
Citation: De Giorgi, M.G.; Menga, N.;

Ficarella, A. Exploring Prognostic

and Diagnostic Techniques for Jet

Engine Health Monitoring: A Review

of Degradation Mechanisms and

Advanced Prediction Strategies.

Energies 2023, 16, 2711. https://

doi.org/10.3390/en16062711

Academic Editor: Davide Astolfi

Received: 31 January 2023

Revised: 21 February 2023

Accepted: 8 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Exploring Prognostic and Diagnostic Techniques for Jet Engine
Health Monitoring: A Review of Degradation Mechanisms and
Advanced Prediction Strategies
Maria Grazia De Giorgi * , Nicola Menga and Antonio Ficarella

Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
* Correspondence: mariagrazia.degiorgi@unisalento.it

Abstract: Maintenance is crucial for aircraft engines because of the demanding conditions to which
they are exposed during operation. A proper maintenance plan is essential for ensuring safe flights
and prolonging the life of the engines. It also plays a major role in managing costs for aeronautical
companies. Various forms of degradation can affect different engine components. To optimize
cost management, modern maintenance plans utilize diagnostic and prognostic techniques, such
as Engine Health Monitoring (EHM), which assesses the health of the engine based on monitored
parameters. In recent years, various EHM systems have been developed utilizing computational
techniques. These algorithms are often enhanced by utilizing data reduction and noise filtering tools,
which help to minimize computational time and efforts, and to improve performance by reducing
noise from sensor data. This paper discusses the various mechanisms that lead to the degradation
of aircraft engine components and the impact on engine performance. Additionally, it provides an
overview of the most commonly used data reduction and diagnostic and prognostic techniques.

Keywords: EHM; diagnostics; prognostics; data reduction; data-driven methods; model-based methods

1. Introduction

Gas turbines (GTs) convert chemical energy from burned fuels into mechanical power.
They use high temperatures and pressures in a combustion chamber to generate thrust,
which is necessary for sustained flight. However, these extreme working conditions,
including high temperatures, pressures, and rotational speeds, lead to gradual degradation
of the turbine’s components over time. The degradation of the submachines constituting
an aircraft engine leads, in turn, to a reduction in engine performance [1] and flight
safety and in an increase in fuel consumption and pollutants. In ref. [2] is presented an
estimation model for the prediction of the effect of different forms of degradation on the
creep life of gas turbines. Interesting research on the state of the art of aircraft and airport
emissions is available in [3]. A maintenance plan is crucial for aeronautical companies.
To enhance engine reliability, flight safety, and effectively manage costs, current research
efforts are primarily focused on optimizing maintenance plans [4,5]. In the early days
of aircraft engines, defects were identified and repaired through Corrective Maintenance
(CM). However, this approach was later replaced by Preventive Maintenance (PM), in
which inspections and tasks are scheduled according to the probability of failure for specific
components and usage conditions. However, less frequent PM reduces safety and more
frequent PM increases costs. In [6], concepts such as mean time to failure and mean
time between failures are introduced and a study on the effect on the reliability of PM
application is conducted. However, because PM is based on probability rather than the
actual condition of the components, it can result in non-optimized costs. This approach can
lead to the maintenance of components that have not yet reached a critical state, or to the
failure of components that have already degraded beyond repair. To optimize maintenance
plans, modern approaches such as Condition-based Maintenance (CBM) or predictive
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maintenance are increasingly being used in the aviation industry, which take into account
the actual condition of the engine components [7,8]. As reported in [9], the implementation
of Condition-based Maintenance (CBM) involves three primary stages: data acquisition,
data processing, and maintenance decision making. CBM has the potential to reduce
maintenance costs by 25−35%, eliminate breakdowns by 70−75%, reduce breakdown
time by 35−45%, and increase production by 25−35% [10]. However, a maintenance
strategy may be the best for a certain component and the worst for another one [11]. To
continuously monitor the condition of engines, appropriate sensors are installed throughout
the powertrain to gather useful information. Figure 1 illustrates the different maintenance
strategies, and Table 1 provides their characteristics.
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Table 1. Characteristics of the typical maintenance strategies.

Strategy Principle Data Required Data Analysis Maintenance Decision Related Problems Refs.

CM
Reactive-based;
Unscheduled;

Fail and fix approach.

No data
measurements are

required. Corrective
maintenance is

based on
visual inspections.

No data to analyze.

Maintenance is
performed only after a

detected failure by a
visual inspection.

Faults cannot be predicted
and are not avoided by
scheduled maintenance;

Higher maintenance costs;
Lower reliability compared to
other maintenance strategies.

[4,12,13]

PM

Time-based;
Scheduled.

Maintenance interval
depends on the
probability of

failure occurring;
Preventive approach.

Historical data on
components failure

or test data.

A reliability theory
based on bathtub

curve assumptions.

Maintenance is
performed after

predetermined time
intervals, obtained

from statistical
analysis of available
historical data about

failure of components
or test data.

The maintenance plan is
based on statistical

assumptions. A component
could be overhauled even if

in good condition or could be
subject to a fault before

being overhauled;
Higher maintenance costs

and lower reliability
compared to the

predictive strategy.

[5,6,12,13]

CBM

Condition-based;
Just-in-time.
Maintenance

interventions request
only when necessary;

Preventive and
predictive approach.

Information about
actual values of

some parameters
used as health

indicators of the
components

(temperatures,
pressures, etc.).

Monitoring the
component state

of health.

Maintenance is
performed when

monitored parameters
indicate an impending

failure in one or
more components.

More complex approach;
Require more efforts and

time for
strategy development.

[5,7–10,12,13]

The engine’s performance is contingent on the performance of its individual compo-
nents, which can be evaluated using parameters such as temperature, pressure, rotational
speed, torque, and fuel flow. Additionally, the presence of contaminants in oil and exhaust
gases, or high levels of vibration and noise from the components, may also indicate deterio-
rating performance [14]. For example, Blade Tip Timing (BTT) is a non-contact measuring
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technique commonly used today to monitor the strains and vibrations of blades. This
technique addresses some of the limitations of strain gauges [15], such as the inability to
use them on in-service engines because they need to be affixed to the blade airfoil. In BTT,
sensors are typically mounted on the casing to detect the vibrations of the blades as they
pass by [16]. The BTT technique serves as the foundation for a proposed method to detect
crack propagation in rotor blades, as described in [17] This method involves monitoring
the natural frequencies of cracked blades and comparing them to those of a healthy blade.
In [18], a method that utilizes the BTT technique for dynamic strain reconstruction in rotat-
ing blades experiencing multi-mode vibration is presented. Dynamic strain measurement
is essential for monitoring the health status of rotating blades [19]. However, the BTT
technique can encounter certain issues. Mohamed et al. [20] propose an improvement of
the technique. Computer algorithms are commonly used for diagnostic and prognostic
tools, which are the key components of CBM. In recent years, the concept of biomimicry has
been gaining momentum, driving the development of improved algorithms and materials
that draw inspiration from nature itself [21,22]. Diagnostics involves determining the
current condition of a system based on sensor-provided data on its physical parameters.
Prognostics, on the other hand, focuses on predicting the remaining lifespan of a system
using historical and current data on its condition, which are also collected by sensors. These
topics will be further explained and illustrated with examples in the following sections.
Section 2 of this paper covers the main degradation phenomena that affect gas turbines
and their impact on engine performance. Section 3 focuses on the data acquisition and
processing stage, including methods for reducing data dimensionality and noise. Section 4
provides an overview of the commonly used diagnostic and prognostic techniques. Finally,
Section 5 concludes the review and offers suggestions for future research. Currently, many
studies are being conducted on diagnostic and prognostic systems for aircraft engines, and
examples can be found in the literature in [23–28].

2. Degradation Mechanisms of an Aircraft Engine

Aircraft engines, like any machine, experience degradation over time. Compressors
and turbines are particularly vulnerable to degradation, which can manifest in various
forms. The occurrence of degradation is a random event influenced by factors such as the
operating environment [29] and type of mission (e.g., high- or low-power requirements),
with unexpected events such as collisions with objects also playing a role.

Research on the impact of the operating environment on degradation can be found
in [30,31]. In particular, the study reported in [30] describes two experiments in which
sand is intentionally introduced into the inlet of an aircraft engine. In the first experiment,
a substantial quantity of sand is rapidly introduced, while in the second, the amount of
sand injected simulates what an engine would experience in real-world conditions. Both
experiments result in a decrease in thrust and an increase in fuel consumption per unit of
thrust. In [31], computational fluid dynamics is utilized to investigate the corrosive effect of
volcanic ash on fan blades, using two different methodologies: one that assumes a constant
rate of erosion and the other that adapts the erosion rate. The simulations in both cases
demonstrate that erosion is more severe moving from the midspan towards the tip. On the
suction side, the most significant loss of material is concentrated around the leading edge in
the vicinity of the hub and extending towards the midchord for the outer midspan sections.
On the pressure side, the material removal is less severe and primarily located near the
midchord of the tip. The most prevalent forms of degradation are fouling, erosion, corrosion,
and an increase in blade tip clearance. Severe but random events such as collisions with
objects from the external environment or the engine itself can also occur. The impact of
degradation on components results in a decline in performance, as evidenced by changes
in Performance Parameters (PPs), which are all operating parameters that are influenced
by the condition of the parts and impact engine thrust and fuel consumption [32]. Changes
in non-measurable PPs can lead to deviations in measurable PPs that are dependent on the
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former, which can serve as an indicator of the engine’s health. Table 2 provides a summary
of the PPs commonly used for both stationary and aircraft engines.

Table 2. Commonly used PPs for aeroengines [32].

Performance Parameter Metric Unit Engine Type

Measurable *
Exhaust gas temperature (EGT) ◦C Aero jet engines

Fuel flow kg/s All types
High-pressure spool speed RPM Aero jet engines
Low-pressure spool speed RPM Two-spool GT

Intermediate-pressure spool speed RPM Three-spool GT
Compressor outlet pressure kPa Aero jet engines

Compressor outlet temperature ◦C Aero jet engines
Turbine inlet temperature ◦C Aero jet engines

Torque Nm Turboshaft/Turboprop
Component vibration m/s2 All types

Estimated *
Power kW Piston engine/APU
Thrust kN Aero jet engines

Specific fuel consumption Kg/kJ Piston engine
Thrust specific fuel consumption g/(kN·s) Aero jet engine

Air flow kg/s All types
Exhaust gas flow kg/s Aero jet engines

Exhaust gas velocity m/s Aero jet engines
Heat rate kJ/kWh All types

Thermal efficiency % All types
* Measurable: Parameters obtainable by means of adequate sensors; Estimated: Parameters computed starting
from the measurable ones.

For compressors and turbines, flow capacity and efficiency are commonly used as
PPs. These parameters are not directly measurable, but they influence the inlet and outlet
temperatures and pressures of the same components [33]. A degraded state can also be
diagnosed by monitoring other characteristics, such as component vibration and noise,
or the presence of debris in the oil and gas path [32,34–38]. A description of the main
degradation mechanisms mentioned above follows.

2.1. Fouling

Fouling is the adhesion of contaminants present in the operative flow on the surfaces
of components, such as dust, sand, dirt, ash, oil droplets, water mists, hydrocarbons,
and industrial chemicals [39]. Due to their position in the gas path, compressors are
the components most affected by fouling. In addition, compressor fouling is the most
common degradation problem [40] and is usually caused by particles smaller than 2 to
10 microns [41]. The adhesion of dirt particles on the surfaces leads to a change in the
aerodynamic shape and inlet angle of the airfoil, an increase in roughness, and a decrease
in the opening of the airfoil [42,43], resulting in a decrease in efficiency, flow capacity,
and pressure ratio [44]. The consequence on the overall GT is a decrease in output power
and thermal efficiency [40]. Some of the power loss caused by compressor fouling can
be recovered by washing [45,46]. The three main types of washing systems, i.e., on-line
washing system, off-line crank washing system, and manual hand crank washing system,
are described in [47]. Fouling has a greater effect on the first compressor stages, while it is
limited in the backward stages [48,49]. Experiments conducted by Kurz et al. [50] show that
the amount of dust picked up by the blades varies depending on their surface characteristics.
In [49], an analytical method is proposed for investigating the fouling phenomenon in the
axial compressors of industrial gas turbines. The results reveal a relationship between the
axial compressor and flow characteristics, such as chord length, solidity, number of stages,
particle size, flow rate and inlet flow angles, and the fouling phenomenon. Specifically, the
authors of the study conclude that the number of particles adhering to the blades increases
with decreasing chord length and an increase in solidity, fouling accelerates with decreasing
flow rate and inlet flow angle, and fouling is more prevalent in the forward stages. Some
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examples of the effects of fouling on different GTs are given below. In [40], a simulation was
conducted in which there was a 6% reduction in mass flow and a 5% decrease in compressor
efficiency, resulting in a 55 kW drop in power and an increase of 850 Btu/kW hr in heat rate.
Additional simulation results are also provided in the same study. A 5% decrease in flow
capacity and 2.5% decrease in compressor efficiency results in a 10% reduction in output
power [51]. A decrease of 7% in output power, accompanied by a 2.5% increase in heat
rate, results from a 5% decrease in compressor inlet mass flow rate and a 1.8% decrease in
efficiency, as reported in [42]. In [48], a decrease in stage pressure ratios is shown with an
increase in operating hours for different compressor stages. Figure 2, taken from [52] (a and
b) and from [53] (c), shows some examples of fouling. In detail, in Figure 2a,b is visible the
fouling phenomena on Low-Pressure Compressor (LPC) stage blades and on Low-Pressure
Turbine (LPT) vane, respectively, while in Figure 2c shows deposits of volcanic ash on the
High-Pressure Turbine (HPT) nozzle guide vanes.
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2.2. Erosion

Erosion is the gradual loss of material from the gas path due to impact with hard
particles that contaminate the operational flow, such as sand, dust, dirt, ash, carbon particles,
and water droplets. Unlike fouling, in erosion, the interaction between larger particles of
contaminants and blades causes the latter to lose a small portion of material. This leads to
a change in the aerodynamic shape and roughness, and reduces performance [54]. More
in detail, erosion causes a drop in efficiency and flow capacity in an affected compressor,
while manifests itself in turbines causing a decrease in efficiency and an increase in flow
capacity [55]. On the overall GT, erosion leads to a decrease in output power and an
increase in heat rate [42]. Otherwise, the breaks on the blades create stress concentration
zones, which reduces fatigue strength. Despite the fact that erosion can occur anywhere
in the gas path, turbines are more susceptible to this phenomenon than compressors [39].
Erosion is a problem most commonly encountered in aircraft engines than in industrial
ones, due to more effective filtration systems used in this latter environment [56]. In [57],
erosion in turbomachinery is predicted by means of an analytical model developed in the
same paper. Furthermore, at the end of the study, the authors conclude that, in general,
in an axial flow compressor, erosion manifests itself by cutting back the leading edge and
thinning the trailing edge of the blade. They also state that, especially after impacting a
rotor, particles will centrifuge radially, concentrating on the tips of the blades and causing
severe damage in this location. Erosion damages can be reduced by applying a coating
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on compressor and turbine blades, in order to protect them from the impact of hard and
large contaminants particles which cause erosion. In [58], the protective capabilities against
erosion and corrosion on compressor blades of various coatings are investigated. The
results conclude that coatings obtained by physical vapor deposition show the best results
in both erosion and corrosion protection, particularly the (Ti, Al)N coatings. Electron
beam physical vapor deposition thermal barrier coatings have been used for protection
purposes for several years, and more studies on their erosion and corrosion mechanisms
and resistance have been conducted [59–62]. More information on coatings and erosion
are reported in [63–69]. Figure 3, taken from [52], portrays the erosion effect on the leading
edge of fan blades.
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2.3. Corrosion

Corrosion is a chemical reaction between some reactive particles contained in the
operational flow and the material that constitutes the components encountered in the gas
path. “Cold corrosion” refers to the corrosion reaction that occurs in compressor sections,
due to wet deposits of salts, acid, and aggressive gases such as chlorine and sulfides. On
the other hand, the corrosion occurring in the turbine is known as “hot corrosion,” which
is a form of accelerated oxidation caused by molten salts that chemically react with the
surfaces of the components on which they rest. Hot corrosion is further dividId into two
classes: high-temperature hot corrosion (or type I) that occurs at a temperature range of
730 to 950 ◦C, and low-temperature hot corrosion (or type II) that occurs at a temperature
range of 550 to 730 ◦C [70]. More information is available in [71]. Corrosion is one of the
main reasons for blade failure [72]. A series of examples of aircraft failures due to corrosion
are available in [73], as well as further information on the phenomenon of corrosion. RD-33
turbofan engine is presented in [74], and the effect of corrosion on it is shown. In [75], eddy
current testing is presented as a means of detecting defects resulting from corrosion around
the rivets of supersonic aircraft intakes. As reported in the paper, this type of corrosion is
caused by the presence of moisture and salinity in the atmosphere, and eddy current testing
is a more suitable technique for detecting deeper defects. Corrosion is a phenomenon
that must be carefully monitored, as it can result in significant cost increases. Today,
various non-destructive techniques are used to detect ongoing corrosion processes [76].
Also for corrosion, compressor and turbine blades can be protected by means of adequate
coatings [77]. The effect of corrosion on the compressor is a decrease in efficiency and flow
capacity, while on the turbine, corrosion leads to a decrease in efficiency and an increase
in flow capacity [78], resulting in a decrease in engine performance. In Figure 4, taken
from [52], are visible the effects of corrosion on an LPT vane.



Energies 2023, 16, 2711 7 of 37

Energies 2023, 15, x FOR PEER REVIEW 7 of 39 
 

 

perature range of 730 to 950 °C, and low-temperature hot corrosion (or type II) that oc-
curs at a temperature range of 550 to 730 °C [70]. More information is available in [71]. 
Corrosion is one of the main reasons for blade failure [72]. A series of examples of air-
craft failures due to corrosion are available in [73], as well as further information on the 
phenomenon of corrosion. RD-33 turbofan engine is presented in [74], and the effect of 
corrosion on it is shown. In [75], eddy current testing is presented as a means of detect-
ing defects resulting from corrosion around the rivets of supersonic aircraft intakes. As 
reported in the paper, this type of corrosion is caused by the presence of moisture and 
salinity in the atmosphere, and eddy current testing is a more suitable technique for de-
tecting deeper defects. Corrosion is a phenomenon that must be carefully monitored, as 
it can result in significant cost increases. Today, various non-destructive techniques are 
used to detect ongoing corrosion processes [76]. Also for corrosion, compressor and tur-
bine blades can be protected by means of adequate coatings [77]. The effect of corrosion 
on the compressor is a decrease in efficiency and flow capacity, while on the turbine, 
corrosion leads to a decrease in efficiency and an increase in flow capacity [78], resulting 
in a decrease in engine performance. In Figure 4, taken from [52], are visible the effects 
of corrosion on an LPT vane. 

 
Figure 4. Corrosion effect on a LPT vane [52]. 

2.4. Abrasion 
Abrasion is a loss of material due to the rubbing of one surface against another. The 

removed material typically leads to an increase in seal or tip gaps. Minimizing clearanc-
es between blade tips and casing is crucial for reducing the aerodynamic losses that oc-
cur in rotating machines, as the overall engine efficiency is negatively impacted by these 
losses [79]. In many cases, abradable surfaces are present. In these engines, a certain 
amount of rubbing is allowed during the run-in of the engine to establish proper clear-
ances [80]. In [81], a study is conducted to investigate the high-speed scraping behavior 
between a vulcanized silicone rubber and a Ti-6Al-4V fan blade. Blade tip rubbing can 
occur due to an unbalanced or misaligned rotor due to the shaft bearing damage, engine 
rotor flexing at heavy operating loads, or the thermal growth of blades [82]. The result is 
an increase in blade tip clearance. Another phenomenon that leads to tip rubbing is the 
engine casing distortion due to flight loads. The principal effect of this is a reductIon in 
the efficiency of the damaged component [78], which results in a drop in engine perfor-
mance. An example of abrasion on a High-Pressure Compressor (HPC) blade is depicted 
in Figure 5, taken from [52]. 

Figure 4. Corrosion effect on a LPT vane [52].

2.4. Abrasion

Abrasion is a loss of material due to the rubbing of one surface against another. The
removed material typically leads to an increase in seal or tip gaps. Minimizing clearances
between blade tips and casing is crucial for reducing the aerodynamic losses that occur in
rotating machines, as the overall engine efficiency is negatively impacted by these losses [79].
In many cases, abradable surfaces are present. In these engines, a certain amount of rubbing
is allowed during the run-in of the engine to establish proper clearances [80]. In [81], a study
is conducted to investigate the high-speed scraping behavior between a vulcanized silicone
rubber and a Ti-6Al-4V fan blade. Blade tip rubbing can occur due to an unbalanced or
misaligned rotor due to the shaft bearing damage, engine rotor flexing at heavy operating
loads, or the thermal growth of blades [82]. The result is an increase in blade tip clearance.
Another phenomenon that leads to tip rubbing is the engine casing distortion due to
flight loads. The principal effect of this is a reductIon in the efficiency of the damaged
component [78], which results in a drop in engine performance. An example of abrasion on
a High-Pressure Compressor (HPC) blade is depicted in Figure 5, taken from [52].
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2.5. Thermal Distortion

Thermal distortions typically occur at combustor exit and are due to some problems
located in the previous stations, such as the cocking of fuel nozzles, change in fuel spray
angles, change in compressor performance, and warping of the combustor liners, which in
turn result in a change in radial and circumferential temperature patterns at the combustor
exit. The results could be temporary or permanent damage in the downstream components,
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such as crack, bending, warp, burn in turbine nozzle guide vanes, and change in nozzle
guide vanes areas. The principal effect is a drop in turbine efficiency [26,78], which is
responsible for a reduction in engine performance. Figure 6, taken from [52], reports a
burned HPT blade.
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2.6. Foreign Object Damage and Domestic Object Damage

Foreign Object Damage (FOD) and Domestic Object Damage (DOD) refer to damage
caused by impact with objects from the external environment and from the GT itself, respec-
tively. For example, FOD can be caused by impact with ingested birds, ice, stones, debris,
and gravel on runways, while DOD can be caused by impact with fragments detached
from blades or large carbon particles from the fuel nozzles [39]. FOD and DOD damages
are comprised between nonrecoverable (with washing) fault and a catastrophic engine
fault [42]. FOD is one of the biggest problems and can lead to catastrophic failures [83]. The
effects on performance primarily focus on the efficiency variation of the affected component.
The changes in flow capacity depend on how the objects causing the FOD/DOD interact
with the component. If the impact results in a lost blade, flow capacity increases, while if
the object gets stuck and obstructs the flow, flow capacity decreases [78]. The cases shown
in Figure 7, both taken from [52], depict damage that is typically due to the impact with a
sharp object (a) and the breaking of a blade of a HPC (b).
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2.7. Increased Blade Tip Clearance

Due to phenomena that can remove material, such as erosion, impact with contami-
nants, or thermal and centrifugal expansions, the clearance between moving blades and
stationary blades with casing and a rotating hub, respectively, increases [33,84]. The power
elaborated by the compressor and turbine depends on the amount of air flowing through
the area occupied by blades, so the increase in blade tip clearance results in more flow
passing through the compressor and turbine sections without being processed by the stage,
resulting in a decrease in the efficiency of the rotating machine [85]. Stall margin is also
affected by an increase in blade tip clearance in axial compressors [86]. An increase in blade
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tip clearance of about 0.125 mm in HPC or HPT can reduce the related efficiencies by 0.5%.
Furthermore, an increase in engine specific fuel consumption by 0.2% and 0.25% is present
when HPC is affected and when HPT is affected, respectively [87]. Other examples show
a reduction of 3% and 2% in flow capacity and isentropic efficiency, respectively, due to
an increase in tip clearance of 0.8% [88]. In [89], the results of experiments on the effect
of compressor rotor tip clearance on the performance of a turboshaft engine are reported.
The experiments were conducted on a combined five-stage axial and one-stage centrifugal
compressor. Specifically, the experiments were conducted by simulating an increase in tip
clearance, first only at the first axial stage, and subsequently, only at the fifth axial stage
for different severity levels in both cases; then, finally simulating equal damage severity
at all five axial stages simultaneously. All the experiments show a reduction in overall
engine performance. In more detail, the results show that a small increase in tip clearance
throughout all stages is responsible for a greater loss in performance than a larger increase
in tip clearance at only one stage. A further study on the effect of increased blade tip
clearance has been conducted by Gourdain et al. where three different configurations were
considered for a multi-stage high-pressure compressor, one of which considered a casing
treatment based on a honeycomb design. More information is available in [90]. The increase
in blade tip clearance has a significant impact on the aero-elastic stability of the blades,
which is an important aspect that cannot be ignored. The reason for this is the profound
impact that aero-elastic phenomena have on blade health status and, consequently, engine
performance. Aero-elastic phenomena such as flutter and forced vibration, which are
caused by the interaction between unsteady aerodynamic forces and blade motion, or by
upstream and downstream vane wakes or inlet distortion, respectively, can lead to high
cycle fatigue and fractures [91]. In [92], the correlation between the flow of tip clearance
and the behavior of another aero-elastic phenomenon called non-synchronous vibration is
investigated. Non-synchronous vibration manifests itself similarly to flutter, but it occurs
in a region that is far removed from it. In extreme cases, non-synchronous vibration can
also result in blade loss [93]. An interesting work is present in [94], in which experiments
were conducted to excite aero-elastic phenomena, such as blade forced response, flutter,
and acoustic resonance, on an aero-engine’s fan. Acoustic measurements were used as a
means of recognizing the presence of a particular aero-elastic phenomenon through the
appropriate acoustic features. Interested readers can find additional information on blade
tip clearance and the technologies used to measure it in [85,95]. A damaged tip (together
with the effect of erosion) is visible in Figure 8, taken from [96].
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2.8. Summary of Degrading Phenomena

Table 3 summarizes the degradation phenomena described earlier, along with the
effects on the affected components and on the overall GT, based on data available in
the literature.

Table 3. Collection of the main degradation phenomena with their effect on the GT. Information
found in the literature.

Phenomenon Mechanism Exposed Parts Effects on Parts Effects on Performance
Parameters of Parts

Effects on Engine
Performance Refs.

Fouling
Contaminant particles
adhesion on surfaces

and blades.

Compressors and
turbines. Mainly
the compressors.

Change in
aerodynamic shape
and inlet angle of

airfoils; increase in
surface roughness and

decrease in airfoil
throat opening.

Fouled compressor:
decrease in ηc, fc and βc;
Fouled turbine: decrease

in ηt and ft.

Drop in output
power and thermal

efficiency and
increase in heat rate.

[39–51]

Erosion

Loss in material from
gas path due to

impact with harder
and bigger

contaminant particles.

Compressors and
turbines. Mainly

the turbines.

Change in the
aerodynamic shape of

blades. Increase in
roughness and

decrease in
cross-sectional area.

Eroded compressor:
decrease in ηc, fc and βc;
Eroded turbine: decrease
in ηt and increase in ft.

Drop in output
power and increase

in heat rate.
[39,42,54–69]

Corrosion

Loss of material in gas
path due to chemical

reactions between
gas-path materials
and contaminants.

Compressors and
turbines. Cold

corrosion is relevant
in compressors. Hot
corrosion is relevant

in turbines.

Change in the
aerodynamic shape of

blades. Increase
in roughness.

Corroded compressor:
decrease in ηc and fc;

Corroded turbine:
decrease in ηt and

increase in ft.

Drop in output
power and increase

in heat rate.
[70–78]

Abrasion
Loss in material due to
a component rubbing

on another one.

Compressors and
turbines.

Increase in seal and
tip gaps.

Abraded compressor:
decrease in ηc;

Abraded turbine:
decrease in ηt.

Drop in
output power. [78–82]

Thermal distortion

Damages in parts
located at burner exit

due to a change in
radial and

circumferential
temperature patterns.

Burner exit/
turbine inlet.

Generation of cracks,
bends, warpings,
burns in turbine

nozzle guide vanes
and change in nozzle

guide vanes areas.

Decrease in ηt.
Drop in

output power. [26,78]

FOD/DOD

Impact with an
ingested object or with

detached ones from
engine components,

respectively.

Compressors and
turbines.

Bends and breaks
in blades.

Affected compressor:
decrease in ηc and

increase or decrease in fc;
Affected turbine:

decrease in ηt and
increase or decrease in ft.

Drop in output
power, increase in

heat rate.
[39,42,78,83]

Increase in blade
tip clearance

Increase in clearance
between moving

blades and stationary
blades with casing
and rotating hub,

respectively.

Compressors and
turbines.

Tip breaks and
consequent increase

in clearance.

Affected compressor:
decrease in ηc and fc;

Affected turbine:
decrease in ηt and ft.

Drop in output
power and increase

in heat rate.
[33,84–95]

3. Data Acquisition and Processing

The methodologies for prognosis and diagnosis are based on a set of information that
assesses the health of an engine and/or its components. In an aircraft engine, various data
can be collected in real time to inform diagnostic or prognostic algorithms, such as pressures
and temperatures at the inlet or outlet of compressors, turbines, and burners, fuel flow, shaft
speed, or torque. To accomplish this, appropriate sensors must be installed throughout the
engine. To enhance the performance of the diagnostic or prognostic system, the collected
data can be analyzed to eliminate noise measurements, disregard measurements from faulty
sensors, and discard redundant information that unnecessarily increases the dataset. This
section introduces the concept of data cleaning and provides examples of data reduction
techniques used.

3.1. Sensor Measurements

Sensors are the tools used to collect crucial information about the engine’s health and
the status of its components and subsystems [97]. The use of sensors is very important to
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increase flight safety, and good knowledge in this field is fundamental to obtain a mod-
ern and safe engine [98]. Sensors are distributed not only in the engines but throughout
the entire aircraft. Modern aircrafts have hundreds or even thousands of sensors [99].
Choosing which sensors to install is not a trivial task, and performing a thorough analysis
to understand the advantages of various sensors can greatly aid in the decision-making
process [100]. Like all other components, sensors can experience faults. A faulty sensor will
supply incorrect data to the diagnostic or prognostic algorithm, which may subsequently
lead to an inaccurate assessment of the engine’s health. To enhance the performance of the
EHM system, processing the data obtained from the sensors can be beneficial. For example,
in [101], a sensor Fault Detection, Isolation, and Identification (FDII) technique was devel-
oped to detect the presence of single or multiple sensor faults. Another noteworthy study
was conducted by Sadough Vanini et al. [102], in which they developed an FDII model that
handles various degradation scenarios, accounts for concurrent and sensor faults, and is
able to rectify erroneous readings from a faulty sensor using the readings of the remaining
functional sensors. A similar but older work is presented in [103]. Sensor measurements
are also affected by noise and bias, which can increase over time due to sensor aging [104].
Signal filtering or smoothing are helpful approaches to improve the quality of information
provided by sensors. Figure 9 illustrates the difference between two different approaches.
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Signal denoising is a very active area of research [105]. As reported in [106], the
presence of noise in a sensor measurement can be modeled as follows:

yM(t) = yT(t) + x(t) (1)

where yM(t) denotes the measured noisy signal, yT(t) denotes the true signal, and x(t)
represents the sum of all the noise present in the measurement. For more detailed infor-
mation on sensor noise, the interested reader is referred to the same paper. A technique
employed for noise reduction is the wavelet transform [107,108]. The wavelet transform
technique is capable of expressing a given signal as a linear combination of basis functions
called wavelets. Wavelets are obtained starting from a base wavelet Ψ(t) called the “mother
wavelet”, by scaling and translation:

Ψ(a,b)(t) =
1√
a

Ψ

(
t− b

a

)
; a, b ∈ R; a 6= 0; (2)

where a is the scale factor and b is the translation factor. Further details on wavelet theory
are available in [109].



Energies 2023, 16, 2711 12 of 37

3.2. Data Reduction Techniques

Diagnostic and prognostic algorithms process a large amount of data from the engine,
which contains information about certain monitored parameters used to assess the condition
of the components. To improve performance in terms of required computer memory, time,
and effort, it is beneficial to analyze the data and use appropriate data reduction techniques
to reduce the dataset size [110–112]. In this section, some techniques used to perform a data
reduction process, learned from [112], are presented. The notation used in the description
of the data reduction methods is the same used in [112], from which information was
mainly taken and is reported in Table 4 for simplicity.

Table 4. Notation adopted in the description of the following data reduction methods [112].

Notation Definition

PC Principal component
X Input dataset in high dimension
Y Output dataset in low dimension
d Original high dimension
k New low dimension
xa ath input data in d dimension
xb bth input data in d dimension
ya ath output data in k dimension
yb bth output data in k dimension
K Kernel function
c Nearest neighbors for a data point
n Number of data points
i Number of iterations

3.2.1. PCA

Principal Component Analysis (PCA) is an unsupervised, linear transformation al-
gorithm that produces the so-called Principal Components (PCs) (which represents the
new features) based on the variance of the data. The PCA algorithm works by projecting
the highly dimensional dataset into a new subspace in which the orthogonal axes, the PCs,
represent the direction of the maximum data variance. The first of the PCs is the one with the
highest variance, which decrease for the next PCs. The algorithm followed by the PCA is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Build the covariance matrix XXT ;
2. Obtain Eigen values and Eigen vectors by applying Eigen decomposition to XXT ;
3. Sort Eigen values from the higher to the lower;
4. Build the dxk transformation matrix W with k top Eigen vectors;
5. Uses W to transform X to obtaining the new subspace Y = XW.

The PCA algorithm uses a transformation matrix W with which it maps the original
d-dimensional space X to a new k-dimensional space Y, with k ≤ d code. The PCs are the
eigen vectors of the covariance matrix XXT , obtained together with the eigen vectors by
applying the linear eigen decomposition method to the covariance matrix. Eigen vectors
and eigen values show the data direction and the data magnitude, respectively. Each
column of the matrix W represents a different eigen vector, and they are ordered from the
one with the highest associated eigen value to that with the lowest. The PCA technique is
suitable for linear problems, but it does not operate well when used for non-linear data.
In this case, the Kernel Principal Component Analysis, which represents a version of PCA
suitable for non-linear scenarios, is a better candidate. PCA is used in [113] to conduct a
data reduction process to lower the dimensionality of a dataset used for aircraft engine
diagnostics. The dimensionality reduction capabilities of PCA are also employed in [114]
with the goal of predicting the Remaining Useful Life (RUL) of airplane engines.
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3.2.2. KPCA

The KPCA is a non-linear adaptation of the common PCA. KPCA operates by mapping
the X matrix to a higher feature space φ(X) using polar coordinates. This projection is
made by using the kernel method:

K(xa, xb) = φ(xa)
Tφ(xb) (3)

The kernel function avoids the mapping process with the function φ, which makes the
process cheaper. The most common kernels exploited in KPCA are reported in Table 5.

Table 5. Commonly used kernels in KPCA.

Kernel Description

Linear: k(xa, xb) = xa
T xb + constant Generally used when data are linearly separable.

Polynomial:

k(xa, xb) =
(
αxa

T xb + constant
)degree

Shows the similarity among data in a feature
space over the polynomials of actual variables.

Gaussian: k(xa, xb) = exp(− |xa−xb |2
2σ2 ) Used when data are non-linearly separable.

Sigmoid: k(xa, xb) = tanh
(

xa
T xb + constant

)
Mostly used in neural networks.

KPCA first applies the kernel method and subsequently uses the common PCA algo-
rithm on the new linearly separable data. The algorithm followed is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Produce linear data X′ with kernel mapping function K to X;
2. Uses the common PCA to X′, obtaining reduced space Y.

KPCA is employed in [115] as a dimensionality reduction technique for datasets used
in aircraft engine diagnostics. In [116], the data reduction capabilities of the KPCA are
used to develop a method used for face recognition purposes. Another example of the
application of the KPCA as an element to perform a data reduction process in a diagnostic
tool used for aircraft engines is available in [117].

3.2.3. LDA

Linear Discriminant Analysis (LDA) is another technique used for FE, which works by
identifying a new feature space by projecting data with the goal of maximizing the classes’
separability. Starting from the d independent features of a dataset, the LDA extracts k new
independent features that separate the dependent features the most, producing a number
of components smaller than the number of classes—1. The algorithm followed is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Obtain two scatter matrices of X: in-between-class and within-class;
2. Calculate the eigen values and eigen vectors of the scatter matrices;
3. Rank eigen vectors in descending order, based on eigen values;
4. Build the transformation dxk matrix W with k top eigen vectors;
5. Uses W to transform X to obtaining the new subspace Y = XW.

The two scatter matrices are built with:

SMb =
m

∑
k=1

Nk(µk − µ)(µk − µ)T (4)

SMw =
m

∑
k=1

n

∑
x=1

(x− µ′k)(x− µ′k)
T (5)

where SMb and SMw are the in-between-class and the within-class matrices, respectively,
which compute the distance between the mean of each class and the distance between the mean
of each class together with the data within the class. Furthermore, in Equations (4) and (5),
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m represents the number of classes, µ denotes the overall mean, µk and Nk are the mean
and sizes of the respective classes, respectively, and finally, µ′k is the mean vector of a class.
The final part of the algorithm represents the final part of the PCA algorithm. The LDA
algorithm is used in [118] for FE purposes to develop a diagnostic tool for rolling bearings.

3.2.4. MDS

The Multi-Dimensional Scaling (MDS) method performs an FE process by focusing
on the relationships between data in multi-dimensional space. Two main versions of the
MDS algorithm exist: the metric MDS (or classic) and the non-metric MDS. The type here
reported is the classic one. The algorithm followed by the classic MDS is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Obtain the dissimilarity matrix dX X;
2. Compute K by utilizing the centering matrix H;
3. Uses eigen decomposition with K to have top k Eigen values and corresponding vectors;
4. Provide Y using diagonal matrix K and top k Eigen vectors.

MDS computes the dissimilarity matrix such that similar data are near and less similar
ones are far apart. Starting from dissimilarity matrix dX , MDS search the output Y for which
the similarity between dX and dY is maximized, where dX =

√
xa − xb and dY =

√
ya − yb

represent the distance between any two points a and b. The kernel matrix K is obtained
with the following equation:

K = HdX H (6)

in which the centering matrix is H = I − 1
n
(
eeT), where I is the identity matrix and e is a

column vector of 1 s. Applying eigen decomposition to K, the matrices D and B containing
its eigen values and eigen vectors are obtained. After the selection of the top k eigen values,
removing the rest of the eigen values and corresponding eigen vectors, matrices D and B
become D̂ ∈ Rkxk and B1 ∈ Rnxk, representing the diagonal matrix of top k eigen values and
the matrix containing the top k eigen vectors, respectively. Finally, the following equation:

Y = D̂1/2BT
1 (7)

performs the mapping of the data to a low dimension. MDS is used in [119], located in
a health monitoring system developed to monitor the health status of the landing gear
retraction/extension system.

3.2.5. SVD

Singular Value Decomposition (SVD) is able to provide a representation of a dataset
as a matrix with any number of dimensions. The precision of the representation of the
SVD depends on the number of dimensions (components) chosen; the greater they are,
the better the representation. In SVD, the following law is used to choose the top k largest
singular values:

X = NSZT (8)

where X is the original matrix; N is an nxk matrix of orthogonal unit vector columns,
ordered by importance; S is a kxk diagonal matrix; and Z is a kxd orthogonal matrix. The
SVD uses the following equation:

Y = NkSkZT
k (9)

to obtain a reduced matrix Y in which only the top k singular values are retained. In
Equation (9), Nk, Sk, and ZT

k are a truncation of N, S, and ZT . The diagonal entries of S
are called the singular values. They are positive and arranged in descending order. The
algorithm followed by SVD is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Decompose X into matrices N, S and Z;
2. Obtain Y by selecting k top singular values from S.
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SVD is used in [120] together with PCA as a data reduction tool, which represents part
of a more complex system developed to perform RUL estimation in aircraft engines.

3.2.6. LLE

Locally Linear Embedding (LLE) assumes that initial data lie on a smooth nonlinear
manifold embedded in a high feature space to produce low-dimensional global coordinates.
During feature reduction, LLE preserves the local properties of a data point xa by means of
the linear combination of the reconstruction matrix Wab with the c-nearest neighbors xb.
LLE uses the Euclidean distance to find the c-nearest neighbors of each data. Subsequently,
by reducing the reconstruction error (Equation (10)), the local weights for each data point
(Xa), which are an optimal representation of the data (X′a) as a linear combination of the
neighbors, are calculated. Next, the Eigen vector-based optimization is used to obtain a
new vector space Y. The weights with which the vectors (data points) are rebuilt from their
nearest neighbors are computed. The reconstruction error is:

Err(W) = ∑
a

∣∣∣∣∣→x a −∑
b

Wab
→
x b

∣∣∣∣∣
2

(10)

which is minimized under the condition that all data (Xa) are rebuilt only from the nearest
neighbors (Wab = 0 when Xa and Xb are not neighbors) and that each row of the weight
matrix gives a sum of 1, i.e., ∑b Wab = 1. The mapping of the data Xa from d-dimension to
Ya in k-dimension is obtained by minimizing the cost:

φ(Y) = ∑
a

∣∣∣∣∣→y a −∑
b

Wab
→
y b

∣∣∣∣∣
2

(11)

The algorithm performed by the LLE is the following:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Find the c-nearest neighbors for each data point of X;
2. Calculate local weights W with which data are best reconstructed (X′) from their neighbors;
3. Use the weights from the previous step to map X′ to Y on k-dimensions by

minimizing the cost.

An example of the application of the LLE for health monitoring purposes is available
in [121], where it is present as a part of a diagnostic approach applied to a case of a gearbox.

3.2.7. ISOMAP

Isometric Mapping (ISOMAP) is a method that overcomes the problem of classical
scaling that they are not able to operate with the nonlinear structure in a manifold. The first
step determines the geodesic distances to obtain a neighborhood graph of the data, in which
data xa and their nearest neighbors are connected. Next, the algorithm finds the shortest
path for each pair of data in the graph to approximate the geodesic distance between them,
obtaining a pairwise geodesic distance matrix dG. Subsequently, the MDS method with
kernel matrix is applied to dG. Equation (6) is applied to the matrix dG, and finally, ISOMAP
finds the low-dimension embedding of a data point by applying Equation (7).

The algorithm followed is:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Obtain the neighborhood graph of X;
2. Compute the matrix dG of the geodesic distances;
3. Use MDS method with dG to obtain the new space Y.

A practical example of the application of ISOMAP is available in [122], where it is
used as a nonlinear data reduction tool for a diagnostic system developed to detect faults
in rotating machines.
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3.2.8. LE

Laplacian Eigenmap (LE) operates similarly to the LLE, searching low-dimension data
by maintaining the local properties of a manifold. Initially, LE creates a neighborhood
graph G′ in which the data xa and the related nearest neighbors are linked to each other. A
weighted edge connects all the xa and xb data in G′, and the Gaussian kernel function is
used where the weights follow this equation:

WEab = e
−|xa−xb |

2

2σ2 (12)

where WEab is the weight of the connection between xa and xb, and σ is the variance of the
Gaussian leading to an adjacency matrix (W). The dimensionality reduction is performed
by minimizing a cost function:

φ(Y) = ∑
ab
|ya − yb|2WEab (13)

The cost function above can be reformulated as the Eigen decomposition problem:

∑
ab
|ya − yb|2WEab = 2YLYT (14)

where L = W − D is the Laplacian matrix of G′, D is a diagonal matrix whose elements are
the row sums of W, and the W is a matrix with entries equal to 1 or 0 and with the diagonal
entries equal to 0. The W entries suggests if a pair of vertices are adjacent or not. The FE
technique is based on the following algorithm:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Construct the neighborhood graph G′ of X using adjacency matrix W;
2. Compute the weights of the edges of G′;
3. Optimize the cost function to obtain the new space Y.

LE is applied in [123], where a tool is developed to perform fault diagnosis and
prognosis on turbofan engines.

3.2.9. ICA

Independent Component Analysis (ICA) is a linear and supervised technique. ICA can
reduce the higher and second order dependencies of a dataset to create new features that
are statistically independent. The ICA technique looks for directions that are independent
from each other. ICA performs a decomposition of the matrix X:

X = AS (15)

where A is the mixing matrix, while S is the independent components. Subsequently, create
the Y matrix by selecting the top k independent components:

Y = AkSk (16)

The algorithm of the ICA follows these steps:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Performs a decomposition of X to A and S;
2. Select top k independent components;
3. Obtain Y exploiting the k components.

The ICA is used in [124], where a technique able to detect the presence of debris in the
exhaust gases of aircraft engines by means of electrostatic induction is presented. Another
example of the application of the ICA is available in [125], where an intelligent system to
detect and diagnose induction motor faults is developed.
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3.2.10. t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear, unsupervised,
and manifold-based reduction method in which data mapping from a higher to a low
dimension takes place by preserving the significant structure of the original data. T-SNE
performs a conversation of the high-dimensional Euclidean distances into conditional
probabilities representing similarities for every pair of data. The equation:

Pa|b =
e
−‖xb−xa‖2

2σ2

∑a 6=k
−‖xk−xa‖2

2σ2

(17)

where Pa|b is the conditional probability which represents the similarity of data xa to data xb
and provides information about the proximity of the two data points xa and xb, considering
a Gaussian distribution around xb with a variance σ2. Subsequently, the set of probability
Qa|b in the low-dimensional space is computed by means of a Student’s t-distribution with
one degree of freedom. Finally, the method minimizes the difference between the two cited
probabilities from the low-dimensional to the high-dimensional spaces. The difference is
given by the optimization of the cost function φ:

φ = ∑
a

∑
b

Pa|blog
Pa|b
Qa|b

(18)

The steps of the t-SNE algorithm are:

• Input: X ∈ Rnxd; Output: Y ∈ Rnxk;

1. Compute the conditional probabilities Pa|b and Qa|b;
2. Minimize the difference between Pa|b and Qa|b to perform a mapping process of

X to Y.

The properties of the t-SNE algorithm are exploited in [126,127] in the development of
an engine fault diagnosis tool.

3.2.11. Summary of Data Reduction Methods

Table 6, which is built with information available in the tables present in [111,112],
summarizes the data reduction techniques reported together with our addition of some
Refs, in which their application for health monitoring purposes is shown.

Table 6. Collection of the data reduction methods listed in this paper and taken from [112].

Method Supervision Coupled with Advantages Disadvantages In EHM

PCA Unsupervised ANN * [113,114].
Eliminates the correlation

between the features.
Improves data visualization.

Not adaptive to nonlinear
cases. Do not work in

cases in which mean and
covariance do not
completely define

the dataset.

[113,114]

LDA Supervised TET *. Data are classified
into groups.

Suffers from a class
singularity issue. [118]

MDS Unsupervised FCM *.

Preserves the distances in
cases in which it is difficult
to represent a low number

of dimensions [128].

Needs a lot
of computation
and memory.

[119]

KPCA Unsupervised ANN [115,117]. More suitable in
nonlinear cases. Long training time. [115,117]

SVD Unsupervised ANN. Works efficiently with
sparse matrices.

Not adaptive to
nonlinear cases. [120]
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Table 6. Cont.

Method Supervision Coupled with Advantages Disadvantages In EHM

LLE Unsupervised KSR *. Fast and capable of
preserving local geometry.

Requires more memory
and less efficient with

noised data.
[121]

ISOMAP Unsupervised Not specified classifier. Relationship between data
points is preserved.

Suffers from
topological instability. [122]

LE Unsupervised SVM * for diagnostics and
PHM * for prognostics. Gives a unique solution.

May produce
disconnected

neighborhood graph.
[123]

ICA Supervised
Used as denoiser in

electrostatic monitoring [124];
SVM [125].

Is able to filter noise from
the signal. Long training time. [124,125]

t-SNE Unsupervised

No diagnostic or prognostic
algorithms. Based on spatial
structural characteristics of

QAR * data [126];
ANN [127].

Works efficiently with
nonlinear data.

Provides only 2
or 3 features.

Computationally complex.
[126,127]

* ANN: Artificial Neural Network; TET: Transient-extracting Transform; FCM: Fuzzy c-means; KSR: Kernel
Sparse Representation; SVM: Support Vector Machine; PHM: Cox proportional hazards model; QAR: Quick
Access Recorder.

4. Diagnostic and Prognostic Techniques

As previously discussed, CBM is a maintenance-optimization strategy utilized in
the aviation industry to achieve cost savings, improve flight safety, and streamline main-
tenance management [129]. The principal disciplines constituting CBM are diagnostics
and prognostics [26]. Diagnostics is the field that deals with assessing the condition of a
system based on information provided by its intrinsic physical parameters. In the context
of aircraft engines, diagnostics refers to the process of determining the condition of the
engine and/or its components using data from sensors or information gathered from visual
inspections [26]. Prognostics, on the other hand, is the field that deals with forecasting the
remaining lifespan of a system, based on historical and current data related to the system’s
condition. In the aviation industry, prognostics is widely used to estimate the RUL of engines
by analyzing data from previous flights and in-flight data obtained from sensors [130].

Figure 10 presents an illustration of diagnostic and prognostic approaches. These
methods can be divided into two main categories: model-based methods and data-driven
methods. Model-based methods are based on a mathematical model of the engine, which
links the non-measurable and measurable parameters of the engine with mathematical
and thermodynamic equations that describe the engine’s behavior and from which the
degradation process can be predicted. On the other hand, data-driven methods do not
rely on mathematical models of the engine, which can be difficult to obtain due to a lack
of information about the gas turbine parameters and component maps. Instead, they are
based on a set of historical data on gas turbine measurements under various operating
conditions, from which they can identify trends. In recent years, research has also focused
on developing hybrid methods [26,32,131,132]. In the present section, a list of the most
used diagnostic and prognostics technique is presented and explained [25,39,133–135].

4.1. Model-Based Methods
4.1.1. Gas Path Analysis (GPA)

The objective of the GPA is to detect the occurrence of a fault in a component by
monitoring certain parameters related to its condition [136,137]. As reported in [32], GPA
was introduced by Urban [138] and later made more popular in the 1980s thanks to Sara-
vanamuttoo et al. [139,140].
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The goal of detecting, isolating, and quantifying certain faults can be achieved if the
fault in question results in a change in the measurable (i.e., dependent) variables [141].
Independent variables, such as flow capacity and efficiencies, which can serve as a health
indicator for the components, are not directly measurable, but are physically linked to
the measurable (or dependent) variables, such as temperatures or pressures. Therefore, a
change in independent variables (not measurable) results in a change in dependent (mea-
surable) variables. In an arbitrary GT configuration, dependent variables Z are expressed
as a function, such as:

Z = F(I, H) (19)

where I denotes the input vector, i.e., the operating conditions; the functions of ambient
temperature and pressure, and of power-setting parameters. Meanwhile, H is the inde-
pendent variables vector containing the PPs of the components such as flow capacities
and efficiencies [141]. Considering a very small change in health parameters and a fixed
operating point, a linear approximation can be performed:

δZ = ICM·δH (20)

This is the equation for Linear GPA, ignoring measurement noise and bias. ICM stands
for Influence Coefficient Matrix, which can be obtained by solving a set of differential
equations expressing the thermodynamic relationship between dependent and independent
variables, or with an approximate approach that involves perturbing the independent
variables one at a time and observing their effect on the dependent variables [141]. Inverting
the ICM, the Fault Coefficient Matrix (FCM) is obtained, and changes in independent
variables are obtainable by the change in dependent ones as:

δH = FCM·δZ (21)

However, a linear approximation is suitable for a fixed operating condition and as-
suming little change in dependent and independent variables. When large variations
in operating conditions and severe degradation are taken into account, Linear Gas Path
Analysis (LGPA) becomes less reliable. These limitations can be overcome by introduc-
ing Non-Linear Gas Path Analysis (NLGPA), which can be obtained through successive
iterations using LGPA and the Newton–Raphson method until an exact solution of the
non-linear equation 19 is obtained [137]. As mentioned in [137], each independent pa-
rameter can be expressed individually as a unique function of the dependent parameters.
Denoting with:

F(H) = Z (22)
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the relation between dependent and independent variables and considering a small change
in H:

F(H + δH) = Z + δZ (23)

which becomes:
F(H + δH) = F(H) + δZ (24)

Using Taylor series expansion, the term f (H + δH) can be rewritten as:

F(H + δH) = F(H) + J·δH + HOTs (25)

Jacobian notation is used to refer to the first derivative of the matrix function F(H + δH)
in the Taylor Series, that is:

J =


∂ f1(H)

∂h1

∂ f1(H)
∂h2

. . . ∂ f1(H)
∂hm

∂ f2(H)
∂h1

∂ f2(H)
∂h2

. . . ∂ f2(H)
∂hm

...
...

. . .
...

∂ fn(H)
∂h1

∂ fn(H)
∂h2

. . . ∂ fn(H)
∂hm

 (26)

and:

δH = [∂h1∂h2
... ∂hm] (27)

where hi with i = 1, 2, . . . , m are the independent parameters and f j with j = 1, 2, . . . , n are
the relations between dependent and independent parameters. For small variation in H,
HOTs can be neglected and Equation (25) becomes:

F(H + δH) = F(H) + J·δH (28)

Combining Equations (24) and (28):

δZ = J·δH (29)

By inverting J, as described by Donaghy [142]:

J−1·δZ = δH (30)

the correction δH to the independent variable is added to the solution vector:

Hnew = Hold + δH (31)

The iterative process is repeated until a state of convergence is achieved. More
exhaustive information is available in [137]. In [143] are presented some examples on GPA
application for different purposes, such as component condition monitoring, the analysis
and validation of essential performance parameters used for EHM, and the prediction
of the effect of component performance restoration. The results demonstrate a good
diagnostic performance and the utility of performing a performance restoration effect
analysis. Zhou et al. [144] proposed a fault diagnosis and prognosis method based on a
long short-term memory neural network and GPA algorithms. More specifically, in the
work, the health parameters diagnosed by means of GPA are used to predict the future
degradation of components. The results show that the Root Mean Squared Error (RMSE)
of the diagnosed health parameters remains below 0.193%, and equals 0.232%, 0.029%,
0.069%, and 0.043% for the predicted health parameters of each component, considering
the best prediction model tested. Figure 11, adapted from [39], shows an illustration useful
to compare LGPA and NLGPA approaches.
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4.1.2. Kalman Filters (KFs)

KFs were presented by Kalman in 1960 [145]. KFs are a specific type of Bayesian
recursive filter and are particularly well-suited for state estimation in cases of linear systems
and Gaussian noise [146]. Kalman Filters (KFs) are widely used in applications such as
satellites, spacecrafts, and aircrafts for the purpose of automatic control of the systems [147].
KFs are a widely used technique in aircraft engine diagnostics. In [148], a comparison of
the capabilities of KFs and neural networks to isolate a single GT fault is presented. The
results demonstrate a comparable level of accuracy between the methods, with slightly
better performance from the KF approach. In [149–151], Kobayashi and Simon investigate
the capabilities of KFs for sensor and actuator fault detection and isolation, as well as the
detection of component faults. The accuracy of the developed system is evaluated through
a series of simulations of various engine faults. A similar research is proposed in [152].
For interested readers, other examples are available in [153–155]. KFs utilize a recursive
solution, meaning each updated estimate of the state is calculated from the previous
estimate and the new input data [156]. According to Luppold et al., Kalman Filters (KFs)
are a data processing algorithm utilized to estimate both system states and unmeasurable
parameters in real time [157]. KFs are suitable for linear systems. Adaptations for non-
linear systems include Extended KFs (EKFs) and Unscented KFs (UKFs). A more detailed
explanation of KFs, EKFs, and UKFs can be found in [158]. In [159], KFs are used to develop
a tool for prognosis purposes with multiple sources of uncertainty. The method has been
tested on an aircraft fuel feeding system case and has shown good results. Figure 12
illustrates the engine health monitoring approach using KFs [160].

4.1.3. Genetic Algorithms (GAs)

Developed by John Holland at the University of Michigan, GAs are algorithms that
take inspiration from the mechanism of natural selection, where the “fittest” individuals
pass on their characteristics to the next generation [161].
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In a GA, a set of solutions (referred to as “individuals”) for a specific problem is
initially generated randomly. This set of solutions is referred to as the “population”, and
each of them represents the current iteration’s generation. The fitness of each candidate
solution is determined by evaluating an objective function of the optimization process that
needs to be solved. The more fit solutions are selected and used to form the next generation.
The solutions in this new generation are subject to the same process as their “parents”. The
iterative process continues until a stopping criterion is met, such as reaching a maximum
number of generated generations or achieving a target level of fitness [26,162–164]. Each
iteration of a GA comprises three main steps: selection, crossover, and mutation. In the
selection phase, individuals are chosen for the next generation based on their level of fitness.
In the crossover phase, information is exchanged between different individuals to create
fitter individuals. Finally, in the mutation phase, certain existing individuals are randomly
altered within predetermined upper and lower thresholds to create new individuals [165].
More exhaustive treatises on GAs are available in [166,167]. GAs are exploited in [168] to
detect and estimate sensor bias, in order to enhance the estimation of health parameters
using a neural network. In [169], a diagnostic tool based on GAs is used for a turbofan
engine to detect power-setting sensor faults, also in combination with engine component
degradation and sensor faults. An interesting application of GAs is reported in [170], where
they were used for the optimization of neural network topology. Similarly, GAs are used
in [171] to optimize the parameters of decision tree-based methods for RUL prediction.
Figure 13, adapted from [39], illustrates an example of a GA reproduction cycle.

4.2. Data-Driven Methods
4.2.1. Artificial Neural Networks (ANNs)

ANNs are algorithms designed to mimic the behavior of the human nervous system,
enabling them to learn from experience [172]. These algorithms can find a correlation
between two sets of variables, the input and the output, and use this learned correlation
to predict a new set of output variables based on a new set of input variables. Artificial
neural networks (ANNs) consist of layers and neurons. The first and last layers are known
as the input and output layers, respectively. Each layer is composed of a certain number of
neurons. The input and output layers contain several neurons equal to the number of input
and output variables, respectively. The layers located between the input and output layers
are known as hidden layers, and they contain hidden neurons. The performance of the
network depends on the number of hidden layers and neurons, which can be challenging
to determine [173].
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Each neuron in the hidden and output layers is connected to the neurons in the
preceding layer and each connection has a weight. The purpose of these neurons is to
process information received from the preceding neurons, and in turn, provide information
that is dependent on the input, as described by the following equation:

O =
l

∑
i=1

Wi INFi + b (32)

where l represents the number of previous neurons from which information is received, O
represents the neuron output, Wi represents the connection weight with the i-th previous
neuron, INFi represents the information deriving from the i-th previous neuron, and b
represents an added bias. The output of a neuron is limited by an activation function.
There are many types of neural networks today, which can be broadly divided into two
main categories: Feed-Forward Neural Networks (FFNNs) [174] and Recurrent Neural
Networks (RNN) [175–177]. FFNNs are simple networks composed of layers and neurons,
as previously described. If each neuron in each layer has a connection with every neuron
in the next layer, the FFNN is referred to as fully connected. On the other hand, if some
connections are missing, the FFNN is referred to as partially connected. Recurrent neural
networks (RNNs) are designed to learn sequential or time-varying patterns [176] and differ
from FFNNs due to the presence of at least one feedback loop. This feature provides a
great deal of flexibility and allows RNNs to approximate arbitrary dynamic systems with
high precision. A single-loop feedback network is a type of RNN that has a single feedback
loop [172,175]. Figure 14 illustrates the difference between the typical structures of a FFNN
(7.a) and a RNN (7.b). ANNs were used in [178] for the purpose of predicting performance
and engine health status. The results obtained from applying the ANN-based diagnostic
tool on a single spool turbojet experiencing compressor and turbine degradation were
compared to the results obtained from another diagnostic technique that used a support
vector machine (SVM) developed in the same study. Both the ANN and SVM techniques
yielded very good and comparable results in predicting the EGT and fuel flow during a
specific flight, with an RMSE ranging between 0.0089 and 0.0191. However, when used
for engine health prediction, the SVM technique performed extremely well, while the
ANN technique showed a less efficient performance. In [179], ANNs form the basis of a
prognostic method.
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The study focused on predicting the remaining useful life (RUL) of a fan module.
ANNs were used to estimate current health parameters, such as efficiency and flow capacity,
and the future trajectory of these parameters was estimated using an autoregressive model.
RUL estimation was performed based on the estimated trajectory of the health parameters
using moving window and progressive window approaches, which differ in how data
are fed to the autoregressive model. It was found that the progressive window approach
yielded the best results.

4.2.2. Bayesian Belief Networks (BBNs)

A belief network is a graphical representation of a probability distribution that depicts
the cause-and-effect relationships among predisposing factors, faults, and symptoms [180].
The graph represents a set of variables indicated by nodes and directed edges indicating
their dependencies. The level of relationship between variables is represented by a condi-
tional probability [39,181]. In a BBN graph, three types of nodes can be distinguished: child
nodes, which are nodes with edges directed towards them; parent nodes, which are nodes
from which edges originate; and root nodes, which are nodes without any edges directed
towards them. In an aircraft engine diagnostic approach, by setting independent variables
such as flow capacities and efficiencies as parent nodes, and dependent variables such as
temperatures, pressures, etc., as child nodes, the BBN approach expresses the diagnostic
problem as:

P
(
hi/zj

)
=

P
(
zj/hi

)
P(hi)

P
(
zj
) (33)

where hi and zj are the i-th independent and j-th dependent variables, respectively; P
(
hi/zj

)
is the probability of hi given zj; P

(
zj/hi

)
is the probability of zj given hi; P(hi) is the

probability of the independent parameter hi; and P
(
zj
)

is the probability of the dependent
parameter zj [39]. Figure 15, adapted from [39], shows an example of a BBN structure used
for GT diagnostic purposes.
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BBNs were first applied for gas turbine diagnostics in the 1990s by Breese et al. [182].
In [183], a BBN that includes 11 health parameters and seven measured parameters is
used to develop a diagnostic tool for detecting faults in a turbofan engine. The BBN
considers deviation in flow parameters and efficiencies as potential indicators of faults.
Mast et al. [184] applied a series of Bayesian Belief Networks (BBNs) for diagnostic purposes
for a turbofan engine and conducted tests under different flight conditions. They found
that fault detection is easier during cruise phases compared to take-off and climb phases.
Ferreiro et al. [185] employed Bayesian Belief Networks (BBN) as a means to develop a
prognostic technique for predicting brake wear on an aircraft. The paper describes the use
of two different BBN-based models.

4.2.3. Expert Systems (ESs)

ES are computer programs designed to mimic the decision-making processes of an
expert human in solving problems or providing advice [164]. The typical components of an
ES are: a user, a developer, an inference engine, and a knowledge base. The knowledge base
stores the information necessary to solve a specific problem, and it serves as the substitute
for the human expert. The inference engine acts as a bridge of communication between
the user and the “virtual expert” (the knowledge base) by linking the user’s queries with
the relevant answers stored in the knowledge base. This task is performed by utilizing
appropriate programmed rules to establish a relationship between multiple items. Finally,
the developer designs the expert system and supplies the necessary knowledge [186]. Basic
ES utilize Boolean logic or decision trees, which can present limitations in accurately rep-
resenting real-life problems due to their simplicity. More advanced ES employ inference
rules and chaining, which are programmed as IF-THEN statements [39]. Figure 16, adapted
from [39], shows a classical structure of an ES. ES have been utilized to create a variety
of diagnostic systems for different types of engines [39,135], such as TEXMAS (Turbine
Engine Expert Maintenance Advisor System) for T53 engines [187]; HELIX (HELicopter
Integrated eXpert) [188] for helicopter engines; XMAN, a tool for automated jet engine diag-
nostics [189]; TIGER (Testability Insertion Guidance Expert System) [190]; IFDIS (Interactive
Fault Diagnosis and Isolation System); and SHERLOCK, for helicopter engines.
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4.2.4. Fuzzy Logic (FL)

Introduced by L. Zedah in the 1960s [191,192], fuzzy sets, which are sets formed by
elements that have degrees of membership, were thought to mathematically model the
uncertainty of natural language [193]. Fuzzy logic (FL), which is based on fuzzy sets,
is used to simplify complex phenomena. The quality of the simplification is dependent
on the availability and quality of the rules used [194]. A general FL system comprises
several essential components, including fuzzy rules, a fuzzifier, inference engine, and a
defuzzifier. The fuzzifier is responsible for the process of fuzzification, where input signals
are converted into fuzzy sets. The inference engine establishes the relationships between
the various fuzzy sets. The defuzzifier performs the process of defuzzification, resulting in
the output signals. Finally, the fuzzy rules represent a collection of IF-THEN statements
utilized to implement FL [39,135]. Figure 17, adapted from [194], shows a typical FL
system structure.
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FL has been extensively employed for fault diagnosis in aircraft engines. In [195], a
FL system is implemented for diagnostic purposes on a military turbofan engine. In this
case study, the FL system developed predicts the condition of the intermediate pressure
compressor with an average error of approximately 7.5%. Another application of FLs for
fault identification is shown by Ganguli [196,197], which utilizes FLs to develop a fault
isolation system for a turbofan engine. The system is able to recognize faults in the fan, low-
pressure compressor, high-pressure compressor, high-pressure turbine, and low-pressure
turbine based on deviation from the baseline (when the engine is in a healthy condition)
of certain parameters, such as exhaust gas temperature, fuel flow, and low and high rotor
speed. Similarly, in [198], a case study of a three-spool engine is analyzed. Fuzzy Logic
(FL) is used to create single fault isolation and partial multiple fault isolation systems
(with only two components considered faulty). Sensor noise and biases are added, and the
results demonstrate excellent performance in each case studied. In [199], FL is used for the
same purposes. The developed system is tested using flight data, and the results show the
detection of a fault in the high-pressure spool two months before it occurred.
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4.2.5. Support Vector Machine (SVM)

SVMs are a type of learning system based on statistical learning theory, and they are
commonly used for classification or regression tasks [32,200]. Like ANNs, SVM algorithms
require a set of inputs (or features) and a corresponding set of outputs for the training
phase. Each input can be thought of as a dimension of a hyperplane. The goal of SVM is
to create a hyperplane that separates the input space into two or more classes, with the
goal of achieving the maximum separation between the classes. By doing this, the expected
generalization error is minimized, meaning the probability of incorrectly classifying new,
unclassified features during the classification process is reduced. The process of maximizing
separation is achieved by creating two parallel hyperplanes, known as the “bounding
planes,” on either side of the separating hyperplane. The distance between these bounding
planes is called the “margin.” The learning process of an SVM involves finding a hyperplane
with the greatest margin and the least misclassification errors [201]. Figure 18 illustrates an
example of the structure of SVMs used for fault classification [202]. In the aforementioned
paper, SVMs were used in conjunction with Artificial Neural Networks (ANNs) to develop
a diagnostic system that can effectively classify single, double, and triple component faults,
and subsequently predict the magnitude of the faults with high accuracy.

Figure 18. An example of the net of SVMs used for fault classification purposes.

During the training process of an SVM, a Kernel function and a set of parameters
known as “Kernel parameters” must be selected. The performance of the SVM is highly
dependent on the choice of these parameters [203]. In [200], the authors investigate the
impact of various kernel functions (linear, polynomial, radial basis, and sigmoidal) and
training sample size on the performance of an SVM for gas turbine fault diagnosis. They
compare these results to those obtained using a neural network. Two samples of small size
have been used. The results indicate that the sample size has a minimal effect on perfor-
mance when using the radial basis kernel function, which shows the best results. However,
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the effect of sample size on performance is more significant when using other kernel func-
tions. Additionally, the study also examines the impact of including the compressor outlet
temperature in the training dataset, considering different kernel functions and sample
sizes. Finally, the performance of the SVMs trained with the four different kernel functions
was compared to the performance of a neural network. The results showed that the SVM
trained with the radial basis function performed better than the neural network for various
sample sizes. Furthermore, increasing the sample size led to improved performance for
all four of the tested kernel functions when compared to the neural network. SVMs are
used in [204] to perform multi-class classification for fault diagnosis in a JT9D aero engine.
Various approaches are compared to one another, and noise at different magnitudes is
added to the data. As expected, the results show a decrease in accuracy with an increase in
noise level. An example of the application of SVMs for prognostic purposes can be found
in [205]. In this paper, the authors propose a method for classifying the health of an aircraft
component, using a training dataset that includes flight data and maintenance logs. The
method was applied to classify the health state of a bleed valve in the air management
system as either healthy or unhealthy, in terms of a low or high probability of failure over a
specific period of time.

4.3. Final Summary

As it is evident, numerous studies are focused on developing diagnostic and prognostic
techniques to monitor the health status of aeronautical engines and other systems. Each
study employes its own diagnostic or prognostic tool, developed using different techniques
and approaches, and utilizing different types of data. In conclusion, Tables 7 and 8 present
a comprehensive collection of some of the works available in the literature. For a more
in-depth understanding, it is recommended to refer to the corresponding references.

Table 7. List of some works present in the literature with relative characteristics. For a more detailed
description, read the corresponding references. Continues in Table 8.

Method Type Purposes Machine Data Type Noise Used Software Refs.

KF MB * Diagnostics Military twin-spool
turbofan engine Model data Yes - [149]

KF MB * Prognostics Aircraft fuel
feed system Model data Yes - [159]

GA MB * Diagnostics Aircraft two-shaft
turbofan engine Model data No Pythia [169]

ANN/SVM DD * Performance analysis
and diagnostics

Aircraft single-spool
turbojet engine (Rolls
Royce VIPER 632-43)

Measured and
Model data Yes

ONX and
AEDSYS coupled
MATLAB routines

[178]

ANN DD * Prognostics Aircraft turbofan engine Model data -

ProDiMES for
simulations;

MATLAB for ANN
implementation

[179]

BBN DD * Diagnostics Aircraft turbofan engine Measured and
Model data Yes - [183]

BBN DD * Diagnostics Aircraft turbofan
engine (GE CFM56-7) Model data - MATLAB [184]

BBN DD * Prognostics Aircraft brake Measured data - - [185]

FL DD * Diagnostics Military three-spool
turbofan engine Model data Yes

Turbomatch for data
generation; MATLAB

for fuzzy
logic implementation

[195]

FL DD * Diagnostics Aircraft turbofan engine Model data Yes - [196]

* MB: Model-based; DD: Data-driven.
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Table 8. List of some works present in the literature with relative characteristics. For a more detailed
description, read the corresponding references. Continuation of Table 7.

Method Pre-Processing Metrics Accuracy Based on Metrics
on the Third Column Type of Degradation Refs.

KF - Minimum bias which can
be isolated 0.8%

FOD, considering two different
baselines, one healthy and one

degraded, together with
sensors and actuator faults

[149]

KF Feature extraction
and filtering MSE Between 0.000168 and 0.214 Cavitation erosion in

booster pump [159]

GA - Fitness (consult the paper for
the definition) Between 0.35 and 1

Power-setting sensor fault
(with and without the presence

of engine component
degradation and other gas path

sensor faults)

[169]

ANN/SVM - (a) Performance prediction: RMSE;
(b) Diagnostics: prediction efficiency

(a) Between 0.019 and 0.0089;
(b) Prediction efficiency
between 80% and 100%

in diagnostics

Compressor fouling and
turbine erosion, one at a time

and simultaneously
[178]

ANN - - - Fan abrupt fault [179]

BBN Filtering Number of cases correctly diagnosed

13 out of 15 with
measured data;

About 90% during climb and
cruise and about 60% during

descent with model data

Different fault cases, including
fault in FAN, LPC *, HPC *,

HPT *, LPT * and nozzle
[183]

BBN -
% of correct:

(a) Identification;
(b) Isolation

(a) Between 19.17% and 100%;
(b) Between 7.33% and 86.79%

No degradation type
is specified [184]

BBN - Error between real and predicted
brake wear

Between 4.0036 and 0.8012 in
absolute value at

last prediction
Brake wear [185]

FL -
Average percentage

error between predicted
and target

7.5% IPC * fault [195]

FL - % of correct fault isolation Between 89% and 100% FAN, LPC *, HPC *, HPT * and
LPT * fault [196]

* LPC: low-pressure compressor; HPC: high-pressure compressor; HPT: high-pressure turbine; LPT: low-pressure
turbine; IPC: intermediate-pressure compressor.

5. Conclusions

Modern GTs are highly complex machines composed of a large number of components,
each of which may be susceptible to various types of damage. As the number and complex-
ity of parts increases, it leads to a higher probability of failure and a decrease in reliability.
For GTs used in aircraft engines, reliability is of paramount importance. The reliability of
a system is closely linked to the maintenance plan it is subject to. To enhance reliability
and reduce maintenance costs, an effective maintenance plan is crucial, which can accu-
rately predict the optimal time for performing maintenance. As a result, current research
is focused on implementing CBM strategies, which schedule maintenance interventions
based on the actual health status of the monitored system, rather than relying on traditional
corrective and preventive maintenance strategies that are based on visual inspections and
the probability of potential failures. This paper aimed to examine the primary degrada-
tion mechanisms to which gas turbines are typically subjected, highlighting the effect
each of them has on the machine’s performance. Subsequently, the paper presented the
main techniques currently used for the implementation of the two key disciplines of CBM:
diagnostics and prognostics. These techniques are based on the real-time health status
of the monitored component, which is obtained through the use of appropriate sensors
that provide useful information. Sensor measurements are then utilized to implement the
algorithms for the developed diagnostic or prognostic technique. However, it should be
noted that sensor measurements are not always free of noise and bias, which can negatively
impact the performance of the techniques used to monitor the health status. A significant
portion of research efforts are directed towards developing techniques for improving the
quality of sensor measurements, in order to reduce the amount of noise present in the
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sensed information, and to detect and isolate faulty sensors. In some cases, these techniques
may also reconstruct the values lost due to incorrect detection by a damaged sensor. The
performance of health monitoring techniques is dependent on the amount and accuracy
of information collected from the monitored system. As the amount of data increases, so
does the computational time and effort required. To improve performance, researchers
are also developing techniques for data reduction. There are many types of computer
algorithms currently used for diagnostic and prognostic purposes, each with their own
advantages and limitations. Hybrid techniques, which combine multiple approaches, are
an area of ongoing research, and future efforts are focused in this direction. In recent
years, there has been growing scientific interest in the use of hybrid engines to reduce
their environmental impact, which is an extremely important topic. However, most of
the literature on degrading phenomena, data reduction techniques, and diagnostic and
prognostic algorithms related to the aeronautical world has focused on thermal engines.
Hybrid engines are composed of both thermal and electric components, and an increase in
the number of components can lead to a decrease in reliability. Therefore, there is a need
to study the application of CBM to hybrid engines, which represent the future of aviation
and beyond. It is crucial to fully understand the degradation mechanisms of the electrical
portion of a hybrid engine (i.e., related to components such as batteries, electric motors,
dynamos, etc.) and their effect on engine performance to properly develop modern CBM
systems suitable for hybrid engines.

Finally, regarding degradation health monitoring techniques, there are several gaps in
the existing literature that require further exploration and research. These gaps include:

i. Lack of standardization: The field currently lacks standardized techniques and metrics
for monitoring degradation, which can lead to inconsistencies across studies. Devel-
oping standardized techniques could help improve the reliability and consistency
of results.

ii. Limited real-world testing: Most studies on degradation health monitoring techniques
have been conducted in laboratory or simulated environments, which may not accu-
rately represent real-world conditions. Further testing in real-world environments
could provide more relevant and realistic data.

iii. Lack of comparative studies: While many studies have evaluated the performance of
individual monitoring techniques, there is a lack of comparative studies that assess
the strengths and weaknesses of different techniques for monitoring the same type
of degradation.

iv. Insufficient consideration of uncertainty: Many monitoring techniques provide point
estimates of degradation levels without accounting for the uncertainty associated with these
estimates. Considering uncertainty could improve the reliability of degradation predictions.

v. Limited consideration of multiple degradations: Many studies focus on monitoring a
single type of degradation, but real-world systems often experience multiple degrada-
tions simultaneously. Exploring how to monitor multiple degradations could provide
a more comprehensive understanding of system health.
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