
https://doi.org/10.1007/s00170-020-06176-y

ORIGINAL ARTICLE

Workforce influence onmanufacturing machines schedules

Pierpaolo Caricato1 · Antonio Grieco1 · Anna Arigliano1 · Luciano Rondone2

Received: 31 August 2020 / Accepted: 24 September 2020
© The Author(s) 2020

Abstract
This study addresses a parallel machines scheduling problem with sequence-dependent setup times and additional resource
constraints related to workforce management. In most industrial cases, the execution of jobs requires the involvement of
human resources in addition to machines: this work addresses the many complications due to workforce-specific issues
that arise in a real industrial application. This is achieved separating the complex yet classical parallel machines scheduling
problem with sequence-dependent setup times from the additional human resources planning problem: the former is
formulated and solved through constraint programming, while an ad hoc procedure is provided for the latter. An Italian
specialized firm, Prosino S.r.l., provides the industrial case to both validate the adequacy of the adopted method to the actual
industrial problem and test the effectiveness of the proposed approach. Computational results obtained over six months of
experimentation at the partner firm are presented.

Keywords Production scheduling · Resource-constrained parallel machine scheduling problem · Sequence-dependent setup
times · Additional limited resources · Workforce

1 Introduction

While the theoretical management of a production system
can focus on specific aspects, congenial to a better isolation
of mathematical properties of the production planning
problem, a realistic management of a production system
cannot avoid simultaneously dealing with multiple issues,
such as multiple stages and machines, human resources,
sequence-dependent setup times, and workers skills. With
this in mind, the paper addresses a real industrial production

� Pierpaolo Caricato
pierpaolo.caricato@unisalento.it

Antonio Grieco
antonio.grieco@unisalento.it

Anna Arigliano
anna.arigliano@unisalento.it

Luciano Rondone
lrondone@prosino.com

1 Dipartimento di Ingegneria dell’Innovazione, Universitità del
Salento, Lecce, Italy

2 Prosino S.r.l., Grignasco, Italy

planning problem, coming from Prosino S.r.l., an Italian
firm that manufactures spinning and twisting rings used in
high precision bearings. A hierarchical approach, based on a
hybrid constraint programming model, to solve the short and
midterm production planning problem the firm addresses is
presented.

The case study can be widely framed in the flexible flow
shop manufacturing set of problems: the classical flexible
flow shop problem (FFSP) considers N stages in series
and each stage k includes mk identical parallel machines;
in other words, a FFSP can be seen as the combination of
a flow shop problem with a parallel machine scheduling
problem (see [1]).

The literature provides many contributions on FFSPs, as
many real applications can be effectively formalized using
this model. These problems are extremely hard to solve, as
thoroughly discussed in [2] and many contributions can be
found both about the original problem and on its variants,
but only few works consider limited resources, mainly
human resources, in addition to the available machines.
Among these ones, [3] address a variant of the FSP, i.e.,
multiple stages but with a single machine per stage, where
the objective is to assign operators to machines when the
number of workers is less than the number of machines: the
authors show that assigning operators and simultaneously
building a schedule is an NP-hard problem. A contribution

/ Published online: 12 October 2020

The International Journal of Advanced Manufacturing Technology (2021) 115:915–925

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-06176-y&domain=pdf
http://orcid.org/0000-0002-7459-0109
mailto: pierpaolo.caricato@unisalento.it
mailto: antonio.grieco@unisalento.it
mailto: anna.arigliano@unisalento.it
mailto: lrondone@prosino.com

that more closely matches the test case is given by [4]:
here, a FFSP with worker flexibility is considered, where
in each stage the number of workers equals the number of
machines. Hence, to the authors’ knowledge, there is no
contribution that considers a FFSP with additional workers
as limited resources, and specifically with less workers than
the number of machines available at each stage.

The proposed approach adopts a hierarchical procedure
in which, at each iteration, a constraint programming model
is solved to manage the classical job sequencing part of the
problem at hand, while a constructive heuristic addresses
the peculiar aspects related with workforce management
issues. Updates on release dates and precedence constraints
between consecutive iterations allow the coordination of
the overall production plan among the different stages.
This work is hence focused on the single-stage resolution,
i.e., the scheduling problem on parallel machines with
additional resources and sequence-dependent setup times,
while also presenting the overall hierarchical procedure.
The paper is organized as follows: in Section 2, a review
of the related works is discussed; Section 3 describes the
industrial problem; while Section 4 presents the hybrid
constraint programming procedure used to solve the single-
stage problem. An experimental study is then presented in
Section 5. Finally, conclusions are pointed out in Section 6.

2 Related works

Production scheduling problems involving multiple stages
and parallel machines have been covered by numerous
contributions over the last years. In most real cases, the
execution of operations in manufacturing firms requires
additional resources in addition to machines. In these
situations, both the job scheduling and the allocation of
additional resources to machines should be taken into
account. According to [5] and [6], the additional resources
can be classified as:

– Renewable (non-storable): resources that can be used
throughout the project and characterized by a capacity
that is limited all the time (examples of such type
include manpower and tools);

– Non-renewable (storable): resources that can be con-
sumed by jobs, eventually leading to their unavailability
at a certain point (e.g., raw materials, fuels);

– Doubly constrained: resources that are constrained both
in usage and in total quantity.

Furthermore, it is possible to distinguish between two
types of resource allocation [7, 8]:

– Static: when the allocation of additional resources to
machines is not limited, but it has to remain the same
throughout the scheduling horizon;

– Dynamic: a more general case, when a resource can be
allocated on different machines at different times of the
schedule.

A detailed review on parallel machines with additional
resources problems is provided in [6]. The survey fol-
lows a classification scheme based on five main categories:
machine environment, additional resources, objective func-
tions, complexity results, and solution methods. According
to the problem classification provided by the authors, the
problem treated in this paper can be classified as a version
of the resource-constrained parallel machine scheduling
problem (RCPMSP), but to the best of the authors’ knowl-
edge, no work that addresses both resource allocations and
setups is available in the literature; however, the following
papers address scheduling problems with additional renew-
able resources, with more attention to the management of
human resources.

In [9], heuristic solutions are proposed to solve the
scheduling problem of a set of jobs on identical parallel
machines where the workers are a critical resource. Each
operator is associated with several working modes. The
decision deals with the choice of a working mode for each
operator in a context where different working modes induce
different productivity rates on each machine.

Chen [10] studies the parallel machine scheduling
problem involving job processing and resource allocation,
where the job processing time is a non-increasing function
with the allocated resources. The paper introduces a column
generation–based branch-and-bound method in order to
solve two types of problems: the minimization of the total
completion time and the minimization of the weighted
number of tardy jobs.

Hu [11] minimizes the total flow time in a parallel
machine system assigning jobs and workers to the machines.
The author proposes a heuristic solution with two sequential
procedures: the former assigning the jobs and the latter the
workers to the machines.

In [12], a flexible model to address integrated employee
timetabling and production scheduling is proposed. The
authors exploit the flexibility of constraint programming
modeling to represent complex relationships between
schedules and activity requests. A hybrid CP-LP exact
method is presented in order to solve a lexicographic
makespan and employee cost optimization problem.

In many cases, the resources are all of a single type:
[13], instead, analyze the complexity of different versions of
the general PDm|resλσρ|Cmax problem, i.e., a scheduling

916 Int J Adv Manuf Technol (2021) 115:915–925

problem for m parallel machines under resource constraints,
where λ resource types are to be considered, the size of each
resource does not exceed σ , and each job consumes no more
than ρ units of resources.

The complexity of the problem has also led many authors
to break down the problem into simpler subproblems and
others to consider heuristic algorithms. In fact, recent
works deal with scheduling problem of unrelated parallel
machines, using the following pattern:

– A mixed integer programming (MIP) exact formulation
to address small-size instances of the problem;

– Heuristics/metaheuristics approaches to solve lager
instances.

Following this pattern, [14] use a MIP formulation for
an unrelated parallel machine scheduling problem with
limited resources. An operator is needed for each setup
activity between two consecutive jobs on the same machine.
However, this model is able to solve to optimality only
small-size instances. In order to cope with larger instances,
a genetic algorithm is presented.

Afzalirad and Rezaeian [15] address an unrelated parallel
machines scheduling problem with resource constraints,
sequence-dependent setup times, different release dates,
machine eligibility, and precedence constraints. Their work
models a real case study, i.e., the block erection scheduling
problem in a shipyard. A first MIP formulation is proposed
that is able to solve only small instances of the strongly NP-
hard problem addressed, along with two new metaheuristic
algorithms to provide good solutions for larger instances.
Afzalirad and Shafipour [16] treat a simplified version of
the problem, where precedence and release date constraints
are not considered and setup times are assumed to be part of
the processing times.

[17] is a new study based on the same type of problem
defined by [15], where a feasible schedule must also
consider constraints on release dates, limited additional
resources, and sequence-dependent setup times. v types
of resources are considered and, for each type, a limited
number of units is available. The authors propose two
approaches: an exact mixed-integer linear programming
model (MILP) and a two-stage hybrid metaheuristics based
on variable neighborhood search and simulated annealing.

Resource-constrained project scheduling (RCPS) prob-
lems can be seen as akin to RCPMSPs, since they also
model scheduling problems subject to resource constraints.
In fact, project scheduling can be considered, under specific
conditions, as a parallel machine scheduling problem with
precedence constraints among activities. In [18], an exten-
sive overview of approaches and solution categories for the
RCPSP is provided: the author explores exact, heuristic,
and metaheuristic algorithms for such problems. A review

of the books [19, 20] and [21] is provided in [22], cover-
ing a wide range of problems related to project schedul-
ing. In particular, [20] addresses hard resource-constrained
project scheduling problems using constraint propagation
techniques.

3 The industrial problem

The test case comes from a production plant that includes
N floors that can be associated with the stages of a FFSP.
Unlike the classical FFSP, however, additional resources
are required in some stages, namely human resources
to supervise machines’ operations. Constraints associated
with workers make the problem more complex than
the theoretical cases studied in the literature; therefore,
the problem requires a customized solution model that
allows makespan minimization according to all required
constraints.

Each worker is assigned to a specific department and the
number of workers per shop floor is always less than the
number of parallel machines available in the floor. The time
horizon is partitioned into time shifts and the availability of
additional resources depends on several aspects:

– Worker skills: each worker has certain capabilities to
carry out some machining or tooling tasks and he can
only be assigned to the operations for which he is
qualified.

– Calendars: the presence of each worker is specified in a
personal calendar specific for each worker.

– Parallel working mode: each operator can supervise
more than one machine simultaneously depending on
some conditions:

1. The adjacency of the machines supervised by the
operator;

2. The operation type assigned to the work centers
candidate to work in parallel;

3. The number of working shift during which each
worker can operate in parallel mode can be limited
by company agreements with the workers.

– Teams: groups of several workers can be formed to
allow parallel supervision of more than two machines,
also overcoming some of the previous limitations (e.g.,
three operators per four machines).

The overall production planning problem is decomposed
through an iterative procedure consisting of N steps, as
many as the company floors (i.e., the number of stages in
the flexible flow shop). Each run k processes all operations
belong to the same stage k: the solution to the scheduling
and workforce assignment problem of the current stage

917Int J Adv Manuf Technol (2021) 115:915–925

provides release dates and precedence constraints for the
following stage. The focus of this work is the solution of the
planning problem solve in each stage.

4 Single-stage planning

The single-stage planning problem requires the scheduling
of a set of n independent jobs J = {j1, j2, . . . , jn} on a
set of m parallel machines M = {m1, m2, . . . , mm} with
sequence-dependent setup times, sijm ∀i, j ∈ J and m ∈
M . A summary of the notation used is reported in Table 1.

A job j can be either available for processing at time
0 or have a release date ρj deriving from the solution of
the planning problem of the previous stage. Each job can
be processed on a subset of compatible machines, Mj =
{m1, . . . , mnj

}. Each machine can process at most one job at
a time, and each job cannot be split among several machines.
Interrupting the processing of a job is allowed only if a lack
of production capacity occurs: i.e., if either the required
machine or the supervising worker is not available. Let W =
{w1, w2, . . . , wl} be the set of workers in the considered

Table 1 Notation

Name Description

J The set of all jobs j to be planned

ρj The release date for job j as
determined by the solution of
the previous single-stage problem
(ρj = 0 if no release date is
defined for job j)

M The set of available machines m

Jm The set of all jobs j that can be
processed by machine m ∈ M

{0, 1, . . . , H } Planning horizon

� = {τ1, τ2, . . . , τk} Set of time slots (shifts) that
cover the planning horizon, i.e.,
k⋃

i=1
τi = {0, 1, . . . , H }

τi = [τ s
i , τ e

i] Each slot is characterized by a
start time τ s

i and an end time τ e
i

Bm Set of break intervals
{b1m, b2m, . . . , bnm} during
which the machine m cannot be
used.

Sm Setup matrix on machine m. The
matrix element sijm is the setup
time between the jobs i and j if
they are consecutively processed
on machine m.

σj Processing speed required by job j

σ̄max Speed limit allowed for each
pair of machines simultaneously
supervised by a single worker

stage, where l < m: each worker w can/cannot be skilled to
work a given job j and can/cannot tooling a given machine
m. The number of available workers varies with the shift of
the day.

The setup time between two consecutive jobs depends
on both the ordered couple of jobs and the machine where
the jobs are processed; hence, the sequence-dependent setup
time when scheduling the j -th job immediately after the i-th
job on machine m is expressed as sijm ∈ Sm.

Parallel conduction of multiple machines is a key
efficiency option that allows a better usage of the available
workforce. A single operator can supervise one or two
machines (provided that the two machines are adjacent and
respect specific technological constraints), while predefined
teams of three workers can simultaneously conduct groups
of four machines. Hence, we can distinguish three types
of “operating modes” for a worker: “single” mode (when
the worker supervises only one machine), “parallel” mode
(when he simultaneously supervises two machines), and
“team” mode (when he works within a team). The adoption
of parallel mode for a worker is limited by a day-off rule: if
a worker conducts two machines on a day, he must conduct
a single machine on the following day. Team mode, on
the other hand, can be used everyday and, furthermore,
allows the planner to ignore skills, since teams are formed
matching workers with assorted capabilities.

Adjacency and technological information needed to
define which couples of machines can be conducted by
a single worker is coded in terms of predefined groups
G = {G1, G2, . . . , Gh1} . Groups of four machines that
can be supervised by a team of three workers are defined
in Γ = {Γ1, Γ2, . . . , Γh2}, where each group consists of
4 machines Γi = {mi,1, mi,2 mi,3 mi,4}. There is a limited
number of teams per stage Tm = {Tm1 , . . . , Tmg } and each
team Tmi

= {wiA, wiB, wiC} can only be assigned to a
group of machines during a work shift.

Each job j is characterized by a working speed, σj , given
in terms of number of items per hour. The job processing
time, pj , is not affected by the operating mode of the
worker, but there is a technological constraint: the sum of
the machine speeds simultaneously supervised by the same
operator cannot exceed a fixed limit. This limit does not
apply for groups of machines conducted by a team.

A worker that starts a job may be replaced by another one
in the following shifts, when the processing of a job lasts
more than a working shift, with no noteworthy effect nor
interruption on the processed job. The objective is to plan
the set of jobs to be assigned to each machine, along with
the workforce details needed, pursuing the minimization of
the makespan.

Since parallel machines scheduling problems with
additional resources are known to be NP-hard [6,
23], a heuristic solution is proposed, in particular a

918 Int J Adv Manuf Technol (2021) 115:915–925

hierarchical approach that decomposes the problem into two
subproblems to be sequentially solved:

– A job assignment and sequencing problem with
sequence-dependent setup times, consisting in the
definition of the sequence of jobs on each machine, with
the objective to minimize the total setup cost;

– An additional resource allocation problem, where the
workers are assigned to machines to conduct the tasks
scheduled at the previous step, with the definition of the
parallel mode for each worker.

4.1 Constraint programmingmodel

The first subproblem is modeled through constraint pro-
gramming (CP). Constraint programming is an approach
initially developed to model and solve constraint satisfac-
tion problems (CSPs), but it was extended to solve optimiza-
tion problems as well. A CSP consists in finding values,
within finite domains, to be allocated to problem variables,
so that all the problem constraints are satisfied [24]. The CP
approach consists of two phases: the former is the formaliza-
tion of the problem in terms of a set of variables with finite
domains and a set of constraints that specify which assign-
ments of values to variables are feasible; the latter uses
tree search algorithms to systematically explore the possi-
ble assignments of values to variables. The search phase
combines domain reduction (DRA) and constraint propaga-
tion (CPA) techniques to rapidly find a feasible solution or
certify that the problem is infeasible.

The formulation presented in this paper adopts the OPL,
a formalism to model constraint programming problems
presented in [25], which is embedded in the IBM ILOG
CPLEX Optimization Studio [26]. Such formal language
allows the definition on scheduling specific types of finite
domain variables, namely interval variables and sequence
variables, along with specific scheduling related constraints
that efficiently perform during the search and propagation
phase of the solving algorithm. A detailed analysis of the
CP approach provided by OPL, with a formal description
of the scheduling related variables and constraints, can be
found in [27]. Considering the notation given in Table 1, the
following model is defined:

min max
j∈J

(EndOf (xj)) (1)

xj : IntervalV ariable(ρj , H) ∀j ∈ J (2)

yjm : IntervalV ariable(ρj , H) ∀m ∈ M, ∀j ∈ Jm

(3)

Alternative(xj , all(yjm:∀m ∈ Mj)) ∀j ∈ J (4)

zm = Sequence(m, all(yjm : ∀j ∈ Jm)) ∀m ∈ M (5)

NoOverlap(zm, Sm) ∀m ∈ M (6)

Intensity(yjm, Bm) ∀m ∈ M, ∀j ∈ Jm (7)

ForbidStart (yjm, Bm) ∀m ∈ M, ∀j ∈ Jm (8)

ForbidEnd(yjm, Bm) ∀m ∈ M, ∀j ∈ Jm (9)

The objective (1) is to minimize the makespan, i.e., the
end of the latest job that is processed.

An interval variable is defined in Eq. 2 for each job j ,
with a finite domain [ρj , H] for its associated start and
end. An interval variable is defined in Eq. 3 for each job
j and for each machine m that is compatible with the job,
with a finite domain [ρj , H] for its associated start and end:
this variable represents the possibility to assign the job j

to machine m and the consequent start and end times if
this decision is taken (i.e., if the variable is “present” in
the solution, according to the formalism reported in [26]).
Constraint (4) states that each interval variable xj must be
equal to exactly one of the yjm interval variables defined
for j , i.e., job j must be processed by a single machine.
Equation (5) defines an interval sequence variable zm for
each machine m: an interval sequence decision variable is
defined on a set of interval variables and its value represents
a total ordering of the interval variables of the set. Any
absent (i.e., “not present”) interval variable is not considered
in the ordering. The set of intervals that are suitable to form
a sequence on a given machine m includes all the yjm, ∀j ∈
Jm interval variables. Constraint (6) does not permit any
temporal overlap among tasks assigned to the same machine
m. The setup times depend on the work center (machine)
and the job type: they are provided by the matrix Sm.

An availability calendar for each machine is given a priori
in order to be able to consider the days off and the scheduled
maintenances in the scheduling problem. Constraints (7)–
(9) are also calendar-related constraints: (7) states that each
job j assigned to machine m cannot be processed during
any break interval belonging to the machine calendar of m;
constraints (8) and (9) avoid that any job j starts or finishes,
respectively, during any break interval on machine calendar
m.

4.2Workers allocation

The second subproblem outlined at the beginning of this
section is solved using a constructive heuristic that allows to

919Int J Adv Manuf Technol (2021) 115:915–925

determine a feasible allocation of workers on the machine
sequences obtained from the CP subproblem.

The output of the previous step is an input for this
procedure: the CP model assigns the jobs to be planned
to the available machines and defines the sequence of
jobs to be processed on each machine. In addition to the
notation provided in Table 1, let Q = Q1, . . . Qm be the
set of task queues associated with each machine, where
Qi = (jm1, sm1,2, jm2, sm2,3 . . . , jmn) is the sequence of
jobs and setup tasks on machine m as determined by
the CP model. It is important to note that each machine
sequence includes both the jobs and the setup operations.
In this phase, the setups are explicitly considered as jobs
because their execution requires the presence of human
resources. The macro steps executed by the proposed
heuristics are reported in Algorithm 1. It is worth noting
that this procedure is generic and valid for both job and
setup operations, and the different handling of these two
task types is achieved through the skills required by the
tasks and the capabilities defined for the workers. The state
variables used by the algorithm at each iteration are reported
in Table 2. The following subsections describe the behavior
of the functions reported in Algorithm 1.

Table 2 State variables

Name Description

j̄ Current job

m̄ Current machine

τ̄ Current time shift

rj̄ Current residual work of job j̄ .
If the processing of the current
job cannot end in the current time
shift, τ̄ , then it has a residual
work greater than 0

w̄ Current worker

Wj̄ Set of possible workers for cur-
rent job j̄

4.2.1 Function Sort()

This function selects the subset of machines available in
the current time shift τ̄ (tacking into account the machine
calendars) and orders them according to these rules:

1 First available instant time;
2 Largest residual work time on machine.

4.2.2 SetTeams()

This function assigns worker teams to machine groups
at the start of the current time shift τ̄ . All teams are
defined in advance, i.e., its components are always the same
throughout the whole planning horizon. The team Tmi

∈ Tm

is assigned to a group Γj ∈ Γ if the following conditions
are verified:

– Each worker w ∈ Tmi
is available at the current time

shift τ̄ ;
– Each m ∈ Γi is available at the current time shift and it

has a residual work load at least equal to the duration of
the time shift;

– The overall residual workload of machine group Γi is
the largest among the available groups in Γ .

If the above conditions are true, all workers in the Tmi
team

are assigned to the machine group Γi for the entire current
time shift and they are excluded from any other assignments
during this time period.

4.2.3 Function DeQueue()

Every set Qi is modeled as a last in first out (LIFO) queue.
The function DeQueue retrieves the job at the top of the
machine stack. At the start of the procedure, Qi is initialized
by pushing the sequence elements in reverse order with
respect to the job order on machine i, obtained by the CP
solver. If a job is not finished at the end of a time period on

920 Int J Adv Manuf Technol (2021) 115:915–925

a given machine, it will hence be the first to be extracted for
the following period when that machine resumes its work.

4.2.4 Function FindWorker()

This function defines a set of workers compatible with the
current job, i.e., with the necessary skills to process j̄ .
Moreover, only the workers available in the current time
shift, τ̄ , are considered. The set is ordered applying the
following priority rules and the first worker is returned:

1 Last active worker on the current machine m̄. The
worker who conducted the machine during the previous
job processing, within the same current shift τ̄ , has a
higher priority.

2 First available instant time of worker.
3 If the current job j̄ is not a setup task, the worker

without the setup skill has higher priority.
4 Parallel mode. The workers who have already been

assigned to another machine are preferred. This rule
allows to exploit the parallel conduction form.

4.2.5 EvaluateConduction()

This function determines whether, and in which mode, the
current worker w̄ can conduct the current job j̄ queued on
the current machine m̄ during the current time shift τ̄ . The
function returns an integer value chosen among:

0 - No Conduction: the worker capacity has been
saturated during the current time shift, hence he cannot
start another job. This capacity is time-dependent, since
each worker can conduct in parallel on alternate days.

1 - Single Conduction: the worker is available for parallel
conduction, but he is not allowed to do it due to the
violation of machine constraints. For example, let m1

be the machine on which the current worker w̄ has been
assigned to conduct the job j1 with a working speed σj1 .
Suppose that the function is evaluating the assignment
of the job j̄ on the current machine m̄ with working
speed σj̄ in the same shift τ̄ . If σj1 +σj̄ > σ̄max then the
worker cannot work in parallel mode. Another cause of
impossibility to work in parallel is given by the distance
between machines: i.e., if �Gi ∈ G s.t. Gi = (m1, m̄).
In all these cases the function EvaluateConduction()
returns 1.

2 - Parallel Conduction: any conduction (parallel or
single) mode is allowed in the other cases.

4.2.6 SetTask()

This function sets the following variables: start and end
times (τ s

j̄
, τ e

j̄
) of current job j̄ in the current time shift τ̄ ; at

each iteration of the heuristic, the following parameters are
defined and updated:

– The first available time of each machine m: τam ;
– The first available time of each worker w: τaw ;
– The first available time of each job j : τaj

; for example,
at time zero, this value can be the release date of the job.

– The residual work of j̄ , rj̄ ; at time 0, rj̄ = pj̄ and
afterwards its value is updated after each assignment,
rj̄ = rj̄ − (τ e

j̄
− τ s

j̄
).

Different scenarios may occur according to the value
returned by function “EvaluateConduction()” and to the
current state of the different involved factors: machine, job,
and worker.

Scenario 1 EvaluateConduction(w̄) = 2 . In this case,
the job j̄ can start at the first instant time at which it
is ready to be executed and all required resources are
available: τ s

j̄
= max(τ̄ s , τam, τaw̄

, τaj̄
). If τ s

j̄
+rj̄ <= τ̄ e,

the current job can end its processing during the current
shift, as we can see in Fig. 1. Hence, τ e

j̄
= τ s

j̄
+ rj̄ and

the other parameters get updated in this way:

– τam = τaw̄
= τaj̄

= τ e

j̄
;

– rj̄ = 0;

if τ s

j̄
+ rj̄ > τ̄ e, τ e

j̄
= τ̄ e and rj̄ = rj̄ − (τ e

j̄
− τ s

j̄
). The

generic function used to calculate the end processing time
of a job is given by τ e

j̄
= min(τ s

j̄
+ rj̄ , τ̄

e).

Scenario 2 EvaluateConduction(w̄) = 1. This condi-
tion occurs when the worker is already busy on another
machine, but parallel working mode is not allowed. In
order to calculate the first available starting time of the
job j̄ , it is also necessary to take into account the worker
state on the other machine, as shown in Fig. 2. In fact, in
this case, τ s

j̄
= max(τ̄ s , τam, τ e

i) and τ e

j̄
= min(τ̄ e, (τ s

j̄
+

rj̄)).
The other parameters get updated in this way:

– τam = τaj̄
= τ e

j̄
;

– τaw̄
= min(te

j̄
, τ e

i);

– rj̄ = max(0, (τ s

j̄
+ rj̄) − τ̄ e);

4.2.7 EnQueue()

This function is used only if the residual work of the current
job j̄ is greater than zero. In this case, the job is pushed back
in the queue of machine m̄. Since the queue Qm̄ is a LIFO
queue, the job j̄ will be the first extracted by the function
DeQueue(m̄) when the machine m̄ will be addressed in a
successive iteration.

921Int J Adv Manuf Technol (2021) 115:915–925

Fig. 1 Scenario 1

5 Computational results

The proposed approach was tested on various real-world
instances of the problem, collected during a six months
observation period in the partner firm. The targeted shop
floor includes up to 17 work centers, supervised by an
overall team of up to 19 workers, whose presence is spread
over a two or three shifts per day rotation scheme. No
worker can be assigned to more than a single shift per day.
Consequently, the number of available workers is always
lower than the number of machines in each shift, with
typical values between 5 and 10 workers per shift.

The first problem solved by the proposed approach
assigns and schedules the operations on the available
machines, considering the resulting sequence-dependent
setup times and ignoring the workers availability, with the
objective to minimize the makespan and the cumulated start
times of all jobs: hence, idle times in the obtained schedule
can only be caused, at this level, by machines calendars.

Taking into account the availability of the workers, with
all the specific issues analyzed in Section 3 can, hence,
only deteriorate the objective function value. The proposed
algorithm, indeed, takes the solution of the CP model, in
terms of both the allocation of jobs to machines and of
their sequences on the machines (that are not subject to
modifications by the algorithm), and allocates workers to
machines over time, potentially causing one or more stops
on each machine, due to the possible lack of a human
supervision (given the founding hypothesis of the work that
there is an excess of machines compared with the available
human resources), but can never, by construction, improve
the starting CP solution. In other words, the result obtained
with the first part of the proposed approach provides a valid

lower bound to the objective function achievable when all
the aspects of the problem are considered.

On the other hand, not considering the aspects that can
improve the system performances, namely the possibility
for workers to supervise more than a machine, is a way to
define an upper bound for the objective function.

Since the literature does not provide any study that
addresses such a specific problem, considering both the
lower and the upper bounds allow to calculate a range of
values that can be used to evaluate the quality of the results
obtained with the proposed approach.

During the testing period, the firm investigated four
different configurations of the shop floor, each mainly
characterized by a different availability of workforce over
the shifts and by the choice to activate or not a couple
of machines, that can also be used by another division in
the plant. The four configurations are reported in Table 3,
where:

– M is the number of machines available in the
considered shop floor;

– T1 is the number of workers available during the first
shift;

– T2 is the number of workers available during the second
shift;

– T3 is the number of workers available during the third
shift.

The results are presented in Table 4, where:

– Id is the unique identifier of the test;
– Config is the configuration of the shop floor for the test

(one of the four configurations reported in Table 3);

Fig. 2 Scenario 2

922 Int J Adv Manuf Technol (2021) 115:915–925

Table 3 Configurations

Config. M T1 T2 T3

A 15 10 8 0

B 17 6 6 0

C 15 6 6 6

D 17 7 6 6

– LB (Lower Bound) is the lower bound provided by the
CP model solution;

– OBJ is the objective value of the proposed approach,
i.e., CP model plus Constructive Heuristic;

– UB (Upper Bound) is the objective value of the
hierarchical approach, where parallel working modes
for workers are not allowed;

– � is the difference (in working days and fraction of
a day) between the upper and lower bounds, � =
UB − LB, providing a reference range between the
hypothetical lower bound and the upper bound that does
not exploit parallelism;

– �LB is the difference (in working days and fraction of a
day) between the objective value and the lower bound,
�LB = OBJ − LB, representing an estimation of the
“cost” for having less workers than machines;

– �UB is the difference (in working days and fraction of
a day) between the upper bound and the objective value,
�UB = UB − OBJ , providing an estimation of the
benefit provided by the usage of parallelism;

– %�LB is the percentage value of the ratio �LB

�
;

– %�UB is the percentage value of the ratio �UB

�
;

– Days is the number of working days in the schedule;
– %Gap is the optimality gap in percent, calculated as

�LB

Days
, representing an estimation of the theoretically

possible further improvement of the objective if the
number of workers is increased enough to allow the
continuous operation of all the available machines.

A test was performed each time the plant manager needed
a production plan for the forthcoming period, which did
not happen with an exact frequency, but was related to
the availability of new customers orders. The twenty tests
reported in Table 4 cover all the planning events that took
place in the six months horizon considered for the validation
of the proposed method. The tests were performed with
a forced 2-h time limit on a stand-alone PC dedicated
to the tests, with the following configuration: 2.8GHz
Intel i7TM quad-core CPU, 16GB RAM, 1TB SSD Hard
Drive, Microsoft WindowsTM 10 Pro 64bit, IBM ILOGTM

Optimization Studio 12.10.
The results obtained show how, for config A cases, and in

part also for config C cases, the proposed heuristic is able to

Table 4 Result table

Id Config. LB OBJ UB � �LB �UB %�LB %�UB Days %GAP

SA1 A 23/08/19 08:05 23/08/19 15:15 26/08/19 08:58 1.04 0.30 0.74 29% 71% 9.39 3%

SA2 A 29/08/19 22:18 30/08/19 11:37 02/09/19 07:28 1.38 0.55 0.83 40% 60% 16.23 3%

SA3 A 03/09/19 11:20 04/09/19 06:13 05/09/19 06:10 1.78 0.79 1.00 44% 56% 16.01 5%

SA4 A 17/09/19 13:45 17/09/19 21:13 18/09/19 17:04 1.14 0.31 0.83 27% 73% 12.63 2%

SA5 A 02/10/19 12:11 03/10/19 13:28 04/10/19 06:11 1.75 1.05 0.70 60% 40% 16.31 6%

SB1 B 17/10/19 13:31 23/10/19 08:16 24/10/19 21:11 5.32 3.78 1.54 71% 29% 18.09 21%

SB2 B 22/10/19 07:41 29/10/19 12:46 30/10/19 16:02 6.35 5.21 1.14 82% 18% 16.95 31%

SB3 B 28/10/19 21:41 05/11/19 09:52 05/11/19 19:37 4.91 4.51 0.41 92% 8% 15.16 30%

SB4 B 11/11/19 13:43 15/11/19 19:43 18/11/19 19:36 5.25 4.25 1.00 81% 19% 15.57 27%

SB5 B 21/11/19 15:41 26/11/19 13:26 28/11/19 08:02 4.68 2.91 1.78 62% 38% 13.31 22%

SC1 C 28/11/19 04:14 29/11/19 15:51 30/11/19 02:47 1.94 1.48 0.46 77% 23% 8.41 18%

SC2 C 13/12/19 18:34 16/12/19 13:07 17/12/19 21:27 2.12 0.77 1.35 36% 64% 12.30 6%

SC3 C 19/12/19 14:34 21/12/19 01:07 24/12/19 05:05 2.60 1.44 3.17 55% 45% 14.80 10%

SC4 C 13/01/20 10:09 15/01/20 06:16 17/01/20 21:42 2.48 1.84 2.64 74% 26% 15.01 12%

SC5 C 24/01/20 14:32 28/01/20 17:39 29/01/20 16:11 3.07 2.13 0.94 69% 31% 13.49 16%

SD1 D 31/01/20 09:52 05/02/20 02:00 05/02/20 15:10 3.22 2.67 0.55 83% 17% 10.83 25%

SD2 D 10/02/20 06:43 11/02/20 23:42 13/02/20 05:38 2.95 1.71 1.25 58% 42% 12.74 13%

SD3 D 18/02/20 15:20 20/02/20 14:50 21/02/20 20:14 3.20 1.98 1.22 62% 38% 13.37 15%

SD4 D 28/02/20 07:55 03/03/20 09:15 04/03/20 13:51 3.25 2.06 1.19 63% 37% 11.55 21%

SD5 D 07/03/20 05:44 12/03/20 00:12 13/03/20 01:24 3.82 2.77 1.05 73% 27% 13.76 20%

923Int J Adv Manuf Technol (2021) 115:915–925

come close to the ideal results of the lower bound. A higher
concentration of workers per shift, indeed, allows to very
closely match the ideal condition, in which all the machines
are permanently supervised, and hence operational, during
each working shift. Config A and, to a lesser extent,
config C cases are characterized by a more “balanced” ratio
between the available machines and the workers assigned
to each shift: in these situations, the proposed approach
shows its effectiveness, almost achieving the ideal results
even if there are less workers than machines, because it fully
exploits the parallel working modes. On the other hand,
the more “unbalanced” availability of workers in config B
and config D cases results in a higher distance between the
solution and the lower bound, though remaining within a
comparable distance in terms of overall gap.

6 Conclusions

This work takes its inspiration from an industrial case
where the production planning of a FFSP with additional
workforce-related constraints needs to be considered. The
proposed approach iterates over the stages of the problem,
corresponding to the shop floors in the plant, addressing
each stage with an ad hoc procedure based on constraint
programming and a constructive heuristic. The approach is
validated on real test cases collected over several months
of experimentation and the achieved results show its
effectiveness to solve real instances of the problem.

Future work will investigate the possibility to improve
the second phase of the single-stage solution technique,
evaluating the possible improvements achievable through a
more sophisticated metaheuristic approach or considering a
constraint programming formulation.

The problems solved and presented in Section 5 are
similar in terms of number of jobs and available resources:
another research topic will be the generation of random but
realistic test instances to be able to benchmark the behavior
of the proposed method on instances that significantly vary
in dimension.

The data used for the computational results are instances
of real production planning problems and cannot be made
publicly available, since they belong to the firm providing
the test case for the work. However, one of the authors is
the reference contact for the firm and can be reached for
specific requests.

Acknowledgments The paper describes the research activities devel-
oped in the experimental case Prosino S.r.l. The data for the computa-
tional tests have been extracted by the actual ERP (SAP). The authors
would like to thank Altea Federation (A. Ruscica, P. Violini, S. Solano,
F. Agazzone, A. Lopatriello) and Prosino S.r.l. for the contribution to
the experimental campaign.

Funding Open access funding provided by Universit del Salento
within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Pinedo M (2012) Scheduling, vol 5. Springer, Berlin
2. Wang H (2005) Flexible flow shop scheduling: optimum,

heuristics and artificial intelligence solutions. Expert Syst
22(2):78–85

3. Benkalai I, Rebaine D, Baptiste P (2019) Scheduling flow shops
with operators. Int J Prod Res 57(2):338–356

4. Gong G, Chiong R, Deng Q, Han W, Zhang L, Lin W, Li K
(2020) Energy-efficient flexible flow shop scheduling with worker
flexibility. Expert Syst Appl 141:112902

5. Słowiński R. (1980) Two approaches to problems of resource
allocation among project activities—a comparative study. Journal
of the Operational Research Society 31(8):711–723

6. Edis EB, Oguz C, Ozkarahan I. (2013) Parallel machine
scheduling with additional resources: notation, classification,
models and solution methods. Eur J Oper Res, pp 449–463

7. Edis EB, Oguz C (2012) Parallel machine scheduling with flexible
resources. Computers & Industrial Engineering 63(2):433–
447

8. Daniels RL, Hoopes BJ, Mazzola JB (1996) Scheduling par-
allel manufacturing cells with resource flexibility. Management
Science 42(9):1260–1276

9. Zouba M, Baptiste P, Rebaine D (2009) Scheduling identical
parallel machines and operators within a period based chang-
ing mode. Computers & Operations Research 36(12):3231–
3239

10. Chen Z-L (2004) Simultaneous job scheduling and resource
allocation on parallel machines. Ann Oper Res 129(1-4):135–
153

11. Hu P-C (2005) Minimizing total flow time for the worker
assignment scheduling problem in the identical parallel-machine
models. Int J Adv Manuf Technol 25(9-10):1046–1052

12. Artigues C, Gendreau M, Rousseau L-M (2006) A flexible model
and a hybrid exact method for integrated employee timetabling
and production scheduling. In: International Conference on the
Practice and Theory of Automated Timetabling. Springer, pp 67–
84

13. Kellerer H, Strusevich VA (2003) Scheduling problems for
parallel dedicated machines under multiple resource constraints.
Discret Appl Math 133(1-3):45–68

14. Costa A, Cappadonna FA, Fichera S (2013) A hybrid genetic
algorithm for job sequencing and worker allocation in parallel
unrelated machines with sequence-dependent setup times. Int J
Adv Manuf Technol 69(9-12):2799–2817

924 Int J Adv Manuf Technol (2021) 115:915–925

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

15. Afzalirad M, Rezaeian J (2016) Resource-constrained unrelated
parallel machine scheduling problem with sequence dependent
setup times, precedence constraints and machine eligibility
restrictions. Computers & Industrial Engineering 98:40–52

16. Afzalirad M, Shafipour M (2018) Design of an efficient genetic
algorithm for resource-constrained unrelated parallel machine
scheduling problem with machine eligibility restrictions. J Intell
Manuf 29(2):423–437

17. Al-harkan IM, Qamhan AA (2019) Optimize unrelated parallel
machines scheduling problems with multiple limited additional
resources, sequence dependent setup times and release date
constraints. IEEE Access 7:171533–171547

18. Abdolshah M (2014) A review of resource-constrained project
scheduling problems (RCPSP) approaches and solutions. Inter-
national Transaction Journal of Engineering, Management, &
Applied Sciences & Technologies 5(4):253–286

19. Demeulemeester EL, Herroelen WS (2006) Project scheduling: a
research handbook, vol 49. Springer Science & Business Media,
Berlin

20. Dorndorf U (2002) Project scheduling with time windows: from
theory to applications; with 17 tables. Springer Science &
Business Media

21. Neumann K, Schwindt C, Zimmermann J (2012) Project
scheduling with time windows and scarce resources: temporal
and resource-constrained project scheduling with regular and
nonregular objective functions. Springer Science & Business
Media

22. Kis T (2005) Project scheduling: a review of recent books. Oper
Res Lett 33(1):105–110

23. Blazewicz J, Lenstra JK, Rinnooy Kan AHG (1983) Scheduling
subject to resource constraints: classification and complexity.
Discrete Applied Mathematics 5(1):11–24

24. Hooker J (2011) Logic-based methods for optimization: com-
bining optimization and constraint satisfaction, vol 2. Wiley,
Hoboken

25. Van Hentenryck P (1999) The OPL optimization programming
language. MIT Press, Cambridge

26. IBM ILOG (2018) IBM ILOG CPLEX Optimization Studio
v12.8.0 documentation

27. Laborie P, Rogerie J, Shaw P, Vilı́m P (2018) IBM ILOG CP
optimizer for scheduling. Constraints 23(2):210–250

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

925Int J Adv Manuf Technol (2021) 115:915–925

	Workforce influence on manufacturing machines schedules
	Abstract
	Introduction
	Related works
	The industrial problem
	Single-stage planning
	Constraint programming model
	Workers allocation
	Function Sort()
	SetTeams()
	Function DeQueue()
	Function FindWorker()
	EvaluateConduction()
	SetTask()
	EnQueue()

	Computational results
	Conclusions
	References

