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Abstract
We investigate real solutions of a C-integrable non-evolutionary partial differ-
ential equation in the form of a scalar conservation law where the flux density
depends both on the density and on its first derivatives with respect to the
local variables. By performing a similarity reduction dictated by one of its
local symmetry generators, a nonlinear ordinary differential equation arises
that is connected to the Painlevé III equation. Exact solutions are secured and
described provided a constraint holds among the coefficients of the original
equation. In the most general case, we pinpoint the generation of additional
singularities by numerical integration. Then, we discuss the evolution of given
initial profiles. Finally, we mention aspects concerning rational solutions with
a finite number of poles.
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1. Introduction

We address the study of the nonlinear partial differential equation (PDE)

∂tv+ ∂x

{
1

c1v+ c3σ

[
c2v

2 + c4σ
2 +ση (c1∂tv+ c2∂xv)

]}
= 0 (1)

where v= v(x, t) is a real function of the two real independent variables x and t, and η, σ
and the cj’s are real constants. The equation has been introduced recently in [1] in connection
with the problem of describing fluid systems of volume vwhose behaviour at pressure P= x/t
and temperature T= 1/t deviates from the van der Waals equations of state, the parameter
η being there a small positive real parameter identifying the inverse of the number of fluid
molecules. Equation (1) extends case studies that are very familiar to researchers in applied
mathematics and physics, above all the Bateman–Burgers equation ∂tu+ u∂xu= η∂xxu [2–4]
whose structure is recoveredwhen c1 = 0. In fact, equation (1) collocates itself naturally within
equations that generalise Kolmogorov–Petrovsky–Piskunov reactive–diffusive [5] or nonlin-
ear Fokker–Planck models [6], viz. ∂tv+D∂xxv= f(v) and ∂tv+D∂xxv= ∂x(Fv), being D the
diffusion coefficient. It is known that these equations find several applications in a number of
fields, ranging from condensed matter and liquid crystals physics to population dynamics and
social sciences (see e.g. [7–9]), and incorporate various phenomena, such as phase transitions,
travelling-wave solutions, shock waves, anomalous diffusion, and so forth.

Owing to the rather general conditions behind its introduction, one can expect that even
the PDE (1) may be relevant, or at least of use in the complex systems domain in a wider
perspective, not limited to the early motivation in [1]. Indeed, PDE (1) originates merely from
two plain requirements:

(i) the insertion within a scalar conservation law

∂tv= ∂xε (2)

of a simple nonlocal expansion of the flux density

ε= ε0 (v)+ η ε1 (v) ∂xv+ η ε2 (v) ∂tv+O
(
η2
)
+ g(t) , (3)

where ε is assumed be uniquely determined by a function v= v(x, t), depending in its turn
on two local variables x and t, and η is a small expansion parameter;

(ii) the successive singling out of those dynamics that are compatible with the linearisability
requirement of the PDE resulting from (2) and (3), via the Cole–Hopf transform

v(x, t) = ησ∂x lnφ(x, t) , (4)

into a linear PDE for the potential function φ(x, t), being σ a nonvanishing real parameter.

Remark that, contrary to the models previously mentioned, the C-integrable [10]
equation (1) is actually not of evolutionary type, like ∂tv= G(x, t,v,∂xv,∂xxv, . . .) for which
many general results are available in the literature and can be exploited [11–16]. For instance,
it is known that a PDE of the form ∂tv= ∂xxv+ f(v,∂xv) can be mapped into the heat equation
or the Bateman–Burgers equations (see, e.g. proposition 4.3 in [11], pp. 170). But from res-
ults in [17] regarding the symmetry properties one realises that no local transformations can
map (1) into these equations. Notwithstanding, the model can be linearised through the Cole–
Hopf transformation (4) with real-valued parameter σ and potential φ, whose actual value and

2



J. Phys. A: Math. Theor. 56 (2023) 485205 F Giglio et al

meaning may be suggested from the specific problem3. As a result of requirements (i) and (ii),
function φ fulfils a linear PDE that, interestingly, turns out to be an ‘interpolation’ of the heat
and Klein–Gordon (KG) type equations4:

η c3 ∂tφ + η2 c2 ∂xxφ︸ ︷︷ ︸
heat-type

+ η2 c1 ∂xtφ + c4φ︸ ︷︷ ︸
KG-type

= 0 . (5)

Similarly to the Bateman–Burgers case and other C-integrable PDEs, even though there is
the possibility to tackle the problem of analysing its solutions by taking great advantage from
its linearisability and from a successively nicely posed initial value problem, there are reasons
to not overlook the direct study of equation (1). For instance, the dynamical emergence of some
peculiar features, such as singularities or shock-type dynamics, may be more perspicuous.
Further, the way one can benefit from known results to generate new ones by resorting to
symmetry group techniques is affected. The Cole–Hopf transformation is indeed non-local
and the spectrum of local symmetry generators of (1) and those of its φ-potential formulation
differ, and accordingly the explicit form of the associated invariants. Moreover, similarly to
what it has been argued for the Bateman–Burgers equation, issues can be raised in respect to
the problem of giving appropriate boundary conditions, due to the nature of the Cole–Hopf
transformation [26, 27]. Finally, once the expansion (3) is assumed, but the linearisability
requirement for (2) is relaxed, models would outcome whose investigation will advantage of
what is already apprehended about (1).

Because of the aforementioned reasons, we are going to look for basic distinguishing attrib-
utes exhibited by solution to (1), by paying attention, in particular, to the presence of singular-
ities. To do this, we exploit the knowledge of the symmetries identified in [17], so to perform a
suitable reduction leading to a nonlinear ordinary differential equation (ODE). Such an ODE
describes the solutions on the orbits of a one-dimensional symmetry subgroup, generated by
the simultaneous Galilei and scaling transformation for the x, t,v variables, and it turns out to
be connected with the Painlevé III (PIII) equation. In the presence of a certain constraint on the
coefficients cj in (1), solutions can be given in closed form, and their features are discussed.
In the most general case, one can proceed by pursuing specific strategies, such as numerical
integration or the carrying of a Painlevé test, to understand relevant characteristics, such as the
dynamics of poles.

The outline of the paper is as follows. In section 2 we introduce the problem of solving
equation (1) by selecting some natural simplifications, driven by conditions on the parameters.
In section 3 we focus on solutions pertinent to the orbits of the local symmetry generators
resulting for the equation from a symmetry group theoretical approach, by first arguing onwhat
the two simplest generators imply and then deriving the nonlinear ODE describing similarity
solutions pertinent the remaining generator. In section 4 we determine the solutions to the
obtained nonlinear ODE, once a given condition is satisfied by coefficients cj, and clarify
their features. Implications for the corresponding functions v(x, t) solving equation (1) are in
section 5. Themost general case is considered in section 6 where, also bearing in mind findings

3 In the real fluid case dealt with in [1], for instance, σ turns out to be connected to the universal gas constant (or
equivalently to the Boltzmann thermodynamic constant [17]) whileφ plays the role of the statistical partition function.
4 The connections between statistical field models and the heat or KG equations for the underlying partition function
have been pointed out in literature for archetypical complex systems such as the Curie–Weiss model for spins, the
van der Waals model for real gases and generalisations, and the Maier–Saupe model and biaxial generalisations for
nematic liquid crystals [18–24]. The application of a Cole–Hopf type transform to the 1+1 heat and KG equations
leads to nonlinear equations in the Burgers hierarchy, that is viscous scalar conservation laws possessing constant
viscous central invariant [25].
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of section 4, we explore the consequences as regards the properties of the solutions to (1), and
their pole and stationary points dynamics. In section 7 we perform remarks concerning the
analysis of pole dynamics implied for rational solutions involving multiple poles. In section 8
we summarise the results of our study. Finally, appendix A contains proofs for propositions
stated in section 4.

2. Properties of equation (1)—some subclasses of solutions

Aswe already mentioned, equation (1) represents a generalisation of known diffusive/dissipat-
ivemodels. Several comments can be straightforwardlymade in respect to some of its solutions
when particular conditions hold on coefficients or when specific dependences on independent
variables are sought. Below, we pay attention to the first prospect, the second one being dealt
with in section 3.

2.1. Remarks on subcases implied by the vanishing of coefficients cj

The various real constants present in (1) can assume arbitrary values in general, and depending
on the problem to which the model would refer they may acquire particular meaning and major
roles under distinct dynamical regimes5. By acting on the coefficients cj, reductions can be
performed on equation (1) that significantly affect the differential problem. This immediately
eventuates in the following examples.

Example 1: c1 = 0.One ends up into a Bateman–Burgers equation structure, which has origin-
ally introduced in [2, 3] and is one among the most investigated canonical integrable nonlinear
PDEs.With c1 = 0, equation (1) becomes indeed the nonhomogeneous nonlinear heat equation

∂tv+
2c2
σc3

v∂xv+ η
c2
c3
∂xxv= 0 (6)

with the thermal diffusion coefficient −ηc2/c3. Equation (6) can be converted to a linear dif-
fusion equation by Cole–Hopf transform, as it is widely renowned.

Example 2: c2 = c4 = 0. Equation (1) becomes

∂tv+ση c1 ∂x

(
1

c1v+ c3σ
∂tv

)
= 0. (7)

We would like to point out that (7) can be promptly integrated to give

v= ση ∂x ln
[
β (x)+α(t)e−

c3
c1η

x
]
, (8)

being α(t) and β(x) arbitrary functions of their variables. It is thence worth to pay attention
on the case c2 = c4 = 0 because, due to the simultaneous presence of two arbitrary functions,

5 For example, in the discussion in [1]: (i) setting σ to minus the universal gas constant guarantees that at high tem-
peratures T= t−1 and pressures P= x/t an ideal gas behaviour with a core–volume term can be matched with
φ being just the associated statistical partition function, and in this regime effects of constants cj can be neg-
lected; (ii) c4/c1 = a/σ2, where a denotes the mean-field parameter a entering the van der Waals equation of state
(v− b)(P+ av−2) = RT for real gases (see also [18]); (iii) sign ansatz on the structural constants cj are to be con-
sidered to guarantee the reaching of critical regime with a real fluid behaviour and to avoid that the partition function
so identified in this description diverges.

4
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a number of examples could be given and discussed. We notice, in particular, that simple pole
solutions are allowed even on scale other than that induced by the product ησ, as opposite
to what results from solutions (18) (even when one among c2 or c4 is zero). Precisely, solu-
tions v= ησγ/x would follow through the choice α(t) = 0 and β(x) = xγ , for some non-zero
constant γ.6

Example 3: c3 = c4 = 0. In this case one ends up into a Riccati type equation:

ση c1 ∂τv(τ, t) = f1 (τ) v(τ, t)− v(τ, t)2 , τ = c1x− c2t, (9)

where f 1 is an arbitrary function of τ . Solutions to (9) can be thus given as

v(τ, t) = c1ησ∂τ ln

[
f2 (t)+

ˆ τ

e
1

c1ησ

´ τ̃ f1(χ)dχdτ̃
]

(10)

being f2(t) an arbitrary function of variable t.

2.2. The limit η→0—weak solutions

For the particular choice c1 = 0, the model equation (1) is nothing but the Bateman–Burgers
equation, describing the propagation of nonlinear waves in regime of small viscosity. In the
inviscid limit η→ 0 weak solutions are thence expected indicating a non trivial complex beha-
viour for the associated physical system, such as a phase transition [20–22, 28]. A similar
picture is expected to hold as well when c1 ̸= 0. Indeed, if η is vanishing the implicit solution
form

v= f̃ [x+ c(v) t] (11)

is found, where

c(v) =

(
c21c4 + c2c23

)
σ2

c1 (c1v+ c3σ)
2 − c2

c1
(12)

is a rational characteristic speed and f̃ is an arbitrary function of its argument that is typically
provided in the form of initial datum. Remarkably, if the quantity

∆= c21c4 + c2c
2
3 (13)

vanishes one merely has that the initial datum f̃(x) propagates at constant speed, i.e.
v= f(x− c2

c1
t). When instead∆ ̸= 0 then d

dvc(v) ̸= 0, and compressive shock or expansive fan
solutions are in principle contemplated [29].

3. Similarity reductions

In this section, we would like to pay attention on a special subclass of solutions to equation (1):
those that are connected with the reduction of the equation on the orbits of its group symmetry
generators. The knowledge of symmetry generators underlying a given differential problem
generally proves to be helpful in two complementing respects, indeed. The first possibility is
to construct new solutions from known ones [11, 12]. Besides, one can perform a similarity

6 Among possible noticeable examples, remaining within the original context in which equation (1) was derived, such
choice would enable in principle to account for the ideal gas equation of state. However, keeping the values of σ< 0
and η> 0 identified in [1], the simple pole term ησ/x in (18) would have instead wrong negative sign and physical
scale.
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reduction of the differential problem to find solutions that remain invariant under the action
of the symmetry group, known as similarity solutions. The identification of such reductions
relies on the recognition of the class of invariants I(x, t,v) to a given symmetry generator W,
that is such that WI(x, t,v) = 0 [12]. Below, we will proceed in this second respect.

Symmetry generators for equation (1) with c1c2c3c4 ̸= 0 have been computed in [17]. It
turns out that a three-parameter group of symmetry underlies the differential problem (1)
through the action of the following three vector fields:

W1 = ∂x, W2 = ∂t+
c2
c1
∂x, W3 = t∂t+

(
2
c2
c1
t− x

)
∂x+

(
c3σ
c1

+ v

)
∂v. (14)

Each of these operator defines a one-dimensional subgroup Gk({x, t,v};λ) of local trans-
formations depending on a single real parameter λk (k= 1,2,3).7

3.1. Similarity reductions from W1 and W2

Operators W1 and W2 are evidently associated with rigid translations in the x and t− c1
c2
x dir-

ections. The two corresponding invariants I1 = I1(t,v) and I2 = I2(c1x− c2t,v) point to the
natural one-dimensional reductions v= v(t) and v= v(c1x− c2t). However, both reductions
yield to solutions of (1) that are merely constants. Linear combinations of W1 and W2 can be
considered too. In particular, the operator ∂t can be obtained, whose invariants imply the reduc-
tion v= v(x). The singular behaviour of the resulting similarity solutions can be immediately
inferred because equation (1) reduces to the nonlinear ODE of the Riccati type

c2v
2 + c4σ

2 + ησc2∂xv= C0 (c1v+ c3σ) , (16)

where C0 is a constant. By virtue of this, when C0c2 ̸= 0 solutions v(x) to equation (16) are

v(x) =
c1C0

2c2
− C̃0

2c2
tan

[
c1C̃0

2

(
x

c2ησ
+C1

)]
, (17)

where C1 is an integration constant and C̃0 =
√

4σc2(σc4 −C0c3)−C2
0c

2
1 ̸= 0. If, in contrast,

C̃0 = 0, i.e. if C0 takes one of the values

C(±)
0 =

2
c21

[
−c2c3σ±

√
c2
(
c21c4 + c2c23

)
σ2

]
,

then one has the simple rational structure

v± =
c1C

(±)
0

2c2
+

ησ

x−C1
. (18)

The existence of singular real solutions to (1) is thus put in evidence immediately through (17)
and (18) for real C0, C1, C̃0 and C±. Analogous results follow from the reductions implied by
the invariants associated with other linear combinations of W1 and W2.

7 When ∆= c21c4 + c2c23 = 0, infinite symmetries come into play: in addition to three generators (14), the family of
symmetry generators

W∞ =

[
G1 +

c1
c2
F1 (t)

]
∂

∂t
+

[
F2

(
−
c1
c2
x+ t

)
+F1 (t)

]
∂

∂x
+
c1
c2

(
v + σ

c3
c1

)
F ′
2

(
−
c1
c2
x+ t

)
∂

∂v
(15)

is found, being F1, F2 arbitrary functions of their argument and G1 constant.

6
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3.2. Similarity reductions from W3

The explicit one-parameter group of symmetry transformation implied by the generatorW3 is
also straightforwardly inferred,

G3 ({x, t,v} ;λ3) =

{
xλ3 = e−

c1
c2
λ3x+ 2 t

c2
c1

sinh

(
c1
c2
λ3

)
, tλ3 = e

c1
c2
λ3 t, vλ3

= e
c1
c2
λ3v+

c3σ
c1

(
e
c1
c2
λ3 − 1

)}
. (19)

But once attention is paid to the similarity solutions for the equation (1) that would result from
the generator W3, implications are less expeditious. Indeed, the concerned invariants take the
form

I3 = I3

[(
1+

c1
c3σ

v

)
t−1 ,

η

c3
t(c1x− c2t)

]
. (20)

According to (20), and by a convenient normalisation, functions v can be sought of the form

v=
σc3
c1

[
B
ηc21
c3

tΦ (ξ)− 1

]
, ξ = Bt (c1x− c2t) (21)

with B real constant. By doing so, equation (1) turns into the following second order nonlinear
ODE for Φ

Φ ′ ′ (ξ ) =
Φ ′ (ξ )

2

Φ (ξ )
−
[
Φ (ξ )+

1
ξ
− ∆

Bc41 η
2

1
ξ Φ (ξ )

]
Φ ′ (ξ )− Φ (ξ )

2

ξ

(
′ =

d
dξ

)
,

(22)

resembling a PIII equation with all coefficients trivial but one (see e.g. [30–32]). We are thus
lead to distinguish two cases on the basis of the values attained by coefficients. Depending on
whether or not∆= c21c4 + c2c23 vanishes, two distinct differential equations therefore arise:

• equation 1:

Φ ′ ′ (ξ ) =−Φ ′ (ξ )

ξ
+

Φ ′ (ξ )
2

Φ (ξ )
− Φ (ξ )

2

ξ︸ ︷︷ ︸
PIII

−Φ (ξ )Φ ′ (ξ ) (23)

for ∆= 0 whatever the constant B in (22);
• equation 2:

Φ ′ ′ (ξ ) =−Φ ′ (ξ )

ξ
+

Φ ′ (ξ )
2

Φ (ξ )
− Φ (ξ )

2

ξ︸ ︷︷ ︸
PIII

−Φ (ξ )Φ ′ (ξ )

︸ ︷︷ ︸
equation (23)

+
Φ ′ (ξ )

ξΦ (ξ )
(24)

when ∆ ̸= 0, upon setting for convenience

B=
∆

η2c41
. (25)

In both (23) and (24) the similarity with the PIII equation PIII(ξ;−1,0,0,0) with all but one
vanishing coefficients is underlined. It is noteworthy that the constraint ∆= 0 has already

7
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proved to be relevant in the study of (1) as it gives rise to infinite local symmetries connected
to the equation [1] (see equation (15) in footnote 7).

In next sections we shall tackle the problem of understanding properties of solutions to (23)
and (24), being heedful to the occurrence of singularities.

4. Properties of equation (23) and of its solutions

While equation (23) may appear at first to be uneasy to solve, its solutions prove to possess
a simple analytical form that can be straightforwardly determined. The general real solution
reads indeed:

Φ0 (ξ;α1,α2) =
α1 − 1

α2 (α1 − 1)ξ α1 − ξ
, ξ = t (c1x− c2t) (26)

where α1 and α2 are real-valued constants of integration and the arbitrary constant B intro-
duced in (21) has been normalised to unity for simplicity. Notice that the two-parameter
family of real functions (26) comprises rational functions with simple single poles, namely
Φ0 = (α1 − 1)ξ−1 orΦ0 = (ξ+α2)

−1, which can be obtained for α2 = 0 and α1 = 0, respect-
ively. The null solution function arises instead for α1 = 1. It is also worth to point out that a
deeper connection between (23) and the PIII equation unfolds through a Cole–Hopf transform-
ation Φ(ξ) = [log(A−W(ξ))] ′ (with A arbitrary constant): the derivative w(ξ) =W ′(ξ) of the
Cole–Hopf potential functionW(ξ) obeys indeed w ′ ′ = (w ′)2w−1 −w ′ξ−1, the PIII equation
with all parameters null.

Before to proceed in shedding light on features of functions (26), the remark is in order that
rational non integer values of α1 make Φ0 multivalued [33]. Recalling that (26) is the solution
to a nonlinear ODE (equation (23)) with prescribed initial conditions that may possibly arise
from specific applicative models, we will simply restrict our study to ξ ∈ R and Φ(ξ) ∈ R,
without providing a criterion for selecting specific real roots. In fact, when multi-valuedness
occurs, specific representations would be naturally gauged from the motivating application.

Quantitative and qualitative properties of function (26) are discussed separately in the fol-
lowing two subsections.

4.1. Quantitative properties of solution (26)

We proceed by analysing the solution (26) for positive real α2 and rational α1 evaluating sin-
gularities and stationary points as they vary, starting with the simplest case α1 ∈ Z. For sim-
plicity, we will consider the case α2 > 0. A similar scenario, which is not discussed in detail in
this work, is expected when α2 < 0. Singularities of solution (26) for integers α1 are given by
the following, accounting for the standard classification of singularities in the complex plane
[26, 33].

Proposition 1 (singularities of solution (26) for integer values of α1). Let α1 ∈ Z, α2 > 0,

ξ(0) = 0 and ξ± =±|(1−α1)α2|
1

1−α1 . The real singularities of the function (26) are listed
below.

(i) No singularities on the real line for odd negative integer α1.
(ii) One single singularity (pole) for α1 even negative integer located at ξ = ξ−.
(iii) Two real singularities when α1 is even positive integer. These are located at ξ = ξ(0)

(pole) and ξ = ξ+ (branch point).
(iv) Three singularities on the real line for odd positive integers α1. One is located at ξ = ξ(0)

(pole) and the other two at ξ = ξ± (branch points).
8
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Proof. Singularities of (26) for negative integer values of α1 are identified by real roots
of the polynomial P−(ξ) := ξ 1−α1 −α2(α1 − 1), which has complex roots ξl = |(1−
α1)α2|

1
1−α1 ei

π+2lπ
1−α1 , l= 0,1, . . . ,−α1. If α1 is odd, there are no real roots8, hence proving (i). If

α1 is even instead, a real solution is obtained when π+ 2lπ = (1−α1)π, that is for l=−α1
2 ,

giving ξ− =−|α2(1−α1)|
1

1−α1 . This proves case (ii).
Similarly to cases (i) and (ii), real poles of (26) for positive integer values of α1 are given by

real roots of the polynomial P+(ξ) := ξ
[
((α1 − 1)α2)ξ

α1−1 − 1
]
. Excluding the trivial case

α1 = 1, which corresponds to the null solution Φ0(ξ) = 0, the root ξ(0) = 0 is readily identi-

fied for all values of α1. The other complex roots of P+(ξ) are ξl = |(1−α1)α2|
1

1−α1 ei
2lπ

1−α1 ,

l= 0,1, . . . ,α1 − 2. A real root is promptly obtained for l= 0, that is ξ+ = |(1−α1)α2|
1

1−α1 .
Another solution for odd α1 is found requiring 2lπ = (1−α1)π. Such solution reads ξ− =

−|(1−α1)α2|
1

1−α1 , hence completing the proof of (iii) and (iv).

Singularities ξ± are clearly movable in that they are not fixed by the equation (23), but
rather they are determined by the initial condition assigned for the equation itself. In fact, the
only essential singularity, when present, is at ξ(0) = 0, as one can see from (23).

Properties of solution (26) can be further characterised by looking at its stationary points.
The stationary points of solution (26) for integer α1 are provided by the following:

Proposition 2 (stationary points of solution (26) for integer values of α1). Let α1 ∈ Z,
α2 > 0, ξ(0) = 0 and ξc± =±|α1(1−α1)α2|

1
1−α1 . The stationary points of solution (26) are

listed below.

(i) Three stationary points located at ξ = ξ(0) (inflection point) and ξ = ξc± for α1 odd neg-
ative integer with α1 <−1.

(ii) Two stationary points when α1 =−1, located at ξ = ξc± .
(iii) Two stationary points for α1 even negative integer, located at ξ = ξ(0) and ξ = ξc+.
(iv) One single stationary point located at ξ = ξc+ for α1 even positive integer.
(v) Two stationary points for odd positive integers α1 located at ξ = ξc±.

Singularities and stationary points of (26) for rational values ofα1 can be also derived as shown
in the below:

Proposition 3 (singularities of (26) for rational values of α1). Let α1 =
q
p with q,p ∈ Z and

gcd(q,p) = 1, and consider ξ(0), ξ± defined as in proposition 1. The real poles of (26) are
listed below.

(i) Case α1 < 0.
(a) One singularity located at ξ = ξ− (branch point) if p is odd and q is even.
(b) No singularities if p and q are odd.
(c) No singularities if p is even9.

8 An equivalent way to see this consists in observing that α2(α1 − 1)< 0. If ξ ∈ R and α1 is odd, then 1−α1 is
even and ξ 1−α1︸ ︷︷ ︸

>0

= α2(α1 − 1)︸ ︷︷ ︸
<0

is inconsistent.

9 As we have already pointed out, in this work we are standardly considering for ξ ≥ 0 and p even, ξ1/p = p
√
ξ. If

ξ1/p =− p
√
ξ is adopted instead, a second singularity arises at ξ = ξ+.

9
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(ii) Case 0< α1 < 1.
(a) Two singularities if p is odd and q is even located at ξ = ξ(0) (branch point) and ξ = ξ−

(branch point).
(b) One singularity located at ξ = ξ(0) (branch point) if p and q are odd.
(c) One singularity located at ξ = ξ(0) (branch point) if p is even10.

(iii) Case α1 > 1.
(a) Two singularities if p is odd and q is even located at ξ = ξ(0) (pole) and ξ = ξ+ (branch

point).
(b) Three singularities if p and q are odd located at ξ = ξ(0) (pole) and ξ = ξ± (branch

points).
(c) Two singularities at ξ = ξ(0) (pole) and ξ = ξ+ if p (branch point) is even.

Proposition 4 (stationary points of (26) for rational values of α1). Let α1 =
q
p with q,p ∈ Z

and gcd(q,p) = 1, and consider ξ(0), ξc± defined as in proposition 2. The stationary points
of (26) are listed below.

(i) Case α1 < 0.
(a) Two stationary points located at ξ = ξ(0) and ξ = ξc+ if p is odd and q is even.
(b) Three stationary points located at ξ = ξ(0) (inflection point) and ξ = ξc± if p and q are

odd.
(c) Two stationary points located at ξ = ξ(0) and ξ = ξc+ if p is even.

(ii) Case 0< α1 < 1.
(a) One stationary point at ξ = ξc− if p is odd and q is even.
(b) No stationary points if p and q are odd.
(c) No stationary points if p is even11.

(iii) Case α1 > 1.
(a) One stationary point located at ξ = ξc+ if p is odd and q is even.
(b) Two stationary points located at ξ = ξc± if p and q are odd.
(c) One stationary point at ξ = ξc+ if p is even.

Proofs of propositions 2–4 can be given, mutatis mutandis, in a similar fashion of proposi-
tion 1 and are reported in appendix. Notice that statements in proposition 1 for integer values
of α1 can be also deduced from proposition 3. For instance, case (iii) in proposition 1, i.e. α1

even positive integer, can be obtained from case (iii.a) requiring p odd (precisely p= 1) and q
even.

Depending on the values of constants α1 and α2, distinct features are thus displayed for
function (26). Some symmetry properties are promptly perceived: an intertwining creates
between the problems of revealing asymptotes and stationary points, and mirror situations
are designed through sign changes. In particular, remark that one may write

Φ ′
0 (ξ;α1,α2) =− Φ2

0 (ξ;α1,α2)

ξΦ0 (ξ;α1,α1α2)
. (27)

10 If ξ1/p =− p
√
ξ is adopted, a second singularity arises at ξ = ξ+.

11 If one considers ξp =− p
√
ξ a stationary point is located at ξ = ξc+.

10
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4.2. Qualitative properties of solutions (26)

In this subsectionwe provide amore circumstantial picture of solutions (26) by complementing
with figures previous results concerning the individuation of their singularities and stationary
points.

In figure 1 it is shown what is implied for the functionΦ0 of equation (26) whenever α2 > 0
(which, for simplicity, has been set there to the unit value without loss generality). Plots there
reveal up to three vertical asymptotes, and the possibility to develop local maxima and min-
ima, as reckoned in the previous section 4.1. First five plots refer to the case where α1 is an
integer number, for which propositions 1 and 2 hold. Figure 1(a) displays the continuous curves
generated for negative odd integers α1, and the amplification is marked as long as α1 takes
lower and lower values. The effect magnifies itself about the local maximum and minimum

points, located at ξc± =±|α1(1−α1)α2|
1

1−α1 , showing the transition from smoother curves
to shapes with sharp peaks. The changes call for a net bending towards the ξ-axis of wider
portion of curves about the origin before to reach the stationary points at faster rate. The null
asymptotic valuesΦ0(ξ → 0;α1,α2) = 0 are approached close later of course. Curves turn out
to be symmetric under the combined action of reflections of the dependent and independent
variables, ξ →−ξ and Φ0 →−Φ0. Figure 1(b) indicates instead what happens for negative
even integers. Comparison is made with the rational function with single pole in ξ0 =−α2

obtained for α1 = 0. While the right portion of profiles share the features discussed for the
prior case, something different happens in the negative ξ-domain, where a vertical asymp-
tote generates and no minimum forms. Decreasing ξ from the origin, the function Φ0 does no
longer decrease but is lifted up, with a final boost on its rate while getting sufficiently close
to the vertical asymptote. Passing to the positive odd integer α1, see figure 1(c) , we go back
to a picture where Φ0 is an odd function of its argument ξ. Both a maximum and a minimum
are comprised, but the curve splits into four portions owing to the appearance of three vertical

asymptotes, at the origin and at points ξ± =±|(1−α1)α2|
1

1−α1 . Two vertical asymptotes are
rather concerned for positive even integers α1, at the origin and at ξc+, a negative maximum
laying down in between, see figure 1(d). Moreover, while moving to higher values of α1, a
step progressively forms about ξ =−1, as visible in figure 1(e) and consistently with (26).

The remaining three plots, figures 1(f)–(h), deal with the case α1 ∈Q, thus relying on pro-
positions 3 and 4 in section 4.1. To proceed, we assign to each α1 ∈Q a unique pair of integers
q,p such thatα1 = q/p, with p> 0 and gcd(q,p) = 1.When q and p are both odd the analogy is
with the case of odd integers α1. Precisely, if q is odd positive (see black curve in figure 1(f))
then the behaviour resembles the one of of figure 1(c) for odd integers α1 > 1. In a similar
way, when q is an odd negative (red curve in figure 1(f)) the likeness is with 1(a) treating odd
negative integers α1

12. Correspondingly, when p is odd and q is even, the behaviour of even
integers α1 is recovered. For instance, when α1 < 0 the curves originating forΦ0(ξ;α1,1) (red
curve in figure 1(g)) are alike those for negative even α1 in figure 1(b). On the contrary, for
positive α1 < 0 (black curve in 1(g)) the resemblance is with shapes arising for even positive
α1 (figure 1(d)). Outcomes when 0< α1 < 1 have to be commented separately. Blue curves in
figures 1(f)–(h) show the singularity at the origin ξ(0) = 0, and possibly a second one at ξc− if
p and q are odd and even, respectively. In the latter occurrence, the singularity at ξ− remains

visible for small values of α1, in that ξ− =−|(α1 − 1)α2|
1

1−α1 ≃−|α2|. In contrast, ξ− → 0−

when α1 approaches the unity from below.

12 The cases p= 1 should indeed reproduce what is known for integers α1.
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Figure 1. Plots of function Φ0(ξ) of equation (26) for α2 = 1. Coloured dots refer to
the asymptotes location evinced through propositions 1 and 3 given in section 4.1. (a)
α1 negative odd integer; (b) α1 negative even integer; (c) α1 positive odd integer; (d)
α1 positive even integer; (e) birth of a step for higher values of α1 positive even integer;
(f)–(h) rational values α1 = q/pwith q and p integers s.t. gcd(q,p) = 1: (f) q and p both
odd; (g) p odd and q even; (h) p even and q odd.

12
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Figure 2. Plots of function Φ0(ξ) of equation (26) for α2 =−1. Coloured dots refer to
the asymptotes location. (a) α1 negative odd integer; (b) α1 positive odd integer.

The scenario arising for functions Φ0(ξ) given by equation (26) with negative values of
α2 can be understood from figure 2. We proceed concisely on the grounds of symmetries and
analytical information gained for α2 > 0. We start with by remarking indeed that for α2 < 0
and integers j

Φ0 (ξ;2j,α2) =−Φ0 (ξ;2j,−|α2|) . (28)

Therefore, curves for Φ0 when α2 < 0 and α1 are even integers result from plots (b) and (d)
of figure 1 upon performing joint reflections ξ →−ξ and Φ0 →−Φ0. As for negative odd
integers α1, the two vertical asymptotes in figure 2(a) are placed at ξ±. Opposite to figure 1(d)
which also furnished us two-asymptote depiction for the functionΦ0, there is no trait designing
a stationary point. Finally for the case α2 < 0, one asymptote and two monotonically growing
curves are typified by positive even integer values of α1, figure 2(b).

5. Solutions (21) to equation (1) when ∆ = 0

The clarification of the behaviour allowed for Φ0(ξ) put the basis for the understanding of
solutions v(x, t) to equation (1) that are or the form (21) and pertinent to the case ∆= c21c4 +
c2c23 = 0. While conveying particulars of Φ0(ξ;α1,α2) to solutions of (1) via (21), values and
signs of constants cj clearly matter. The role of the evolutionary variable t is also evident in
altering the magnitude and moving the poles of resulting solutions v(x, t). As a matter of fact,
the changeover from the similarity coordinate ξ to the original independent variables x and t
implies that to every point in the ξ-axis it is associated a curve x(t) in the (t, x) plane (at t ̸= 0):
the straight line c1x= c2t for the point ξ= 0, and the composition of the same translational
motion with an hyperbolic curve for any other point ξ. Hence

x(t) =
1
c1

(
c2t+

ξ

Bt

)
(29)

(i) when ξ/Bc1 and c2/c1 are both strictly positive, then x(t) is strictly positive (negative)
over all the positive (negative) t-domain;

(ii) if ξ/Bc1 > 0 and c2/c1 < 0, then x(t)> 0 when either t<−
√
−ξ/Bc2 or 0< t<√

−ξ/Bc2;
(iii) if ξ/Bc1 < 0 and c2/c1 > 0, then x(t)> 0 when either −

√
−ξ/Bc2 < t< 0 or t>√

−ξ/Bc2;

13
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Figure 3. Qualitative motion for t> 0 of a point ξp on the ξ-axis as it is implied by
equation (29). Case (i) (black): ξp/Bc1 > 0 and c2/c1 > 0; case (ii) (blue): ξp/Bc1 > 0
and c2/c1 < 0; case (iii) (red): ξp/Bc1 < 0 and c2/c1 > 0; case (iv) (purple): ξp/Bc1 < 0
and c2/c1 < 0.

Figure 4. Examples of graphs of function tΦ(x, t) that follows from (26) at differ-
ent times and for different choices of parameters c1 and c2. Equation (26) has been
taken with α1 =−8 and α2 = 1, for which the shape of Φ(ξ) is analogous to curves of
figure 1(b). Coloured dots refer to the asymptotes location. (a) Progressive deformation
of shape for tΦ(x, t) when c1 and c2 are both negative. (b) Progressive deformation of
shape for tΦ(x, t) when c1 > 0 and c2 < 0.

(iv) if ξ/c1 and c2/c1 are both strictly negative, then xs is strictly negative (positive) over all
the positive (negative) t-domain;

(v) if ξ= 0, then sign(x(t)) = sign(c1c2t).

Qualitative behaviour of x(t) concerned with ξ ̸= 0 is summarised in figure 3. In particular,
the above schematics apply to connote the relocation on the x-axis of singularities of similarity
solution (21) while t varies. We thus see that in cases (i) and (iv) the same value of x can be
obtained for two distinct values of the local variable t> 0, meaning that a reversal of the singu-
larity motion is exhibited. In cases (ii) and (iii), instead, there is a one-to-one correspondence
based on a monotonic behaviour for the function x(t) of equation (29).

We are now in the position to outline more efficiently the significant aspects of similarity
solution (21) when∆= 0. Regardless obvious remarks in respect of consequences due to signs
of the constants cj, it is helpful to consider an example of just the function tΦ0 = tΦ0(x, t).
In figure 4, a case based on curves Φ of the type figure 1(b) is considered, in particular by
setting α1 =−8 and α2 = 1. Plots there supply a glimpse into effects of sign changes for the

14
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Figure 5. Asymptotes and stationary points motion for the function tΦ(x, t) arising
from (26) with α1 =−8, α2 = 1, c1 = 0.5 and c2 = 0.2. (a) The function tΦ0 for differ-
ent values of t. For increasing negative t the maximum flattens and shifts the location to
higher values of the coordinate x. The asymptote moves as well, but after moving to the
right on the x-axis (see the red curve determined at t=−3 on the right of the black one
obtained for t=−4) it reverses its motion and directs itself to the opposite direction (see
the blue curve at t=−1 on the left of the previously mentioned black and red ones). (b)
Motion in the (t, x) plane of asymptote and stationary points, signalling the inversion of
motion only for the former.

constants c1,2 at positive t. For completeness, and being more instructive, the spectrum of
the real ‘evolutionary’ variable t shall be permitted to comprise negative values. To this, we
will consider coefficients c1 and c2 be both positive, as shown in figure 5. In the formal limit
t→−∞, resulting function tΦ0(x, t) is null. For negative but increasing t’s, profiles like curves
in figure 1(b) tend to form, with lower and lower values attained by the maximumwhich moves
to the right becoming smoother. The generated asymptote first moves to the right either, then
reverses its motion by progressively placing itself at lower and lower values of x. At t= 0, the
asymptote and the maximum (experiencing the ongoing magnitude suppression) are pushed
at infinity, and the function lies again on the x axis. At later t, curves are no longer similar
to those of figure 1(b), but rather to those ones one gets from them through the simultaneous
reflections about horizontal and vertical axes. An asymptote is brought back in the picture
from ∞, approaching a stationary point which is reinstated, but as as a minimum moving
from −∞ towards the direction of the increasing x becoming narrower and narrower. The
asymptote again experiences a ‘bouncing back’ mechanism and an inversion of its motion, but
without starting to departing from the minimum (see figure 5). In the formal asymptotic limit
t→∞, the curve again flattens down on the abscissa. Analogous analysis can be worked out
by choosing other pairs of parameters α1 and α2.

6. Properties of equation (24) and its solutions

Evidently, equation (24) is a non-trivial nonlinear ODE. Contrary to equation (24), we have not
found a transformation connecting it to the list of Painlevé equations. Of course approximate
methods can be resorted in the attempt to have a glimpse of possible dynamics emerging from
it. For instance, Painlevé-like test arguments (see e.g. [34, 35] and references therein for an
account on this subject) can be carried out while aimed at highlighting features of its solutions,
such as their singularity structure. A priori equation (24) can have solutions with movable
singularities which vary with the initial conditions. Testing the singularity structure of the
equation appears particularlymeaningful, as it is natural to wonder about admissible deviations
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and generalisations with respect to the very basic case (18) displayed, for the one-dimensional
reduction of the problem discussed in section 3.1. Having this in mind, the formal expansion

Φ(ξ) = (ξ − ξ0)
−j

∞∑
k=k0

fk (ξ − ξ0)
k
, (30)

being the fk’s constants, can be thence resorted to identify all possible dominant balances,
i.e. the singularities whose form behaves likeΦ ∝ (ξ − ξ0)

−j. It is readily seen that demanding
j to be a positive integer leads to the identification j= 1, so that the singular dominant behaviour
is associated with a single pole. Going further in the analysis, the resonance r= 1 is found (in
addition to r=−1). So, the two arbitrary constants entering the Laurent series representation
of the solution (30) with j= 1 are given by the movable pole ξ0 and the coefficient f 1. To our
aims, it is significant to focus on the role of dominant term about a singular point ξ0 in the
local representations of Φ,

Φ(ξ)∼=
1

ξ − ξ0
. (31)

That is, for (21) and assuming∆ ̸= 0, we can take for equation (1) the approximate solution

v(x, t)∼=
ησc1 t

t(c1x− c2t)− ξ∗0
=

ησ

x− xs (t)
(32)

about a singular point (the term σc3/c1 can be patently omitted), being ξ∗0 = η2c31∆
−1 ξ0 and

xs(t) given by formula (29) with ξ/B→ ξ∗0 , i.e.

xs (t) =
1
c1

(
c2t+

ξ∗0
t

)
(33)

(c1 ̸= 0). At any given t ̸= 0, the singularity shows up when the real variable x attains the
finite value xs(t). When ξ∗0 = 0, the pole xs(t) simply depends linearly on t and translates with
constant velocity c2/c1. If ξ∗0 ̸= 0 the quantity xs can be positive or negative depending on the
signs of ξ∗0 /c1 and c2/c1. The motion of poles of the rational solution (32) is easily inferred.
We thus see that when ξ∗0 /c1 and c2/c1 are either both positive or both negative (cases (i) and
(iv) of previous section) the same value of xs can be obtained for two distinct values of the
local variable t> 0, meaning that a reversal of the pole motion is exhibited. When ξ∗0 /c1 > 0
and c2/c1 < 0 or ξ∗0 /c1 < 0 and c2/c1 > 0—cases (ii) and (iii)—there is instead a one-to-one
correspondence based on a monotonic behaviour for the function xs(t). Qualitative behaviour
of xs(t) when t> 0 and ξ∗ ̸= 0 is as in figure 3. Also remark that when ∆= c21c4 + c2c23 = 0
the coefficients c3 and c4 play no role on the identification and on the motion of the pole xs(t)
as they do not enter in the definition of neither the variable, which now reads ξ = t(c1x− c2t),
nor in defining a normalised value ξ∗0 of the pole ξ0 (since now one would have (29) with
ξ → ξ0).

To gain a picture of how its solutions evolve away from a singularity of the type (31), a
numerical integration of equation (22) can be performed. Remark that equation (22) does not
admit invariance neither under reflections ξ →−ξ nor under translations ξ → ξ + δξ.

Figure 6 pertains solutions Φ to equation (24) obtained with initial condition of the simple
pole type about ξ0 < 0. That is, initial conditions have been imposed by assigning that, at a
point very close to a certain ξ0 > 0, solutions Φ and Φ ′ assume the same values of the func-
tion (ξ− ξ0)

−1 and of its differential. The initial condition matching takes place very close to
singularities and for solutions values rather above the domain considered in plots. Integration
is performed by increasing the variable ξ from a pole until a successive singularity devel-
ops. Numerical integration of (24) in the positive and negative domains of the variable ξ are
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Figure 6. Numerical integration of equation (22) upon superimposition of initial con-
ditions based on functions (26) for distinguished choices of parameters. Functions used
to set initial conditions are represented by the dashed curves. (a) Negative simple poles
in ξ0 =−0.4 (black) and ξ0 =−1.5 (red). (b) Comparison of curves obtained by super-
imposing initial conditions either matching simple pole functions at ξ0 = 0,1 (red and
black curves, respectively) or (26) with α1 = 2 and α2 = 1 (brown) which possess both
those singularities.

performed separately. In particular, figure 6(a) refers to the case ξ0 < 0. To the left of this
singularity, solutions essentially comply with the simple pole function (ξ− ξ0)

−1. The plot
also tells how the solution runs to a novel singularity located at the origin. When ξ increases
and begins to be distant enough from ξ0 < 0 the memory of the pole begins to get lost, and
a change of convexity anticipates a growth at a noticeably high rate while approaching the
singular point ξ= 0. Red and black curves in figure 6(b) report results one obtains by integrat-
ing equation (24) over the domain ξ > 0 after superimposing initial conditions of the simple
pole type Φ≃ (ξ− ξ0)

−1, with ξ0 > 0. After increasing ξ a while, the portion of solutions that
develops to the right of the point ξ0 > 0 are pushed down and directed to a singular behaviour,
with a character resembling to tan-type functions. A translation of the singular point ξ0 pro-
vokes a dilation of the interval between the initial and the newly formed singularities (see the
red and black curves in curves in 6(b)). Confronted with (23) with the same initial conditions,
it can be thus concluded that there is a substantial role played by the last term in equation (24)
that sustains the generation of an additional singularity at the origin ξ= 0.

6.1. Sensitivity to initial conditions

Discussing solutions to equation (24) would clearly benefit of taking into account initial condi-
tions other than those used so far. At the beginning of this section, we have seen that simple pole
behaviour can be extracted for solutions to equation (24). But we have also learned in section 4
how singularities of different types originate for functions Φ when ∆= 0. It makes therefore
sense to look at solutions to equation (24) based on sampling of initial conditions establishing
a more direct connection with general solutions to the problem (23). For instance, we set initial
conditions for (24) demanding solution values and their first derivatives as given by the func-
tion (26) near a singularity. After doing so, families of numerical solutions to equation (24)
follow that can be seen as deformations of the solutions (26), from which they are expected
to inherit some major features. Figure 6(b) considers also what is obtained by this strategy.
While not a substantial dependence on this new initial condition, compared to the simple pole
initial condition, is displayed to the right of the singularity (see the brown and black tan-type
shapes on the right of figure 6(b)), quite a difference is manifested on its left side. As solid
and dotted brown curves in figure 6(b) show for smaller ξ, solutions to (24) associated with
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Figure 7. Comparison between functions solving (24) and solution (26) pertinent to∆=
0. Φ(ξ) and Φ0(ξ;−3,1) are required to pass both through chosen individual points
(coloured disks) with the same rate. The black curve denotes the solution demanded
to possess the same maximum (black disk) of Φ0(ξ;−3,1) (red dashed) at ξ = ξc+ =

121/4. (a) Deformation of the reference profile Φ0(ξ;−3,1) and sudden appearance of
a dissimilar curve (blue). (b) Dynamics of the minimum by varying initial conditions.
Lowering the maximum does not necessarily introduce an overall smoothing ofΦ in the
ξ < 0 domain (compare magenta and brown curves).

initial data as given by Φ0 tend to stay adherent to Φ0 itself, thence preserving their same
singular behaviour approaching the origin. A striking dissimilarity is presented instead in the
same domain between the origin and the singularity for the solution. Starting from the left of
the singularity to the origin, the solution to (24) (left solid black curve for small values of ξ)
leaves the (ξ− ξ0)

−1 curve (dotted black) determining its initial simple pole imprinting so to
generate again a singularity at the origin, but this time progressing to the positive infinity value
through a tan-type profile.

Having payed attention on consequences of initial conditions near the singularity, devised
on the observation of dominant term (31) and solutions to (23), in order to having a more
complete picture on the problem (24), it is worth to pursue the same strategy of screening the
solutions that are isolated by the enforcement of data similar to that of an assigned reference
function (26). However, at this time data are taken at some point far from singularities of Φ0.
Stationary points can be chosen as reference for initial conditions, for instance. In figure 7, in
particular, the solution to (24) is asked to develop the same local maxima of the function (26)
with the off α1 =−3 and α2 = 1 (red dashed). A curve emerges that is not anymore anti-
symmetric with respect to the vertical axis, and an asymptote comes after the maximum in a
manner analogous to what we have formerly seen to progress from a superimposed vertical
asymptote, see figure 6(b). To some extend, the Φ0-pattern is better preserved before the max-
imum, albeit it is evident that also the anti-symmetry between the maximum and the minimum
breaks down. The latter is visibly lowered, like most of the curve in the ξ < 0 domain. The
raising of the function to positive values in the proximity of the origin is also clear, and this
contributes to the formation of a greater dip conducting to the minimum.

Graphs of figure 7 also illustrate what can be displayed by still taking Φ0(ξ;−3,1) as
trial function to settle initial conditions for the ODE (24), but choosing points on it differ-
ent from the maximum. In particular, we have considered points to the right of the maximum,
where the function smoothly decays monotonically. With the diminishing of Φ0(ξ;−3,1) and
Φ ′

0(ξ;−3,1) there is a general tendency to push down the maximum for Φ, which moves
uniformly to the right, see magenta and brown curves in figures 7(a) and (b). A memory of
the minimum developing for Φ0(ξ;−3,1) is also seen, but in the region ξ < 0 the function Φ
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Figure 8. Examples of function tΦ(x, t) that conseque from (24) at different times and
for c1 = 0.5, c2 = 0.2 and∆= η2c41. Coloured dots refer to the initial value assignment
for the function Φ coinciding with the maximum of (26) with α1 =−3 and α2 = 1. (a)
Negative t. (b) Positive t.

does not experience the same flattening effect taking place for ξ > 0; see the magenta curve in
figure 7(a). Actually, figure 7(b) shows that while the right part of the curve Φ attains lower
values for smoother initial conditions (magenta and brown disks), the left part does not: the
minimum for the magenta curve is actually less peaked than that of the brown curve which also
tends to get back closer to origin. Also remark that the output profile forΦ can change abruptly
in correspondence of certain initial conditions. This is shown by means of the blue curve in
figure 7(a) whose shape evidently reminds the portion of Φ0 developing on the right of the
singularity for even negative α1 and α2 = 1, but with in addition the newly introduced mov-
able singularity standing out for positive ξ. This can be intuitively understood on the grounds
that the choosing of initial conditions for Φ and Φ ′ may in practice act as selecting a Φ0 with
different pairs of α1 and α2.

6.2. Remarks on solutions (21) to (1) for ∆ ̸= 0

We have previously gained an insight on some peculiarities of a class of solutions to (22) and
the next step would be arguing the pulling back to the original equation (1) acted via (21).
The analysis of the effects on solutions to (1) can be prospected straight away founded on
observations and guiding route put together for the case ∆= 0 treated in section 4. We shall
not argue therefore the complete casuistics for the choices that can be made for the coefficients
cj for it is very intelligible from (21). In figure 8, we therefore produce only the function tΦ
determining solutions to (1) from the solution to (24) drawn in figure 7. The predicted flattening
out during the evolution near t= 0, the exchange with reflections between the quadrants of
the curve sections after the annulment at t= 0 and the amplification of the peaks in the later
evolution are manifest. We conclude the section by emphasising that in potential applicative
problems relying on equation (1) it may be also necessary to ascertain the consistency with
possible constraint on domains of variables for the specific subject matter under study. For
instance, if v is definite positive, those portions of theΦ curves have to be selected such that also
the condition v≥ 0 comes true. Depending on the signs of structural coefficients cj’s, in turn

this demands taking into account either the condition Bη c
2
1
c3
tΦ< 1 or the condition Bη c

2
1
c3
tΦ> 1,

where B= 1 if ∆= 0 or B=∆η−2c−4
1 otherwise (equation (25)); i.e. either η c

2
1
c3
tΦ> 1 or

η
c21
c3
tΦ< 1 for ∆= 0, and either ∆

ηc21c3
tΦ> 1 or ∆

ηc21c3
tΦ> 1 if∆ ̸= 0.
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7. N-pole dynamics of rational solutions

By looking at the equation (1) from the angle of local symmetry properties and similarity
solutions, we have gained through the reduction (21) an interesting perspective on some pivotal
characteristics owned by its solutions. The study we presented is clearly of limited extend, and
the investigation of other fundamental features is in order. Among the open problems there is,
for instance, the comprehension of aspects such as the existence of other distinctive classes of
solutions and the possibility to proceed with their classification. In particular, shedding light
on the existence of rational solutions comprising multiple simple poles seems to be a naturally
due development. Indeed, singular solutions to remarkable integrable equations and their pole
dynamics have proved to be intriguingly linked to the dynamics of particles in many-body
systems (see, for instance, the seminal papers [36–38]) as well as to rogue waves (see [39–41]),
and are still subject of active investigations about the rational solutions in the KP hierarchy and
Painlevé equations [42–45]. In addressing this issue, guidelines can be taken from discussions
concerning other integrable equations, as put forward for instance in [37]. The most natural
connection in this respect clearly is seized with the standard Bateman–Burgers equation. In
such a case, the existence of rational solutions and the analysis of their poles properties has
been nicely investigated in [46], for instance. By proceeding similarly to [37, 46], the N-pole
ansatz

v(x, t) = ησ
N∑
k=1

Rk (t)
x− xk (t)

(34)

can be substituted in (1), and by later setting x= xj+ ϵ, the resulting equation can be expanded
in powers of ϵ. As in the Bateman–Burgers case, equating the most singular terms prompts to
Rk(t) = 1. We observe here, however, that quite a more complex pole dynamics is suggested
for rational solution of equation (1), at least when ∆ ̸= 0. Indeed, by collecting terms at the
successive order, one finds that the motion of poles xk(t) superimposed via (34) can be thus
ascribed, at this level of approximation, to the concurrence of two mechanisms: a translation
at fixed constant speed unavoidably entering in the matter once c1c4 ̸= 0, and an additional
motion obeying a nontrivial differential system. That is:

xk (t) =−c1c4
c33

t+ yk (t) =

(
c1
c2

− ∆

c1c23

)
t+ yk (t) , (35)

where the functions yj(t) are determined by solutions of the following dynamical system:

ẏk (t) =
∆

c33

N−1∑
m=1

(m+ 1)!

(
−c1
c3

)m−1

ηmP(m)
k

[
{ym}N1

]
,

(̇
=

d
dt

)
, (36)

the P(m)
k ’s denoting the sum of products of distinct terms (yk− yj)−1, i.e.

P(1)
k

[
{ym}N1

]
=

N∑
j=1
i̸=k

1
yk− yj

, P(2)
k

[
{ym}N1

]
=

N∑
j,m=1
j,m ̸=k
j ̸=m

1
(yk− yj)(yk− ym)

, (37)

P(3)
k

[
{ym}N1

]
=

N∑
j,m,r=1
j,m,r̸=k

j ̸=m,j ̸=r,m̸=r

1
(yk− yj)(yk− ym)(yk− yr)

(38)
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and so forth. The situation is therefore much different from the standard Bateman–Burgers
equation with diffusivity η issuing for c1 → 0 (along with the normalisation conditions c3 =
−c2 and σ =−2), for which the motion of poles entering a N-pole ansatz of the type (34)
would be determined by the hamiltonian differential system ẋk(t) =−2ηP(1)

k

[
{xm}N1

]
. Then,

there is an interaction among poles that is not limited to just pairwise couplings as it happens in
the standard Bateman–Burgers equation [46]. The manner in which a pole xk(t) in (34) varies
is ruled by its correlations with an increasing number of the other distinct poles, until all the
poles appear. Two remarks are clearly in order on this statement. First, it has been assumed that
∆= c21c4 + c2c23 ̸= 0. When ∆= 0 one is merely lead instead to t-linear translations of poles
with rate ẋk(t) =

c2
c1
t. Secondly, under the circumstance that η is a small perturbation para-

meter, one may reason about disregarding higher-order terms in powers of η. By maintaining
only the lowest order term in the right hand side of (36), the dynamical system governing the
contribution yk(t) to the motion of poles xk(t) shares essentially the same form found in the
Bateman–Burgers case:

ẏk (t) = 2
∆

c33
ηP(1)

k

[
{ym}N1

]
. (39)

The investigation of the differential system (36) goes beyond our current scopes. We limit
ourselves to remark that complete integrability is expected to be evincible using the Cole–
Hopf transformation and the relationship between equations (1) and (5).

8. Discussion and conclusions

In this communication, we have addressed the study of the nonlinear 1+ 1 dimensional
PDE (1), i.e.

∂tv+ ∂x

{
1

c1v+ c3σ

[
c2v

2 + c4σ
2 +ση (c1∂tv+ c2∂xv)

]}
= 0,

representing a non-evolutive generalisation of known diffusive/dissipative equations. The
equation has been introduced recently in [1] and ensues from rather general grounds. Indeed,
it can be obtained from a 1+1 differential conservation law where: (i) the flux density depends
both on the density and (linearly) from the first derivatives of density with respect to the local
variables; (ii) the linearisability via a Cole–Hopf transform is demanded in addition. To date,
very little is known on equation (1) and its solutions. When one or more of the coefficients cj
do vanish, some crucial simplifications may occur that enable to determine solutions almost
effortlessly, as we commented in section 2.1. In particular, the simple tan-type (17) or rational
solutions (18) are admitted. The circumstance definitively motivates the paying attention on
the occurrence of singularities for solutions to (1).

In the present communication, by performing a similarity reduction dictated by one of
the local symmetry generators underlying the equation (1), we have shown that a nonlinear
ordinary differential equation arises which is connected to the PIII equation. While standard
arguments concerning the existence of solutions with simple poles prove their usefulness, the
discussion we presented here in this regard took quite a benefit from the circumstance that the
model is exactly solvable in the special case where the constraint∆= c21c4 + c2c23 = 0 do hold.
The general real solution thence originated takes a simple mathematical structure with a still
rich dynamics and interesting key-elements, e.g. in respect to the presence of singularities how
we have detailed. Regardless the potential marginal relevance of such a strict binding ∆= 0
in concrete applications to specific problems, the circumstance of exact solvability provides
indeed first remarkable hints concerning what to expect for solutions to the general differential
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problem when ∆ ̸= 0, at least within fairly identified assumptions and regimes. This allows
for gaining a clue also on the unavoidable qualitative differences, such as the generation of
additional divergences, as we argued in section 6 where the strategy of selecting solutions by
tailoring them to an assigned solution pertaining ∆= 0 has been pursued. We have been also
attentive to the implications in respect to the t-dependent dynamics of poles and asymptotes
for the solution, showing an inversion of their motions. These results put a basis for the under-
standing of the general case ∆ ̸= 0, for which a more singular behaviour has been shown to
emerge.

Future investigations concerned with (1) are definitively in order and they may naturally
include both other mathematical issues and more applicative problems.We already understood
in section 7 that a deeper comprehension of the integrability properties underlying the dynam-
ics of multiple poles would be desirable, in a manner parallel to what has been done for the
Bateman–Burgers equation for instance [46]. Another elucidation looks to be in respect to the
identification of non-local symmetries. Besides providing insights on the possibility to have
receipts for transferring possible analytical results, hints on the settling of diverse coordinate
transformations may play a role as regards aspects like the reduction to normal form, classi-
fication of solutions and characterisation of possible correlated hierarchies in a way similar
to the case of the non-evolutionary viscous scalar reduction of the two-component Camassa–
Holm equation considered in [25]. Generalised symmetries determining Miura-type actions
play indeed a decisive role in that framework. It would be also interesting to understand if
they may enable to connect (1) to a Painlevé equation in the general case when ∆ ̸= 0, as we
have seen that for∆= 0 the equation is related to the PIII through a Cole–Hopf type transform-
ation. Other developments may be more focused on the application of equation (1), including
those for purposes potentially different from the fluid systems considered so far, such as in the
context of complex systems based on mean-field spin models. The idea of formally describing
the governing behaviour of relevant statistical quantities through the solutions of PDEs is start-
ing to be appraised even for problems in reaction kinetics [47] and artificial intelligence [48],
for instance. This may raise the question about the possible need to implement the model (3)
while dealing with specific problems, such as by taking into account other non-local terms in
the expansion that may cure or smoothen appearing criticalities and allow for the identification
of multiple scales of both mathematical and applicative relevance. We finally mention that nat-
ural advances of the investigation performed in this work entail multi-component integrable
conservation laws, for instance those arising in the treatment of nematic liquid crystal systems
[23, 24]. Extension of our approach to integrable hydrodynamic chains may also prove to be
insightful, e.g. in the context of random matrix models [49].
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Appendix. Proofs of propositions 2–4

Proposition 2 (stationary points of solution (26) for integer values of α1). Let α1 ∈ Z,
α2 > 0, ξ(0) = 0 and ξc± =±|α1(1−α1)α2|

1
1−α1 . The stationary points of solution (26) are

listed below.

(i) Three stationary points located at ξ = ξ(0) (inflection point) and ξ = ξc± for α1 odd neg-
ative integer with α1 <−1.

(ii) Two stationary points when α1 =−1, located at ξ = ξc± .
(iii) Two stationary points for α1 even negative integer, located at ξ = ξ(0) and ξ = ξc+.
(iv) One single stationary point located at ξ = ξc+ for α1 even positive integer.
(v) Two stationary points for odd positive integers α1 located at ξ = ξc±.

Proof. The proof is based on similar arguments used in proposition 1. The stationary points

of (26) are given by the zeros of Φ ′
0(ξ;α1,α2) = (α1 − 1)

[α1(α1−1)α2ξ
α1−1−1]

[(α1−1)α2ξα1−ξ ]2
.

Let us first consider the case α1 ∈ Z<0. The stationary points are given by the real
roots of the polynomial P̃−(ξ) :=

[
α1(α1 − 1)α2 − ξ1−α1

]
ξα1−1. One root ξ(0) = 0 arises for

α1 <−1. One can verify that Φ ′ ′
0 (ξ

(0)) = 0, hence giving an inflection point. The other roots

for negative integers are given by ξl = |α1(1−α1)α2|
1

1−α1 ei
2lπ

1−α1 , l= 0,1, . . . ,−α1. The real

solution ξc+ = |α1(1−α1)α2|
1

1−α1 is obtained when l= 0, while ξc− =−|α1(1−α1)α2|
1

1−α1

is obtained for α1 odd when l=
1−α1

2 . These prove (i), (ii) and (iii).
Let us now consider the case α1 ∈ Z>0. The case α1 = 1 identifies the null solution as

discussed earlier. When α1 > 1 we have that stationary points are real roots of the polyno-

mial P̃+(ξ) := α1(α1 − 1)α2ξ
α1−1 − 1, ξl = |α1(1−α1)α2|

1
1−α1 ei

2lπ
1−α1 , l= 0,1, . . . ,α1 − 2.

We promptly identify the real root ξc+ = |α1(1−α1)α2|
1

1−α1 . A second real solution occurs
for odd integers only, requiring 2lπ = (1−α1)π, that is l=

1−α1
2 , giving ξc− =−|α1(1−

α1)α2|
1

1−α1 . These complete the proof of (iv) and (v).

Proposition 3 (singularities of (26) for rational values of α1). Let α1 =
q
p with q,p ∈ Z and

gcd(q,p) = 1, and consider ξ(0), ξ± defined as in proposition 1. The real poles of (26) are
listed below.

(i) Case α1 < 0.
(a) One singularity located at ξ = ξ− (branch point) if p is odd and q is even.
(b) No singularities if p and q are odd.
(c) One singularity at ξ = ξ+ (branch point) if p is even.

(ii) Case 0< α1 < 1.
(a) Two singularities if p is odd and q is even located at ξ = ξ(0) (branch point) and ξ = ξ−

(branch point).
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(b) One singularity located at ξ = ξ(0) (branch point) if p and q are odd.
(c) One singularity located at ξ = ξ(0) (branch point) if p is even.

(iii) Case α1 > 1.
(a) Two singularities if p is odd and q is even located at ξ = ξ(0) (pole) and ξ = ξ+ (branch

point).
(b) Three singularities if p and q are odd located at ξ = ξ(0) (pole) and ξ = ξ± (branch

points).
(c) Two singularities at ξ = ξ(0) (pole) and ξ = ξ+ if p (branch point) is even.

Proof. Wlog, let p ∈ Z>0 and consider the above different cases as q varies in Z. Note that
for p even, the solution (26) is defined for ξ ≥ 0. Also notice that the additional condition
gcd(q,p) = 1 ensures that to each α1 ∈Qwe associate unambiguously a pair of integers (q, p).

We will prove case (iii) as an example, α1 > 1. In this case, singularities are given by zeros

of the polynomialP+(ξ) := ξ [((α1 − 1)α2)ξ
q−p
p − 1]. Clearly a singularity occurs at ξ(0) = 0.

Other real solutions are among the following ξl = |α1(1−α1)α2|
1

1−α1 eip
2lπ
q−p , l= 0,1, . . . ,q−

p− 1. Real roots are obtained in two cases, either looking for l fulfilling 2pl= 2k(q− p) or
2pl= (2k+ 1)(q− p) for some integer k. The former gives ξ = ξ+, while the latter gives ξ =
ξ−. The parity of q and p implies the qualitative scenario. Indeed, ξ = ξ+ arises for all parities
of q and p, but the situation is different for ξ = ξ−. Indeed, only when q and p are both odd
(hence q− p even), an additional solution is found at ξ = ξ−. This proves (i).

Cases (i) and (ii) are derived following similar procedure and their proof is here omitted. In
general, one has to identify the polynomial whose zero correspond to singularities of ϕ0, find
the complex roots and select the real ones by looking at the parity of q and p.

Proposition 4 (stationary points of (26) for rational values of α1). Let α1 =
q
p with q,p ∈ Z

and gcd(q,p) = 1, and consider ξ(0), ξc± defined as in proposition 2. The stationary points
of (26) are listed below.

(i) Case α1 < 0.
(a) Two stationary points located at ξ = ξ(0) and ξ = ξc+ if p is odd and q is even.
(b) Three stationary points located at ξ = ξ(0) (inflection point) and ξ = ξc± if p and q are

odd.
(c) Two stationary points located at ξ = ξ(0) and ξ = ξc+ if p is even.

(ii) Case 0< α1 < 1.
(a) One stationary point at ξ = ξc− if p is odd and q is even.
(b) No stationary points if p and q are odd.
(c) No stationary points if p is even13.

(iii) Case α1 > 1.
(a) One stationary point located at ξ = ξc+ if p is odd and q is even.
(b) Two stationary points located at ξ = ξc± if p and q are odd.
(c) One stationary point at ξ = ξc+ if p is even.

Proof. Let p ∈ Z>0 and consider the above different cases as q varies in Z. We will prove
case (i) as an example, α1 < 0. In this case, stationary points are real zeros of the polynomial
P−(ξ) = ξ−2α1 [α1(α1 − 1)α2 − ξ1−α1)]. Clearly, ξ= 0 is always a stationary point. The other

stationary points are the real roots among ξl = |α1(α1 − 1)α2|
1

1−α1 ei
2π lp
p−q , l= 0,1, . . . ,p− q−

13 If one considers ξp =− p
√
ξ a stationary point is located at ξ = ξc+.
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1. Real roots are obtained in two cases, either looking for l fulfilling 2pl= 2k(q− p) or 2pl=
(2k+ 1)(q− p) for some integer k. The former would imply ξ = ξc+, while the latter would
lead to ξ = ξc−. A second stationary point located at ξ = ξc+ arises for all parities of q and p.
A third stationary point located at ξ = ξc− arises when p and q are odd only, hence proving (i).
Cases (ii) and (iii) are derived following similar procedure and their proof is here omitted.
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