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Memristors offer a crucial element for constructing discrete maps that have garnered significant 
attention in complex dynamics and various potential applications. In this study, we have 
integrated memristive and sigmoidal function to propose innovative mapping techniques. Our 
research confirms that the amalgamation of memristor and sigmoidal functions represents a 
promising approach for creating both 2D and 3D maps. Particularly noteworthy are the chaotic 
maps featuring multiple sigmoidal functions and multiple memristors, as highlighted in our 
findings. Specifically focusing on the novel STMM1 map, we delve into its dynamics and assess its 
feasibility. Intriguingly, the introduction of sigmoidal functions leads to alterations in the quantity 
of fixed points and the symmetry of the map.

1. Introduction

The distinctive feature of a memristor, characterized by its pinched hysteresis loop, sets it apart from classical resistors. Unlike 
conventional resistors, a memristor exhibits a dynamic current-voltage relationship that offers inherent memory capabilities [1]. 
This unique attribute opens new frontiers for the development of advanced applications, particularly in the realms of neuromorphic 
systems and memories [2–4]. The advantages presented by memristors significantly enhance the feasibility of memristive systems, 
enabling them to operate reliably while consuming low power [5,6]. Moreover, the memristor’s utility extends beyond conventional 
roles; it serves as a nonlinear element in constructing chaotic systems [7]. Interestingly, Lai et al. have invented memristive neural 
networks [8] and grid-scroll attractors [9]. These systems have found diverse applications in encryption and secure communications, 
leveraging the inherent properties of memristors for robust and sophisticated data security [10,11].

Unlike continuous systems, discrete systems are structured using discrete time steps, offering a different approach to modeling 
dynamic processes [12–15]. The utility of discrete maps as a prominent tool for investigating dynamical systems spans across a 
multitude of disciplines, encompassing fields from nature and physics to engineering. Even seemingly simple discrete maps, such 
as the logistics map or Lozi map, have proven to exhibit chaotic behavior. This has led to a myriad of publications presenting 
diverse collections of chaotic maps [16,17]. Exploration into various types of maps has unveiled their chaotic properties, sparking 
their application in numerous crucial tasks like surveillance missions, signal generation, and ensuring security measures [18–20]. 
Nonlinear components are at the heart of generating these discrete maps, serving as the main elements that drive and shape their 
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Fig. 1. Sigmoidal curves for: 𝑏 = 1 (red), 𝑏 = 0.5 (green), and 𝑏 = 2 (blue).

Fig. 2. Map’s diagram including a sigmoidal function and a memristor.

dynamic behavior. The interplay of these components contributes significantly to the richness and complexity of discrete maps, 
allowing for their multifaceted applications across a wide spectrum of scientific and practical domains [21–23].

In recent times, there has been a rapid surge in interest surrounding memristive maps, particularly following the discovery of 
hidden attractors [24–26]. Memristive maps can be effectively implemented using hardware such as microcontrollers, DSP, and 
FPGAs, facilitating straightforward integration and fostering their suitability for various applications [27,28]. Hyperchaotic map is 
reported in [29] while fractional order map is studied in [30]. Bao et al. have used four discrete memristors to develop maps [31]. The 
prevalence of symmetry within attractors is a common observation in memristive maps, drawing attention due to their distinctive 
dynamics and well-defined structures. These unique characteristics have captivated researchers, prompting ongoing endeavors to 
develop more effective methodologies for designing and unveiling new maps [32,33].

The primary objective of this paper is to advance the field of memristive maps by introducing an innovative approach to create 
novel memristive systems. In Section 2, we present our novel approach, integrating a sigmoidal function with a memristor to 
formulate a discrete map. Section 3 focuses on a detailed exploration of a specific example, the STMM1 map, elucidating its dynamics 
comprehensively. Section 4 consolidates discussions on extending our approach to higher-order maps. Finally, the concluding section 
encapsulates the key findings and contributions of our work.

2. Sigmoidal function in maps

The sigmoidal function is integral across various domains due to its nonlinear nature and smooth characteristics. Formula (1)
defines a sigmoidal function exhibiting an S-shaped curve, as depicted in Fig. 1.

𝐹 (𝑥) = 1
1 + 𝑒−𝑏𝑥

. (1)

Fig. 1 illustrates how the sigmoidal function efficiently transforms an input 𝑥 into a confined range of outputs. Consequently, 
leveraging the sigmoidal function proves highly advantageous in the development of artificial neural networks. In Fig. 2, we present 
a discrete map diagram resulting from the integration of a sigmoidal function and a memristor. Parameters 𝑎 and 𝑏 delineate the 
influence of the sigmoidal and memristive components, respectively.

Based on Fig. 2, map’s model is

𝑥 (𝑛+ 1) = 𝑎1
−𝑏𝑥(𝑛) + 𝑎2𝑥 (𝑛)𝑀 (𝑦 (𝑛)) ,
2

1+𝑒
𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛) ,

(2)
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Fig. 3. (a) Symmetry (𝑎1 = 0), and (b) asymmetry (𝑎1 = 0.25) in iterative plot.

with discrete memristance 𝑀 (𝑦 (𝑛)). By solving (3)

𝑥∗ = 𝑎1
1+𝑒−𝑏𝑥∗

+ 𝑎2𝑥
∗𝑀 (𝑦∗) ,

𝑦∗ = 𝑦∗ + 𝑥∗,
(3)

fixed points (𝑥∗, 𝑦∗) must satisfy the condition (4)

𝑎1
1+𝑒−𝑏𝑥∗

= 0,
𝑥∗ = 0.

(4)

For 𝑎1 ≠ 0, map (2) has no fixed point.
Interestingly, specific chaotic maps can be derived from (2). Let take 𝑀 (𝑦 (𝑛)) = (𝑦 (𝑛))2 − 1 [31], we obtain sigmoid-term mem-

ristive map (STMM1) given by (5):

𝑥 (𝑛+ 1) = 𝑎1
1+𝑒−𝑏𝑥(𝑛) + 𝑎2𝑥 (𝑛)

(
(𝑦 (𝑛))2 − 1

)
𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛)

(5)

Fig. 3a displays chaos and symmetry in iterative plot with parameters (6)

𝑎1 = 0
𝑎2 = 1.78
(𝑥(0), 𝑦 (0)) = (−0.5,0.5)

(6)

Symmetry is often observed in memristive maps. However, when changing 𝑎1, STMM1 map exhibits asymmetry (see Fig. 3b) for 
parameters (7):

𝑎1 = 0.25
𝑎2 = 1.78
(𝑥(0), 𝑦 (0)) = (−0.5,0.5)

(7)

In two cases, the maximum Lyapunov exponents are 0.2364 and 0.2885. Dynamics of STMM1 map is considered more detail in 
the next section. Our designed map reveals an uncommon asymmetric attractor, a rarity among existing memristive maps. The 
sigmoidal function can serve as an effective coupling component for linking various STMM maps. Consequently, leveraging STMM 
maps simplifies the construction of networks.

3. Study of STMM𝟏

Unlike classical discrete maps characterized by fixed points, the stability assessment of fixed points in STMM1 map for 𝑎1 ≠ 0
cannot be determined. Dynamics of STMM1 are shown in Fig. 4a and Fig. 4b via bifurcation diagram and maximum Lyapunov 
exponents for 𝑎1. Chaotic and non-chaotic behaviors are observed for 𝑎1 ∈ [0,0.3]. Non-chaotic behavior can be found in the ranges 
(0.076, 0.093) and (0.241, 0.244).

The 0-1 test has been utilized to verify the presence of chaos within the map, serving as a visual tool for confirmation. Chaotic 
behavior is illustrated in Fig. 5a, displaying patterns reminiscent of Brownian motion. Conversely, Fig. 5b exhibits periodic traits 
observed in trajectories constrained within specific bounds.

When changing 𝑎2 (see Fig. 6a and Fig. 6b), the map exhibits non-chaotic, chaotic, and hyperchaotic behaviors. Specially, 
multistability can be observed in STMM1 map. As illustrated in Fig. 7, two attractors coexist for different initial conditions with 
3

the same parameters 𝑎1 = 0.25, 𝑎2 = 1.677.
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Fig. 4. a) Bifurcation diagram, (b) maximum Lyapunov exponents for 𝑎1 ∈ [0,0.3], 𝑎2 = 1.78, and (𝑥(0), 𝑦 (0)) = (−0.5,0.5).

Fig. 5. The 0–1 test: (a) 𝑎1 = 0.25, (b) 𝑎1 = 0.08.

Fig. 6. a) Bifurcation diagram, (b) Lyapunov exponents for 𝑎2 ∈ [1.5,1.9], 𝑎1 = 0.25, and (𝑥(0), 𝑦 (0)) = (−0.5,0.5).

The feasibility of STMM1 map was explored through its hardware execution. To achieve this, an Arduino Uno board was selected 
for its simplicity, constrained resources, and cost-effectiveness. Additionally, an accessible debugging and display tool, the Serial 
Plotter, facilitated the process. The equation was programmed in the Arduino Integrated Development Environment (IDE) and 
uploaded onto the board. The experimental outcomes vividly demonstrate the emergence of chaos as depicted in Fig. 8a and Fig. 8b. 
Complex dynamics and feasibility of STMM1 map are suitable for lightweight ciphers specifically tailored for Internet of Things (IoT) 
4

applications.
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Fig. 7. Multistability for 𝑎1 = 0.25, 𝑎2 = 1.677 and (𝑥(0), 𝑦 (0)) = (−0.5,0.5) (black), (𝑥(0), 𝑦 (0)) = (−0.1,0.1) (red).

Fig. 8. (a) Symmetry (𝑎1 = 0), and (b) asymmetry (𝑎1 = 0.25) captured from the board.

4. Discussion

As detailed in Section 2, model (2) facilitates the creation of diverse memristor maps by adjusting discrete memristance. Fur-
thermore, this section demonstrates the methodology for crafting high-order maps through the utilization of sigmoidal functions. 
Our focus within this section is on two distinct classes of high-order maps: those featuring multiple sigmoidal functions and those 
incorporating multiple memristors.

4.1. Map with multiple sigmoidal functions

Structure of maps with multiple sigmoidal functions is proposed in Fig. 9. Mathematical model is given by (8):

𝑥 (𝑛+ 1) = 𝑎1
1+𝑒−𝑏𝑥(𝑛) + 𝑎2𝑥 (𝑛)𝑀 (𝑦 (𝑛)) + 𝑎3

1+𝑒−𝑏𝑧(𝑛) ,

𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛) ,
𝑧 (𝑛+ 1) = 𝑎4 sin (𝑧 (𝑛)) +

𝑎5
1+𝑒−𝑏𝑥(𝑛) ,

(8)

where 𝑎𝑖 are parameters.
With discrete memristance (9) [31]

𝑀 (𝑦 (𝑛)) = (𝑦 (𝑛))2 − 1, (9)

we get the memristive map (named STMM2 map) given by (10):

𝑥 (𝑛+ 1) = 𝑎1
1+𝑒−𝑏𝑥(𝑛) + 𝑎2𝑥 (𝑛)

(
(𝑦 (𝑛))2 − 1

)
+ 𝑎3

1+𝑒−𝑏𝑧(𝑛) ,

𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛)
𝑧 (𝑛+ 1) = 𝑎4 sin (𝑧 (𝑛)) +

𝑎5
1+𝑒−𝑏𝑥(𝑛) .

(10)

STMM2 map generates chaos (see Fig. 10a and Fig. 10b) with parameters (11)

(𝑥 (0) , 𝑦 (0) , 𝑧 (0)) = (0.01,0.01,−0.1) ,
𝑎1 = 0.1,
𝑏 = 1,
𝑎2 = 1.78,
𝑎3 = 0.1,
𝑎4 = 1,

(11)
5

𝑎5 = −1.
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Fig. 9. Using sigmoidal functions and a memristor to design new maps.

Fig. 10. Iterative plot in (a) 𝑥− 𝑦, and (b) 𝑥− 𝑧.

4.2. Map with multiple memristors

To construct a category of maps involving multiple memristors, we introduced the structural framework illustrated in Fig. 11. 
This configuration comprises a sigmoidal function integrated with two memristors. The mathematical model derived from Fig. 11 is 
represented by (12):

𝑥 (𝑛+ 1) = 𝑎1
1+𝑒−𝑏𝑥(𝑛) + 𝑎2𝑎3𝑥 (𝑛)𝑀1 (𝑦 (𝑛))𝑀2 (𝑧 (𝑛)) ,

𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛) ,
𝑧 (𝑛+ 1) = 𝑧 (𝑛) + 𝑎2𝑥 (𝑛)𝑀1 (𝑦 (𝑛)) ,

(12)

with parameters 𝑎𝑖.
With discrete memristances (13) and (14) [31]

𝑀1 (𝑦 (𝑛)) = 𝑐 |𝑦 (𝑛)|− 1, (13)
6

and
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Fig. 11. Structure of map including a sigmoidal function and two memristors.

Fig. 12. Iterative plot for (a) 𝑎1 = 0, and (b) 𝑎1 = −0.2.

𝑀2 (𝑧 (𝑛)) = (𝑧 (𝑛))2 − 1, (14)

we get the memristive map (STMM3 map) described as (15):

𝑥 (𝑛+ 1) = 𝑎1
1+𝑒−𝑏𝑥(𝑛) + 𝑎2𝑎3𝑥 (𝑛) (𝑐 |𝑦 (𝑛)|− 1)

(
(𝑧 (𝑛))2 − 1

)
,

𝑦 (𝑛+ 1) = 𝑦 (𝑛) + 𝑥 (𝑛) ,
𝑧 (𝑛+ 1) = 𝑧 (𝑛) + 𝑎2𝑥 (𝑛) (𝑐 |𝑦 (𝑛)|− 1) .

(15)

For the parameter values (16)

(𝑥 (0) , 𝑦 (0) , 𝑧 (0)) = (0.01,0.01,0.01) ,
𝑏 = 1,
𝑎2 = −1.7,
𝑎3 = 1.15,
𝑐 = 0.35.

(16)

STMM3 map exhibits chaos as displayed in Fig. 12a and Fig. 12b. Both symmetry and asymmetry can be seen in iterative plots.

5. Conclusions

This paper introduces a novel approach to designing a chaotic map using both sigmoidal and memristive components. Our 
primary focus has been on the examination of a specific map termed as the STMM1 map, which exhibits compelling traits such as 
chaos, asymmetry, and the absence of fixed points. We delve into the dynamics and realization of this map in detail. Additionally, 
through the extension of this approach, we demonstrate the construction of high-order memristive maps. To showcase the efficacy 
of this extension, we introduce two categories of maps: one incorporating multiple sigmoidal functions and another amalgamating 
multiple memristive components. The potential application of such memristive maps in lightweight ciphers for real-world IoT will 
7

be assessed in coming researches.
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