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A B S T R A C T

Proactive cyber-risk assessment is gaining momentum due to the wide range of sectors that can benefit from
the prevention of cyber-incidents by preserving integrity, confidentiality, and the availability of data. The
rising attention to cybersecurity also results from the increasing connectivity of cyber–physical systems, which
generates multiple sources of uncertainty about emerging cyber-vulnerabilities.

This work introduces a robust statistical framework for quantitative and qualitative reasoning under
uncertainty about cyber-vulnerabilities and their prioritisation. Specifically, we take advantage of mid-quantile
regression to deal with ordinal risk assessments, and we compare it to current alternatives for cyber-risk ranking
and graded responses. For this purpose, we identify a novel accuracy measure suited for rank invariance under
partial knowledge of the whole set of existing vulnerabilities.

The model is tested on both simulated and real data from selected databases that support the evaluation,
exploitation, or response to cyber-vulnerabilities in realistic contexts. Such datasets allow us to compare multi-
ple models and accuracy measures, discussing the implications of partial knowledge about cyber-vulnerabilities
on threat intelligence and decision-making in operational scenarios.
1. Introduction

Cyber-vulnerabilities of devices, networks, or other information and
communication technologies (ICTs) can generate system failures or
pave the way for different types of cyber-attacks, including denial-of-
service, malware injection, and data exfiltration. Social engineering can
also enhance these incidents, while cascading effects in complex ICTs
or systems-of-systems (Fortino, Savaglio, Spezzano, & Zhou, 2020) can
compromise or interrupt service supply, undermining the operational
continuity of critical infrastructures. In turn, cyber-incidents lead to
economic losses, safety risks, reputational damage, and violations of
personal rights such as privacy, the right-to-be-anonymous, and the
proper use of personal or sensitive data. The effect of these damages is
not always measurable due to the intangible nature of social and repu-
tational effects and the lack of high-quality data, which are often kept
secret to prevent additional reputational issues (Giudici & Raffinetti,
2021).

New vulnerabilities emerge from the increasing number of con-
nections between digital systems, which now include personal de-
vices, Internet-of-Things (IoT) sensors, cloud computing or storage
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services, and even vehicles (Barletta et al., 2023), which represent
access points to other information systems through privilege escalation.
The latter amplifies the severity of cyber-vulnerabilities and repre-
sents a weakness when local access points may lead to violations of
classified information at the national level, as in the case of public
administration (Catalano et al., 2021).

To prevent cyber-incidents, proactive cyber-risk assessment keeps
evolving through new methods, standards, approaches, and good prac-
tices aimed at informed decision-making in the management of cyber
domains, in particular cyber-vulnerabilities. Currently, cyber-risk as-
sessment standards are based on severity levels assessed by institutions,
such as the National Institute of Standards and Technology (NIST)
and national Computer Security Incident Response Teams (CSIRTs). Al-
though NIST provides a harmonised approach to evaluating the general
impact of a cyber-vulnerability, contextual factors (e.g., exposure to a
vulnerable technology and its identifiability) may influence exploitabil-
ity. Available information on these factors may affect the perceived
likelihood of a cyber-attack exploiting a cyber-vulnerability, influenc-
ing both offensive and defensive interventions and resource usage. Such
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information is often stored in reserved reports, data collections, or
expert evaluations that are not disclosed. In addition to this limited
knowledge, multiple cyber-vulnerabilities can be relevant to individuals
and organisations, which have to prioritise them to better allocate their
cybersecurity (economic, temporal, and professional) resources based
on accessible information and personal criteria.

These issues prompt a deeper analysis of the way risk about cyber-
vulnerabilities is perceived and evaluated based on available informa-
tion: this leads to the following research questions (RQs):

(RQ1) How to assess cyber-risk based on partial information on known
vulnerabilities without relying on specific statistical properties
(e.g., their distributional assumptions) that could hardly be
verified?

(RQ2) How to measure the accuracy of such an assessment while also
taking into account the presence of unknown vulnerabilities?

To answer these questions, we propose a new statistical framework
o address the need for flexible and interpretable models relating to
yber-vulnerability assessment and their prioritisation, in this way
upporting adaptive decision-making. Flexibility is required to allow
ifferent users to adapt the framework based on the information they
ave access to, e.g., by adding explanatory variables or considering dif-
erent response variables based on their own ranking. Interpretability
s needed to prompt appropriate interventions, e.g., counteractions to
ix vulnerabilities or prevent their exploitation.

This work focuses on vulnerabilities rather than actual incidents,
hich requires appropriate models to deal with the two types of uncer-

ainty connected to the research questions in terms of both estimation
rocedures and accuracy measures. Specifically, to address RQ1, we
dopt mid-quantile regression (Geraci & Farcomeni, 2022) as a means
o provide robust estimates of ordinal (quantitative and qualitative)
isk assessments of known cyber-vulnerabilities dependent on available
nformation. Regarding RQ2, we introduce a new accuracy measure
hat meets an invariance requirement for cyber-vulnerability priority
ankings with respect to unobserved or unknown vulnerabilities.

These proposals are tested on both simulated and real data; the for-
er allow us to explore multiple scenarios and test the sensitivity of the

ssessment performance on hyperparameters and model assumptions,
hile the latter inform us on actual cyber-vulnerabilities, the extent to
hich they adhere to or deviate from parametric models, and the way

he different methods perform under such deviations. We summarise
he main contributions of this work as follows:

• The first methodological contribution is mid-quantile-based sta-
tistical models to work out qualitative variables with quantitative
methods. This proposal allows for overcoming the dependence on
statistical assumptions, enabling the prediction of both qualitative
and quantitative priority measures. Along with robust quantile
regression estimates, these models return conditional probability
estimates for an ordinal response variable, so they may serve as a
basis for novel probabilistic modelling of cyber-threat assessment
and risk analysis relying on likelihood estimations associated with
a given impact (Crotty & Daniel, 2022) if an appropriate set of
explanatory variables is available.

• As the focus of this work is on cyber-vulnerability prioritisation,
the second theoretical contribution is the proposal of a new
accuracy index for rank prediction. The definition of this index is
grounded in the inherent uncertainty of unknown vulnerabilities.
By relying on both simulated and real data, we can explore
the properties of the new accuracy measures, in particular their
ability to discriminate between different ranking models in terms
of prediction accuracy, depending on hyperparameters (e.g., the
number of priority levels) or deviations from widely adopted
2

statistical assumptions.
• Along with the methodological contributions, we carry out a data
collection procedure to test our proposals, integrating information
from multiple datasets, discussing the results in relation to re-
cent studies, and pointing out implications in cyber-vulnerability
prioritisation for research in threat intelligence.

While the statistical approach presented here is flexible enough to
include other threat sources, the data we consider in this work do not
involve factors such as social engineering, insider threats, or physical
effects (e.g., overload of ICT capacities). However, it is worth stressing
that such factors may be as critical as cyber-vulnerabilities and may
combine with them in the execution of a cyber-attack (Catalano, Chezzi,
Angelelli, & Tommasi, 2022).

The paper is organised as follows: the notions of cybersecurity and
cyber-vulnerabilities that are relevant for this work are described in
Section 2, where we also present an overview of recent advances in
related works and introduce the required preliminaries on the statistical
models used in the paper. Our proposal is presented and motivated in
Section 3, also discussing the appropriate index to assess performance
and model comparison suited to our research questions in the cyber-risk
domain. Section 4 describes the data sources that are used for the spec-
ification and validation of the proposed model. In Section 5, following
a descriptive analysis of the data, we summarise and comment on the
results of simulations and the exploration of the real dataset in terms
of prioritising cyber-vulnerabilities. After the discussion of the results
in Section 6, conclusions are drawn in Section 7, where we point out
future work and applications of the present proposal.

2. Related work

Cyber-risk assessment is a well-recognised issue that plays a key
role in different domains, e.g., the management of critical infrastruc-
tures (Paté-Cornell, Kuypers, Smith, & Keller, 2018) and industrial
sectors (Corallo, Lazoi, & Lezzi, 2020). Cyber–physical systems and
personal devices require adequate solutions to ensure data protection,
and the diffusion of IoT is opening the way to new sources of cyber-
risk (Radanliev et al., 2018; Tsiknas, Taketzis, Demertzis, & Skianis,
2021). A variety of cyber-risk models have been introduced to support
risk assessment and prioritisation, but their effectiveness in operational
scenarios is affected by domain-specific aspects and requires an appro-
priate trade-off between the assessment’s validity and its usability for
decision-making (Paté-Cornell et al., 2018).

2.1. Cyber-risk assessment and modelling

The scope of the cyber-risk assessment should be clarified by first
specifying the objective of the analysis (e.g., proactive prevention or
forensic investigation), the object of the analysis, and, consequently,
the methodology adopted. This work is focused on proactive preven-
tion, where one should distinguish between cyber-vulnerability and
cyber-incident: a vulnerability is an access point, but this does not nec-
essarily entail a cyber-incident, that is, actual (intentional or not) dam-
age to a digital system. This distinction is relevant for decision-makers,
namely, cybersecurity experts and ICT managers, security operational
centres, or national agencies. Cyber-incident analysis is fundamental
to cyber-forensic activities. Still, the prevention of new cyber-incidents
in operational scenarios should use all fungible information to manage
security resources better and take appropriate counteractions.

Each known cyber-vulnerability is uniquely identified by a Common
Vulnerability Exposure (CVE) code. In the NIST classification, the CVE
acts as a primary key to retrieving both the impacts in terms of
CIA dimensions (confidentiality, integrity, and availability) and the
severity assessment of relevant intrinsic characteristics of the vulnera-
bility. Focusing on cyber-vulnerabilities as the object of our assessment,
the standard approach to properly scoring emergent vulnerabilities is
driven by the NIST’s methodology (Jung, Li, & Bechor, 2022; Sharma
& Singh, 2018).
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In addition to such intrinsic features of cyber-vulnerabilities, other
extrinsic factors affect cyber-risk and threats, in particular a technol-
ogy’s exposure, which refers to the number of exposed hosts (devices
or systems) where a given vulnerability, labelled by a CVE, has been
recognised. Exposure concurs to define targets and feasible attacks
along with exploits and their cost; an exploit is defined as a software
component, a process, or any human or physical resource that can be
directly executed to perform a cyber-attack. In this work, we primarily
deal with software exploits, but related work also addresses the role
of interactions between malicious software and human factors in the
definition of new attack techniques (Tommasi, Catalano, Corvaglia, &
Taurino, 2022). We talk about a 0-day when the vulnerability has not
been disclosed before and there are no available solutions to patch it.

Proactive defence aims at increasing resilience at the individual and
network level (preventing criticalities), supporting efficient manage-
ment of resources and ICT maintenance, and preserving individuals
and community rights in cyber-space such as privacy, compliance
with the General Data Protection Regulation (GDPR), and right-to-be-
anonymous. In particular, proactive defence is needed to choose appro-
priate counteractions that mitigate the occurrence of cyber-incidents
from cyber-vulnerabilities. There are several techniques to enhance
cybersecurity, including vulnerability assessment, penetration testing,
and static or dynamic analysis of applications. However, proactive
defence is subject to bounded resources: time constraints, verification
costs (Gao, Gong, Wang, Wang, & Qiu, 2022; Srinidhi, Yan, & Tayi,
2015), a specific effort for proprietary software, limits to automa-
tion, and contextual security analysis in highly connected systems.
Therefore, accurate methods to support experts in risk assessment are
a relevant premise for prioritising interventions and, hence, making
better use of resources. In this regard, (semi-)automatic tools and
applications based on AI, especially deep learning, are gaining in-
creasing attention as practical support to detect malware (Cui et al.,
2018). Unfortunately, they do not provide complete protection against
malware attacks; in a recent study (Catalano et al., 2022), it was shown
that classification based on convolutional neural networks could be
deceived by masking malware with a goodware component to bypass
automatic controls. This approach is called polymorphism and is a
oftware property often used in cyber guerrilla attacks (Van Haaster,
evers, & Sprengers, 2016). Furthermore, Macas, Wu, and Fuertes

2023) conducted a detailed review and categorisation of cyber-attacks
aking advantage of adversarial learning. On the other hand, these
orks outline potential counteractions to mitigate cyber-risks in rela-

ion to such applications of deep learning. Also, new approaches are
eing investigated to benefit from deep learning while overcoming
ome of its limitations, e.g., enhancing explainability (Keshk et al.,
023; Sharma, Sharma, Lal, & Roy, 2023).

Moving to risk assessment methodologies and modelling, differ-
nt research streams are investigated to support cybersecurity experts
hrough different methodological or algorithmic techniques. Qualita-
ive approaches supporting cyber-risk management are recommended
n international standards, including risk matrices. However, the va-
idity of such approaches is limited by methodological issues that can
ead to inconsistencies, misleading interpretations, and a lack of focus
n potential correlations among risk factors (see, e.g., Crotty and Daniel
2022) and references therein).

On the other hand, partial information in the cybersecurity domain
s a serious obstruction to quantitative analysis, which influences its
imited adoption compared to qualitative or semi-qualitative methods
ased on risk matrices. In fact, limited data accessibility has been
idely recognised as a relevant issue (Giudici & Raffinetti, 2021),
ith an economic impact on estimates (Anderson et al., 2013) and

onsequent effects on insurance (Carfora, Martinelli, Mercaldo, & Or-
ando, 2019). Among the main factors leading to data scarcity or
on-availability, we mention resource limitations for conducting vul-
erability assessments and non-disclosure policies to avoid sharing
3

onfidential information on cyber-threats and reputational losses. These
aspects should be considered along with the lack of harmonisation
between different quantitative methodologies, which hinders the as-
sessments’ comparability (Crotty & Daniel, 2022; Facchinetti, Osmetti,
& Tarantola, 2023).

A central topic in quantitative risk analysis is the way the likelihood
and impact of a cyber-incident are estimated. Probability estimation
is subject to various uncertainty sources and limitations in different
quantitative methods (Allodi & Massacci, 2017), and available assess-
ments provided by cybersecurity agencies should be integrated with
external information. For example, several studies adopt the CVSS as a
means to evaluate the probability of a cyber-vulnerability’s exploitation
leading to a cyber-attack; see, e.g., the references in He, Li, and Li
(2019, p. 168207). Similar approaches are questioned by other works,
which suggest that CVSS alone does not directly link to a cyber-
attack’s likelihood; instead, the CVSS should be combined with external
information regarding exploits and available resources in the black
market (Allodi & Massacci, 2014).

A general approach to data-driven updates of probability distribu-
tions by combining different information sources about cyber-
vulnerabilities is given by Bayesian statistics and related computational
techniques. The Factor Analysis of Information Risk (FAIR) model is a
prominent example based on a well-established information security
risk ontology; FAIR allows evaluating risk through the specification of
a class of prior distributions and Monte Carlo simulations (Crotty &
Daniel, 2022). Even in this case, the model’s applicability is limited
by the adherence of specific scenarios in the cyber-domain with the
model’s distribution assumptions, and recent works have tested and
relaxed such assumptions (Wang, Neil, & Fenton, 2020). Related to
this work, network-based approaches have been applied to cyber-
risk modelling in different ways, starting with network analysis of
connected hosts (Gil, Kott, & Barabási, 2014) and including knowledge
graphs (Zhao, Jiang, Han, Li, & Peng, 2023) and Bayesian networks or
machine learning (e.g., random forest) algorithms (Facchinetti et al.,
2023; Kia, Murphy, Sheehan, & Shannon, 2024). Knowledge graphs
allow encoding semantic structures and have strict relations with
cybersecurity ontologies (Zhao et al., 2023, Sec.2), providing practical
support in knowledge retrieval, reporting, and analysis in combination
with statistical or machine learning algorithms. Bayesian networks are
a powerful approach to exploring causal relations or dependences, for
example, in attack chains; furthermore, they are also used to enhance
the integration of qualitative frameworks and regulatory aspects that
can affect cyber-risk (Shin, Son, Heo, et al., 2015). Bayesian networks
can be integrated with other techniques, including taxonomic models
based on the frequency and magnitude of threats and losses, such
as the FAIR model mentioned above (Wang et al., 2020). Estimation
techniques in Bayesian networks rely on distributional assumptions or
the knowledge of distribution parameters, and they can be affected
by uncertainty about the dependence structure connecting vulnerabil-
ities, devices, and attacks. Therefore, even for this class of methods,
deviations from distributional assumptions or a lack of information
to identify the probabilistic or statistical models could undermine
the validity of the approach, as current studies point out (Allodi &
Massacci, 2017; Kia et al., 2024; Woods & Böhme, 2021).

Aiming at fostering automatic assessments and reducing subjec-
tive experts’ bias, new supervised methods for cyber-risk prediction
based on CVEs have been recently proposed, where natural language
processing and topic detection help predict vulnerabilities’ likelihood
and impact (Kia et al., 2024). Motivated by the same need to infer
the likelihood and impact of a cyber-vulnerability’s exploitation, fuzzy
logic has been considered too (Dondo, 2008). The role of uncertainty
in the cyber-domain is also relevant for the development of fuzzy
techniques applied to intrusion detection systems (Javaheri, Gorgin,
Lee, & Masdari, 2023), game-theoretic modelling of allocation and
sharing cyber-defence resources (Gao et al., 2022), copula-based risk
modelling for time series analysis of cyber losses (Zängerle & Schiereck,
2023), and stochastic processes for evaluating the resilience of a system

based on Markov chains (Zhang & Malacaria, 2021).
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2.2. Preliminaries on statistical models

In line with the research questions stated in the Introduction, here
we focus on interpretable statistical modelling and recently proposed
applications to promote proper cyber-risk assessment and cyberse-
curity analysis. Before discussing the two specific models addressed
in this work in the cybersecurity domain, we briefly review the or-
dered logit (OrdLog) model as a benchmark for regression with ordinal
responses (McCullagh, 1980).

2.2.1. Ordered logit model
The OrdLog model is a Generalised Linear Model (GLM) suited to

cumulative probability distributions for ordinal responses conditioned
on explanatory variables. GLMs have proven useful with count response
data as a means to predict the number of intrusions (Leslie, Harang,
Knachel, & Kott, 2018) or other count data related to cyber-attacks.
These statistical models can support testing the distributional assump-
tions underlying such count data. Leslie et al. (2018) stress some issues
already mentioned above, namely, the subjectivity of vulnerability
scoring systems and the issues posed by a qualitative, rather than quan-
titative, structure, the partial knowledge about existing vulnerabilities,
and the dependence on the adopted technology.

The OrdLog model is specified as follows: let 𝑦1,… , 𝑦𝑛 be a sample
of 𝑛 ordinal responses, and 𝐗 be a vector of explanatory variables
or regressors). The OrdLog model aims at describing the effect of
egressors on the odds

og
𝑃 (𝑦 ≤ ℎ|𝐗)
𝑃 (𝑦 ≥ ℎ|𝐗)

= 𝛼ℎ − 𝛽 ⋅ 𝐗, ℎ1 ≤ ℎ2 ⇔ 𝛼ℎ1 ≤ 𝛼ℎ2 (2.1)

where 𝑃 (𝑦 ≤ ℎ|𝐗) (respectively, 𝑃 (𝑦 ≥ ℎ|𝐗)) is the left (respectively,
right) cumulative probability associated with the ℎth level of the re-
sponse and conditioned to the observed values 𝐗. The fit procedure
estimates the model parameters, which are the level-specific intercepts
𝛼ℎ and the 𝛽 coefficients that quantify the effects of regressors on
the log-odds. This formulation assumes that the proportional odds
hypothesis, namely, the log-ratio of the odds on the left-hand side of
(2.1), depends on the ordinal level ℎ only through the scale coefficient
𝛼ℎ, which does not depend on the variables 𝐗.

Despite the wide applicability of ordered logit or probit, more
general approaches can be envisaged to overcome limitations from
the potential violation of model assumptions (in this case, the pro-
portional odds hypothesis). Another motivation stimulating research
for new methodologies to deal with ordinal responses is the reduced
interpretability of parameter estimates of GLMs with respect to simpler
linear regression. This aspect is relevant in operational scenarios, where
decision-makers should be able to interpret and quantify the impact of
an explanatory variable without assuming background knowledge of
the underlying statistical model. For this reason, we briefly present a
recent proposal regarding the use of a regression model with ordinal
responses in cyber-risk assessment.

2.2.2. Rank transform in linear regression
A recent approach in Giudici and Raffinetti (2021) involves a linear

regression model (which we refer to as LinReg) for data regarding
cyber-incidents and is based on the rank transform of a 𝑛-dimensional
ordinal variable 𝑌 with 𝑘 levels, that is, the set of ranks for each obser-
vation with a given prescription to handle ties (Iman & Conover, 1979).
Formally, we move from the ordinal response 𝑌 to the rank-transformed
variable 𝑅(𝑌 ) defined by

𝑌 ↦ 𝑅(𝑌 ) ∈
{

𝑟1, 𝑟2,… , 𝑟𝑘
}

, where

𝑟1 = 1, 𝑟ℎ+1 = 𝑟ℎ + #𝑌 (−1)({ℎ + 1}), ℎ ∈ {1,… , 𝑘 − 1} (2.2)

and #𝑌 (−1)({ℎ + 1}) denotes the number of observations of 𝑌 whose
value is ℎ + 1. The fit of the regression model

𝑟 = 𝛽 + 𝛽 ⋅ 𝐗 + 𝜀 , 𝜀 ∼  (0, 𝜎2), 𝑖 ∈ {1,… , 𝑛} (2.3)
4

𝑖 0 𝑖 𝑖 r
where  (0, 𝜎2) is the centred normal distribution with variance 𝜎2

estimated from the data, is evaluated by applying the Rank Graduation
Accuracy (RGA) (Giudici & Raffinetti, 2021)

RGA ∶=
𝑛
∑

𝑖=1

𝑛
𝑖
⋅

(

1
𝑛𝑦

⋅
𝑖

∑

𝑗=1
𝑦𝑟̂𝑗 −

𝑖
𝑛

)2

(2.4)

where 𝑦1,… , 𝑦𝑛 have mean 𝑦 and are ordered using the estimated ranks
̂ obtained by fitting (2.3), to rank-transformed test data.

As anticipated, the choice of model (2.2)–(2.3) is argued to pro-
vide more interpretable results supporting decision-making with re-
spect to GLMs. However, the use of linear regression with rank trans-
form may not be suited to dealing with cyber-vulnerabilities; contrary
to actual cyber-incidents, vulnerabilities are subject to the different
types of uncertainty mentioned above, especially in the cyber-guerrilla
context (Van Haaster et al., 2016).

From a methodological perspective, this means that several as-
sumptions underlying the linear regression model may not be fulfilled
when dealing with cyber-vulnerabilities. In particular, linear models
rely on the normality assumption for the residuals, which may not
be met in networks of digital systems; in fact, evidence shows that
some relevant features of data breach datasets are well described by
heavy-tail distributions (Edwards, Hofmeyr, & Forrest, 2016). Even the
homoscedasticity assumption may not be fulfilled, and class unbalanc-
ing could make the linear model more sensitive to this violation, while
quantile regression does not assume homoscedasticity.

2.2.3. Quantile regression: remarks for cyber-risk assessment
Both the OrdReg and the LinReg models rely on assumptions that

may be unverifiable in real datasets: unbalanced classes, deviations
from normality, and a lack of complete knowledge of the space of
potential vulnerabilities (unknown ones or 0-days) may reduce the
effectiveness of the aforementioned regression methods. In the cyber-
domain, such hypotheses may actually not be verifiable due to the
already-mentioned confidentiality and restrictions on data sharing.
For this reason, we consider distribution-free approaches to make the
analysis more robust against violations of statistical assumptions and
concentrate on quantile regression (Koenker & Hallock, 2001).

Let 𝑄𝜏 ∶= inf𝑦{𝑦 ∶ 𝜏 ≤ 𝐹 (𝑦)) be the 𝜏th quantile of a random vari-
ble with cumulative distribution function (CDF) 𝐹 . Quantile regression
stimates 𝑄𝜏 conditioning on 𝑝 regressors 𝐗

𝜏 (𝑦𝑖|𝐗𝑖, 𝛽) = 𝐗𝚃
𝑖 ⋅ 𝛽(𝜏), 𝑖 ∈ {1,… , 𝑛}. (2.5)

arameter estimates 𝛽(𝜏) ∈ R𝑝 come from the minimisation of the loss
unction (Koenker & Hallock, 2001)

𝛽(𝜏) ∶= argmin
𝛽∈R𝑝

𝑛
∑

𝑖=1
𝜚𝜏

(

𝑦𝑖 − 𝐗𝚃
𝑖 ⋅ 𝛽

)

,

𝜏 (𝑢) ∶= 𝑢 ⋅ (𝜏 − I(𝑢 < 0)) (2.6)

here I(𝑋) is the characteristic function of a subset 𝑋 ⊆ R.
In addition to increased robustness against model misspecification,

he choice of quantile regression leads to a new parameter 𝜏 that
aturally relates to the notion of Value-at-Risk (VaR) (also see Carfora
t al. (2019) and Radanliev et al. (2018) for a discussion of VaR in the
ybersecurity context), in line with the purposes of this work.

Different estimates can arise from different choices of the quan-
ile level, which lets us compare different rankings or prioritisations
t different quantile levels by looking at parameters associated with
egressors. However, this aspect may lead to ambiguities if it is not
roperly linked to risk evaluation and decision-making, e.g., when
anking the attributes represented by the regressors (Angelelli & Cata-
ano, 2022). This leads us to consider quantile regression, where the
esponse explicitly refers to a vulnerability’s priority.
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2.2.4. Mid-quantile regression
Dealing with an ordinal response, we have to extend the quan-

tile regression approach to discrete variables; for this purpose, we
take advantage of mid-quantile (MidQR hereafter) regression methods.

ecent work by Geraci and Farcomeni (2022) applies mid-quantile
egression (Parzen, 2004) to discrete data: starting with a random
ariable 𝑌 described by a categorical distribution 𝑌 ∼ cat(𝑝ℎ, 1 ≤ ℎ ≤ 𝑘)

with 𝑘 levels, we set

𝜋1 =
1
2
⋅ 𝑝1, 𝜋ℎ = 1

2
⋅ 𝑝ℎ +

ℎ−1
∑

𝓁=1
𝑝𝓁 , ℎ ∈ {2,… , 𝑘} (2.7)

which represents the evaluation of the mid-cumulative distribution func-
tion 𝐺𝑌 (𝑦) = 𝑝(𝑌 ≤ 𝑦) − 1

2 𝑝(𝑌 = 𝑦) for the values 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛.
Introducing 𝜋0 = 0, 𝜋𝑘+1 = 1, 𝑦0 = 𝑦1, and 𝑦𝑘+1 = 𝑦𝑘, we can define the
mid-quantile function as

𝐻𝑌 (𝑝) = ∫

1

0

𝑘+1
∑

ℎ=0

(

(1 − 𝛾) ⋅ 𝑦ℎ + 𝛾 ⋅ 𝑦ℎ+1
)

⋅ 𝛿
(

(1 − 𝛾) ⋅ 𝜋ℎ + 𝛾 ⋅ 𝜋ℎ+1 − 𝑝
)

𝑑𝛾

(2.8)

where 𝛿(⋅) is the Dirac distribution. Setting 𝐹 (𝑦) ∶= 𝑝(𝑌 ≤ 𝑦) as
before, estimators for unconditioned MidQR are obtained naturally,
i.e., by the substitution of the estimates in the expression of the mid-
quantile function. Such estimators enjoy good asymptotic consistency
and normality for the sampling distribution; see Geraci and Farcomeni
(2022), Ma, Genton, and Parzen (2011), and references therein.

For a given link function ℎ(⋅), we can consider a conditional mid-
quantile function 𝐻ℎ(𝑌 )|𝐗(𝑝) = 𝐗𝚃 ⋅ 𝛽(𝑝) and estimate 𝐺̂𝑌 |𝐗(𝑦|𝐱) from
samples (𝐱𝑖, 𝑦𝑖), 𝑖 ∈ {1,… , 𝑛}, through a non-parametric estimator that
can encompass both continuous and discrete regressors (Li & Racine,
2008):

𝐺̂𝑌 |𝐗(𝑦|𝐱) = 𝐹𝑌 |𝐗(𝑦|𝐱) −
1
2
⋅ 𝑚̂𝑌 |𝐗(𝑦|𝐱),

𝐹𝑌 |𝐗(𝑦|𝐱) =
𝑛−1 ⋅

∑𝑛
𝑖=1 I(𝑦𝑖 ≤ 𝑦)𝐾𝜆(𝐗𝑖, 𝐱)

𝛿𝐗(𝐱)
,

𝑚̂𝑌 |𝐗(𝑧𝑗 |𝐱) = 𝐹𝑌 |𝐗(𝑧𝑗 |𝐱) − 𝐹𝑌 |𝐗(𝑧𝑗−1|𝐱) (2.9)

where 𝐾𝜆(𝐗𝑖, 𝐱) is a kernel function with bandwidth 𝜆, 𝛿𝐗(𝐱) is the
ernel estimator of the marginal density of the explanatory variables
, and 𝑧1 < 𝑧2 < ⋯ < 𝑧𝑘 are the distinct values taken by the
bservations {𝑦1,… , 𝑦𝑛} in the sample. In this way, we can obtain
̂𝑌 |𝐗(𝑦|𝐱) = 𝐹𝑌 |𝐗(𝑦|𝐱) −

1
2 ⋅ 𝑚̂𝑌 |𝐗(𝑦|𝐱). Estimates of coefficients 𝛽 follow

from the minimisation of the following quadratic loss function

argmin𝜓𝑛(𝛽; 𝑝), 𝜓𝑛(𝛽; 𝑝) ∶= 𝑛−1 ⋅
𝑛
∑

𝑖=1

(

𝑝 − 𝐺̂𝑌 |𝐗(ℎ−1(𝐗𝚃
𝑖 ⋅ 𝛽))

)2 . (2.10)

The estimation and fitting procedures can be carried out using the R
package Qtools developed by Geraci and Farcomeni (2022).

3. Contribution and proposed methodology

The previous discussion points out the need to facilitate the transfer
of qualitative structures and assessments into quantitative models, as
both have practical advantages and limitations. Qualitative assessments
are widely adopted in standards and guidelines and allow encoding
experts’ evaluations even when sufficient data for quantitative analyses
are not available; on the other hand, they may give rise to inconsisten-
cies and embed subjective factors or biases, especially in the assessment
of probabilities related to cyber-events (De Smidt & Botzen, 2018).
Quantitative methods enhance the assessments’ accuracy and reduce
ambiguity, but their implementation requires sensitive information or
confidential data that are generally not available. Furthermore, the
validity of those methods may rely on distributional assumptions or
the knowledge of parameters or dependencies, which may be limited
for the same reasons.
5

A way to combine the two approaches is to adopt quantitative
models to analyse ordinal assessments of qualitative variables; specifi-
cally, mid-quantile methods involve fitting (mid-)conditional distribu-
tion functions for cyber-vulnerability priority levels based on available
information, so we can convert CVSS qualitative information, in con-
junction with other relevant risk factors (Allodi & Massacci, 2014),
into probabilistic models. Starting with an ordinal response variable,
we can also move from cyber-vulnerabilities’ priority to ranking, en-
abling the comparison of different methodologies such as the LinReg
model mentioned above. The non-parametric approach that we adopt
avoids methodological issues that could compromise the validity of the
analysis, making the estimated probability usable in multiple settings.
Finally, an appropriate accuracy index is proposed to enhance the
compatibility of ranking predictions with the original ordinal structure
and the uncertainty related to unknown cyber-vulnerabilities.

3.1. Estimation: MidQR for robust cyber-vulnerability assessment

For our purposes, MidQR is used to provide estimates of the con-
ditional quantile given a set of regressors that includes both intrinsic
vulnerability characteristics and external variables (exposure and ex-
ploit availability), with a qualitative priority assessment as our ordinal
response variable. In addition to quantile estimates, we are interested in
the mid-cumulative distribution function that describes the conditional
probability of priority levels, as it helps to identify where a lack of com-
plete information may have an effect. Such a conditional distribution
concerns the quantity

𝐹𝑌 |𝐗(𝑌 ≤ 𝑦|𝐱) = 𝑃 (𝑌 ≤ 𝑦 ∧ 𝐗 = 𝐱)
𝑃 (𝐗 = 𝐱)

(3.1)

here we focus on regressors 𝐗 with a non-zero probability mass. The
uantity (3.1) can be seen as a balance of the joint occurrence of a given
mpact level with cyber-vulnerability features (𝑃 (𝑌 ≤ 𝑦 ∧ 𝐗 = 𝐱)) and
he features’ likelihood (𝑃 (𝐗 = 𝐱)). The different forms of uncertainty
entioned in the Introduction, such as underreported vulnerabilities,

ffect the evaluation of (3.1) starting from the measurements 𝐱, as
e have limited knowledge of the sample space due to unknown
ulnerabilities.

As a subsequent step, the resulting estimates are used to predict the
riority level of new vulnerabilities at a given quantile level and, then,
rioritise them. This last step should enjoy some invariance properties
or the predicted values to mitigate the effect of the aforementioned
ncertainty on the ranking accuracy. This requirement has a practical
ffect in regression models dealing with both estimated ranking (Lin-
eg) and, more generally, distributions of ordinal variables (such as
idQR). In the scope of this work, the performance index we intro-

uce in the next section complements the estimation phase by taking
nto account the effects of partial knowledge about vulnerabilities on
ankings.

Experts’ subjectivity in the assessment of regressors extracted from
he attack vector is another source of uncertainty (Kia et al., 2024).
ven if this work does not involve measurement errors for the ex-
lanatory variables 𝐗 in the regression models, we point out that
ayesian methods are a viable approach to dealing with a mixture
f experts and grouping multiple regression models in the context of
yber-vulnerability assessment (Angelelli, Arima, & Catalano, 2022).

.2. A new performance index for cyber-risk prediction under uncertainty

The uncertainty about the sample spaces, with consequent effects
n the estimation of the priority assessment, is a major driver that
rompts our research for a new approach to evaluating the accuracy
f the assessment.

Specifically, the use of quantitative values in (2.4) should take into
ccount the nature of the variables in the model. The evaluation of (2.4)
ssumes an algebraic structure, formally, the semiring (N,+, ⋅, 0, 1) of
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natural numbers for rankings or the ordered field (R,+, ⋅, 0, 1) for regres-
sion, which is not necessarily linked to the original ordinal variables
assessing the priority of a cyber-vulnerability. This algebraic structure
is an artefact suited to the regression model and, hence, to the estimated
variables (let them be the rank transform or the mid-quantile); the
only effect derived from the ordinal variables is the order defining the
summands in (2.4). It is worth noting that a similar observation also ap-
plies in other frameworks for uncertainty modelling, e.g., when dealing
with structural representations of epistemic uncertainty in data-driven
initiatives (Angelelli, Gervasi, & Ciavolino, 2024).

Motivated by these considerations, we introduce a novel predic-
tion accuracy index to accommodate the characteristics of cyber-
vulnerability data. We consider a reverse RGA index defined as
RGA(𝑟tr , 𝑟est ), namely, we exchange the roles of the estimated 𝑟est and
the ‘‘true’’ 𝑟tr rankings. We refer to such an index as the Agreement of
Grounded Rankings (AGR) to stress the focus on the reference frame in
the ranking, namely, the order structure and the limited knowledge of
the set of cyber-vulnerabilities to be ranked.

To better appreciate the need for appropriate use of the RGA
index for unconventional cyber-risk assessment, we consider the case
of sub-sampling, i.e., known subsets of an unknown family of cyber-
vulnerabilities. This emulates the partial knowledge available due to
0-days.

Example 1. We can consider the following 5-dimensional rank vectors:

𝑐est ∶= (1, 3, 2, 2.9, 10), 𝑐tr,1 ∶= (1, 3, 2, 2, 9), 𝑐tr,2 ∶= (1, 5, 3, 3, 7) (3.2)

where 𝑐est derives from a given estimation procedure, while 𝑐tr,𝑢, 𝑢 ∈
{1, 2}, are two ‘‘true’’ rankings obtained from different knowledge
about the state of a digital system and its sample space. Although
they are different, the rankings 𝑐tr,1 and 𝑐tr,2 are consistent with the
ame attribution of ordinal levels: for the sake of concreteness, we
an assume that the components of both 𝑐tr,1 and 𝑐tr,2 are generated
y ranking the same ordinal assessment (‘‘10’’,‘‘6’’,‘‘8’’,‘‘8’’,‘‘3’’), where
riority levels are ordered from ‘‘10’’ to ‘‘1’’. In this case, the differences
etween 𝑐tr,1 and 𝑐tr,2 can arise from the existence of other elements
n the two ranked sample spaces beyond those associated with the
omponents of 𝑐tr,1 and 𝑐tr,2. The evaluation of RGA(𝑦est , 𝑦tr,𝑢) for 𝑢 ∈
1, 2} following the definition (2.4) does not satisfy invariance under
hanges in rankings that are generated by the same ordinal assessment.
ndeed, we have

GA(𝑐est , 𝑐tr,1) = 0.5161 ≠ 0.3232 = RGA(𝑐est , 𝑐tr,2). (3.3)

n the other hand, we find

GR(𝑐est , 𝑐tr,1) = RGA(𝑐tr,1, 𝑐est ) = 0.5272

= RGA(𝑐tr,2, 𝑐est ) = AGR(𝑐est , 𝑐tr,2). (3.4)

It is clear that the latter equality holds for all the choices of 𝑐est , 𝑐tr,1,
𝑐tr,2.

This shows that the AGR index resolves the lack of invariance under
sub-sampling in RGA. The favourable invariance of the AGR index un-
der rank transformations that are compatible with the same underlying
ordinal assessment is in line with Luce’s axiom of Independence of
Irrelevant Alternatives (Luce, 2005), while some algebraic conditions
related to this type of symmetry have been discussed in reasoning
under uncertainty (Angelelli et al., 2024). Practically, this invariance
is required when dealing with partial information about the space of
potential cyber-vulnerabilities, which is the general situation faced by
a decision-maker due to the occurrence of unknown vulnerabilities not
exploited yet, 0-days, and unconventional cyber-attacks (Tommasi et al.,
6

2022; Van Haaster et al., 2016). w
4. Data sources

4.1. Databases

Several databases can be used to assess the cybersecurity of a digital
system. Among the most widely used by practitioners are the following
ones:

• the National Vulnerability Database (NVD) includes assessments
of vulnerabilities’ severity by the NIST in terms of data im-
pact dimensions (Confidentiality, Integrity, and Availability) and
three additional technical features describing the accessibility
prompted by the cyber-vulnerability, namely, Access Vector (AV),
Access Complexity (AC), and Authentication (Au). The severity
assessments of these six components compose the attack vector.1

• The CSIRT database2 reports relevant updates on vulnerabilities
in line with the evaluation by NIST. Such reports are commu-
nicated by the Italian CSIRT, which is established within the
National Cybersecurity Agency.

• The Shodan database3 reports exposed hosts or IP addresses af-
fected by known vulnerabilities, which may represent a relevant
driver for attackers’ intervention. The Shodan database can be
queried by specifying a CVE and the country of the exposed hosts.
Data are collected by the Shodan monitor platform by combining
different techniques, such as crawling, IP lookups, and metadata
analysis.

• Reported exploits for CVEs can be extracted from ExploitDB.4
Information about exploits can be further refined from VulnDB,5
a database that collects information on the price range of exploits
associated with a CVE. The fields extracted from VulnDB include
the 0-day price range, the price at the time of querying, and the
exploitability.

• Tenable’s6 assessment interprets CVSSs and assigns an ordinal risk
priority through threat and vulnerability analysis. It contains
qualitative risk information in Tenable’s Vulnerability Priority
Rating (VPR) assessment, which is obtained through machine
learning algorithms that process information collected from the
dark web, social media, code repositories, and reports. This index
is the result of a threat intelligence activity that incorporates ex-
ploits’ code maturity and extracts features to monitor the impact
of a cyber-vulnerability in terms of actual and predicted threats.7

For all these databases, we prepared Python scripts in order to extract
the required data through APIs automatically:

• We started by selecting vulnerabilities identified in Italy through
Shodan to obtain a base set of CVEs. Then, the shodan API was
used to extract the exposure data.

• Subsequently, the scripts were adapted to extract the attack vec-
tors associated with these CVEs from the NVD database through
a request that returned a JSON file, which was inspected to get
the CVSS scores.

• Then, we checked the availability of the exploits from ExploitDB
and VulnDB. For ExploitDB, we used CVE Searchsploit (Fioraldi,
2017) to obtain the exploits for the selected CVEs.

• In conclusion, a dedicated script was used to obtain Tenable’s VPR
assessment of the CVEs under consideration; even in this case, we
collected these data by inspecting the output of a request for the
selected CVEs.

1 https://nvd.nist.gov/vuln/search.
2 https://www.csirt.gov.it/contenuti/.
3 https://exposure.shodan.io.
4 https://www.exploit-db.com/.
5 https://vuldb.com/.
6 https://www.tenable.com/cve/search.
7 For more details on the VPR, we refer to https://www.tenable.com/blog/

hat-is-vpr-and-how-is-it-different-from-cvss.

https://nvd.nist.gov/vuln/search
https://www.csirt.gov.it/contenuti/
https://exposure.shodan.io
https://www.exploit-db.com/
https://vuldb.com/
https://www.tenable.com/cve/search
https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss
https://www.tenable.com/blog/what-is-vpr-and-how-is-it-different-from-cvss
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Fig. 1. Graphical description of the experiments to validate the efficiency of mid-quantile regression for priority estimates and AGR as an accuracy index of predicted risk levels.
Table 1
Main attributes of the variables and their interpretation for statistical modelling. For each set of variables, the data source is provided in the
leftmost column. The quantification for the ordinal assessments of the components 𝑋C , 𝑋I , 𝑋A , 𝑋AV , 𝑋AC of the attack vector (rightmost column)
are provided by NVD experts.
Source Variables Type Interpretation Values

NIST

𝑋C

Qualitative ordinal

Severity for confidentiality ∙ ‘‘none: 0’’
∙ ‘‘partial: 0.275’’
∙ ‘‘complete: 0.660’’

𝑋I Severity for integrity
𝑋A Severity for availability

𝑋AV Type and severity
of the access vector

∙ ‘‘Requires local access: 0.395’’
∙ ‘‘Local Network accessible: 0.646’’
∙ ‘‘Network accessible: 1’’

𝑋AC Type and severity
of access complexity

∙ ‘‘high: 0.35’’
∙ ‘‘medium: 0.61’’
∙ ‘‘low: 0.71’’

Shodan 𝑁exp Count data Number Integers
ExploitDB 𝑞expl Binary Existence (Boolean) {0, 1} (dichotomic)

Tenable 𝑌 Qualitativeordinal Priority rating following
threat/vulnerability analysis

‘‘Low’’
‘‘Medium’’,
‘‘High’’,
‘‘Critical’’
Running these Python scripts, the final dataset for model validation
consists of 𝑛 = 714 units. This data extraction procedure is graphically
epicted in Fig. 1 as a component of the overall analysis blue to validate
he proposal and investigate its scope of applicability.

.2. Data description

The above data manipulation procedure leads to a dataset with the
ollowing variables:

1. Components of the attack vector obtained from the NIST vulner-
ability assessment constitute ordinal regressors.

2. Exposure is a numerical variable that counts exposed hosts, but
the variety of such count data lets us consider a continuous
approximation of this variable.

3. For each CVE, the existence or absence of an exploit is encoded
in a dichotomic variable.

4. Tenable’s priority rating is the ordinal response (dependent vari-
able) that is linked to the previous explanatory variables through
MidQR.

or the present investigation, we selected 𝑝 = 7 explanatory variables
returned by the procedure described above, whose interpretation is
summarised in Table 1.

5. Experiments and results

5.1. Descriptive analysis of the dataset

Data extracted from the databases described in Section 4 select
𝑛 = 714 cyber-vulnerabilities in Italy. The time span of the CVEs is
1999–2021. We concentrate on a single country to take into account
7

local (country-wise) factors that could generate differences in cyber-risk
and threat analyses (Crotty & Daniel, 2022) and carry out the analysis
within a known context. In our study, this choice may help to control
contextual covariates that are not involved in this analysis, e.g., reg-
ulatory aspects and governance factors affecting both technological
adoption and cyber-threats at a national level. We emphasise that this
choice can be customised for other countries or extended on a cross-
national scale based on the specific research design and assessment
objectives.

Regarding the time span, while the attack vector’s components are
intrinsic and, hence, do not change with time, the VPR and exposure
are dynamically monitored and adapted, so they reflect the current
state of the vulnerability within its limited life-cycle, also considering
technology updating and cyber-vulnerability patching or fixing. By
taking the exploit variable as dichotomic (existence or absence), we
overcome potential temporal effects related to the number of exploits,
which fall beyond the scope of the present analysis. However, we stress
that the aforementioned regression models can capture temporal factors
through relations between independent variables (in particular, expo-
sure and exploit availability) and the dependent response (Tenable’s
VPR assessment). A dedicated study of these relations could align with
and complement time-series analysis of the information in CVE scores
and descriptions (Kia et al., 2024).

We note that each variable in the attack vector is characterised
by manifest unbalancing among the different levels, as shown in
Figs. 2(a)–2(b).

When the response in a regression model is well approximated by
a continuous variable, then unbalancing could make linear regression
more sensitive to deviations from homoscedasticity; hence, quantile
regression could be favourable. This is the case when the exposure of

vulnerable hosts is related to intrinsic features of the vulnerabilities
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Fig. 2. Distribution of levels of variables from the cyber-vulnerability dataset.
Fig. 3. QQ-plots of the theoretical (normal) quantiles compared to the empirical quantiles of residuals of 𝑦 = 10⋅log10(1+𝑁exp) derived from the exposure 𝑁exp of cyber-vulnerabilities.
Fig. 4. Histograms for the empirical distributions of exposure 𝑁exp compared to 10 ⋅ log10(1 + 𝑁exp). The corresponding continuous approximations (red dashed lines) highlight
multimodality.
(Angelelli & Catalano, 2022): it is easily checked from the QQ-plots
in Figs. 3(a)–3(b) that the residuals of the exposure 𝑁exp and its log-
transform 10 ⋅ log10(1+𝑁exp), considered as responses in a linear model
with regressors (𝑋C, 𝑋I, 𝑋A, 𝑋AV, 𝑋AC), show strong deviations from
normality.

This remark also entails that linear regression would not fit the
distribution assumptions when a proxy of cyber-risk, such as exposure,
is used as the response. We also note that even the residuals of the
‘‘free model’’, i.e., the QQ-plot of the exposure 𝑁exp itself, violate the
normality assumption (see Fig. 3(b)). The use of the transform 𝑁exp ↦

10⋅log10(1+𝑁exp) in the previous QQ-plots slightly reduces the deviation
from normality; more importantly, it highlights multimodality in the
distribution of exposure, as it is manifest in the histograms depicted in
Figs. 4(a)–4(b).

This suggests the need to go beyond linear models for an appropriate
description of the external characteristics of cyber-vulnerabilities, start-
ing from their intrinsic (attack vector) and extrinsic (exposure, exploits)
features as regressors.
8

5.2. Rankings and mid-quantile regression

5.2.1. Simulation study
Contrary to real dataset analysis, in this simulation study, we can

control the data generation mechanism, so we can compare both esti-
mation and accuracy measurement in relation to the data-generating
model (OrdLog). Furthermore, we can conduct different tests to eval-
uate the models’ performance at varying hyperparameters, in partic-
ular the number of ordinal levels in the response variable and the
randomness of the probabilities in the OrdLog model.

We start by specifying the preliminary simulation study to provide
a general comparative analysis between the model presented in Giudici
and Raffinetti (2021) and the MidQR.

• We used 𝑛𝑡𝑟 = 320 units for training and 𝑛𝑡𝑒𝑠𝑡 = 80 units for testing
the accuracy performance of the models. We started with a re-
sponse variable having 𝑘 = 4 levels, in line with Tenable’s priority
rating that is used in the analysis of real data. However, we also
tested 𝑘 ∈ {3, 6, 8} to evaluate the behaviour and performance of
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the different models when the number of levels of the response
variable changes.

• Two continuous and two factor explanatory variables were con-
sidered, each of the latter having three categories. This induced
𝑃 ∶= 2+2⋅(3−1) = 6 regressors after moving to ANOVA variables.

• Following the generation of the so-specified variables, we consid-
ered the parameters 𝛼ℎ, ℎ ∈ {1,… , 𝑘−1} and 𝛽𝑝, 𝑝 ∈ {1,… , 𝑃 } to
obtain the corresponding probabilities based on the ordered logit
model (2.1).

• This scheme was iterated to obtain 𝑛𝑖𝑡𝑒𝑟 = 100 samples of the
response variable 𝑌 .

n this way, we got the coefficient estimates and the mean, over the
imulation runs, of the standard error (SE) estimates for each coef-
icient. For MidQR, we adapted a function in Qtools to overcome
omputational issues in the estimation of the conditional (mid-)CDF,
hich involves the kernel method based on Li, Lin, and Racine (2013).
pecifically, we acted on the estimated covariance matrix of the co-
fficients to make its computation compatible with cases where the
uantile level lies outside the range of the sample mid-CDF. However,
he outcomes of this procedure, which is analogous to censoring, may
ead to an overestimation of the SE obtained from the kernel method.
or this reason, we also present two additional indicators that provide
nformation on the SE: ‘‘Regular’’ Standard Error (Reg.SE) of each
arameter, which is defined as the average SE over the simulation runs
here the parameter is significant at a given level (here, 0.05); Monte
arlo Standard Error (MCSE), that is, the standard error calculated from
he coefficient estimates. Finally, the percentage of iteration runs where
given parameter is statistically significant at level 0.05 is reported (%

ign.).
The analysis compares the three models under consideration,

amely, the data-generating model (ordered logit), linear regression
or rank-transformed variables, and mid-quantile regression with 𝜏 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. For each iteration, the RGA and AGR indices were
evaluated on the test dataset. The same analysis was subsequently
carried out with the real dataset to compare, based on actual evidence,
the relative performance of linear regression for rank-transformed
variables and mid-quantile regression.

The use of both quantitative and qualitative regressors mimics
the occurrence of exposure (a numerical variable) and attack vector
components (factor variables). We generated

𝐗(𝑐𝑜𝑛𝑡) ∼  (𝜇, 𝜎), 𝐗(𝑐𝑎𝑡) ∼ 𝑝(𝜋1, 𝜋2) (5.1)

where 𝐗(𝑐𝑜𝑛𝑡) is a continuous variable with normal distribution  (𝜇, 𝜎)
ith mean 𝜇 = 0 and variance 𝜎2 = 1; 𝑝(𝜋1, 𝜋2) is the categori-

al distribution with three support points associated with probability
eights 𝜋1, 𝜋2, 1 − 𝜋1 − 𝜋2 > 0. In particular, we chose 𝜋1 = 𝜋2 = 1

3 .
hen, the responses 𝑦𝑖, 𝑖 ∈ {1,… , 𝑛}, were extracted from a categorical
istribution with probability derived from (2.1), i.e., 𝑝(𝑌 = 1|𝐗) =
(𝑌 = 1|𝐗) and

(𝑌 = ℎ|𝐗) = 𝑃 (𝑌 ≤ ℎ|𝐗) − 𝑃 (𝑌 ≤ ℎ − 1|𝐗), ℎ ∈ {2,… , 𝑘}. (5.2)

Multiple simulation runs were performed at different choices of 𝛽true
with different quantile levels.

5.2.2. Simulation results
We start presenting the results of simulations where the response

variable contains 𝑘 = 4 possible levels. As mentioned above, this situ-
tion is in line with the real dataset structure since Tenable’s priority
ating involves 𝑘 = 4 levels too.

Tables 2–3 report the outcomes from two different scenarios. The
arameters defining the theoretical distribution from the OrdLog model
an be tuned to obtain the uniform probability distribution on the 𝑘

response levels (Table 2) or they can be chosen generically; in the
latter case, we can get a non-uniform distribution (Table 3). In the
tables, we report the estimates of the model parameters (Est) and the
9
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corresponding standard errors (SE) averaged over 100 simulations. We
also report the Monte Carlo standard error (MCSE) to evaluate the
stability of the estimates over the simulations. For LinReg and MidQR,
we report the percentage of times the parameters were significant at
the 5% level (% sign.).

The resulting RGA and AGR indices are reported in Table 4. To
provide an informative view of RGA and AGR, we present the boxplots
associated with each model in Fig. 5. Along with the summary of
outputs for the three methods under investigation, in the following
tables and figures, we include RGA(𝑟true, 𝑟true) and AGR(𝑟true, 𝑟true) as
reference values in the analysis of the two accuracy measures.

Then, we move to different numbers of levels in order to better
assess the behaviour of the different methods in different decision
scenarios. We address this aspect starting with 𝑘 = 3: this is a typical
scale in several operational or tactical decisions, where levels are
generally interpreted as ‘‘low’’, ‘‘medium’’, and ‘‘high’’, respectively.
The outcomes of this set of simulations are presented in Table 5.

The corresponding RGA and AGR indices are shown in Table 6. Even
in this case, we provide a graphical representation of these outcomes
in Fig. 6.

Finally, we complete the simulation study by considering more than
4 levels in the response variable. Specifically, we report the results at
𝑘 = 6 (Table 7) and 𝑘 = 8 (Table 8). The boxplots corresponding to the
RGA and AGR indices summarised in Table 9 are displayed in Fig. 7.

5.2.3. Real dataset analysis
In parallel with the investigation of the simulated data, we report

the study of the dataset whose construction has been described in Sec-
tion 4. In particular, we present the same type of indicators considered
for the simulations. However, here we stress that multiple datasets are
constructed from the original one through its random splitting into
a training set (𝑛tr = 664) and a test set (𝑛test = 50). This splitting
of the dataset takes into account the imbalance of cyber vulnerability
characteristics, so a smaller percentage of observations in the training
set could cause the models, in principle, to miss relevant information
about rare events. This aspect also occurs in other statistical analyses
of cybersecurity (Giudici & Raffinetti, 2021).

We generated 100 random extraction of test sets, whose comple-
ents return the associated training sets, to evaluate averaged param-

ter estimates, standard errors, and predictive performance indices; 16
uantile levels equally spaced between 0.1 and 0.9 are considered in
his case.

We start with parameter estimates, which are shown in Table 10.
ere, the whole set of variables described in Table 1 is used to im-
lement the regression models. Then we restrict these models by con-
idering only technical (𝑋AC, 𝑋AV) and contextual (exposure, exploit)
ariables; the corresponding outcomes are presented in Table 11.

Moving to the performance indices, both RGA and AGR for all
he regression models under examination are reported in Table 12.
n addition, we provide two graphical representations regarding the
ehaviour of the predictive performance at different quantile levels:
he boxplots in Fig. 8 and the plots of average RGA and AGR for all
6 quantile levels in Fig. 9.

In order to investigate the robustness of the analysis according
o the aforementioned settings, we conducted parallel analyses with
ifferent partitionings (𝑛𝑡𝑟 = 574 and 𝑛𝑡𝑒𝑠𝑡 = 140), a different number of
terations, or scaling of the numerical regressor. The results and overall
erformance in the different scenarios are similar to those we have
resented above, revealing a satisfactory robustness of the proposed

pproach.
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Table 2
Coefficient estimates from simulations with 𝑘 = 4 levels for the response variable. The parameters in the generative model are tuned in order
to get the uniform probability distribution on the 𝑘 possible response levels.

X3 X4 X1 X2 Intercept

1 2 1 2

OrdReg
Est −3.097 2.094 1.017 4.141 −2.062 4.227
SE 0.312 0.244 0.368 0.530 0.402 0.540
MCSE 0.032 0.029 0.033 0.052 0.042 0.050

LinReg

Est −37.012 24.156 14.856 44.762 −27.017 46.337 98.235
SE 2.947 2.818 7.173 7.107 7.280 7.302 6.823
MCSE 0.230 0.235 0.566 0.626 0.651 0.544 0.489
% sign. 100.0% 100.0% 55.0% 100.0% 99.0% 100.0% 100.0%

MidQR(𝜏1)

Est −0.238 0.156 0.038 0.359 −0.146 0.482 0.291
SE 2.896 2.466 7.227 6.083 7.972 6.670 7.338
Reg.SE 0.036 0.035 N.D. 0.086 0.092 0.090 0.089
MCSE 0.002 0.002 0.004 0.007 0.007 0.007 0.007
% sign. 71.0% 71.0% 0.0% 70.0% 19.0% 71.0% 66.0%

MidQR(𝜏2)

Est −0.274 0.168 0.058 0.359 −0.184 0.433 0.563
SE 1.283 1.192 3.365 2.648 3.563 3.178 3.150
Reg.SE 0.025 0.024 0.061 0.060 0.066 0.062 0.061
MCSE 0.002 0.002 0.005 0.006 0.008 0.006 0.006
% sign. 71.0% 71.0% 12.0% 71.0% 57.0% 71.0% 71.0%

MidQR(𝜏3)

Est −0.270 0.163 0.046 0.300 −0.188 0.344 0.827
SE 705.709 340.703 372.360 1024.919 578.466 1078.914 520.001
Reg.SE 0.022 0.021 0.058 0.056 0.061 0.056 0.057
MCSE 0.002 0.002 0.004 0.005 0.007 0.005 0.006
% sign. 54.0% 54.0% 7.0% 54.0% 48.0% 54.0% 54.0%

MidQR(𝜏4)

Est −0.202 0.117 0.029 0.193 −0.144 0.213 1.057
SE 1.267 1.148 2.258 3.299 2.433 3.350 2.410
Reg.SE 0.029 0.027 N.D. 0.067 0.077 0.067 0.074
MCSE 0.001 0.002 0.003 0.004 0.006 0.004 0.005
% sign. 71.0% 70.0% 0.0% 66.0% 30.0% 67.0% 71.0%

MidQR(𝜏5)

Est −0.125 0.075 0.001 0.086 −0.097 0.085 1.262
SE 3.237 2.428 5.298 7.221 5.278 8.288 6.373
Reg.SE 0.040 0.034 N.D. 0.077 0.094 0.073 0.100
MCSE 0.001 0.001 0.002 0.003 0.004 0.003 0.004
% sign. 68.0% 46.0% 0.0% 2.0% 1.0% 1.0% 71.0%
Fig. 5. Boxplots for RGA and AGR when 𝑘 = 4; both uniform and non-uniform probability distributions are considered starting from the data-generating OrdLog model. Boxplots
refer, from left to right of the x-axis, to OrdLog, LinReg, MidQR with 𝜏 taking values in {0.1, 0.3, 0.5, 0.7, 0.9}, and the reference value RGA(𝑟true , 𝑟true).
6. Discussion

In line with the search for flexibility, interpretability, and robust-
ness in cyber-risk assessments, a quantile-based approach can extract
relevant information beyond means to examine rare events, which is a
primary need for the continuity of a network or critical infrastructure.
The AGR index lets us evaluate predictive performance without relying
on a quantitative structure for the ordinal responses. Here, we discuss
the outcomes of the analysis of synthetic and real data.

AGR as an appropriate measure of predictive accuracy. From simulations,
we see that the data-generating models are generally associated with a
higher AGR value, while their RGA is often worse than other models
10
(see Figs. 5, 6, and 7). It is plausible that the specific model underlying
the data generation process provides better predictive performance
compared to other models. This criterion identifies AGR as a more
appropriate performance index for our purposes since it better distin-
guishes the data-generating model in terms of predictive capacity, as is
manifest from the above-mentioned figures.

In addition, AGR enjoys the invariance property under sub-
sampling, as discussed in Section 3, which is desirable since the mea-
sure is not affected by other (possibly unknown) vulnerabilities. In this
way, we can better prioritise the vulnerabilities under consideration
without incurring order reversal due to new vulnerabilities not pre-
viously detected. From a different perspective, such new information
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Table 3
Coefficient estimates from simulations with 𝑘 = 4 levels for the response variable. Generic parameters in the generative model lead to a
non-uniform probability distribution on the 𝑘 possible response levels.

X3 X4 X1 X2 Intercept

1 2 1 2

OrdReg
Est −3.116 2.064 1.046 4.120 −2.074 4.094
SE 0.237 0.179 0.306 0.407 0.335 0.394
MCSE 0.024 0.015 0.029 0.037 0.035 0.040

LinReg

Est −46.974 28.359 18.304 59.905 −34.439 54.792 102.372
SE 2.901 2.884 6.938 7.136 7.185 7.099 6.381
MCSE 0.269 0.225 0.670 0.612 0.645 0.609 0.506
% sign. 100.0% 100.0% 78.0% 100.0% 100.0% 100.0% 100.0%

MidQR(𝜏1)

Est −0.311 0.166 0.083 0.385 −0.140 0.453 0.288
SE 3.032 2.475 6.167 6.780 7.080 6.875 7.375
Reg.SE 0.036 0.034 0.079 0.086 0.086 0.088 0.084
MCSE 0.002 0.002 0.004 0.006 0.006 0.006 0.006
% sign. 72.0% 72.0% 2.0% 72.0% 18.0% 72.0% 66.0%

MidQR(𝜏2)

Est −0.316 0.178 0.064 0.392 −0.172 0.440 0.552
SE 1.214 1.111 2.664 2.707 2.776 2.612 2.566
Reg.SE 0.023 0.023 0.057 0.057 0.061 0.058 0.056
MCSE 0.002 0.002 0.004 0.005 0.006 0.006 0.005
% sign. 72.0% 72.0% 13.0% 72.0% 57.0% 72.0% 72.0%

MidQR(𝜏3)

Est −0.285 0.161 0.055 0.347 −0.188 0.372 0.797
SE 1.303 1.756 2.397 2.540 2.926 2.497 3.089
Reg.SE 0.021 0.021 0.052 0.053 0.057 0.052 0.053
MCSE 0.002 0.002 0.004 0.004 0.006 0.005 0.005
% sign. 72.0% 72.0% 7.0% 72.0% 68.0% 72.0% 72.0%

MidQR(𝜏4)

Est −0.202 0.114 0.038 0.244 −0.147 0.249 1.023
SE 1.413 1.321 2.591 3.351 2.722 3.631 2.508
Reg.SE 0.027 0.026 0.065 0.065 0.073 0.062 0.067
MCSE 0.001 0.001 0.003 0.003 0.005 0.004 0.004
% sign. 72.0% 72.0% 1.0% 72.0% 43.0% 71.0% 72.0%

MidQR(𝜏5)

Est −0.113 0.062 0.022 0.132 −0.114 0.115 1.231
SE 2.867 2.164 3.590 5.085 4.094 7.379 4.220
Reg.SE 0.038 0.034 N.D. 0.078 0.094 0.073 0.090
MCSE 0.002 0.001 0.002 0.003 0.004 0.003 0.004
% sign. 68.0% 25.0% 0.0% 9.0% 2.0% 8.0% 72.0%
Table 4
RGA and AGR from simulations with 𝑘 = 4 levels in the response variable. Columns
2–5 are generated from a model tuned to produce uniform probabilities for the 𝑘 levels
in the response. The last row corresponds to the reference value, namely, the index
RGA or AGR evaluated at (𝑟true , 𝑟true).

𝑘 = 4, uniform 𝑘 = 4, non-uniform

RGA AGR RGA AGR

Est SD Est SD Est SD Est SD

OrdLog 2.517 0.496 2.823 0.507 5.889 0.897 6.494 0.723
LinReg 3.276 0.578 1.516 0.193 6.762 0.796 3.254 0.282
MidQR(𝜏1) 3.093 0.551 3.016 0.394 6.600 0.767 4.316 0.348
MidQR(𝜏2) 3.212 0.555 3.143 0.391 6.657 0.768 4.356 0.342
MidQR(𝜏3) 3.239 0.562 3.214 0.389 6.684 0.773 4.377 0.343
MidQR(𝜏4) 3.193 0.565 3.207 0.398 6.670 0.797 4.371 0.349
MidQR(𝜏5) 3.016 0.573 3.146 0.418 6.491 0.862 4.276 0.370
(𝑟true , 𝑟true) 4.299 0.614 4.299 0.614 8.614 0.677 8.614 0.677

may be needed to update individual priority ratings and adapt to the
dynamic behaviour of cyber-space, as is discussed in the following
paragraph.

MidQR and probabilistic risk modelling. We already pointed out the
distinction between cyber-incidents and cyber-vulnerability. Recalling
that the analysis in Giudici and Raffinetti (2021) focuses on the for-
mer, the comparison of the regression models that we have carried
out is purely methodological, and the tests we conducted on cyber-
vulnerability data set a common ground to compare the characteristics
of the methods in terms of RGA and AGR indices. By the same token,
the rank transform has been used to enhance the comparability of the
responses produced by the two models.
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Fig. 6. Boxplots for RGA and AGR when 𝑘 = 3. Boxplots refer, from left to right of
the x-axis, to OrdLog, LinReg, MidQR with 𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and the reference
value RGA(𝑟true , 𝑟true).

In this regard, while rankings are the primary outcome of LinReg,
mid-quantile models produce cumulative probability estimates for ordi-
nal responses. A potential extension of this research is the comparison
of different conditional (mid-)probabilities extracted from mid-quantile
methods obtained with different sets of regressors; the information
divergence between such distributions, e.g., through entropy-based
methods, can support the quantification of the information content
provided by the vulnerability’s characteristics. In this way, our proposal
can support the search for new models for cyber-risk analysis based on
probability and impact (Allodi & Massacci, 2017).

While the present work uses Tenable’s VPR for the analysis, each
decision-maker can customise the model (as well as the quantile level),
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Table 5
Coefficient estimates from simulations with 𝑘 = 3 levels for the response variable.

X3 X4 X1 X2 Intercept

1 2 1 2

OrdReg
Est −3.173 2.083 1.053 4.249 −2.086 4.193
SE 0.395 0.298 0.466 0.745 0.499 0.755
MCSE 0.038 0.028 0.050 0.072 0.042 0.082

LinReg

Est −23.122 15.755 9.877 28.192 −17.554 24.575 74.764
SE 1.825 1.827 4.439 4.732 4.609 4.568 4.152
MCSE 0.199 0.168 0.379 0.403 0.395 0.346 0.418
% sign. 100.0% 100.0% 69.0% 100.0% 99.0% 100.0% 100.0%

MidQR(𝜏1)

Est −0.195 0.114 0.038 0.270 −0.129 0.291 0.341
SE 12.519 16.381 27.625 34.324 37.952 25.530 31.305
Reg.SE 0.027 0.028 N.D. 0.072 0.072 0.071 0.070
MCSE 0.002 0.002 0.003 0.004 0.004 0.005 0.004
% sign. 70.0% 69.0% 0.0% 70.0% 25.0% 70.0% 70.0%

MidQR(𝜏2)

Est −0.218 0.138 0.047 0.259 −0.133 0.277 0.550
SE 8.409 6.741 17.770 18.895 19.943 18.942 16.774
Reg.SE 0.019 0.019 0.049 0.050 0.054 0.048 0.049
MCSE 0.001 0.002 0.003 0.004 0.005 0.004 0.004
% sign. 70.0% 70.0% 8.0% 70.0% 50.0% 70.0% 70.0%

MidQR(𝜏3)

Est −0.206 0.134 0.056 0.219 −0.133 0.222 0.765
SE 753.120 344.070 171.833 819.444 253.610 970.775 573.024
Reg.SE 0.019 0.018 0.046 0.046 0.050 0.042 0.045
MCSE 0.002 0.002 0.003 0.004 0.005 0.004 0.004
% sign. 60.0% 60.0% 16.0% 60.0% 49.0% 60.0% 60.0%

MidQR(𝜏4)

Est −0.129 0.087 0.040 0.121 −0.086 0.116 0.924
SE 22.573 11.780 28.125 42.421 27.902 57.145 31.146
Reg.SE 0.028 0.024 N.D. 0.058 0.061 0.053 0.061
MCSE 0.001 0.001 0.002 0.003 0.004 0.003 0.003
% sign. 69.0% 67.0% 0.0% 43.0% 13.0% 25.0% 70.0%

MidQR(𝜏5)

Est −0.061 0.042 0.029 0.045 −0.045 0.036 1.036
SE 48.199 25.136 34.366 61.267 41.685 82.775 74.481
Reg.SE 0.030 0.027 N.D. 0.060 N.D. N.D. 0.119
MCSE 0.001 0.001 0.002 0.002 0.003 0.001 0.002
% sign. 20.0% 10.0% 0.0% 1.0% 0.0% 0.0% 70.0%
Fig. 7. Boxplots for RGA and AGR when 𝑘 = 6 or 𝑘 = 8. Boxplots refer, from left to right of the x-axis, to OrdLog, LinReg, MidQR with 𝜏 taking values in {0.1, 0.3, 0.5, 0.7, 0.9},
and the reference value RGA(𝑟true , 𝑟true).
adapt it in time to get new estimates and quantile effects, or com-
pare different risk factors derived from different criteria in terms of
predictive power. This opportunity stimulates further studies to take ad-
vantage of probability estimates from mid-quantile methods in specific
scenarios or case studies. Indeed, networks of connected organisa-
tions could carry out the analysis using their own threat assessment
as the response variable; therefore, such probability estimates could
help conduct risk analysis in conjunction with Bayes update rules and
graphical models, e.g., Bayesian networks (Shin et al., 2015), providing
an alternative to the assignment of standard values for probabilities
starting from qualitative experts’ opinions. We also stress that the
proposed approach can be extended to quantitative response variables
too; indeed, we can choose a different set of regressors related to
cyber-vulnerabilities’ characteristics and severity, considering the fre-
quency of related cyber-incidents as a response variable, if available.
12
In this way, the fitted mid-cumulative distribution functions could
represent a robust alternative to estimating or predicting the number
of cyber-incidents or cyber-intrusions (Leslie et al., 2018).

Real and synthetic data. Referring to Table 12, two different models are
considered: the full one (all the relevant variables in the dataset derived
from Table 1 are involved) and a restricted one, where the ‘‘CIA’’
components of attack vectors are excluded. This choice is driven by a
better understanding of the role of the CVSS impact dimensions in vul-
nerability prioritisation and cyber threat analysis (Allodi & Massacci,
2014, 2017). Table 12 suggests that different regression models provide
different information regarding the role of the CIA attributes, where
OrdLog generates larger deviations (outliers) with high accuracy that
seriously affect the average accuracy performance; clearly, quantile-
based indices depicted in Fig. 8 are more robust with regard to such
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Fig. 8. Boxplots of RGA and AGR for real data. Boxplots refer, from left to right of the x-axis, to OrdLog, LinReg, and MidQR with 𝜏 taking values in {0.1, 0.26, 0.42, 0.58, 0.74, 0.9}.
To improve the quality of Fig. 8(c), the range has been restricted and excludes 9 extreme outliers for the OrdLog model and one for MidQR(𝜏1).
anomalies. Furthermore, the two models show different behaviours at
varying quantile levels, as exhibited in Fig. 9.

By comparing the full and partial models, we observe that AGR leads
to higher discrimination than RGA does. Formally, let us consider the
ratios

𝜚RGA ∶=
RGAtech

RGAfull

, 𝜚AGR ∶=
AGRtech

AGRfull

(6.1)

of the average values of RGA and AGR evaluated for the technical
and full models, respectively. For the LinReg model, AGR leads to
higher discrimination than RGA does (𝜚RGA = 1.043 and 𝜚AGR = 0.862).
Focusing on MidQR, we also see that AGR is more sensitive than RGA
13
with respect to the choice of the quantile level in terms of model dis-
crimination. Indeed, 𝜚RGA ∈ [0.845; 1.076], while 𝜚AGR ∈ [0.490; 1.002],
and 𝜚AGR < 0.8 for quantile levels 𝜏1 to 𝜏9. In fact, 𝜚AGR tends to increase
with the quantile level, which suggests a non-trivial contribution of
the CIA attributes in combination with information about exposure or
exploits, which also depends on the choice of the quantile level.

While the LinReg and MidQR models considered in this work are
comparable in terms of RGA performance on real data, using AGR, we
can see that OrdLog performs poorly since the predicted values are
restricted to the set {1,… , 𝑘}. When the dataset has low variability,
the estimated values collapse to a typical value, which contains no
information and drastically reduces predictive performance. This also
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Fig. 9. Behaviour of average RGA and AGR for real data and the 16 quantile levels 𝜏 under consideration. Circles and triangles denote the index estimates for the full and partial
models, respectively. The 𝑦-intercepts of the dotted and dot-dashed lines represent the value of the index from the ordered logit and the linear regression on rank-transformed
variables, respectively.
Table 6
RGA and AGR from simulations with a low number 𝑘 = 3 of levels for the response
variable. The last row corresponds to the reference value, namely, the index RGA or
AGR evaluated at (𝑟true , 𝑟true).

RGA AGR

Est SD Est SD

OrdLog 1.439 0.488 1.545 0.538
LinReg 2.203 0.667 0.865 0.169
MidQR(𝜏1) 2.113 0.677 2.733 0.487
MidQR(𝜏2) 2.193 0.677 2.871 0.473
MidQR(𝜏3) 2.162 0.677 2.883 0.470
MidQR(𝜏4) 2.082 0.667 2.848 0.470
MidQR(𝜏5) 1.785 0.616 2.631 0.468
(𝑟true , 𝑟true) 3.499 0.819 3.499 0.819

suggests a severe deviation from the OrdLog model assumptions in the
present cyber-vulnerability dataset.

Another indirect test of the deviation of real data from the Ord-
Log model comes from the relative magnitude of RGA and AGR. In
Tables 2– 8, which refer to data simulated starting from the ordered
logit model, AGR is comparable with RGA (i.e., with the same order of
magnitude), and at low values of 𝑘, especially at 𝑘 = 3, AGR is larger
than RGA when we focus on MidQR and the data-generating model. On
the other hand, real data lead to different behaviour: calculating the ra-
tios AGR∕RGA within each iteration, their median lies in [0.218, 0.402]
for the 16 quantile levels in the full model and [0.174, 0.213] in the
partial model; looking at the ratios AGR∕RGA of the mean values
shown in Table 12, they range in [0.201, 0.357] for the full model
and in [0.187, 0.221] for the partial model. These ratios are useful as
an additional check of the deviation from the OrdLog model used in
simulations, AGR and RGA indices for the same model should not be
compared, as they measure different performance aspects of a given
model.

Dependence of the MidQR performance on 𝑘. MidQR performs better
when the number of levels 𝑘 of the response variable is small (less than
6), as can be seen comparing Figs. 5–6 with Fig. 7. In the latter, AGR
highlights a divergence between the data-generating model (OrdLog)
and alternative models (LinReg or MidQR); on the other hand, RGA
returns a performance comparable to that of LinReg and MidQR.

SE of the estimates. As remarked in the previous section, an arbitrary
choice of the quantile level may lead to overestimating the parameter
SE through the kernel approach adopted in Geraci and Farcomeni
(2022) and based on Li and Racine (2008); this is confirmed by the
outputs of the simulations. When this overestimation happens, the
remaining indices (i.e., the regular SE and the MCSE) provide a more
informative picture of the sampling distribution.
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Implications for cyber-threat intelligence and secure information disclosure.
As a practical consequence of the observations in the last paragraphs,
we draw attention to the information the individual decision-maker
has, uses, and communicates about cyber-risk.

Agencies such as NIST share their evaluation through dedicated
information channels; however, this information can also be acquired
by potential attackers, who can use it to prioritise their own objectives.
Indeed, resources are also needed by attackers (e.g., costs for exploit ac-
quisition, time and effort for detection of vulnerable hosts, integration
of multiple components to avoid countermeasures), and information
on risk factors from different organisations can be useful to suggest
relevant criticalities.

Our proposal addresses this issue in two ways: first, as already
recalled, MidQR enhances robustness against violations of assumptions
in parametric methods and allows for the analysis of different types
of explanatory or response variables; this makes MidQR suited to
compare models with different sets of explanatory variables and then
choose an appropriate trade-off between predictive ranking accuracy
and limited information to be shared. The second contribution involves
the invariance property of the AGR index, which avoids inconsistency
in rankings obtained from different sets of cyber-vulnerabilities in the
sense of Example 1; this reduces the need to share information on
relevant cyber vulnerabilities to achieve a given value of accuracy in
rank estimation.

These observations are mainly related to cybersecurity data and
their usefulness for distinct decision-making stages, which led us to
select the databases described in Section 4. Information granularity
in data from cyber-incidents does not often suffice to extract useful
insights into the current threats. This leads to data aggregation and
censoring that could not allow cybersecurity operational experts to
prioritise the current vulnerabilities, as is the case in the classification
of attack techniques reported in Giudici and Raffinetti (2021), where
multiple types of attacks are grouped together (e.g., SQL injection is
a particular attack model upon which malware can be based, and mal-
ware can exploit one or more 0-days). Similarly, the use of ordered logit
or other GLMs is a well-established approach to carrying out inference
about probabilities, even in the cyber-risk domain (Mukhopadhyay,
Chatterjee, Bagchi, Kirs, & Shukla, 2019), but the present analysis has
shown that it is not suited to the collected cyber-vulnerability data.
However, this should be interpreted as complementarity between the
analyses on cyber-incidents, and the present one: they serve different
phases (strategic, tactic, or operative) of a process with a common
objective, and each phase should identify appropriate data for its scope.

7. Conclusion and future work

This work investigated statistical modelling for threat intelligence,
with particular attention to the information resources regarding cyber-
vulnerabilities. Being fixing resource-expensive, decision-makers have
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Table 7
Coefficient estimates from simulations with 𝑘 = 6 levels for the response variable.

X3 X4 X1 X2 Intercept

1 2 1 2

OrdReg
Est −3.116 2.064 1.046 4.120 −2.074 4.094
SE 0.237 0.179 0.306 0.407 0.335 0.394
MCSE 0.024 0.015 0.029 0.037 0.035 0.040

LinReg

Est −61.725 41.627 23.455 76.997 −48.392 80.101 108.517
SE 3.038 2.943 7.577 7.588 7.754 7.355 6.525
MCSE 0.202 0.230 0.635 0.603 0.716 0.624 0.521
% sign. 100.0% 100.0% 89.0% 100.0% 100.0% 100.0% 100.0%

MidQR(𝜏1)

Est −0.347 0.217 0.007 0.387 −0.203 0.532 0.366
SE 0.821 0.717 2.078 2.096 2.573 1.958 2.207
Reg.SE 0.033 0.033 N.D. 0.084 0.090 0.084 0.078
MCSE 0.001 0.002 0.004 0.006 0.005 0.006 0.004
% sign. 89.0% 89.0% 0.0% 89.0% 58.0% 89.0% 89.0%

MidQR(𝜏2)

Est −0.342 0.230 0.075 0.404 −0.254 0.518 0.597
SE 0.388 0.395 0.984 0.993 1.054 0.944 0.935
Reg.SE 0.023 0.022 0.056 0.058 0.063 0.055 0.051
MCSE 0.001 0.002 0.004 0.005 0.005 0.005 0.004
% sign. 89.0% 89.0% 18.0% 89.0% 89.0% 89.0% 89.0%

MidQR(𝜏3)

Est −0.314 0.213 0.089 0.363 −0.230 0.437 0.830
SE 2.967 2.491 2.748 5.410 1.992 6.140 4.738
Reg.SE 0.023 0.021 0.053 0.053 0.062 0.049 0.052
MCSE 0.002 0.002 0.004 0.005 0.005 0.004 0.004
% sign. 81.0% 80.0% 31.0% 81.0% 83.0% 80.0% 85.0%

MidQR(𝜏4)

Est −0.253 0.173 0.080 0.285 −0.192 0.337 1.077
SE 0.320 0.293 0.689 0.675 0.695 0.688 0.555
Reg.SE 0.026 0.025 0.066 0.064 0.075 0.057 0.064
MCSE 0.001 0.002 0.003 0.004 0.005 0.003 0.004
% sign. 89.0% 89.0% 8.0% 89.0% 69.0% 89.0% 89.0%

MidQR(𝜏5)

Est −0.185 0.130 0.059 0.186 −0.131 0.219 1.347
SE 0.500 0.409 0.962 1.050 0.936 1.179 0.846
Reg.SE 0.036 0.035 N.D. 0.086 0.103 0.075 0.090
MCSE 0.001 0.002 0.003 0.004 0.005 0.003 0.004
% sign. 89.0% 89.0% 0.0% 58.0% 6.0% 88.0% 89.0%
to allocate their resources based on their current state of knowledge
and their risk perception. The statistical model and the index proposed
for cyber-vulnerability assessment complement other approaches de-
veloped in the cyber-risk literature. These models are not mutually
exclusive and could be considered in parallel to highlight distinct
aspects of relevance to decision-makers.

The actual realisation of cyber-attacks relies on several informa-
tion sources that can enhance or inhibit them. It is plausible that
indirect access to information plays a more important role than ex-
pected: along with limited data disclosure and underreporting, even
prioritisation data communicated by organisations to prevent cyber-
incidents can guide cyber-attackers, as discussed in Section 6. The
present work opens the way to further applications supporting secure
information disclosure on cyber-vulnerabilities, since the advantages
of the framework discussed in the previous sections can highlight the
effects of both information sources (in terms of available regressors)
and cyber-risk perception or severity assessments (e.g., a suitable data-
generating model). A more accurate evaluation of such effects is a
necessary premise to avoid the indirect and unintended communication
of information.

A deeper investigation is needed for the emergence of multiple
prioritisations due to different decision criteria and uncertainty sources,
which may occur when different experts or organisations conduct sepa-
rate analyses based on their own choices for response and explanatory
variables. Various approaches could be explored to formalise compat-
ibility conditions for ordinal structures under uncertainty (Angelelli
et al., 2024) in continuity with the arguments that led to the AGR index
in Section 3.2. A dedicated study to identify information-theoretic,
fuzzy, or relational criteria to encompass and quantify specific uncer-
tainty sources in cyber-space could support individuals or groups in
contextualising risk assessment about shared digital resources.

Despite the generality of the methodology, a limitation of this work
15

is that it does not explicitly consider context-specific data that could
affect cyber-vulnerability prioritisation. Risk factors may vary due to
internal priorities in the organisation and the evolution of the overall
digital system (new products, legislation). Patterns extracted within
Tenable’s VPR processing contain information about risks posed by
cyber-threats, but contextual factors should also be explored when
adapting this analysis to specific case studies or operational scenar-
ios, including governance requirements, tools for the development of
secure digital products (Baldassarre, Barletta, Caivano and Piccinno,
2020), privacy (Baldassarre, Barletta, Caivano and Scalera, 2020), and
behavioural factors that can influence the perception of the exploitabil-
ity of a cyber-vulnerability. Future work will explore complementary
approaches for estimating behavioural latent traits, including Bayesian
methods, and connecting them to relevant parameters in risk assess-
ment (e.g., the choice of the quantile level). These factors require
specific measurement models and evaluation methods, and, in line with
the adoption of graphical methods in cyber-risk assessment, structural
equation models (Woods & Böhme, 2021) could be a valid option
to extend our research directions into the study of behavioural risk
perception.
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Table 8
Coefficient estimates from simulations with 𝑘 = 8 levels for the response variable.

X3 X4 X1 X2 Intercept

1 2 1 2

OrdReg
Est −3.062 2.053 1.008 4.047 −2.045 4.040
SE 0.217 0.170 0.289 0.373 0.305 0.363
MCSE 0.021 0.019 0.027 0.033 0.031 0.037

LinReg

Est −67.507 44.804 24.680 90.220 −44.497 92.607 111.317
SE 2.987 2.963 7.007 7.248 6.947 6.999 6.752
MCSE 0.202 0.301 0.634 0.614 0.650 0.613 0.559
% sign. 100.0% 100.0% 95.0% 100.0% 100.0% 100.0% 100.0%

MidQR(𝜏1)

Est −0.414 0.241 0.127 0.585 −0.267 0.596 0.488
SE 6.789 2.250 12.100 12.866 6.430 6.874 12.916
Reg.SE 0.036 0.037 0.087 0.091 0.093 0.085 0.094
MCSE 0.002 0.002 0.004 0.007 0.008 0.007 0.007
% sign. 73.0% 73.0% 14.0% 73.0% 61.0% 73.0% 73.0%

MidQR(𝜏2)

Est −0.409 0.266 0.095 0.537 −0.271 0.525 0.811
SE 1.017 0.950 2.209 2.224 2.397 2.045 2.049
Reg.SE 0.025 0.024 0.061 0.061 0.062 0.057 0.062
MCSE 0.002 0.002 0.004 0.006 0.007 0.005 0.006
% sign. 74.0% 74.0% 23.0% 74.0% 73.0% 74.0% 74.0%

MidQR(𝜏3)

Est −0.363 0.250 0.048 0.436 −0.251 0.427 1.090
SE 0.988 0.983 1.959 1.558 1.624 1.879 1.754
Reg.SE 0.024 0.024 0.061 0.058 0.060 0.051 0.062
MCSE 0.002 0.002 0.004 0.005 0.006 0.004 0.005
% sign. 74.0% 74.0% 6.0% 74.0% 72.0% 74.0% 74.0%

MidQR(𝜏4)

Est −0.297 0.208 0.021 0.337 −0.219 0.335 1.339
SE 0.729 0.652 1.655 1.725 1.645 1.672 1.582
Reg.SE 0.031 0.030 N.D. 0.070 0.074 0.059 0.077
MCSE 0.002 0.002 0.003 0.004 0.006 0.004 0.005
% sign. 74.0% 74.0% 0.0% 74.0% 68.0% 73.0% 74.0%

MidQR(𝜏5)

Est −0.221 0.154 −0.004 0.220 −0.185 0.212 1.628
SE 1.905 1.125 1.831 3.658 2.830 2.480 2.603
Reg.SE 0.042 0.041 N.D. 0.094 0.100 0.080 0.106
MCSE 0.002 0.002 0.002 0.003 0.005 0.003 0.004
% sign. 74.0% 74.0% 0.0% 65.0% 23.0% 70.0% 74.0%
Table 9
RGA and AGR from simulations with a higher number of levels for the response variable: 𝑘 = 6 (columns 2–5) and
𝑘 = 8 (columns 6–9). The last row corresponds to the reference value, namely, the index RGA or AGR evaluated at
(𝑟true , 𝑟true).

𝑘 = 6 𝑘 = 8

RGA AGR RGA AGR

Est SD Est SD Est SD Est SD

OrdLog 7.468 0.679 8.865 0.717 6.999 0.603 8.344 0.644
LinReg 8.124 0.652 5.932 0.426 7.709 0.494 6.365 0.303
MidQR(𝜏1) 8.025 0.683 5.206 0.248 7.636 0.495 5.164 0.234
MidQR(𝜏2) 8.064 0.664 5.268 0.246 7.682 0.493 5.222 0.221
MidQR(𝜏3) 8.080 0.661 5.268 0.249 7.641 0.513 5.206 0.237
MidQR(𝜏4) 8.067 0.657 5.256 0.253 7.598 0.510 5.177 0.241
MidQR(𝜏5) 7.989 0.645 5.183 0.273 7.475 0.558 5.080 0.267
(𝑟true , 𝑟true) 9.533 0.515 9.533 0.515 8.932 0.436 8.932 0.436
Graduation Accuracy), SE (standard error), VaR (Value-at-Risk), VPR
(Vulnerability Priority Rating).

CRediT authorship contribution statement

Mario Angelelli: Conceptualization, Methodology, Software, For-
mal analysis, Writing – original draft. Serena Arima: Methodology,

alidation, Formal analysis, Writing – review & editing. Christian
atalano: Conceptualization, Software, Investigation, Data curation,
riting – review & editing. Enrico Ciavolino: Validation, Supervision,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
16

nfluence the work reported in this paper.
Data availability

Data will be made available on request.

Acknowledgements

Mario Angelelli is a member of the Istituto Nazionale di Alta Matem-
atica (INdAM-GNSAGA). Serena Arima acknowledges the financial sup-
port provided by the MiuR-PRIN, Italy Grant No 2022Z85NCT (Vio-
lence against women: modelling misreported information in social data,
PI: Serena Arima). Christian Catalano acknowledges the publication
was produced with the co-funding of the European Union - Next
Generation EU: NRRP Initiative, Mission 4, Component 2, Investment
1.3 - Next Generation EU (PE0000014 - ‘‘SEcurity and Rights In the
CyberSpace - SERICS’’ - CUP: H93C22000620001).



Expert Systems With Applications 255 (2024) 124572M. Angelelli et al.
Table 10
Parameter estimates from data regarding real cyber-vulnerabilities. All the variables have been used as regressors.

Exposure C I A AV AC Exploit Intercept(s)

L Q L Q L Q L Q L Q 1|2 2|3 3|4

OrdReg

Mean −0.002 −0.292 −0.360 1.034 0.268 0.588 −0.236 0.014 0.589 −0.094 0.127 0.201 −2.560 1.125 3.301
SE 0.009 0.840 0.506 0.893 0.540 0.437 0.272 0.471 0.281 0.286 0.211 0.218 0.432 0.420 0.472
MCSE 0.00028 0.02789 0.01665 0.03199 0.01955 0.01509 0.00856 0.02032 0.01150 0.00856 0.00574 0.00636 0.01586 0.01595 0.01804

LinReg

Mean −1.960 −103.338 −54.922 141.112 59.905 18.869 −4.777 −44.815 90.601 −14.894 18.076 16.066 305.143
SE 0.805 84.906 50.789 88.633 53.262 38.948 24.200 43.178 25.746 26.073 19.402 20.194 37.551
MCSE 0.02322 2.51845 1.49273 2.77951 1.68523 1.38273 0.80690 1.66092 0.97357 0.70261 0.52549 0.57981 1.27969

MidQR(𝜏1)

Mean 0.002 0.032 −0.020 0.053 −0.015 0.047 −0.018 0.025 0.024 0.006 −0.010 0.006 0.083
SE 0.024 2.301 1.406 2.544 1.553 1.463 0.906 2.557 1.484 0.903 0.642 0.636 1.526
MCSE 0.00002 0.00151 0.00093 0.00200 0.00115 0.00060 0.00035 0.00091 0.00063 0.00042 0.00033 0.00032 0.00091

MidQR(𝜏4)

Mean 4 0.000 0.015 −0.044 0.068 −0.009 0.073 −0.023 0.043 0.041 0.014 −0.008 0.006 0.412
SE 4 0.020 2.427 1.450 2.748 1.656 1.236 0.757 1.901 1.100 0.794 0.593 0.602 1.181
MCSE 4 0.00003 0.00241 0.00154 0.00286 0.00175 0.00101 0.00044 0.00151 0.00085 0.00054 0.00044 0.00050 0.00117

MidQR(𝜏7)

Mean 7 −0.001 0.000 −0.040 0.067 −0.003 0.059 −0.016 0.031 0.043 0.018 −0.007 0.006 0.672
SE 7 0.017 1.795 1.092 1.951 1.189 0.982 0.607 1.458 0.845 0.663 0.496 0.489 0.940
MCSE 7 0.00003 0.00191 0.00128 0.00220 0.00140 0.00094 0.00040 0.00131 0.00072 0.00044 0.00039 0.00046 0.00110

MidQR(𝜏10)

Mean 10 −0.001 −0.005 −0.030 0.058 0.001 0.044 −0.011 0.022 0.039 0.017 −0.006 0.008 0.869
SE 10 0.013 1.339 0.816 1.492 0.913 0.677 0.423 1.151 0.665 0.510 0.383 0.382 0.723
MCSE 10 0.00003 0.00144 0.00099 0.00166 0.00108 0.00078 0.00035 0.00113 0.00061 0.00037 0.00034 0.00041 0.00095

MidQR(𝜏13)

Mean 13 −0.002 −0.014 −0.022 0.051 0.007 0.026 −0.004 0.017 0.036 0.015 −0.003 0.008 1.036
SE 13 0.011 1.208 0.732 1.346 0.819 0.605 0.374 0.953 0.549 0.432 0.333 0.326 0.607
MCSE 13 0.00002 0.00094 0.00069 0.00109 0.00075 0.00063 0.00031 0.00097 0.00052 0.00031 0.00029 0.00035 0.00080

MidQR(𝜏16)

Mean 16 −0.004 −0.055 −0.030 0.073 0.012 0.004 −0.003 −0.003 0.051 0.021 0.001 0.006 1.284
SE 16 0.014 1.018 0.642 1.166 0.726 0.791 0.482 0.798 0.459 0.552 0.397 0.344 0.632
MCSE 16 0.00003 0.00089 0.00060 0.00093 0.00066 0.00073 0.00044 0.00095 0.00055 0.00046 0.00039 0.00039 0.00136
Table 11
Parameter estimates from data regarding real cyber-vulnerabilities. Only technical and contextual variables have been used as regressors.

Exposure AV AC Exploit Intercept(s)

L Q L Q 1|2 2|3 3|4

OrdReg
Mean −0.011 −0.050 0.626 −0.003 0.120 0.189 −2.610 0.924 3.086
SE 0.009 0.468 0.281 0.279 0.210 0.218 0.424 0.408 0.462
MCSE 0.00024 0.01847 0.01085 0.00871 0.00580 0.00649 0.01499 0.01408 0.01614

LinReg
Mean −2.245 −44.114 90.131 −14.826 18.310 18.512 300.791
SE 0.790 42.870 25.589 25.638 19.344 20.151 36.808
MCSE 0.02076 1.56012 0.91577 0.70265 0.52643 0.59178 1.17621

MidQR(𝜏1)
Mean 0.001 0.045 0.008 0.010 −0.009 −0.004 0.050
SE 0.020 2.267 1.322 0.798 0.618 0.594 1.316
MCSE 0.00003 0.00096 0.00068 0.00031 0.00033 0.00033 0.00118

MidQR(𝜏4)
Mean 0.000 0.047 0.036 0.023 −0.005 −0.006 0.412
SE 0.018 1.848 1.079 0.685 0.541 0.539 1.092
MCSE 0.00003 0.00112 0.00075 0.00036 0.00033 0.00036 0.00116

MidQR(𝜏7)
Mean −0.001 0.036 0.038 0.024 −0.005 −0.004 0.672
SE 0.016 1.573 0.919 0.626 0.488 0.491 0.952
MCSE 0.00003 0.00095 0.00058 0.00030 0.00029 0.00033 0.00101

MidQR(𝜏10)
Mean −0.002 0.024 0.035 0.022 −0.003 0.000 0.870
SE 0.011 1.110 0.648 0.414 0.334 0.342 0.665
MCSE 0.00002 0.00079 0.00047 0.00026 0.00025 0.00028 0.00081

MidQR(𝜏13)
Mean −0.002 0.013 0.032 0.018 −0.002 0.000 1.034
SE 0.010 0.933 0.545 0.360 0.291 0.299 0.567
MCSE 0.00002 0.00061 0.00037 0.00021 0.00020 0.00021 0.00067

MidQR(𝜏16)
Mean −0.004 0.011 0.049 0.028 −0.002 0.004 1.275
SE 0.012 0.996 0.580 0.450 0.367 0.364 0.658
MCSE 0.00004 0.00079 0.00052 0.00036 0.00035 0.00047 0.00158
17
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Table 12
RGA and AGR indices from real data analysis. Columns 2–5 refer to models with the full set of regressors; columns 6–9 follow from the
restriction to technical (AV, AC) and contextual (exposure, exploit) variables as regressors.

Full set of regressors Only technical regressors

RGA AGR RGA AGR

Est SD Est SD Est SD Est SD

OrdLog 0.688 0.580 0.361 1.303 0.662 0.570 0.000 0.000
LinReg 0.913 0.641 0.048 0.031 0.952 0.739 0.041 0.029
MidQR(𝜏1) 0.884 0.726 0.316 0.213 0.832 0.721 0.155 0.119
MidQR(𝜏2) 0.867 0.709 0.307 0.209 0.792 0.681 0.150 0.115
MidQR(𝜏3) 0.880 0.728 0.296 0.203 0.753 0.607 0.153 0.116
MidQR(𝜏4) 0.884 0.735 0.282 0.195 0.747 0.523 0.165 0.118
MidQR(𝜏5) 0.876 0.701 0.262 0.186 0.837 0.614 0.172 0.121
MidQR(𝜏6) 0.852 0.672 0.247 0.177 0.863 0.607 0.178 0.126
MidQR(𝜏7) 0.887 0.710 0.252 0.186 0.901 0.635 0.183 0.131
MidQR(𝜏8) 0.897 0.708 0.247 0.183 0.938 0.708 0.187 0.137
MidQR(𝜏9) 0.906 0.694 0.241 0.179 0.968 0.748 0.190 0.139
MidQR(𝜏10) 0.914 0.683 0.237 0.176 0.983 0.776 0.191 0.140
MidQR(𝜏11) 0.936 0.696 0.233 0.174 0.998 0.781 0.191 0.142
MidQR(𝜏12) 0.939 0.680 0.227 0.173 0.997 0.786 0.191 0.143
MidQR(𝜏13) 0.954 0.666 0.220 0.164 1.003 0.791 0.191 0.142
MidQR(𝜏14) 0.978 0.675 0.215 0.157 1.003 0.792 0.192 0.142
MidQR(𝜏15) 0.975 0.679 0.205 0.150 1.027 0.790 0.195 0.141
MidQR(𝜏16) 0.923 0.675 0.186 0.131 0.970 0.797 0.186 0.134
Self 6.275 1.095 6.275 1.095 6.327 1.123 6.327 1.123
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