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Abstract
We provide approximations of qualitative prob-
ability, that is, comparative structures which are
representable by probability measures. We introduce
sequences of qualitative belief structures, based on
the ideas of Depth-Bounded logics D’Agostino et al.
(2013b), and identify the conditions under which:

1. a qualitative sequence approximates a qualitative
probability;

2. a qualitative probability can be approximated.
Keywords: probability; uncertain reasoning; depth-
bounded logics

1. Introduction and Motivation

Probability has long been acknowledged a key tool in AI
research, and in combination with logic, has been put for-
ward as a promising path to achieving explainable AI (see,
e.g. Belle (2017)). However, work in Knowledge Repre-
sentation and Reasoning has been traditionally vexed by
the question: “where do the numbers come from?”. The
problem has led some researchers to considering qualitative
approaches to uncertain reasoning, of which epistemic and
nonmonotonic logics are well-known examples. Similarly,
great attention has been devoted within the AI community
to qualitative decision theory under uncertainty Dubois et al.
(2003). The comprehensive survey Marquis et al. (2020)
can be used as guide to the recent developments on both
those distinct but related research threads.

The foundations of probability and statistics have a long
tradition considering qualitative probability as a natural
bridge between the logical and probabilistic representation
of uncertainty. According to de Finetti (1951)

[If representable by a probability measure, a
qualitative probability] structure should be inter-
preted as an intermediate step between [algebraic
logic] where the comparison is limited to the case
of a pair of events such that one [logically im-
plies] the other, and a quantitative theory where,
owing to numerical evaluations, the comparison
is fully specified.

This is certainly consonant with a slightly more niche,
yet not unreasonable attitude taken in AI in response to

the opening vexed question. For the comparison in prob-
ability of two events has often been seen as demanding
‘less information’ than its quantitative counterpart. In this
spirit, the recent paper Delgrande et al. (2019) makes a
case for knowledge-based systems to focus on qualitative
probability.

Here is a rather subtle question which arises by taking an
upfront logical perspective on the problem. For de Finetti’s
case for approximating probabilistic reasoning qualitatively
relies on the mathematical fact that comparisons in proba-
bility are monotonic with respect to propositional logical
consequence. And yet classical propositional logic does not
provide an adequate model for expressing ‘information’.

To see this in elementary terms, consider propositional
variables p and q. Then

1. holding the information that v(p∨q) = 0 is sufficient
to holding the information that both

v(p) = 0 and v(q) = 0.

2. however, holding the information that v(p∨q) = 1 is
not sufficient to holding either the information as to
whether

v(p) = 1 or v(q) = 1.

As a consequence of the duality between disjunction
and conjunction, holding the information that a conjunc-
tion is true is sufficient to holding the information that
both disjuncts are true. Finally, holding the information
that v(¬p) = 1 is sufficient to holding the information that
v(p) = 0 (and conversely, of course).

We refer to the situation captured by 2. as a situation of
ignorance – the agent just does not hold enough informa-
tion to decide p. Essentially the same idea is referred to as
incomplete information in Dubois et al. (1996), a notion
defined as the situation in which relevant questions cannot
be answered (in the context). What cannot be answered
in 2. above is the question as to whether the agent holds
the information concerning the truth value of p and q. We
all have first-hand experience of this when prompted the
(often annoying) message to the effect that “either your
username or password is wrong”. By exploiting this sense
of ignorance, the website gives us just about the informa-
tion we need to pay attention to the credentials we input.
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Contrary to the received view then, classical propositional
logic does allow us to represent some forms of ignorance,
but it does not allow us to reason explicitly about it. Part
of this problem is addressed successfully by the field of
epistemic logic. This however is achieved at the price of
spawning the problem of ‘logical omniscience’, which ul-
timately originates from the fact that (normal) epistemic
logics extend classical logic.

An alternative approach consists in providing an infor-
mational interpretation of classical logic, as put forward by
D’Agostino et al. (2013a); D’Agostino (2015). Building on
that, the research reported in this note aims at putting for-
ward a fully-fledged logical theory of approximated qualita-
tive probability structures, and investigating the conditions
under which those are quantitatively representable. In doing
this, we will draw on a key model of approximate reason-
ing: the theory of Dempster-Shafer Belief Functions Shafer
(1976, 1981). Hence we will pursue de Finetti’s idea in a
more general i.e. non additive, setting. Albeit unpalatable to
our inspirator, this turns out to be the natural framework for
our purpose. To see this intuitively, consider the following
analogy. If ignorance is a disease, then acquiring informa-
tion, can be a cure. But drugs first must be made available,
second they must be paid for. So does information. Our
setting can be viewed as a logical attempt to capture the
idea that a larger budget may allow for a more effective
way of producing drugs. And yet all budgets are limited by
definition. Hence, to wrap up the analogy, approximating
logical reasoning amounts to being able to reason sensibly
in light of the limited information that we can invoke as a
remedy to our ignorance.

This connects with the Dempster-Shafer framework as
follows. Belief Functions quantify uncertainty by aggre-
gating basic pieces of evidence, encoded in “probability
mass assignments”. This aggregation of evidence requires
suitable reasoning, which is typically left implicit when
framed set-theoretically, but is actually based on classical
logic inference. Given the intractability of classical logic,
the involved reasoning is actually far from trivial . The
theory of depth-bounded boolean logics has been showed
to provide a more fine-grained analysis of this process,
separating the reasoning which just manipulates the ini-
tial evidence, from that which goes “beyond the evidence"
Baldi and Hosni (2020).

Building on those results, we show that the hierarchy
of depth-bounded boolean logics yield approximations of
representable qualitative probability structures. This con-
tributes to bridging the gap between the foundations of
probability and statistics on the one hand, and the practical
needs for more realistic reasoning (and decision making)
under uncertainty in AI on the other.

2. Preliminaries
Our approach is logical, but no logical background exceed-
ing this Section is necessary to follow our argument. Tak-
ing a logical approach to this subject means, among other
things, identifying the probabilistic notion of event, with the
elements of the set of sentences S L generated recursively
from a countable propositional language L , by means of
the connectives in {¬,∧,∨}. As a consequence, the terms
“event” and “sentence” will be used exchangeably in what
follows. The constant ⊥ stands for any contradiction. We
will use lowercase Greek letters to refer to sentences, and
uppercase Greek letters to refer to sets of sentences. Low-
ercase Latin from the final segment of the alphabet (and
possibly with decorations) will be used to denote propo-
sitional variables in L = {p1, p2, . . .}. By construction of
S L , if ψ = (θ ∧ϕ) ∈ S L then both θ and ϕ belong
to S L . If needed, we call them the immediate subsen-
tences of ψ (similarly, of course, for sentences involving
negations and disjunctions). A propositional variable has
no immediate subsentences. Then, the set of subsentences
of ϕ is denoted by S(ϕ) and is the smallest set closed under
immediate subsentences – ditto for S(Γ).

The informational view of propositional logic makes
room to distinguish two uses of information by a reasoning
agent. The first involves the information the agent actually
holds. In the example of the previous Section, this amounts
to the information that both subsentences in a disjunction
are false, if the agent holds the information that the dis-
junction is false. This is referred to actual information in
D’Agostino (2015). An informational reading of boolean
tables gives us an immediate analogue for the actual infor-
mation provided by a true conjunction. Finally, negation
provides actual information about its immediate subsen-
tence, whenever the information concerning its truth-value
is held by the agent.

This suggests defining zero-depth reasoning as the clo-
sure under the actual information, i.e that provided by hold-
ing the information about the truth value of any sentence
in S L . Though this semantic intuition is useful to grasp-
ing the underlying idea of depth-bounded logics, for our
present purposes, these are best introduced via derivability
relations. To denote this notion of consequence we decorate
the standard symbol for logical derivability. So we write

p `0 p∨q and q `0 p∨q,

to express zero-depth inferences granted by the use of ac-
tual information. Similarly, we have

p∧q `0 p and p∧q `0 q.

This motivates the definition of zero-depth consequence
relations, which is given in general terms by referring to
the set of rules collected in Table 1. These rules encode the
valid principles for the manipulation of information actually
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ϕ ψ

ϕ ∧ψ
(∧I )

¬ϕ

¬(ϕ ∧ψ)
(¬∧I 1)

¬ψ

¬(ϕ ∧ψ)
(¬∧I 2)

¬ϕ ¬ψ

¬(ϕ ∨ψ)
(¬∨I )

ϕ

ϕ ∨ψ
(∨I 1)

ψ

ϕ ∨ψ
(∨I 2)

ϕ ¬ϕ

⊥ (⊥I )
ϕ

¬¬ϕ
(¬¬I )

ϕ ∨ψ ¬ϕ

ψ
(∨E 1)

ϕ ∨ψ ¬ψ

ϕ
(∨E 2)

¬(ϕ ∨ψ)
¬ϕ

(¬∨E 1)
¬(ϕ ∨ψ)
¬ψ

(¬∨E 2)

ϕ ∧ψ

ϕ
(∧E 1)

ϕ ∧ψ

ψ
(∧E 2)

¬(ϕ ∧ψ) ϕ

¬ψ
(¬∧E 1)

¬(ϕ ∧ψ) ψ

¬ϕ
(¬∧E 2)

¬¬ϕ

ϕ
(¬¬E ) ⊥

ϕ
(⊥E )

Table 1: Introduction and Elimination rules

possessed by an agent, for each of the the connectives of
the language. They are given in the format of INTroduction
and ELIMination (INTELIM) rules for each connective,
both when occurring positively (as the main connective of
a formula) and negatively (in the scope of a negation), fol-
lowing general principles of natural deduction and tableaux
systems. We refer to D’Agostino et al. (2013a); D’Agostino
(2015) for further details and motivation.

Definition 1 Γ `0 ϕ if there is a sequence of sentences
ϕ1, . . . ,ϕm such that ϕm = ϕ and each ϕi is either in Γ or
it is obtained by an application of the rules in Table 1 from
sentences ϕ j with j < i.

With this definition in place we can say that an agent is
ignorant about θ ∈S L if the agent cannot decide θ with
zero-depth reasoning (possibly by using the premises in Γ).

Example 1 Let ϕ = p∨¬p. Direct inspection of the rules
in Table 1 shows that ϕ is not 0-depth derivable, i.e. 6`0
p∨¬p.

But of course, logic does not end with manipulation of
actual information. This is best illustrated with reasoning
by cases, of which Savage’s “Sure thing principle” is a
well-known illustration.

A businessman contemplates buying a certain
piece of property. He considers the outcome of
the next presidential election relevant. So, to clar-
ify the matter to himself, he asks whether he
would buy if he knew that the Democratic can-
didate were going to win, and decides that he
would. Similarly, he considers whether he would
buy if he knew that the Republican candidate
were going to win, and again finds that he would.
Seeing that he would buy in either event, he de-
cides that he should buy, even though he does not
know which event obtains, or will obtain, as we
would ordinarily say. Savage (1972)

The gist of the principle, lies in the use of hypothetical
information. Savage’s agent reaches a conclusion from in-
formation she does not actually hold, namely the actual
winner of the next presidential elections. The decision is
reached by drawing logical consequences in two mutually
exclusive and jointly exhaustive “branchings”, so to speak,
of the evolution of the agent’s actual information. In logic a
similar pattern of inference is captured by the “elimination
of disjunction” rule in natural deduction: infer ψ from the
set of premisses {θ ∨ϕ,θ → ψ,ϕ → ψ.}. This rule has
also a well-known counterpart in preferential non mono-
tonic reasoning , where it is known as the OR rule: infer
θ ∨ϕ |∼ ψ from θ |∼ ψ and ϕ |∼ ψ . The additional require-
ment in capturing the notion of hypothetical information1

which lies at the core of depth-bounded boolean logics, is
to the effect that the disjunctive premise features mutually
exclusive disjuncts. This motivates the definition of k-depth
reasoning.

Definition 2 Let k > 0. Then Γ `k ϕ if there is a ψ ∈
S(Γ∪{ϕ}) such that Γ,ψ `k−1 ϕ and Γ,¬ψ `k−1 ϕ .

Example 2 Continuing Example 1, note that if we allow
the agent to reason by cases on p, then it turns out that
both

p `0 p∨¬p and ¬p `0 p∨¬p.

But by Definition 2, this is to say that `1 p∨¬p.

To further illustrate the idea of Definition 2, k ∈N can be
thought of as a “counter” which keeps track of how many
instances of reasoning by cases are needed for the agent to
decide a sentence of interest. In each of those steps, hypo-
thetical information is used as if it was actual information,
but for the agent to be able to do this coherently, they must
keep track of those uses. This concurs to determining the
cost of reasoning, which is formally measured in terms of
the complexity of deciding a sentence at depth k. Results
of D’Agostino, Gabbay and coauthors show that:

• `0⊂`1⊂ ·· · ⊂`k⊂ ·· · , so the depth-bounded conse-
quence relations form a hierarchy;

1. This is called virtual information in D’Agostino (2015)
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• if k→ ∞ then `k=`, i.e. in the limit, the hierarchy of
depth-bounded boolean logics coincides with classical
logic;

• for each k, `k has a polynomial decision procedure.

Hence, the theory of depth-bounded boolean logics pro-
vides an ideal logical tool to achieve the goal of the inves-
tigation reported in this paper: For each `k is a (tractable)
approximation of classical logic (under the standard as-
sumptions relating P to “feasible” computation). In addi-
tion, the larger the k, the better the approximation.

In the remainder of the paper we shall: define compara-
tive probability structures based on depth-bounded boolean
logics (Section 2.1); define approximations of qualitative
probability structures (Section 3); show that probability
functions are approximated by suitably defined hierarchy
of belief functions (Section 4); identify the conditions un-
der which approximate qualitative probability structures are
asymptotically representable by a probability measure and,
conversely, those conditions under which a representable
qualitative probability structure can be approximated (Sec-
tion 5).

2.1. Comparative Structures

A comparative structure is a pair (A ,�) where A is a
boolean algebra and � is interpreted as a qualitative proba-
bility (relation) on A . As usual, we assume that elements of
A are closed under the boolean operations ∧,∨,¬ (which
we ambiguously denote with the symbols for logical con-
nectives), whereas ⊥ and > denote the top and bottom
elements of the algebra, respectively. Recall that A has a
natural lattice order associated to it, which is defined by
θ v ϕ iff θ ∧ϕ = θ . Finally, we shall write θ � ϕ to say
that θ is no-more-probable-than ϕ , for any θ ,ϕ ∈A . The
symmetric part of � is defined by θ ≈ ϕ iff [θ � ϕ and
ϕ � θ ]. The asymmetric part of � is defined by θ ≺ ϕ iff
[θ � ϕ and it is not the case that θ ≈ ϕ].

Definition 3 (Comparative structure) (A ,�) is a com-
parative structure if

1. � is a total preorder over A ;

2. ⊥≺>;

3. if α v β then α � β and

4. if α ∧ γ =⊥ and β ∧ γ =⊥ then

α � β if and only if α ∨ γ � β ∨ γ.

This Definition is essentially due to de Finetti (1931)
who introduced condition 4. as the qualitative counterpart
of additivity. As a consequence Definition 3 is often re-
ferred to as presenting the “de Finetti axioms”. As recalled

above, he thought of them as the logical core of uncertain
reasoning, and conjectured that they would be necessary
and sufficient for quantitative probabilistic reasoning. Take
a finite set of events A ⊇ Γ = {γ1, . . . ,γn}. Then any prob-
ability assignment γi 7→ pi, i = 1 . . . ,n leads to a relation �
on Γ defined by

γi � γ j if pi ≤ p j,

which satisfies the de Finetti axioms. The converse, namely
whether any relation � satisfying the de Finetti axioms is
representable on the real-unit interval by a finitely additive
measure, has been shown not to hold in 1959 by Kraft et al.
(1959). Since then, a variety of paths have been followed
to establishing (almost) representation, see Savage (1972);
Kranz et al. (1971); Fishburn (1996). Indeed, establishing
sufficiency turns out not to be a problem. For one effectively
needs to find properties to impose on the order� which are
stringent enough to determine a partition of equally likely
events. When this happens, one can then quantify the prob-
ability of an event as the relative frequency of “favourable”
cases over a sufficiently large number of equiprobable ones.

Definition 4 ((Almost) Representability) A compara-
tive structure (A ,�) is said to be :

• representable if there exists a unique finitely additive
probability P such that α � β iff P(α)≤ P(β );

• almost representable if there exists a unique finitely
additive probability P such that α � β implies P(α)≤
P(β ).

Note that the terminology adopted in the literature for the
notion above is quite various: in particular the notion of
representable comparative structure in some occurrences
does not include uniqueness.

3. Approximations of Comparative
Structures

3.1. Sequences of Forests

Let us begin by fixing some terminology and notation
which is needed to formalise the idea of depth-bounded
reasoning illustrated above.

Let F be any forest, whose vertices are sentences in
S L , and denote by Le(F) the leaves of F . For any sen-
tence γ ∈ F , we say that γ k-decides δ if γ `k δ or γ `k ¬δ .

We say that a leaf α ∈ Le(F) is locally closed if α 0-
decides δ , for each δ ∈ S(α). A leaf which is not locally
closed is said to be locally open. We say that a leaf α ∈
Le(F) is globally closed if α `0 ⊥ or α 0-decides any other
leaf in F . A leaf which is not globally closed is said to be
globally open.
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Finally we say that a forest F is globally (locally) open,
if each of its leaves is globally (locally) open. The same
applies for globally or locally closed forests.

We will now define a sequence of k-depth forests, start-
ing from an initial support Supp ⊆ S L . The intended
interpretation of Supp is that the sentences it contains rep-
resent the agent’s actual information. It is convenient to
assume that Supp is nonempty. So we need an extra symbol
∗, which is not part of the logical language, to denote the
special case in which the agent holds no actual information,
written Supp = {∗}. We adopt the convention that ∗ `k ϕ

stands for `k ϕ .
Depth-bounded reasoning then takes place as follows.

Each open node is expanded by two new children nodes,
representing an instance of reasoning by cases obtained by
considering a certain piece of hypothetical information and
its negation, respectively.

Definition 5 For Supp ⊆ S L ∪ {∗}, we define recur-
sively, a sequence (Fk)k∈N of depth-bounded forests based
on Supp, as follows :

1. For k = 0 we let F0 be a forest with no edges, and with
the set of vertices equal to Supp. Clearly Le(F0) =
Supp.

2. The forest Fk, for k ≥ 1 is obtained expanding at least
one leaf α as follows:

• If α is globally open, with two nodes α ∧β and
α ∧¬β , where β is an undecided subsentence
of some sentence in Supp, distinct from the root
of α .

• Otherwise, if α is globally closed, but locally
open, with two nodes α ∧β and α ∧¬β where
β is an undecided subsentence of α .

• Otherwise, if α is both locally and globally
closed, with two nodes α∧β and α∧¬β , where
β ∈S L is a sentence whose variables do not
already occur in Supp∪{α}, if there are any.

Let us notice that, when F is defined over a language
S L with finitely many propositional variables, the se-
quence of Depth-Bounded forest might be expanded only
up to a certain Fk. More precisely, there will be some k ∈N,
such that Fn = Fk for each n≥ k.

3.2. Qualitative Belief and Plausibility Comparisons

Let Γ ⊆S L . With a useful abuse, we denote by P(Γ)
both the subsets of Γ and the boolean algebra with domain
P(Γ), with the usual set-operations.

Definition 6 Let Γ ⊆S L . We call Γ- qualitative mass
any M = (P(Γ),�) which is a comparative probability
and satisfies:

For every ϕ ∈ Γ, if ϕ `0 ⊥, then {ϕ} ≈ /0

Definition 7 For any ϕ ∈ S L , and Γ-qualitative mass
M the sets

bM (ϕ) = {α ∈ Γ | α `0 ϕ, α 6`0 ⊥}

and
plM (ϕ) = {α ∈ Γ | α 6`0 ¬ϕ, α 6`0 ⊥}

are said to provide sufficient grounds and plausible grounds
for ϕ , respectively.

Definition 8 (Qualitative belief and plausibility) Let
M = (P(Γ),�) be a Γ- qualitative mass structure. The
qualitative M -based belief �b is defined by letting

ϕ �b
ψ if and only if bM (ϕ)� bM (ψ).

The qualitative M -based plausibility �pl is defined by
letting

ϕ �pl
ψ if and only if plM (ϕ)� plM (ψ).

3.3. Qualitative Sequences and their Properties

To complete our set up, we need to link the syntactical pre-
sentation of k-depth reasoning introduced in Subsection 3.1
to the qualitative version of belief and plausibility functions.
For this we need some final bits of terminology.

Definition 9 (Qualitative sequence) We say that F =
(Fk)k∈N is a depth-bounded qualitative sequence (just
qualitative sequence for short), if (Fk)k∈N is a sequence
of depth-bounded forests, and each Fk = (P(Le(Fk)),�k)
is a Le(Fk)-qualitative mass.

In what follows, we will denote by �b
k and �pl

k each of
the qualitative Fk-based belief and plausibility relations,
respectively. We will also abbreviate bFk(ϕ) with bk(ϕ),
for readability. Note that no further conditions is imposed
at this stage on the various qualitative Fk-based belief
functions. In Section 5 we will illustrate the conditions
under which the qualitative sequences determine in the
limit a comparative structure, and in particular an almost
representable one. Before doing that, let us flesh out some
interesting properties of depth-bounded forests.

Definition 10 (Maximal forests) Let (Fk)k∈N be a se-
quence of depth-bounded forests and Π ⊆S L . We say
that a forest Fk is Π- maximal if the number of sentences in
Le(Fk) which 0-depth decide ϕ for each ϕ ∈Π, is maximal
with respect to any other possible choice of hypothetical
information at the given depth. We say that the sequence is
Π-maximal if Fk is Π- maximal for each k ∈ N.
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Our first result establishes that the structure of depth-
bounded qualitative sequences provides the basis to approx-
imate qualitative probability structures. More precisely,
we first establish that the qualitative belief relations in
Definition 8 satisfy weaker analogues of the properties
of the (classical) qualitative belief relations introduced in
Wong et al. (1991). The additivity axiom of Definition 3, in
analogy with its quantitative counterpart, is not generally
satisfied by qualitative belief relations. The axiom holds
for our qualitative belief only when the leaves are locally
closed, and the resulting relations essentially amount to
comparative structures.

Lemma 11 Let F = (Fk)k∈N be a qualitative sequence.
The relation �b

k satisfies the following:

1. �b
k is a total preorder.

2. ⊥≺b
k >.

3. For any ϕ,ψ ∈S L , if ϕ `k ψ then there is a n≥ k
such that ϕ �b

n ψ . Moreover, if Π = {ϕ,ψ} and Fk is
Π - maximal, we get ϕ �b

k ψ whenever ϕ `k ψ .

4. Let ϕ,ψ,γ ∈S L , with ϕ ` ψ and ψ,χ `0 ⊥. Then
there is a k such that ϕ ∨χ ≺b

k ψ ∨χ

5. Let ϕ,χ,ψ ∈ S L , with ϕ,χ `0 ⊥ ,ϕ `0 ψ and
ψ,χ `0 ⊥. If Le(Fk) is locally closed, then ϕ �b

k ψ iff
ϕ ∨χ �b

k ψ ∨χ .

Proof

1. Follows immediately from the fact that �k is a total
order.

2. It follows from the fact that �k is a qualitative mass,
hence bk(⊥)�k /0 by Definition 6, and /0≺k bk({>}),
by 2. in Definition 3.

3. If ϕ `k ψ , any n-depth forest Fn, for n≥ k, containing
the virtual information used in a k-depth proof of ψ

from ϕ , can be used for verifying the claim. Indeed,
we will have that ϕ,α `0 ψ , for every α ∈ Le(Fn).
Hence, for every α such that α `0 ϕ (if there are any),
we obtain α `0 ψ . But this amounts to bn(ϕ)⊆ bn(ψ),
hence we get bn(ϕ) �n bn(ψ) and, by the definition
of �b

n, ϕ�b
nψ .

For the second claim, from the assumption ϕ `k ψ ,
we know that there is a k-depth forest deriving ψ from
ϕ . On the other hand, since Fk is maximal for {ϕ,ψ},
we will get ϕ,α `0 ψ for every α ∈ Le(Fk), and by
the same reasoning as in the previous case, ϕ �b

k ψ .

4. Since ϕ ` ψ , there is a n such that ϕ `n ψ . Applying
reasoning by cases, we can then obtain ϕ ∨ χ `n+1
ψ ∨χ . By 3. it then follows ϕ ∨χ �b

k ψ ∨χ , for some
k ≥ n+1.

On the other hand, bk(ϕ)∪bk(χ)≺k bk(ϕ ∨χ)

5. Let us assume ϕ,ψ,χ ∈S L such that ϕ,χ `0 ⊥ and
ψ,χ `0 ⊥. We will have that ϕ ∨χ �b

k ψ ∨χ iff

bk(ϕ ∨χ)�k bk(ψ ∨χ) (1)

Recall that, by the properties of `0, since Le(Fk) is
locally closed, we have that α `0 ϕ ∨ χ iff α `0 ϕ

or α `0 χ , and α `0 ψ ∨ χ iff α `0 ψ or α `0 χ .
Hence we get that bk(ϕ ∨ χ) = bk(ϕ)∪ bk(χ) and
bk(ψ ∨χ) = bk(ψ)∪bk(χ) . Moreover, by our initial
assumption, α 6`0 ϕ ∧χ and α 6`0 ψ ∧χ for any α ∈
Le(Fk), hence we will have bk(ϕ)∩ bk(χ) = /0 and
bk(ψ)∩bk(χ) = /0. We thus have that (1) amounts to

bk(ϕ)∪bk(χ)�k bk(ψ)∪bk(χ) (2)

which in turn, since�k is a comparative structure, and
in particular enjoys axiom 4 in Definition 3, entails:

bk(ϕ)�k bk(ψ) (3)

hence ϕ �b
k ψ .

In preparation to the next results, we need some further
notation and terminology. Let F = (Fk,�k)k∈N be a quali-
tative sequence. Given any ∆⊆ Le(Fk), we denote by dk′(∆)
the set of descendants of ∆, occurring in Le(Fk′), for any
k′ ≥ k.

Definition 12 A qualitative sequence F = (Fk)k∈N is:

• Stable if, for every k ∈N, and every ∆,Γ⊆ Le(Fk), we
have that ∆ �k Γ implies dk′(∆) �k′ dk′(Γ) for every
k′ ≥ k.

• Refinable if whenever α �b
k β for some α,β ∈ Le(Fk)

and k ∈ N, there is a k′ ≥ k such that

γ ≺b
k′ dk′({α}) for every γ ∈ dk′({β}).

• Coverable if whenever α ≺b
k β for some α,β ∈ Le(Fk)

and k ∈N, there is a k′ ≥ k and C ⊆ Le(Fk′) such that
bk′(C∩ (dk′({α})) = /0 and

dk′({α})∪C ≈b
k′ dk′({b}))

Stability is a key property for obtaining a comparative
structure from qualitative sequences, but only in the limit.
Let us illustrate with an example what happens in stable
qualitative sequences.

Example 3 Let F = (Fk) be a qualitative sequence, with
Supp= {∗}. Assume that at depth 2, we have F2 =(F2,�2)
with F2 the tree : ∗

p

q ¬q

¬p

q ¬q

17
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We have then Le(F1) = {p,¬p} and Le(F2) = {¬p∧
q, p∧¬q, p∧q,¬p∧¬q}. Let us assume:

{¬p} �1 {p} (4)
{¬p∧q} �2 {p∧¬q} �2 {p∧q} ≺2 {¬p∧¬q} (5)

Now, by stability, we will also have

d2(¬p) = {¬p∧q,¬p∧¬q} �2 d2(p) = {p∧¬q, p∧q}.

Let us now consider two formulas: ¬p∨ q and p∨ q and
verify how they are ranked at depth 1 and 2. At depth one,
we have b1(¬p∨ q) = {¬p} and b1(p∨ q) = {p}, hence,
by (4), we get ¬p∨q�b

1 p∨q. On the other hand, we have:
b2(¬p∨ q) = {¬p∧ q, p∧ q,¬p∧¬q} and b2(p∨ q) =
{¬p∧q, p∧q, p∧¬q}. Since {p∧¬q} ≺2 {¬p∧¬q}, we
will have b2(p∨q)≺2 b2(¬p∨q), hence p∨q≺b

2 ¬p∨q,
which reverts the ordering at depth 1. On the other hand, it
is easy to see that, for any formulas ϕ,ψ containing only
the variables p,q we will have that ϕ �b

n ψ for any n≥ 2,
if and only if ϕ �b

2 ψ .

We will now provide a Lemma, showing that the phe-
nomenon in Example 3 generalizes to any stable sequence.
This will be fundamental for obtaining a comparative struc-
ture in the limit in Lemma 18.

Lemma 13 Let F be a stable qualitative sequence. For
any ϕ ∈ S L , there is a threshold τ(ϕ) ∈ N, such that
bk(ϕ) = dk(bτ(ϕ)(ϕ)) for each k ≥ τ(ϕ).

Proof Pick τ(ϕ) to be the minimal number such that F
is globally closed and ϕ is decided by each of the leaves
in Le(τ(ϕ)). We need to show that for k ≥ τ(ϕ), the sen-
tences in Le(Fk) deriving ϕ can be seen as the union of the
descendants, at depth k, of sentences deriving ϕ at depth
τ(ϕ). Note that this is not always the case if we pick depth
k less than τ(ϕ). Let β ∈ bk(ϕ), i.e. β ∈ Le(Fk) and β `0 ϕ .
Since k≥ τ(ϕ), is β is a descendant of a leaf a depth τ(ϕ),
that is ,there is some α ∈ L f (Fτ(ϕ)), such that β ∈ dk(α).
We want to show that such α is actually in bτ(ϕ)(ϕ). Since
β ∈ dk(α), β is of the form α ∧ χ , and by definition of
τ(ϕ), we can safely assume that χ does not contain any
propositional variables occurring in ϕ . By definition of
`0, we thus have that α ∧ χ `0 ϕ implies α `0 ϕ , hence
α ∈ bτ(ϕ)(ϕ).

Henceforth, for any two sentences ϕ,ψ , we will denote
by τ(ϕ,ψ) the maximum of the thresholds τ(ϕ) and τ(ψ).

4. Approximating Probability Functions
This section prepares for the representation results of ap-
proximate qualitative probability structures, by building
on recent results on the depth-bounded approximation of
probability functions obtained in Baldi et al. (2020).

Recall that for Γ ⊆ S L ∪ {∗}, m : Γ → [0,1] is a
(quantitative) mass function over Γ if ∑α∈Γ m(α) = 1 and
m(α) = 0 whenever α `0 ⊥. Unless otherwise stated, we
will assume that (Fk)k∈N is a sequence of depth-bounded
forests based on Supp.

Definition 14 (Quantitative sequence) We say that F =
(Fk,mk)k∈N is a depth-bounded quantitative sequence
(quantitative sequence for short) if each mk is a mass func-
tion over Le(Fk), and for each k > 0:

(i) mk(γ∧α)+mk(γ∧¬α)=mk−1(γ) for any two leaves
γ ∧ α and γ ∧¬α in Le(Fk) with parent node γ ∈
Le(Fk−1);

(ii) mk(γ) = mk−1(γ) if γ ∈ Le(Fk−1)∩Le(Fk).

Henceforth we will let m(Γ)=∑α∈Γ m(α) and m( /0)= 0,
for Γ⊆ Supp.

Definition 15 Let F = (Fk,mk)k∈N be a quantitative se-
quence. The k-depth belief function Bk and the k-depth
plausibility function Plk are defined by letting:

Bk(ϕ) = mk(bk(ϕ)) and Plk(ϕ) = mk(plk(ϕ)),

respectively.

In the following, we recall the key approximation result of
Baldi et al. (2020), but we adapt it to the present setting,
where we also admit an infinite language.

Theorem 16 Let P : S L → [0,1] be a finitely additive
probability function. Then there is a quantitative sequence
F based on Supp = {∗} such that, for each sentence ϕ ,
P(ϕ) = lim

k→∞
Bk(ϕ).

Proof First, let us consider the case where |L | = n.
Picking Supp = {∗} we define a quantitative sequence
F = (Fk,mk)k∈N based on ∗ such that Le(Fn) is the set
of maximal (classically) consistent conjunctions of liter-
als from L , denoted AtL , and mn(α) = P(α) for each
α ∈ AtL = Le(Fn). Note that, once we fix mn, Definition
14 forces us to uniquely determine all the mk for k < n.
Now, we obtain that, for each sentence ϕ ∈S L

P(ϕ) = ∑
α∈AtL

α`ϕ

P(α) = ∑
α∈AtL
α`0ϕ

P(α) = mn(bn(ϕ)) = Bn(ϕ).

Moreover, at depth n, all the propositional variables in
L will have been used as hypothetical information, hence
Fk = Fn for any k ≥ n, and Bk(ϕ) = Bn(ϕ) = P(ϕ) for any
k ≥ n . This settles the claim.

If L is countable, a similar argument shows that for
each sentence ϕ ∈ S L there is a τ(ϕ) ∈ N such that
P(ϕ)=Bτ(ϕ)(ϕ), and Bn(ϕ)=Bτ(ϕ)(ϕ) for each n≥ τ(ϕ).
Hence, what is peculiar to the countable case in the fact that
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the index k at which Bk(ϕ)s equals P(ϕ) may be distinct
for distinct elements of S L .

Whether L is finite or countable, P(ϕ) = lim
k→∞

Bk(ϕ).

Note that the approximating quantitative sequence pro-
vided in the Theorem above is not unique, but different
approximating measures can give rise to the same probabil-
ity in the limit.

5. Representation Results

We are now ready to introduce the central results of this
work, which identify the conditions of representation of
approximate qualitative probability.

For F = (Fk)k∈N a qualitative sequence, denote by AF

the Lindenbaum-Tarski algebra over the language of F .
The elements of AF , i.e. the equivalences of formulas in
the language of F will be denoted by α , β ,. . .

Definition 17 (Limit structures) We say that the quali-
tative structure (AF ,�) is the limit of F if � is defined
by

α � β iff there is a k such that α �b
n β , for every n≥ k,

α ∈ α , and β ∈ β .

Lemma 18 If a qualitative sequence F is stable, then its
limit (AF ,�) is a comparative structure.

Proof The ordering property of � follow from Lemma
11. Reflexivity of � is easy. For transivity, assume α � β

and β � γ . Then there exist j,k ∈ N, such that α �b
n β and

β �b
m γ for every n≥ k, m≥ j, α ∈ α , and β ∈ β . Suppose

w.l.o.g. that k ≥ j. Then we get β �b
n γ for every n ≥ k,

hence by the transitivity of �b
n, we get α �b

n γ , for every
n≥ k, and thus α � γ .

To see that � is total take ϕ 6= ψ . Now, since �b
τ(ϕ,ψ)

is total, we will have either ϕ �b
τ(ϕ,ψ) ψ or ϕ �b

τ(ϕ,ψ) ψ .
Assuming w.l.o.g. that the first is the case, by Lemma 13,
we will have ϕ �b

n ψ for every n≥ τ(ϕ,ψ), hence ϕ � ψ .
As for additivity, suppose that ϕ ∧χ =⊥ and ψ ∧χ =⊥.

We will show that ϕ � ψ iff ϕ ∨ γ � ψ ∨ γ . If ϕ � ψ , by
the definition of � there exists a k such that ϕ �n ψ for
every n ≥ k, ϕ ∈ ϕ , ψ ∈ ψ . Now, pick a k′ ≥ k such that
Le(Fk′) is locally closed. Hence, by Lemma 11(5), ϕ �k′ ψ

holds if and only if ϕ∨χ �k′ ψ∨χ . Furthermore this holds
for any n≥ k′. Hence we get ϕ � ψ iff ϕ ∨χ � ψ ∨χ , as
required.

Finally we show that, if ϕ v ψ , then ϕ � ψ . By the
definition of the Lindenbaum-Tarski algebra, we will have
that, for any ϕ ∈ ϕ , ψ ∈ψ , ϕ `ψ . On the other hand, since
the depth-bounded logics approximate `, there will be a
k such that ϕ `k ψ . By Lemma 11(3) we will have that
ϕ �b

n ψ , for n≥ k. Now, for any n′ ≥max(n,τ(ϕ,ψ)), we

will have ϕ �b
n′ ψ , for any ϕ ∈ ϕ , ψ ∈ ψ . We have then

obtained ϕ � ψ .

Before introducing our first result, let us recall an important
notion in Savage (1972).

Definition 19 A comparative structure (A ,�) is said to
be fine if, for any α ∈ A such that ⊥ ≺ α , there exists
a partition β1, . . . ,βn of A such that βi ≺ α for each i =
1, . . . ,n.

Note that fine algebras are necessarily infinite. In Savage
(1972), it is shown that fine comparative structure are al-
most representable. This will be the key to our result in
what follows.

Theorem 20 If a qualitative sequence F is stable and
refinable, then its limit (AF ,�) is almost representable.

Proof By Lemma 18, we know that (AF ,�) is a com-
parative structure. As a consequence of the Savage’s repre-
sentation theorem Savage (1972), it suffices to show that
(AF ,�) is fine. To see this, let ϕ ∈ AF be such that
⊥ ≺ ϕ , i.e. there exists τ(ϕ) ∈ N such that ⊥ ≺b

n ϕ for
every n≥ τ(ϕ), ϕ ∈ ϕ .

Now, pick any β ∈ Le(Fτ(ϕ)). For any α ∈ bτ(ϕ)(ϕ)

such that α �b
k β , apply refinability, obtaining that, for

some k(α,β ) ∈ N, {β ′} ≺b
k(α,β ) dk(α,β )(α) for each β ′ ∈

dk(α,β )(β ).
Let now

k′ = max
β∈Le(Fk)

max
α∈bτ(ϕ)(ϕ)

α�b
kβ

k(α,β ). (6)

By stability, (6) yields β ′ ≺b
n dn(α) for every β ′ ∈ Le(Fn),

with n≥ k′, α ∈ bτ(ϕ)(ϕ) .
Now, by Lemma 13 we have:

bn(ϕ) = dn(bτ(ϕ)(ϕ)) =
⋃

α∈bτ(ϕ)(ϕ)

dn(α).

We thus get β ′ ≺b
n ϕ , for every β ′ ∈ β ′, ϕ ∈ ϕ and n≥ k′,

that is, β ′ ≺ ϕ for each β ′. Since β ′ ranges over all the
leaves at depth n, it is easy to see that the corresponding
β ′s form a partition of the boolean algebra AF . This shows
that the comparative structure (AF ,�) is fine, as required.

Note that, as a consequence of the result in Savage (1972)
and Theorem 20, refinability forces the resulting limit struc-
ture to be infinite. We will now sketch a simple variant of
our result, for the finite case.

Let us first recall the following definition from Krantz
et al. (1971).
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Definition 21 We say that a comparative structure (A ,�)
is equally spaced iff for any ϕ,ψ ∈ A such that ϕ ≺ ψ ,
there exists a γ ∈A such that ϕ ∧ γ =⊥, and ϕ ∨ γ ≈ ψ .

In what follows, let us fix F to be a stable qualitative
sequence, defined over a language S L with finitely many
propositional variables. Recall that the sequence F reduces
in this case to a finite sequence, say {Fk}k∈{1,...,n}. Let us
call Fn the final qualitative mass structure of F . Note that,
by the definition of depth-bounded forests, the support Fn
of Fn will be locally closed. We obtain the representation
result for the finite case as follows.

Theorem 22 If F is a stable and coverable qualitative se-
quence over a finite language, its limit AF is representable.

Proof Note that AF will be generated by finitely many
propositional variables, hence it is finite. Theorem 6 in
Krantz et al. (1971) shows that equally spaced finite com-
parative structures are representable. It will thus suffice to
show that AF is equally spaced. Assume ϕ ≺ ψ . Then for
every ϕ ∈ ϕ,ψ ∈ ψ , we get ϕ ≺b

n ψ . Since F is coverable
and Fn is the final qualitative mass structure, we get that
there is a set C ⊆ Le(Fn) such that bn(C∩{ϕ}) = /0 and
{ϕ}∪C≈b

n ψ . Let γ be the disjunction of the formulas in C.
Since Fn is locally closed, we get bn({ϕ}∪C) = bn(ϕ ∨ γ).
Hence we have ϕ ∨ γ ≈b

n ψ . On the other hand, note that
bn(α) = bn(α

′) for any α ′ ∈ α . Hence, from (ϕ ∨ γ)≈b
n ψ

we get ϕ ∨ γ ≈ ψ . This shows that AF is equally spaced.

We conclude by showing that almost representable com-
parative structures can be qualitatively approximated. This
makes crucial use of our result on the approximation of
probability via Belief Functions (Theorem 16).

Theorem 23 Let A be the Lindenbaum-Tarski algebra
over L . If (A ,�) is an almost representable comparative
structure, then there exists a qualitative sequence F such
that (A ,�) is the limit of F .

Proof Let P be the probability measure almost represent-
ing (A ,�). By Theorem 16, there is a sequence of k-depth
belief functions Bk and k-depth mass functions approxi-
mating P. Let us define the corresponding �k comparative
structure, by letting Γ �k ∆ iff mk(Γ) ≤ mk(∆) for each
Γ,∆ ⊆ Le(Fk). For any α,β ∈ S L , we will then have
α �b

k β iff Bk(α)≤ Bk(β ). We are then left to prove that
� is the limit of the �b

k , i.e. we need to prove that α � β

iff there exists a k such that α �b
n β for every n≥ k. Since

P represents �, from α � β we get P(α) ≤ P(β ). There
exists then a Bk such that Bk(α) = P(α) and Bk(β ) = P(β ).
Hence we will have Bn(α)≤ Bn(β ) for every n≥ k, which
by definition of �n, implies α �b

n β .

6. Conclusions and Future Work

We have presented a hierarchy of depth-bounded qualita-
tive belief relations, which approximate classical compara-
tive structures. We identified conditions to be imposed on
such approximation sequences in order to obtain structures
which are uniquely representable by classical, finitely ad-
ditive, probability functions in the limit. This was only an
initial step, towards the implementation of these bounded
qualitative belief relations in concrete reasoning scenarios.
The first future research direction is investigating the com-
plexity of satisfiability and inference problems involving
our qualitative approximations. In particular, we believe
that the satisfiability problem will be tractable, since the re-
sults that we obtained in Baldi et al. (2020) should transfer
rather smoothly to the qualitative setting.

Concerning inference, following a reviewer’s sugges-
tion, we plan also to investigate counterparts of credal and
Bayesian networks, on the basis of both our quantitative
approximations in Baldi et al. (2020) (recalled here in Sec-
tion 4) and our qualitative approximations investigated here.
The literature spanning from Wellman (1990), and still very
active in artificial intelligence Mauá and Cozman (2020) is
typically concerned with devising algorithms and assessing
the complexity of inference problems related with the shape
of the networks. Our line of work so far, on the other hand,
has aimed at devising measures which are already tractable,
even in the absence of assumptions of independence, as en-
coded in the networks. Understanding the relation between
our work and various forms of qualitative networks in the
literature, would require first a deeper investigation of the
notion of conditional probability and independence in the
qualitative bounded setting, that we have only partially de-
veloped for the quantitative case so far. In particular, for the
qualitative setting, we plan to analyze the relation between
conditioning and the use of hypothetical information in a
more explicit form than what we did here. One possible
route is considering comparative structures which take con-
ditional object as primitives, on the model of what has been
done already in early work on the subject, e.g. in Koop-
man (1940), and develop suitable approximations of those
structures.

Finally, an essential part of our research program, both
conceptually relevant and application-oriented, will be then
to investigate the structures presented here in connection
with decision-theoretic frameworks. In particular, we will
develop a bounded notion of preference, on the model of
the bounded qualitative belief presented here, and as a justi-
fication for its basic principles, as originally done in Savage
(1972). Our general aim here is obtaining suitable represen-
tation theorems, providing principles of maximization of
expected utility for bounded agents.
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