process. For aim of

ompleteness, we briefly report here the meaning of the kinetics (3) and

4) , full details are provided in Bozzini et al. (2013) and Lacitignola et al.

2015) . In the kinetics (3) , the term 𝐴 1 (1 − 𝜃) 𝜂 accounts for the charge-

ransfer rate at sites free from adsorbates; 𝐴 2 𝜂
3 describes mass-transport

imitations to the electrodeposition process. The term − 𝐵 ( 𝜃 − 𝛼) quanti-

es the effect of adsorbates on the electrodeposition rate. The parameter

 < 𝛼 < 1 takes into account the fact that adsorbates can have both in-

ibiting and enhancing effects on the growth rate. The kinetics (4) can

e regarded as 𝑔 ( 𝜂, 𝜃) = 𝐶𝑔 𝑎𝑑𝑠 ( 𝜂, 𝜃) − 𝐷𝑔 𝑑𝑒𝑠 ( 𝜂, 𝜃) and features adsorption

parameter C) and desorption (parameter D) terms including both chem-

cal (expanded to second order) and electrochemical (first order) con-

ributions. 

In this paper, as in Lacitignola et al. (2015) , we fix the following pa-

ameter values 𝛼 = 0 . 5 , 𝛾 = 0 . 2 , 𝑘 2 = 2 . 5 , 𝑘 3 = 1 . 5 , 𝐴 1 = 10 , 𝐴 2 = 30 and

e consider the Hopf and the transcritical bifurcation lines in the param-

ter space ( 𝐶, 𝐵) identified by the bifurcation points TH and TB of coor-

inates ( 𝐶 𝑇𝐻 , 𝐵 𝑇𝐻 ) = (2 . 8061 , 109 . 13) , ( 𝐶 𝑇𝐵 , 𝐵 𝑇𝐵 ) = (2 . 8061 , 19 . 7979) , re-

pectively. According to the analysis in Lacitignola et al. (2015) , the

quilibrium 𝑃 𝑒 = ( 𝜂𝑒 , 𝜃𝑒 ) = (0 , 𝛼) (such that 𝑓 (0 , 𝛼) = 𝑔(0 , 𝛼) = 0 ) is unsta-

le in the region on the left of the Hopf line and above the transcrit-

cal one and we expect homogeneous oscillations due to the presence

f a stable limit cycle, caused by a supercritical Hopf bifurcation. For

his reason, for our application to oscillatory data, in the minimiza-

ion problem (1) we search the optimal parameters ( 𝐶, 𝐵) in the domain

= [ 𝐶 𝑖 , 𝐶 𝑓 ] × [ 𝐵 𝑖 , 𝐵 𝑓 ] = [0 , 2 . 8] × [21 , 100] . 
To solve the minimization problem (1) and (2) the “classical ” direct

pproach uses the 2-norm: 

 𝑛𝑜𝑟𝑚 2 ( 𝐶, 𝐵) = ‖𝐻( 𝐶, 𝐵) − 𝐻̃ 𝑒𝑥𝑝 ‖2 2 (5)

here 𝑯 ( 𝐶, 𝐵) = [ 𝐻 0 , ..., 𝐻 𝑁 ] ∈ ℝ 

𝑁+1 is the numerical approximation of

( 𝑡 ) in (2) with a timestep ℎ = 

𝑇− 𝑡 0 
𝑁 
, that is 𝐻 0 = 𝜂0 and 𝐻 𝑘 ≈ 𝜂( 𝑡 𝑘 ) , for

 = 1 , .., 𝑁 on 𝑡 𝑘 = 𝑡 0 + 𝑘 ℎ . 𝑯 𝑒𝑥𝑝 is the vector of the target data. Here

e consider 𝑯 𝑒𝑥𝑝 as original experimental data, given by the values

 ̃𝑒𝑥𝑝 = [ ̃𝐻 0 , ..., 𝐻̃ 

𝑁̃ 
] ∈ ℝ 

𝑁̃ +1 on the time interval 𝑡 ∈ [0 , 𝑇 ] = [0 , 50] ob-

ained every timestep ℎ 𝑒𝑥𝑝 = 0 . 01 . 
In our DIB-PIP we shall neglect the transient dynamics and focus

nly on the asymptotic oscillatory behaviour of current-density data,

fter normalization, for 𝑡 ∈ [ 𝑡 1 , 𝑇 ] = [ 𝑡 1 , 50] , where 𝑡 1 is specific of a given

xperimental data-chunk. To this aim, we obtain 𝑯 ( 𝐶, 𝐵) , the numerical

olutions of the DIB-ODE system, by RK4 with timestep ℎ = 0 . 005 , 𝜂0 =
 . 1 and 𝜃0 = 0 . 2 . We then extract the solution in the interval 𝑡 ∈ [ 𝑡 1 , 50]
nd normalize it. For comparison of experimental and computed data,

he former are interpolated on the ODE grid. For notational convenience,

e still call 𝑯 ( 𝐶, 𝐵) and 𝑯 𝑒𝑥𝑝 these reduced vectors. 

In the present section, we shall apply the Fourier regularization ap-

roach proposed in D’Autilia et al. (2017) . The dominant frequencies

 ̃1 , 𝑓 2 , ... are identified by computing the FFT with the Matlab function

t, whence the Fourier cost for the first harmonic was defined as: 

 

1 
𝐹 𝐹 𝑇 

( 𝐶 , 𝐵) = 

|𝑓 1 ( 𝐶 , 𝐵) − 𝑓 1 |
𝑓 1 

, (6)

here 𝑓 1 ( 𝐶, 𝐵) is the first dominant frequency of 𝑯 ( 𝐶, 𝐵) for all ( 𝐶, 𝐵) ∈
ℎ . The set Ωℎ is obtained by discretizing the search domain Ω defined

efore by using the stepsizes ℎ 𝐶 = 0 . 025 and ℎ 𝐵 = 0 . 25 . We can iden-

ify the pairs ( 𝐶, 𝐵) for which 𝐽 1 
𝐹 𝐹 𝑇 

( 𝐶, 𝐵) = 0 , and store them in the set
1 
𝐹 𝐹 𝑇 

⊂ Ωℎ , such that 

1 
𝐹 𝐹 𝑇 

= {( 𝐶 𝑖 , 𝐵 𝑗 ) ∈ Ωℎ | 𝐽 1 𝐹 𝐹 𝑇 ( 𝐶 𝑖 , 𝐵 𝑗 ) = 0} . (7)

n principle, it is also possible to consider the cost functions for 𝑛 higher

armonics and construct the corresponding Ω𝑛 sets recursively, as

𝐹 𝐹 𝑇 
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2 
𝐹 𝐹 𝑇 

( 𝐶 , 𝐵) = 

|𝑓 2 ( 𝐶 , 𝐵) − 𝑓 2 |
𝑓 2 

, (8)

here 𝑓 2 ( 𝐶, 𝐵) is the second dominant frequency of 𝑯 ( 𝐶, 𝐵) for all

 𝐶, 𝐵) ∈ Ω1 
𝐹 𝐹 𝑇 

, we construct the set Ω2 
𝐹 𝐹 𝑇 

as 

2 
𝐹 𝐹 𝑇 

= {( 𝐶 𝑖 , 𝐵 𝑗 ) ∈ Ω1 
𝐹 𝐹 𝑇 

| 𝐽 2 
𝐹 𝐹 𝑇 

( 𝐶 𝑖 , 𝐵 𝑗 ) = 0} , (9)

nd so on. This approach would be specially rewarding to follow os-

illations of the harmonic type, but its application to the case of re-

axation oscillations would require an impractical number of compo-

ents. It can be shown that the relaxation oscillations of our experimen-

al dataset would require at least twelve Fourier components, to follow

dequately the observed waveform. Here we employed the first-order

ourier method for the analysis of the oscillatory data-chunk depicted
Fig. 5. (A) The cost function of the first harmonic 𝐽 1 
𝐹 𝐹 𝑇 

( 𝐵, 𝐶) in (6) a

5 
n Fig. 3 -B and corresponding to the interval 𝑡 ∈ [37 𝑠, 50 𝑠 ] of the more

omplex time-series shown in Fig. 3 -A and we show that an incremental

mprovement can be obtained by considering also the second harmonic.

he power spectrum of the analysed dataset is reported in Fig. 4 , with

ndication of the first and second dominant frequencies. 

As a first step in our analysis, we follow the approach of D’Autilia

t al. (2017) and apply the Fourier regularization to identify in the (C,B)

lane the pairs of parameters such that the numerical simulations ex-

ibit the same dominant frequency as the experimental data. We thus

ompute the Fourier cost 𝐽 1 
𝐹 𝐹 𝑇 

( 𝐶, 𝐵) in (6), shown in Fig. 5 -A, for the

airs ( 𝐶, 𝐵) ∈ Ωℎ , whence we identify the set Ω1 
𝐹 𝐹 𝑇 

, depicted in Fig. 5 -B.

nce Ω1 
𝐹 𝐹 𝑇 

is available, it is possible to evalute a given cost function,

imiting the optimum search to this subset of the (C,B) plane. Specifi-

ally, we have tested four cost functions defined below: the infinity norm

10), the least-squares norm (11) and the time-lag norms (12) and (13).

he time-lag norms, that we have evaluated with respect to the first (12)

nd last (13) point in the time-series, allow to minimize the dephasing

f the normalized chunks of quasi-periodic data. For 𝐶 ∈ [ 𝐶 𝑖 , 𝐶 𝑓 ] , we

efine: 

 

Ω1 
𝐹 𝐹 𝑇 

∞ ( 𝐶) = 𝐽 ∞( 𝐶, 𝐵) |Ω1 
𝐹 𝐹 𝑇 

= ‖𝑯 ( 𝐶, 𝐵) − ̃𝑯 

1 
𝑒𝑥𝑝 ‖∞, (10)

 

Ω1 
𝐹 𝐹 𝑇 

2 ( 𝐶) = 𝐽 2 𝑛𝑜𝑟𝑚 ( 𝐶, 𝐵) |Ω1 
𝐹 𝐹 𝑇 

= ‖𝑯 ( 𝐶, 𝐵) − ̃𝑯 

1 
𝑒𝑥𝑝 ‖2 2 , (11)

 𝑇𝐿 ( 𝐶) = 𝐽 𝑇 𝑖𝑚𝑒𝐿𝑎𝑔 ( 𝐶, 𝐵) |Ω1 
𝐹 𝐹 𝑇 

= |𝐻 1 ( 𝐶, 𝐵) − ( ̃𝐻 𝑒𝑥𝑝 ) 1 1 |, (12)

 𝑇𝐿𝐸 ( 𝐶) = 𝐽 𝑇 𝑖𝑚𝑒𝐿𝑎𝑔𝐸𝑛𝑑 ( 𝐶, 𝐵) |Ω1 
𝐹 𝐹 𝑇 

= |𝐻 𝑁 ( 𝐶, 𝐵) − ( ̃𝐻 𝑒𝑥𝑝 ) 1 𝑁 |, (13) 

Fig. 6 reports the evaluation of the four norms (10) –(13) along the

anifold of Fig. 5 -B. Their minima are found in the following sets

f points: ( 𝐶 10 , 𝐵 10 ) = (0 . 575 , 96 . 5) , ( 𝐶 11 , 𝐵 11 ) = (0 . 6 , 92 . 5) , ( 𝐶 12 , 𝐵 12 ) =
1 . 4 , 52 . 5) , ( 𝐶 13 , 𝐵 13 ) = (2 . 15 , 41 . 5) . The numerical simulations corre-

ponding to these minima are shown in Fig. 7 , together with the cor-

esponding absolute errors. 

Computing the cost for the second harmonic 𝐽 2 
𝐹 𝐹 𝑇 

defined in (8) for

he (C,B) pairs contained in Ω1 , and searching the pairs that satisfy

𝐹 𝐹 𝑇 

nd (B) the set Ω1 
𝐹 𝐹 𝑇 

in (7) , computed for the dataset of Fig. 3 -B. 



B. Bozzini, M.C. D’Autilia, C. Mele et al. Applications in Engineering Science 5 (2021) 100033 

Fig. 6. Cost functions (10) –(13) evaluated on the subset of the parameter space Ω1 
𝐹 𝐹 𝑇 

in Fig. 5 B for the dataset of Fig. 3 -B. (A) Cost functions (10) and (11) ; (B) cost 

functions (12) and (13) . 
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Fig. 7. Comparison of experimental data and numerical simulations obtained with (C,B) values set at the minima of 𝐽 
Ω1 
𝐹 𝐹 𝑇 

∞ ( 𝐶 10 , 𝐵 10 ) , 𝐽 
Ω1 
𝐹 𝐹 𝑇 

2 ( 𝐶 11 , 𝐵 11 ) (top panels) 

𝐽 𝑇𝐿 ( 𝐶 12 , 𝐵 12 ) , 𝐽 𝑇𝐿𝐸 ( 𝐶 13 , 𝐵 13 ) (bottom panels). The corresponding absolute errors are reported in the panels on the right. 

t  

(  

t

𝐽  

y  

h  

c  

e  

(  

t  
he condition 𝐽 2 
𝐹 𝐹 𝑇 

( 𝐶, 𝐵) = 0 , the set Ω2 
𝐹 𝐹 𝑇 

defined in (9) can be derived

 Fig. 8 -A). Optimum search has been performed over Ω2 
𝐹 𝐹 𝑇 

, minimizing

he following infinity norm (see Fig. 8 -B): 

 

Ω2 
𝐹 𝐹 𝑇 

∞ ( 𝐶) = 𝐽 ∞( 𝐶, 𝐵) |Ω2 = ‖𝐻( 𝐶, 𝐵) − 𝐻̃ 

1 
𝑒𝑥𝑝 ‖∞, 𝐶 ∈ [ 𝐶 𝑖 , 𝐶 𝑓 ] , (14)
𝐹 𝐹 𝑇 

6 
ielding the optimal couple ( 𝐶 14 , 𝐵 14 ) = (1 . 25 , 50) . Inclusion of second-

armonic information, as expected in the case of relaxation oscillations,

annot improve markedly the identification of the waveform, but nev-

rtheless it allows a more precise approximation of the sharp maxima

 Fig. 9 -A) and the selection of a solution of the DIB model that also con-

ains the second Fourier component ( Fig. 9 -B). Fourier-based PIP thus
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Fig. 8. (A) The sets Ω1 
𝐹 𝐹 𝑇 

and Ω2 
𝐹 𝐹 𝑇 

of the parameter space, and (B) the cost functions (14) and (15) evaluated on Ω2 
𝐹 𝐹 𝑇 

for the dataset of Fig. 3 -B. 
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𝚯  

𝜃  
llows to identify accurately the DIB solution exhibiting the main fre-

uency components, thus capturing important aspects of the system dy-

amics. Nevertheless, a different strategy, presented in the next section,

s necessary to approximate precisely also the details of the waveform. 

. DIB Parameter Identification for relaxation current-density 

scillations, based on limit cycle analysis 

.1. Identification of the relaxation oscillation region in the parameter 

pace 

Relaxation oscillations are characterized by a limit cycle that

hanges its concavity: based on this property, it is possible to restrict

ptimum search in the subset of the parameter space that corresponds

o this particular type of dynamic behaviour. For this purpose, let 𝛼( 𝑡 )
e the parametric equation of the limit cycle, a curve in the 𝜂 − 𝜃 plane:

( 𝑡 ) = ( 𝜂( 𝑡 ) , 𝜃( 𝑡 )) , 𝑡 ≥ 0 . (15)

The algebraic curvature is defined as follows: 

 ( 𝑡 ) = 

𝜂′( 𝑡 ) 𝜃′′( 𝑡 ) − 𝜂′′( 𝑡 ) 𝜃′( 𝑡 ) 

( 
√
𝜂′( 𝑡 ) 2 + 𝜃′( 𝑡 ) 2 ) 3 

(16)
7 
nd it yields information about the direction of rotation of the tangent,

egative and positive values corresponding to clockwise and anticlock-

ise rotation, respectively. A change in sign of  ( 𝑡 ) denotes an inflec-

ion point. The first order derivatives in (16) can be obtained by the DIB

inetics 𝑓 ( 𝜂, 𝜃) in (3) and 𝑔 ( 𝜂, 𝜃) in (4) . The second order derivatives

ppearing in (16) can be calculated by the DIB kinetics as follows: 

 

 

 

 

 

 

 

𝜂′′ = 𝐴 1 (− 𝜃′) 𝜂 + 𝐴 1 (1 − 𝜃) 𝜂′ − 3 𝐴 2 𝜂2 𝜂′ − 𝐵 ( 𝜃′) 
𝜃′′ = 𝐶(1 + 𝑘 2 𝜂

′)(1 − 𝜃)(1 − 𝛾(1 − 𝜃)) + 𝐶(1 + 𝑘 2 𝜂)(−𝜃′)(1 − 𝛾(1 − 𝜃)) 
+ 𝐶(1 + 𝑘 2 𝜂)(1 − 𝜃)( 𝛾𝜃′)+ 

− 𝐷[ 𝜃′(1 + 𝛾𝜃) + 𝜃( 𝛾𝜃′) + 𝑘 3 𝜂
′𝜃(1 + 𝛾𝜃) + 𝑘 3 𝜂𝜃

′(1 + 𝛾𝜃) + 𝑘 3 𝜂𝜃( 𝛾𝜃′)] . 

(17) 

Of course, explicit expressions for 𝜂( 𝑡 ) and 𝜃( 𝑡 ) are not available, but

hey can be obtained numerically. Let 𝑯 ( 𝐶, 𝐵) = [ 𝐻 0 , ..., 𝐻 𝑁 ] , 𝚯( 𝐶, 𝐵) =
Θ0 , ..., Θ𝑁 ] ∈ ℝ 

𝑁+1 be the numerical approximations of 𝜂( 𝑡 ) and 𝜃( 𝑡 )
ith a timestep ℎ = 

𝑇− 𝑡 0 
𝑁 

for ( 𝐶, 𝐵) ∈ Ωℎ and all the other parame-

ers fixed as in Section 2 . Thus we can compute the vectors 𝑯 

′( 𝐶, 𝐵) ,
′( 𝐶 , 𝐵) , 𝑯 

′′( 𝐶 , 𝐵) and 𝚯′′( 𝐶 , 𝐵) as the approximations of 𝜂′, 𝜃′, 𝜂′′ and
′′ respectively, from the analytic expressions in (3) - (4) - (17) . Then, we
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Fig. 10. Case 𝐶 = 1 and 𝐵 ∈ [20 , 70] . (A, B) Representative solutions of the DIB model 𝜂( 𝑡 ) , 𝜃( 𝑡 ) , reported for 𝑡 ∈ [46 , 50] . (C) Limit cycles for the solutions reported in 

Panels (A, B). (D) Algebraic curvature of the limit cycles shown in Panel (C). Data corresponding to the solutions yielding a limit cycle with an inflection point are 

plotted with a dashed line. 
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Fig. 11. Comparison of sets Ω and Ω1 
𝐹 𝐹 𝑇 

in the (C,B) parameter plane, evalu- 

ated for the dataset of Fig. 3 -B. 
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an restate (16) as: 

 ( 𝐶 , 𝐵) = 

𝑯 

′( 𝐶 , 𝐵) 𝚯′′( 𝐶 , 𝐵) − 𝑯 

′′( 𝐶 , 𝐵) 𝚯′( 𝐶 , 𝐵) ( √ 

𝑯 

′2 ( 𝐶 , 𝐵) + 𝚯′2 ( 𝐶, 𝐵) 
) 3 . (18)

 representative selection of waveforms and corresponding limit cycles,

btained by varying 𝐵 ∈ [20 , 70] , keeping 𝐶 = 1 , is shown in Fig. 10 :

ere the transition from quasi-harmonic to relaxation oscillations can be

eadily noted. Here 𝑯 ( 𝐶, 𝐵) and 𝚯( 𝐶, 𝐵) have been computed using the

ell-known Runge-Kutta4 with timestep, ℎ = 0 . 005 . With these tools, we

roceed to identify the set Ω of ( 𝐶, 𝐵) pairs such that  ( 𝐶, 𝐵) exhibits

n inflection point, diagnostic of relaxation oscillations, by computing

18) for all ( 𝐶, 𝐵) ∈ Ωℎ : 

 = {( 𝐶 𝑖 , 𝐵 𝑗 ) ∈ Ωℎ |  ( 𝐶 𝑖 , 𝐵 𝑗 ) has an inflection point } . (19)

ig. 11 depicts the set Ω , and, for comparison, also shows the set Ω1 
𝐹 𝐹 𝑇 

:

nterestingly the two sets are disjoint, showing that the two approaches

arget different aspects of the DIB solution, that correspond to different

xperimental operating conditions. 

.2. PIP in the relaxation oscillation region of the parameter space 

Since the focus here is on following precisely the waveshape, we

estrict the dataset for the PIP to one period (see Fig. 12 ). For compu-

ational convenience, we have normalized also the time axis, using the

eriod as unit. We thus denominate 𝑯 ( 𝐶, 𝐵) = [ 𝐻 1 , ..., 𝐻 

𝑁̄ 
] ∈ ℝ 

𝑁̄ and

 

𝑒𝑥𝑝 
= [ ̃𝐻 1 , ..., 𝐻̃ 

𝑁̄ 
] ∈ ℝ 

𝑁̄ the computed and experimental chunks used

or the PIP, interpolated on the same time-grid in [0,1], to have the

ame vector size. The optimum is sought by minimizing the cost func-

ions based on the infinity and least-squares norms given by: 

 ∞( 𝐶 , 𝐵) |Ω = ‖𝑯 ( 𝐶 , 𝐵) − ̃𝑯 

𝑒𝑥𝑝 
‖∞, (20)

 2 𝑛𝑜𝑟𝑚 ( 𝐶 , 𝐵) |Ω = ‖𝑯 ( 𝐶 , 𝐵) − ̃𝑯 

𝑒𝑥𝑝 
‖2 2 . (21)
 

8 
The parametric dependence of (20) and (21) is depicted in

ig. 13 and their respective minima are: ( 𝐶 21 , 𝐵 21 ) = (1 . 68 , 21) and

 𝐶 22 , 𝐵 22 ) = (1 . 93 , 22 . 5) . In Panels (A)-(B) of Fig. 14 we show the respec-

ive solutions 𝑯 ( 𝐶 21 , 𝐵 21 ) and 𝑯 ( 𝐶 22 , 𝐵 22 ) , that are compared with the

xperimental data ̃𝑯 

𝑒𝑥𝑝 
in Panel (C) and the corresponding absolute er-

ors are reported in Panel (D). From Panel (C) it is possible to conclude

hat optimum search in the parameter subspace characterized by limit

ycles with an inflection point, indeed allows to identify a couple ( 𝐶, 𝐵)
f parameters corresponding to a periodic solution that better approxi-

ates the complex experimental form. 
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Fig. 12. The dataset 𝑯 

𝑒𝑥𝑝 
(plotted in red), extracted from the experimental time series of Fig. 3 -B, employed for PIP in the relaxation oscillation region. For 

computational convenience, also the time axis has been normalized with respect to the period. 

Fig. 13. The cost functions: (A) 𝐽 ∞( 𝐶, 𝐵) |Ω in (20) and (B) 𝐽 2 𝑛𝑜𝑟𝑚 ( 𝐶, 𝐵) |Ω in (21) evaluated in correspondence of the experimental data of Fig. 12 -B. 
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. DIB Parameter Identification for coupled current-density and 

eflectivity oscillations 

The physics of the DIB model crucially relies on the coupling be-

ween electrode morphology and surface chemistry. This choice of vari-

bles proved extremely successful in capturing a vast range of electro-

hemical spatial pattern formation processes ( Bozzini et al., 2018; 2013;

acitignola et al., 2018; 2019 ). So far, we have validated experimentally

he DIB dynamics on the basis of exclusively morphological information

 Bozzini et al., 2018; D’Autilia et al., 2017 ). In this section, for the first

ime, we propose a validation based on the experimental observation

f coupled morphological (current density) and chemical (reflectivity)

uantities, discussed in Section 2 and depicted in Panels (E, F) of Fig. 3 .

pecifically, we extracted for the analysis a representative subset of ex-

erimental data: ̃𝑯 

𝑒𝑥𝑝 

1 for current density and 𝚯̃
𝑒𝑥𝑝 

1 for reflectivity, that

e have normalized for the reasons given in Section 3 . Therefore, in this

ection we present the two analyses of Section 3 and 4, based on the

ourier approach and on the limite cycle approximation, respectively,

or a new dataset including both ̃𝑯 

𝑒𝑥𝑝 
and 𝚯̃

𝑒𝑥𝑝 
. 
1 1 

9 
We start by defining the matrix 𝑆 1 𝑒𝑥𝑝 ∈ ℝ 

𝑁 1 ×2 , the columns of

hich contain the experimental time-series 𝑯 

𝑒𝑥𝑝 

1 and 𝚯̃
𝑒𝑥𝑝 

1 . Similarly,

or a given parameter couple ( 𝐶, 𝐵) , we have assembled in a matrix

 

1 ( 𝐶, 𝐵) ∈ ℝ 

𝑁 1 ×2 the DIB numerical solutions for both 𝜂 and 𝜃, com-

uted by the Runge-Kutta4 method with timestep ℎ = 0 . 005 for 𝑡 ∈
0 , 64] and initial conditions as random perturbation of the equilibrium

 𝜂(0) , 𝜃(0)) = (0 , 0 . 5) + 𝑟𝑎𝑛𝑑 ⋅ 10 −3 . 
PIP based on Fourier analysis 

Letting 𝑓 𝜂 and 𝑓 𝜃 denote the dominant frequencies of the experimen-

al time series, inspection confirms that, as expected, 𝑓 𝜂 = 𝑓 𝜃 =∶ 𝑓 𝑒𝑥𝑝 .
e then seek the parameter pair (C,B) that generates DIB solutions with

he same frequency 𝑓 𝑒𝑥𝑝 . Following the approach of Section 3 , we com-

ute the subset Ω1 of the ( 𝐶, 𝐵) plane (see Fig. 15 ), defined as: 

1 = {( 𝐶 𝑖 , 𝐵 𝑗 ) ∈ Ωℎ | 𝐽 1 𝐹 𝐹 𝑇 ( 𝐶 𝑖 , 𝐵 𝑗 ) = 0)} (22)

here: 

 

1 
𝐹 𝐹 𝑇 

( 𝐶 , 𝐵) = 

|𝑓 1 ( 𝐶 , 𝐵) − 𝑓 𝑒𝑥𝑝 |
𝑓 𝑒𝑥𝑝 

(23)
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eing 𝑓 1 ( 𝐶, 𝐵) the first frequency of the numerical simulations stored in

he matrix 𝑆 1 ( 𝐶, 𝐵) . Optimum search is again perfomed by minimizing

he infinity and least-squares norms given by: 

 ∞( 𝐶) = 𝐽 ∞( 𝐶, 𝐵) |Ω1 = ‖𝑆 1 ( 𝐶, 𝐵)(∶) − 𝑆 1 𝑒𝑥𝑝 (∶) ‖∞, (24)

 2 ( 𝐶) = 𝐽 2 𝑛𝑜𝑟𝑚 ( 𝐶, 𝐵) |Ω1 = ‖𝑆 1 ( 𝐶, 𝐵)(∶) − 𝑆 1 𝑒𝑥𝑝 (∶) ‖2 2 . (25)

ielding the optimal parameter couples ( 𝐶 ∞, 𝐵 ∞) = (2 . 78 , 67 . 8) and

 𝐶 , 𝐵 ) = (2 . 80 , 68 . 5) . The corresponding solutions, 𝑆 1 ( 𝐶 , 𝐵 ) =
2 2 ∞ ∞

10 
 ̃𝑯 ∞; ̃𝚯∞] and 𝑆 1 ( 𝐶 2 , 𝐵 2 ) = [ ̃𝑯 2 ; ̃𝚯2 ] , compared with the experimental

ata, are plotted in Fig. 16 , in the panels A and B, respectively. 

Even though the exact shape of waveform cannot be approximated

ith the Fourier approach, nevertheless it allows to gain important in-

ight into the relationship between operating conditions, expressed by

he ( 𝐶, 𝐵) couple, and the systems dynamics synthetically expressed by

he dominating frequency. 

PIP based on limit cycle analysis 

To perform the joint limit cycle analysis on the extended dataset

 

1 
𝑒𝑥𝑝 ∈ ℝ 

𝑁 1 ×2 , we built the set Ω in (19) in the parameter plane (C,B)

efining the relaxation oscillation region, and we minimized the cost

unctions (24) and (25), obtaining the pairs of parameters: ( 𝐶 𝑘 ∞ , 𝐵 𝑘 ∞) =
2 . 48 , 21 . 5) and ( 𝐶 𝑘 2 , 𝐵 𝑘 2 ) = (2 . 55 , 21 . 5) . The optimum solutions are com-

ared with experimental data in Fig. 17 : in panels (A) and (B) in the

orm of time series and in panel (C) as limit cycles. Similarly to the

esults of Section 4 , the limit cycle approach, though not allowing to

apture all details of the experimental waveform, nevertheless enables

n unprecedented insight into the nature of the electrochemical dynam-

cs, correlating a specific type of oscillation with material properties and

node operating conditions. 

. Conclusions 

This study is a combined mathematical and experimental analysis

f the dynamics of zinc battery electrodes, polarized anodically in al-

aline aqueous electrolytes. The mathematical basis of this work is the

DE version of the DIB model for phase formation and we seek regions

f the parameter space that allow the ODE-DIB solutions to follow the

scillating behaviour of the electrode, found experimentally in a prac-

ically important range of operating conditions. In fact, current density

scillations result from electrical instabilities that are triggered by the

nset of passivation processes, that eventually lead to electrode failure.
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(24) ) and 𝐽 2 (Panel B, Eq. (25) ), evaluated on the subset of the parameter space Ω1 in (22) : comparison with experimental data and absolute errors. 
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hus, physico-chemical understanding and monitoring of zinc-anode dy-

amics bear promise to contribute, on the one hand to the fabrication of

etter batteries, and, on the other hand, to improved management proto-

ols. Moreover, here we are proposing a combined monitoring approach

hat features the simultaneous measurement of electrical (current den-

ity) and optical (reflectivity) quantities. The former observable, that

s directly proportional to the phase formation rate, bears information

n electrode morphology variations, and the latter, that is sensitive to

xi-hydroxide film formation, transduces the surface chemical compo-

ition. In addition to the electrochemical informativeness of these mea-
11 
urements per se , these two quantities closely approximate the postu-

ated physical nature of the solutions of the DIB model: comparing this

ype of experimental information with results from DIB simulations thus

llows to exploit the full predictive power of this model in parameter

dentification problems (PIP) yielding estimates that are highly infor-

ative from the physical viewpoint. In previous work in our group, we

ave pinpointed some aspects of the complexity of PIP with the DIB

odel both in the PDE ( Sgura and Bozzini, 2017; Sgura et al., 2019 )

nd in the ODE versions ( D’Autilia et al., 2017 ). In this work we have

mproved and extended the portfolio of PIP methods for DIB-ODE, in
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iew of efficient implementation in battery testing and control proto-

ols. The Fourier regularization approach proposed for parameter fit-

ing avoids ill-conditioning issues of the usual least squares approaches

n case of oscillating data, and effectively identifies the dominating fre-

uency present in quasi-periodic experimental time-series. This in prac-

ice allows to assign - on the basis of the parameter estimates - the

perating conditions leading to this practically important type of dy-

amics. Efficiency in identification of the key aspects of the oscillating

ehaviour with the Fourier approach is obtained at the cost of rather

 crude approximation of the oscillating waveform. This is less impor-

ant in the case of quasi-harmonic oscillations, but more precision is

esirable when dealing with relaxation oscillations, that are more diag-

ostic of operation in conditions that are liable to damage the battery.

o this aim, we propose here a second PIP method for periodic DIB solu-

ions, based on limit cycle information in the model dynamics: with this

ool it is possible to identify a set of parameters that yield a reasonable

atching of the experimental waveform. A notably better approxima-

ion of the waveform can only be obtained by extending the DIB model
12 
o include a third ODE equation that would more fully account for the

inetics giving rise the relaxation processes. 
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