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A B S T R A C T   

In this work, we tested different variants of a Forensic Automatic Speaker Recognition (FASR) system based on 
Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network (ECAPA-TDNN). To 
this scope, conditions reflecting those of a real forensic voice comparison case have been taken into consideration 
according to the forensic_eval_01 evaluation campaign settings. Using this recent neural model as an embedding 
extraction block, various normalization strategies at the level of embeddings and scores allowed us to observe the 
variations in system performance in terms of discriminating power, accuracy and precision metrics. Our findings 
suggest that the ECAPA-TDNN can be successfully used as a base component of a FASR system, managing to 
surpass the previous state of the art, at least in the context of the considered operating conditions.   

1. Introduction 

Forensic Speaker Recognition (FSR)—also known as Forensic 
Speaker Identification (FSI), Forensic Speaker Comparison (FSC) and 
Forensic Voice Comparison (FVC)—refers to different ways of discrim-
inating one person from another based on speech. In this respect, the 
limitations of forensic speech material and the specific needs of 
reporting and interacting with a court of law are taken into consider-
ation (Drygajlo et al., 2015). In a typical scenario, the FVC is performed 
between the voice of an anonymous offender, recorded during wire or 
environmental tapping, and a voice recording of a known speaker, the 
individual who is being investigated as the potential offender. 

To this purpose, a Bayesian approach has been widely established, 
the Likelihood Ratio (LR) Framework, recommended by European 
Network of Forensic Science Institutes (Drygajlo et al., 2015). Accord-
ingly, the task of the forensic scientist is to provide the court with a 
strength-of-evidence statement in answer to the question: “How much 
more likely are the observed differences between the known and ques-
tioned samples to occur under the hypothesis that the questioned sample 
has the same origin as the known sample than under the hypothesis that 
it has a different origin?” (Morrison, 2010). In a typical setting, the 
different-origin (i.e., the different-speaker, or defense) hypothesis is that 
the unknown sample originates from a different person selected at 
random from a relevant population of speakers. 

Advancements in digital signal processing and machine learning 

make it possible to employ fully automatic approaches to the FSR 
problem. A Forensic Automatic Speaker Recognition (FASR) system is 
therefore a technical tool that allows the appropriate vocal character-
istics to be extrapolated from the voice recordings, and compared with 
each other, while the human role is almost exclusively restricted to 
providing the audio recordings and interpreting the output. On the other 
hand, the expert’s activity is no less important and delicate than the use 
of semiautomatic techniques: actually, this approach requires that the 
expert extract the vocal features from the signal one by one. As a 
consequence, (s)he must be aware of a possible score bias due to audio 
quality and needs to carry out a careful preliminary evaluation of the 
quality of the signal. Possibly, the expert should provide the software 
with only the segments recorded with sufficient quality and of sufficient 
duration, describing in detail and justifying the choices he has made. 

FASR usually relies on previous research on Automatic Speaker 
Recognition (ASR) used in non-forensic settings, therefore the tech-
niques used in FASR, including acoustic analysis, signal processing, and 
modeling, closely resemble those used in ASR for other applications. The 
main difference in forensic applications is that the final step has to 
produce a result suitable for presentation and discussion in a forensic 
case: i.e., in the form of a LR of the two above mentioned alternative 
hypotheses. Accordingly, a crucial question arises: how to empirically 
validate FASR systems under casework conditions? In the last years, 
substantial advancements have been done in this sense, and validation 
under case work conditions has become a standard practice (cf. 
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Morrison, 2014, for a review, and Morrison et al., 2021, for a consensus 
on validation of forensic voice comparison; see also Banks et al., 2020). 
When a FASR system has been empirically validated, it remains to un-
derstand whether its output is suitable to be objectively interpreted in 
court. Recently, a multi-laboratory evaluation of forensic voice com-
parison systems, under conditions reflecting those of a real forensic case, 
has been launched: that is, forensic_eval_01, 2016–2019 (the results are 
merged in a special issue of the journal Speech Communication). This is an 
evaluation campaign born from the observation that, in the field of 
Forensic Voice Comparison, the need to empirically test the validity and 
reliability of the system had remained mostly unsatisfied. Between 2016 
and 2019, some independent laboratories participated in this evaluation 
in order to test the principle FASR system available. Testing new ap-
proaches on the basis of common experimental conditions allows to get 
an idea of the performance of different systems in a comparative 
perspective. 

Recently, Emphasized Channel Attention, Propagation and Aggre-
gation in Time Delay Neural Network (ECAPA-TDNN) was presented as 
a deep-learning model for the Speaker Verification (SV) task, which 
demonstrated excellent performance compared to the pre-existing state 
of the art. The aim of this work is to evaluate the performance of FASR 
systems based on this neural model, under conditions reflecting those of 
a real FVC casework, according to the previous cited, forensic_eval_01 
setting (Morrison and Enzinger, 2016). 

2. Materials and methods 

The recordings provided in the context of the forensic_eval_01 setting 
include a simulated police interview activity (the known-speaker con-
dition) and an information exchange activity via a telephone call from a 
landline telephone to a call center (the questioned-speaker condition). 
The original audio files were recorded in soundproof booths at high fi-
delity. In the information exchange task, each speaker was recorded on a 
different channel and was in a different audio booth, communicating via 
a telephone system. In the interview task, the interviewer was face-to- 
face with the interviewee, but he was relatively far from the micro-
phone and avoided speaking at the same time as the interviewee (for 
more details on the data collection protocol see Morrison et al., 2012). 
The audio files used for the comparison tests were obtained starting from 
the high-quality ones with the subsequent application of digital signal 
processing techniques, to replicate the effects of transmission through 
telephone systems, with the addition of noise, reverberation, and final 
compression. The simulated police interview recordings included sub-
stantial room reverberation, and a background noise from a ventilation 
system, while the telephone call recordings included background office 
noise (multi-speaker babble and typing noises). A detailed description of 
these procedures is provided in Enzinger et al., 2016. Thus, recordings 
were obtained that reflect both speaking style and recording conditions, 
both for speakers in the questioned-speaker condition and speakers in 
the known-speaker condition. The anonymous speaker recordings were 
truncated to 46 s and the known speaker recordings to 125.694 s (based 
on the shortest interview length recorded in the database). 

The training and test data to be used in the evaluation finally comes 
from a total of 166 speakers: 88 of whom recorded in three non- 
simultaneous recording sessions (at intervals of approximately one 
week), 35 recorded in two non-simultaneous recording sessions, and 44 
registered in one session. The training data consists of a total of 423 
recordings of 105 speakers (191 recordings in the anonymous speaker 
condition and 232 in the known speaker condition), while the test data 
consists of a total of 223 recordings of 61 speakers (61 recordings in 
condition of anonymous speaker and 162 in condition of known 
speaker). These sessions allow to perform 111 same-speaker compari-
sons (from 61 unique speakers) and 9720 different-speakers compari-
sons (from 3660 unique pairs of speakers). 

As part of the evaluation, the Forensic Voice Comparison software 
system can be trained with the training data of forensic_eval_01 and with 

any other datasets held by the participant. However, the system must be 
tested, and possibly calibrated, using only the test data provided. 

The evaluation metrics chosen to describe the system performance 
are both numerical and graphical. The numerical metrics taken into 
consideration were the following (cf. Brümmer and du Preez, 2006; van 
Leeuwen and Brümmer, 2007; González-Rodríguez et al., 2007; Morri-
son, 2011; Drygajlo et al., 2015; Meuwly et al., 2017):  

- Cllr
pooled (Log likelihood ratio cost): a single value summarizing the 

overall system quality, given by the Eq. (1): 
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LRss are the likelihood ratio values in the case of same-speaker 
comparison, while LRds are likelihood ratio values in the case of 
different-speakers comparisons. Since LRss values much greater than 1 
better support the same-speaker hypothesis, and LRds values much less 
than 1 better support the different-speakers hypothesis, smaller values of 
Cllr

pooled indicate better performances. On the contrary, a system which 
provides no useful information and always responds with a likelihood 
ratio of 1 will result in a Cllr

pooled value of 1.  

- 95 % CI (95 % credible interval): a metric of precision (reliability) of 
the output of the system. It measures the variability of the resulting 
multiple likelihood ratio values when a questioned speaker recording 
is compared with all available (if any) recordings belonging to a 
same speaker (which may be the same as the questioned speaker or a 
different one). This metric will be calculated using the parametric 
procedure described in Morrison (2011), and is reported on a scale of 
± orders of magnitude (= log10 scale).  

- Cllrmean (Log likelihood ratio cost, accuracy only): it is a measure of 
the accuracy (validity) of the output of the system. According to 
Morrison and Enzinger, 2016, “this is the same as the Cllr

pooled metric, 
but whereas all the test results were pooled to calculate Cllr

pooled, for 
Cllrmean the calculations were performed on the means of the groups 
defined in the description of the 95 % CI metric” (a group being the 
resulting multiple likelihood ratio values as described above). 

- Cllrmin (Discrimination loss), a measure of the quality of the extrac-
tion stage (see later), i.e., the quality of the score. It is a Cllr computed 
after the LR values from test results have been optimized using the 
non-parametric pool-adjacent-violators (PAV) procedure, which in-
volves training and testing on the same data. Therefore, this metric it 
is not representative of the expected performance when new test data 
are input to the system. According to Meuwly et al. (2017), the 
discrimination power represents the capability to distinguish 
amongst forensic comparisons where different propositions are true.  

- Cllrcal (Calibration loss): it is equal to the difference Cllr
pooled - Cllrmin . 

It is a measure of the quality of the presentation stage (see later), i.e., 
of the likelihood ratio calibration.  

- EER (Equal Error Rate): another largely used metric to evaluate the 
discriminating power of the system. Likelihood ratios test values can 
be combined with some prior odds to achieve posterior odds; in turn, 
posterior odd can be matched against a threshold to classify a test 
comparison as same-speaker (prosecutor hypothesis) or different- 
speakers (defense hypothesis). By this way, false “identification” 
and false “rejection” error rate can be computed as proportion of 
wrong classifications. EER is achieved by adjusting the priors and the 
threshold in such a way that the two error rates are equals, and the 
resulting error rate is called the EER. In the context of foren-
sic_eval_01, EER is calculated using the Receiver Operator Charac-
teristic Convex Hull method (Brümmer and de Villiers, 2013). 

Furthermore, the following graphical metrics were taken into 
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consideration:  

- Accuracy and precision metric plot, representing the combination of 
Cllrmean, 95 % CI, and Cllr

pooled 

- Tippett plot (also see Meuwly, 2001; Morrison, 2010): it superim-
poses the cumulative proportion of log likelihood ratios with values 
less than the value on the x axis, achieved for same-speaker com-
parisons, and the cumulative proportion of log likelihood ratios with 
values greater than the value on the x axis, achieved for 
different-speakers comparisons. In general, further to the right the 
same-speaker curve and the further to the left the different-speakers 
curve, the better to the performance of the system. Also, EER can be 
read off as the y axis value corresponding to the point where the two 
curves cross.  

- Detection Error Tradeoff (DET) plot: this graphic is described in 
Martin et al. (1997), Drygajlo et al. (2015), Meuwly et al. (2016). It 
can be related to the Tippett plot, in the sense the DET plot represents 
a parametric relation between the false “rejection” and false “iden-
tification” error rate, in all possible values for priors and threshold 
values (as described above). In general, the closer the DET curve is to 
the origin (zero error rates), the better the performance. In the 
context of forensic_eval_01, the plots are drawn using the Receiver 
Operator Characteristic Convex Hull method (see Brümmer and de 
Villiers, 2013).  

- Empirical Cross Entropy (ECE) plot. The ECE value is calculated by 
Eq. (2) 

ECE =
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(2)   

where Pss and Pds are the priors for same-speaker and different-speakers 
hypotheses. The plot represents ECE as a function of the prior odds Pss / 
Pds, calculated in three different settings: a) using LR values from the test 
results, representing the actual system performances: in this case, ECE 
(0) is equal to the Cllr

pooled; b) using LR values from the test results after 
the PAV optimization: in this case, ECE(0) is equal to the Cllrmin; c) the 
ECE for a system that always output LR=1. ECE plots can reveal cali-
bration problems. See also Ramos Castro (2007), Ramos & 
González-Rodríguez (2013), Ramos et al. (2013), Drygajlo et al. (2015), 
Meuwly et al. (2016). 

2.1. System description up to the score level 

In recent years, Deep Neural Networks (DNN) that map variable- 
length utterances to fixed-length vectors (generally called embeddings), 
have emerged as state-of-the-art in speaker recognition, supporting, or 
more often replacing, the use of i-vectors (Dehak et al., 2011). In a typical 
non-forensic application, two utterances can be compared by calculating 
some distance (similarity) metric between the corresponding embedding 
vectors and comparing the result against a decision threshold. Among 
different proposals, the x-vector architecture (Snyder et al., 2018) and 
their improvements (Snyder et al., 2019; Zeinali et al., 2019; Gar-
cia-Romero et al., 2020) have shown excellent performances over time. 
Among those innovations, Time Delay Neural Network (TDNN) has been 
proposed, in which statistic pooling is used to map utterances to em-
beddings. Based on this architecture, Desplanques et al. (2020), recently 
have proposed the ECAPA-TDNN, that includes multiple enhancements 
to the baseline TDNN-based x-vector. A detailed description of the 
proposed architecture and components is out of the scope of the present 
work. However, it may be convenient to point out that, according to 
Desplanques et al. (2020), enhancements include restructuring the 
frame layers into 1-dimensional Res2Net modules (Gao et al., 2021) 

with impactful skip connections, also introducing 
Squeeze-and-Excitation (SE) blocks in these modules to explicitly model 
channel interdependencies. Moreover, hierarchical features from 
different network layers are aggregated and propagated, and the sta-
tistics pooling module has been improved with channel-dependent 
frame attention, to make able the network to focus on different sub-
sets of frames during each channel’s statistics estimation. Fig. 1 repre-
sents the schematics of the network topology, which also benefits from 
the introduction of elements of the popular Residual Network archi-
tecture (ResNet; cf. He et al., 2016). 

For the present work, we used the ECAPA-TDNN model available on 
the Hugging Face platform,1 which was pre-trained using Voxceleb 1 +
Voxceleb2 data sets and Additive Margin Softmax Loss, already imple-
mented within the SpeechBrain toolkit (Ravanelli et al., 2021), a 
well-known Open-Source Conversational AI Toolkit. 

At frame level input, the model is configured to work with 80 log Mel 
filter banks energies: indeed, for the x-vector systems, such features have 
been found to be more effective (see Landini et al., 2020; Alam et al., 
2020, Lee et al., 2020) than traditional mel-frequency cepstral co-
efficients (MFCCs, by Davis et al., 1980). Moreover, the system has 1024 
channels in the convolutional layers, the dimension of the bottleneck in 
the SE-Block and attention module set to 128, the scale dimension s in 
the Res2Block (Gao et al., 2021) is set to 8, and there are 192 nodes in 
the final fully-connected layer. The model has more than 20 million 
trainable parameters. 

The trained network is essentially used to extract a single 192-dimen-
sion embeddings vector from every single utterance. 

2.2. Score-level methods and evaluation layout 

In general, a FSR system operation can be decomposed in two 
sequential stages (Brümmer and du Preez, 2006): the extraction stage, 
and the presentation stage. The extraction stage refers to the task of 
extracting information from the input speech into a numeric score s, 
with the only requirement that more positive scores favor the 
same-speaker hypothesis, and more negative scores favor the 
different-speaker hypothesis. The presentation stage refers to presenting 
the score in a form that is useful to the user application, i.e., in the case 
of forensic application, in a forensic LR. 

In the present work, four system variants have been implemented 
and tested, all sharing the same architecture and configuration of the 
ECAPA-TDNN module, which is used to convert each single utterance 
into the corresponding embeddings vector. This is a first step of the 
extraction stage. The four systems differ in the second step of the 
extraction stage, in which the two embeddings to be compared are input 
to a score computation scheme, to output a single numeric score that 
matches the above requirement. 

Furthermore, in all cases the presentation stage remains the same: i. 
e., converting the score to the required forensic LR. This procedure 
(known as calibration) is implemented in the present work by means of 
the “one-or-two-speakers-leave-out” cross-validation approach, as 
described heareafter. First, the set of all scores produced by comparing 
each utterance of the test set in the questioned speaker condition against 
any other utterance of the test set in the known-speaker condition is 
calculated. Then, for each score si in that set, the LR value for si is 
calculated as the ratio between the same-speaker and the different- 
speakers probability densities, evaluated in si. The same-speaker prob-
ability density is computed as the Kernel Density Estimate (Parzen, 
1962) built on all the same-speaker scores, except the scores generated 
by the speakers that produced si. The latter speakers are in fact two 
distinct speakers, when si is a different-speaker score, but they are two 
coinciding speakers (therefore a single speaker), when si is a 
same-speaker score. The different-speakers probability density is the 

1 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb 
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Kernel Density Estimate built on all the (different-speakers) scores 
originated from comparisons between the utterance in the questioned 
condition that originated si, against all the utterances of other speakers 
in the known-condition. The procedure is repeated for each si score of 
the set. In such a way, there is no chance that the LRs computations were 
biased due to any information about the test speaker(s). It is worth 
specifying that the use of the test dataset to train the final score to 
likelihood ratio conversion, as in the way indicated above, i.e. leaving 
out all the utterances (or, equivalently, the scores of the speakers being 
tested), is allowed by the forensic_eval_01 benchmark (Morrison and 
Enzinger, 2016: 122). 

In a first system variant (SYS1), the comparison score is simply 
computed as the well-known cosine similarity scoring function between 
the two input embeddings vectors w1 and w2: 

score(w1,w2) =
w1⋅w2

‖ w1‖‖w2‖

while the provided training data are not used at all. This system variant 
is presented essentially as a baseline for those that follow below. 

In a second system variant (SYS2), all the embeddings computed 
from the entire training data set are used as normalization cohort to 
implement a Symmetric Normalization (S-norm) (Shum et al., 2010) of 
the scores. In this procedure, the questioned-condition embedding is 
compared with each embeddings vector of the cohort, obtaining a set of 
scores, from which the normalization statistics (mean and standard 
deviation) are calculated. The suspect condition embedding is also 
compared with each embeddings vector of the cohort, obtaining a sec-
ond set of scores, and a second pair of normalization statistics (a second 
mean and a second standard deviation). Finally, the last normalized 
score is obtained by normalizing the score with both the statistics sets 

(subtracting the mean and dividing by the standard deviation), and then 
taking the average of the two resulting values. 

In a third system variant (SYS3), the test embeddings are directly 
normalized instead of the scores. All the embeddings computed from the 
entire training set is considered as normalization cohort and the mean 
and the standard deviation of each i th component of the embeddings 
vectors of the cohort are calculated. The i th normalization statistics are 
then used to normalize the i th component of the two test embeddings. 
Finally, the cosine similarity score is computed between the two 
normalized embeddings vectors. 

The last system variant (SYS4) is like SYS3 with the difference that 
the cohort used to normalize the embeddings no longer comes from the 
entire training set but is automatically selected within the training set. 
To normalize the questioned-condition embeddings, the cohort 
composed of the 100 utterances/embeddings in the training set having 
the highest cosine similarity score is used. Similarly, we proceed for the 
suspect condition embeddings. 

3. Results 

The results achieved by the four systems (SYS1–4) are represented in 
Figs. 2-3 and in the Table 1. Fig. 2 provides Tipplet plots with precision 
information and ECE plots, while Fig. 3 provides plots for DET and 
combination of Cllrmean, 95 % CI, and Cllr

pooled . 
Table 1 reports the numerical metrics achieved by the different 

variants of the proposed system (SYS1–4) together with the summary 
outcomes of the forensic_eval_01 (Morrison and Enzinger, 2019), and the 
new alpha version of the E3FS3 (E3 Forensic Science System). The latter 
is a recent Forensic Voice Comparison system based on x-vectors and 
ResNet, being developed by the Forensic Data Science Laboratory at 

Fig. 1. Left diagram: network topology of the ECAPA-TDNN. k is the kernel size and d is the dilation spacing of the Conv1D layers or SE-Res2Blocks. C (=1024) and T 
are the channel and temporal dimension of the intermediate feature-maps respectively. S is the number of training speakers. BN stands for Batch Normalization (Ioffe 
and Szegedy, 2015). Right diagram: the SE-Res2Block of the ECAPA-TDNN architecture. The standard Conv1D layers have a kernel size of 1. The central Res2Net 
Conv1D with scale dimension s = 8 expands the temporal context through kernel size k and dilation spacing d. Adapted from Desplanques et al. (2020). 
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Aston University, with the contributions coming from other research 
laboratories (Weber et al., 2022). The various systems are listed in 
descending order with respect to the value of Cllrpooled, so the systems 
listed lower in the table performed better overall than the systems that 
are listed higher. 

4. Discussion 

SYS1, where the comparison score is given by the cosine similarity of 
the test embeddings, without any kind of normalization, and without 
using the provided training data, can be considered as a baseline system 
for the other variants (SYS2–4). Experimental results show that SYS1 
cannot compete with either the more recent commercial products such 

as Nuance 11.1, Vocalize 2019A and Phonexia BETA4, or E3FS3α. This 
may be due precisely to the fact that the tested configuration does not 
take advantage of the available training data, which instead are used in 
the systems just mentioned. 

On the other hand, results change considerably for SYS2–4 variants, 
which instead exploit the training data. 

Looking at SYS2, where the training data are used as normalization 
cohort to perform S-norm score normalization, almost all the metrics 
improve, up to the level of vocalize 2019A and beyond. The reason for 
this improvement probably lies precisely in the introduction of the 
normalization of the score: this procedure is considered very important 
in order to improve the performance of the SV task in mismatched 
conditions, as in the casework of the present evaluation, where one voice 

Fig. 2. Graphs on the left of the figure: Tipplet plots with precision. The solid curve that tends to increase represents the cumulative proportion of Log10 (LR) with 
values less than the value on the horizontal axis, achieved for same-speaker comparisons, while the solid curve with tends to decrease represents the cumulative 
proportion of Log10 (LR) with values greater than the value on the horizontal axis, achieved for different-speakers comparisons. Dashed lines represent the 95 % CI in 
both cases. Graphs on the right of the figure: ECE plots. The solid line is achieved using LR values from the test results, and it represents the actual system per-
formances: on this curve, ECE(0) is equal to the Cllrpooled . The dashed line is achieved using LR values from the test results after the PAV optimization, and ECE(0) is 
equal to the Cllrmin . Finally, the dotted line represents a system that always outputs LR=1, as a reference. 
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is recorded on one type of channel (telephone) and the other on another 
type (environmental) (on this issue, see, for instance, Ortega-Garcia 
et al., 1999; Matejka et al., 2017). 

With SYS3, all metrics improve compared to SYS2, except 95 % CI, 
which is slightly higher (1.170, compared to 1.019). The difference with 
SYS2 was that the training data was used not to normalize the scores, but 
to directly normalize the vectors of embeddings. The strategy seems to 
work, even if it seems to lose some precision in terms of 95 % CI. Also, 
this variant performed better than E3FS3α and Phonexia BETA4 overall, 
except for 95 % CI, Cllr min, and EER. 

Finally, by restricting the cohort for the normalization of the em-
beddings vectors to the 100 embeddings most similar respectively to the 
two test utterances/embeddings, SYS4 obtains further important im-
provements. All metrics get better, not only compared to SYS3 but also 
compared to E3FS3α and Phonexia BETA4, for exception, again, of 95 % 
CI (which falls behind the other three variations, as shown in Fig. 3). 

5. Conclusion 

This experiment has shown how the recent ECAPA-TDNN model can 
be very successfully used as a component of a Forensic Automatic 
Speaker Recognition system. The different variants tested were vali-
dated on the basis of a typical case, according to the setting of the for-
ensic_eval_01 evaluation campaign. We also demonstrated that the choice 
of a normalization technique can be decisive for achieving good per-
formance. SYS1, which runs without normalization, gets a virtually 
identical Cllr to Nuance 11.1, which uses adaptive-symmetric-norm. 

SYS2, which uses the normalization technique, has a better Cllr than 
both Nuance 11.1 and Vocalize 2019. This demonstrates the intrinsic 
potential of ECAPA-TDNN embeddings. The normalization techniques 
tested in SYS3 and SYS4 allow even better performance, at least in terms 
of Cllr, but are still based on the same embeddings. The two ele-
ments—namely the ECAPA-TDNN model and the normalization 
technique— cooperate in achieving the final performance, exactly like, 
in the other products mentioned, the backend cooperates with the fea-
tures coming from the previous modeling stage2. 

Since some commercial tools were also validated within this 
campaign, it was also possible to compare the performances obtained 
with ECAPA-TDNN with those systems (although this is not the main 
purpose of our research). 

Furthermore, as rightly pointed out by the promoters of the foren-
sic_eval_01 campaign, the test-bed concerns a typical but specific case of 
vocal comparison. However, the results relating to the performance of 

Fig. 3. DET plot (first axes on the left), and combination of Cllrmean, 95 % CI, and Cllr pooled, for SYS1–4 variants.  

Table 1 
Normal font: performance metrics for the best-performing variant of each system of each system that participated in the forensic_eval_01 (adapted from Morrison and 
Enzinger, 2019), with the addition of the E3FS3α software Weber et al., 2022. Bold font: the performances of the SYS1–4 experimental systems based on ECAPA-TDNN, 
tested in the present work. In all cases, the reported metrics indicate better performance the lower the values. The systems are sorted by decreasing values of Cllrpooled, 
therefore those listed at the bottom of the table perform better overall, based on the experimental settings.  

System Type Cllrpooled Cllrmean 95 % CI Cllrmin Cll cal EER % 

Batvox 3.1 GMM-UBM 0.593 0.473 1.130 0.396 0.198 12.6 % 
MSR GMM-UBM GMM-UBM 0.576 0.549 0.368 0.444 0.132 13.9 % 
MSR GMM i-vector GMM i-vector 0.449 0.437 0.479 0.301 0.148 8.5 % 
Batvox 4.1 GMM i-vector 0.365 0.304 1.156 0.317 0.048 9.6 % 
Phonexia XL3 DNN bottleneck 0.294 0.225 1.160 0.231 0.063 6.6 % 
Nuance 9.2 GMM i-vector 0.285 0.258 0.336 0.161 0.124 4.7 % 
VOCALIZE 2017B GMM i-vector 0.267 0.230 1.178 0.239 0.029 7.0 % 
SYS1 ECAPA-TDNN 0.258 0.167 0.840 0.189 0.069 5.3 % 
Nuance 11.1 DNN senone 0.255 0.234 0.309 0.124 0.130 3.1 % 
VOCALIZE 2019A x-vector 0.246 0.213 1.040 0.189 0.057 5.3 % 
SYS2 ECAPA-TDNN 0.228 0.109 1.019 0.131 0.097 3.6 % 
E3FS3α x-vector 0.208 n.a. n.a. n.a. n.a. n.a. 
Phonexia BETA4 x-vector 0.208 0.163 0.779 0.098 0.110 2.2 % 
SYS3 ECAPA-TDNN 0.177 0.109 1.170 0.134 0.043 3.5 % 
SYS4 ECAPA-TDNN 0.089 0.044 2.531 0.065 0.024 2.0 %  

2 We also tried to restrict the size of the normalization cohort to the 100 most 
similar items in a variant of SYS2, which uses score normalization. There was a 
slight worsening of the aggregate Cllr (from 0.228 to 0.239), the mean Cllr 
(from 0.109 to 0.139), Cllr min (from 0.131 to 0.159) and EER (from 3.6 % to 
4.0 %) and a slight improvement in Cllr cal (from 0.097 to 0.08) and 95 % CI 
(from 1.019 to 0.968). The 100 most similar strategy therefore did not have an 
overall positive impact when used with score normalization, unlike what 
happens with SYS4. It therefore seems possible to deduce that the normalization 
cohort selection strategy interacts with the normalization method itself. 
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each system compared, on the base the data made available to perform 
the test, cannot be generalized to all relevant populations and condi-
tions: this is because the populations and operating conditions of the 
comparison can vary greatly from one case to another. In the context of a 
real case, indeed, the trier of facts should verify whether the forensic 
voice comparison system used in that specific case has been subject to 
empirical tests of its validity and reliability, using data representative of 
the relevant reference population and the conditions specific to that 
case. 

For this reason, further tests are underway to verify system perfor-
mance in different operating conditions (such as duration and number of 
utterances: Vitolo, 2022; Sigona et al., 2023). Starting from the findings 
here obtained, our future objective is also to try to improve the system, 
especially with respect to the precision metrics. With the same purpose, 
we also intend to perform tests by replacing cosine similarity with an 
LDA/PLDA type backend, so that the resulting score takes into account 
both similarity and typicality. 

CRediT authorship contribution statement 

Francesco Sigona: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Software, Supervision, Validation, Visualization, 
Writing – original draft, Writing – review & editing. Mirko Grimaldi: 
Conceptualization, Formal analysis, Investigation, Methodology, Project 
administration, Resources, Supervision, Validation, Writing – original 
draft, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Acknowledgments 

We wish to thank Geoffrey Stewart Morrison and Ewald Enzinger for 
making this work possible by providing the datasets and software 
necessary for the calculation of the forensic_eval_01 evaluation metrics. 
Also, we are grateful to anonymous reviewers for their comments and 
suggestions permitting us to improve the quality of the manuscript. 

References 

Alam, J., Boulianne, G., Burget, L., Dahmane, M., Sánchez, M.D., Lozano-Diez, A., 
Glembek, O., St-Charles, P., Lalonde, M., Matejka, P., Mizera, P., Monteiro, J.L., 
Mosner, L., Noiseux, C., Novotný, O., Plchot, O., Rohdin, J., Silnova, A., J, S., 
Zeinali, H., 2020. Analysis of ABC Submission to NIST SRE 2019 CMN and VAST 
Challenge. The Speaker and Language Recognition Workshop (Odyssey 2020). 
https://doi.org/10.21437/odyssey.2020-41. 

Banks, D., Kafadar, K., Kaye, D.M., Tackett, M., 2020. Handbook of Forensic Statistics. 
Informa. https://doi.org/10.1201/9780367527709. Chapman and Hall/CRC 
eBooks.  

Brümmer, N., & de Villiers, E. (2013). The BOSARIS toolkit: theory, algorithms and code 
for surviving the new DCF. arXiv:1304.2865. 

Brümmer, N., Du Preez, J.A., 2006. Application-independent evaluation of speaker 
detection. Comput. Speech Lang. 20 (2–3), 230–275. https://doi.org/10.1016/j. 
csl.2005.08.001. 

Davis, S., Mermelstein, P., 1980. Comparison of parametric representations for 
monosyllabic word recognition in continuously spoken sentences. IEEE Trans. 
Acoust. 28 (4), 357–366. https://doi.org/10.1109/tassp.1980.1163420. 

Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P., 2011a. Front-End factor 
analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19 (4), 
788–798. https://doi.org/10.1109/tasl.2010.2064307. 

Desplanques, B., Thienpondt, J., Demuynck, K., 2020. ECAPA-TDNN: emphasized 
channel attention, propagation and aggregation in TDNN based speaker verification. 
In: Proc. Interspeech 2020, pp. 3830–3834. https://doi.org/10.21437/ 
Interspeech.2020-2650. 

Drygajlo, A., Jessen, M., Gfroerer, S., Wagner, I., Vermeulen, J., Niemi, T. (2015). 
Methodological Guidelines for Best Practice in Forensic Semiautomatic and 
Automatic Speaker Recognition, Including Guidance on the Conduct of Proficiency 
Testing and Collaborative Exercises. European Network of Forensic Science 
Institutes, Wiesbaden, Germany https://www.enfsi.eu/documents/methodological 
guidelines-best-practice-forensic-semiautomatic-and-automatic-speaker. 

Enzinger, E., Morrison, G.S., Ochoa, F., 2016. A demonstration of the application of the 
new paradigm for the evaluation of forensic evidence under conditions reflecting 
those of a real forensic-voice-comparison case. Sci. Justice 56 (1), 42–57. https:// 
doi.org/10.1016/j.scijus.2015.06.005. 

Gao, S., Cheng, M., Zhao, K., Zhang, X., Yang, M., Torr, P.H.S., 2021. Res2Net: a new 
multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43 (2), 
652–662. https://doi.org/10.1109/tpami.2019.2938758. 

Garcia-Romero, D., McCree, A., Snyder, D., Sell, G., 2020. Jhu-HLTCOE system for the 
voxsrc speaker recognition challenge. In: Proceedings of the ICASSP 2020 - 2020 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 
pp. 7559–7563. 

Gonzalez-Rodriguez, J., Rose, P., Ramos, D., Toledano, D.T., Ortega-Garcia, J., 2007. 
Emulating DNA: rigorous quantification of evidential weight in transparent and 
testable forensic speaker recognition. IEEE Trans. Audio Speech Lang. Process. 15 
(7), 2104–2115. https://doi.org/10.1109/tasl.2007.902747. 

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image 
recognition, Proceedings of the 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778, 10.1109/CVP 
R.2016.90. 

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by 
reducing internal covariate shift. In: Proceedings of the International Conference on 
Machine Learning, 1, pp. 448–456. https://ece.duke.edu/~lcarin/Zhao12.17.2015. 
pdf. 

Landini, F., Wang, S., Diez, M., Burget, L., Matejka, P., Zmolikova, K., Mosner, L., 
Silnova, A., Plchot, O., Novotny, O., Zeinali, H., Rohdin, J., 2020. BUT system for the 
second dihard speech diarization challenge. In: Proceedings of the International 
Conference on Acoustics, Speech, and Signal Processing. https://doi.org/10.1109/ 
icassp40776.2020.9054251. 

Lee, K.A., Yamamoto, H., Okabe, K., Wang, Q., Guo, L., Koshinaka, T., Zhang, J., 
Shinoda, K., 2020. NEC-TT system for mixed-bandwidth and multi-domain speaker 
recognition. Comput. Speech Lang. 61, 101033 https://doi.org/10.1016/j. 
csl.2019.101033. 

Martin, A.F., Doddington, G.R., Kamm, T., Ordowski, M.L., Przybocki, M.A., 1997. The 
DET curve in assessment of detection task performance. In: Proceedings of the 
Conference of the International Speech Communication Association. https://doi. 
org/10.21437/eurospeech.1997-504. 
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