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Abstract: Agriculture is currently one of the leading economic sectors most impacted by climate
change. Due to its great field of application and its susceptibility to meteorological variability, the
effects of climate change on agriculture have significant social and economic consequences for human
well-being. Moreover, the increasing need for land spaces for population growth has produced strong
competition between food and urbanization, leading to a loss of the agroecosystem that supports food
security. This review aims to understand the main risks generated by climate change in agricultural
production and the potential strategies that can be applied to increase agriculture’s resilience. Agri-
cultural risk can be linked to the decrease in the productivity of foods, weed overgrowth at the crops
expense, increase in parasites, water availability, soil alteration, negative impact on production costs
and consequent change in the adopted cultivars, reduction in the pollination process, intense fires,
and alteration of product quality. Thus, climate change can impact the provisioning of ecosystem
services, reducing food security in terms of quantity and quality for future generations. Finally, in
this review, we report the main adaptation strategies to increase agroecosystem resilience in adverse
environments generated by climate change. Mainly, we highlight new technologies, such as new
breeding technologies and agrivoltaic and smart agricultural applications, which, combined with
agroecosystems, can reduce the agricultural risks following climate change (for example, drought
events and low availability of water). We suggest that the combination of natural capital and tech-
nologies can be defined as an “innovation-based solution” able to support and increase ecosystem
service flow in agroecosystems.

Keywords: climate change; agricultural resilience; adaptation strategies; provisioning ecosystem
services; natural capital

1. Introduction

Since the last century, there has been awareness that human life is directly and indi-
rectly dependent on the capacity of the ecosystem to support goods and services, overall
defined as ecosystem services [1,2]. Indeed, 50% of global Gross Domestic Product (GDP)
is dependent on nature [3].

Natural capital can be defined as a flow of ecosystem services provided by the world’s
stock of natural resources, including biodiversity, soil, water, and air [4–6]. In addition,
it is characterized by ecological processes and structures that are the basis for ecosystem
services, and new knowledge in combination with new technologies can influence the
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capacity of humans to achieve new goods and services from nature, increasing ecosystem
service provisioning [2,7].

The agroecosystem can be defined as the part of natural capital managed directly by
human activities with a simplification and selection of biodiversity to support ecosystem
function by providing food, feed, timber, fibers, and other products for market sale [8,9].
Therefore, agroecosystems are socio-ecological systems characterized by three interacting
components: the managed fields, characterized by agricultural activities; the semi-natural
or natural habitats, derived from a residual ecosystem of the heritage landscape; and
the human-derived capital, characterized by knowledge, cultural traditions, technologies,
settlements, and infrastructures [8,10–12].

The capacity of agroecosystems to support ecosystem services is strongly compromised
by climate change, which is the main driver of ecosystem functionality damages [13–16].
For example, high temperatures associated with water shortages can increase plant evapo-
transpiration and reduce primary production, which is a basic supporting service for life on
the Earth, because it guarantees the flux from solar to chemical energy [17–20]. This change
can have a strong negative impact on the agroecosystem’s capacity to support agricultural
productivity in terms of human benefits derived from provisioning services. An example of
the potential effects of climate change on food security was experienced during the El Niño
Southern Oscillation from 2015 to 2016, which produced rising temperatures in 51 affected
countries, with an estimated 5.9 million children becoming underweight [21].

Therefore, if economic activity drives climate change, climate change can reduce the
capacity of the natural capital to support the economy, with negative effects also on food
security, which is important for human life [22–24]. Mainly, food security refers to the
possibility of ensuring equal access to food for the world population and sufficient food for
a good life in time. “Food security exists when all people, at all times, have physical and
economic access to sufficient, safe and nutritious food that meets their dietary needs and
food preferences for an active and healthy life” [25].

However, the economy pushes towards the use of natural resources to fulfill human
needs, with the subsequent reduction in agroecosystems, degradation of natural capital,
and loss of regulation services that are important for reducing climate change [26–29].

The effects of climate change on agroecosystem production will be an important issue
considering that it has been estimated that by 2050, the world’s human population will
increase by 70% [30].

Therefore, the combination of climate change and human population growth could
decrease the capacity of agroecosystems to guarantee human subsistence. Thus, it is
important to find a way to ensure food for a population that continues to grow, especially in
developing countries; on the other hand, it is necessary to guarantee the quality and safety
of the food produced and distributed [31,32]. Malnutrition does not only affect developing
countries; it is becoming a global problem. For example, in the United States, many people
lack regular access to healthy food [33], whereas in Europe and Central Asia, there is a
serious problem with the quality of diets generated by the deficiency of nutrients important
for human health in food products [21].

It is currently difficult to have a complete vision of the consequences of climate change
on food production and, consequently, of the effectiveness of the different adaptation
strategies to reduce negative impacts. In this regard, scientific dissemination is an im-
portant point for sharing results and identifying best practices [21,34,35]. The aim of the
present review is to describe the main impact of climate change on agroecosystems, with a
global view on suitable strategies to increase the resilience of agricultural production to
ensure food security, supporting dissemination with a transdisciplinary approach covering
different aspects of the same problem from different points of view.

2. Materials and Methods

The review has been carried out using PRISMA methodology [36] (Figure 1).
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Figure 1. Framework applied for developing the review analysis.

We defined the criteria for inclusion or exclusion of publications used for this review.
Mainly, we considered reviews, case study analyses and applications giving direct infor-
mation on climate change effects on agriculture, potential mitigation strategies, reports
of projects, and publications with simulation analysis. We considered only publications
written in English and indexed in international journals under peer review processes to
guarantee the quality of the reported information. Moreover, we also used some reports
from officially recognized international agencies, such as the FAO, the UN, the UE, and
others.

We did not include studies published before 2000 (with some exceptions) to have more
recent information and knowledge about climate change. We did not consider conference
proceedings and book chapters either.

Datasets such as Google Scholar, Scopus, and Web of Science were used to look
for publications by searching with keywords such as “climate change, climate change’s
impact on agriculture, food security, climate change mitigation in agriculture, agricultural
adaptation, climate change resilience, and agricultural mitigations”.

In the present study, the decision to evaluate each publication was based on inde-
pendent reading by each author. Following the search by keywords, the first check for
selecting the manuscript was the title, keywords, abstract, and conclusions. All found
publications were shared, and each author read the manuscripts, deciding to include or
exclude them based on the reported information. If all the authors agreed on the exclusion,
the publication was discarded. In the case of different views about a publication, the
authors decided together if they should include it by considering the relevance of the given
information for the study.

The analysis of each publication was then structured considering three points: (1) the
main consequences of climate change and its effects on agroecosystems; (2) a deeper
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analysis of climate change’s effects on vegetation adaptations that influence the quantity
and quality of food security; and (3) potential strategies to improve the adaptability and
resilience of agricultural production during climate change.

3. Results and Discussion

A total of 199 publications were collected and used for this review. However, 51 pub-
lications were used to gather information useful to define the general impacts of climate
change on agroecosystems (point 1), 63 publications were used to implement a deeper
analysis of climate change effects on food security (point 2), and 62 publications were used
to define mitigation strategies (point 3) (Figure 2). There was some overlap among the
three points because, in some cases, certain information pertaining to different points was
reported in the same publication. An additional 35 publications were used to structure the
introduction and conclusion.
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Figure 2. Distribution of used publications.

The majority of publications referred to on climate change effects and climate strategies
analyzed are located in countries in Asia, Africa, and South America, where the agricultural
sector is an important livelihood for the population. In fact, poor countries can suffer more
from climate change effects on food supply than other regions [35,37].

In the following Section 3.1, we report our view of the main climate change effects on
agroecosystems; in Section 3.2, we describe climate change effects on food security linked to
the alteration of provisioning services; and in Section 3.3, we summarize the main strategies
to improve the resilience of agricultural production from different analyzed publications.

3.1. Impact of Climate Change on Agroecosystem Production

Farmers experience climate change largely as extreme events’ frequency and severity
change. In particular, such events can be represented by floods, abnormal heat waves, fires,
droughts, hailstorms, storm surges, rising seas, floods caused by rivers overflowing, a saline
intrusion into the groundwater, and soil degradation due to floods [38–42]. Table 1 reports
a summary of the direct and indirect effects of climate change on agricultural production
extracted from scientific publications.

The consequences of climate change on agroecosystems depend on the intensity and
timing of extreme events and their combinations in space and time. For example, the
effects of extreme high temperatures can be amplified by reduced water availability caused
by precipitation reduction because rain-fed agriculture has an important role in food
security, covering 80% of the world’s cultivated area and supporting crop production for



Land 2023, 12, 1117 5 of 21

approximately 60% [43,44]. Moreover, the high frequency of flooding events can increase
the incapacity of the fields to catch the rainwater and use it at a different time.

Climate change can influence the integrity of agroecosystems and health, with negative
impacts on food security, by modifying the crop types used, weed invasion, and pests, and
by altering the plant physiological and biochemical processes that sustain ecosystem service
provisioning. Moreover, climate change due to habitat destruction (i.e., changing agricul-
tural practices, deforestation, industrialization), global warming, and the uncontrolled
spread of invasive species could lead to biodiversity loss, with a decline and deterioration
of ecosystems, species, and genetic resources important for tolerance to biotic and abiotic
stresses [45].

The effects of climate change can be influenced by the geographic area because their
impact on agricultural production is different depending on the latitude and altitude of the
area. Such an impact is high and produces a reduction in food production in hot countries,
whereas it could be positive and lower in cold countries [23,44].

Nevertheless, crops present highly different sensitivity to climate variations and
responses; e.g., a positive effect would be expected in terms of higher concentrations of
CO2 in relation to crop yields. For example, an increase of 200 ppm could favor yields in
rice production [22,46]. However, plant production is related to multi-factors; therefore,
extreme temperatures are an important limiting factor that has a general negative influence
on the yield of crops. Moreover, the effect of CO2 could produce more positive effects on
C3 plants (e.g., wheat, rice, cotton, soy, and potato) than on C4 plants (e.g., corn, sorghum,
sugar, and others) at first due to their physiological differences, but over the long term,
this effect could change [22,47,48]. In any case, if the increase in CO2 can be a good factor
in improving the yield of certain crops, its high concentrations could reduce important
nutrients in the food products, such as proteins in wheat [49].

Another important impact of climate change could be linked to higher ozone con-
centrations, which have direct negative effects on primary production in the agricultural
system by reducing photosynthesis processes and altering reproductive functions [50,51].

The direct effects of agricultural production related to climate change can be linked to
indirect effects caused by abiotic and biotic stresses that can alter natural capital and the
human actions taken to try to keep the crop yield in time.

Impaired agricultural production due to unfavorable climate conditions could make
foods and staple crops inaccessible to vulnerable populations, leading to a high risk of food
insecurity and increasing malnutrition risk in many countries. In fact, while the quantity
and quality of food could decrease, staple crops could be subjected to augmented costs,
thus reducing the affordability of a safe and nutritious diet for all, and particularly for
low-income populations [52].

Table 1. Climate change impacts on agricultural system productions.

ID Impacts Explanation References

1 Decrease in crop
production

Extreme temperatures change the rate of plant growth, decrease the
photosynthetic process, and greatly affect plants’ reproductive

ability.
[21–23,53–62]

2

Increased weed
prosperity that can

reduce the growth of
agricultural plants

Weeds compete with agricultural crops for water and nutrients.
Climate change modifies the dynamics of competition between

agricultural crops and weeds. High temperatures and water
scarcity influence the effectiveness of herbicides because they
modify their mode of action, favoring the growth of weeds.

Wheat weeds, which are vital to global food security, could benefit
from climate change.

[21,35,63]
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Table 1. Cont.

ID Impacts Explanation References

3 Increased pest
propagation

Climate change will increase pest infestations in many crops
because warmer, wetter conditions favor pest reproduction. A
one-degree increase in temperature could increase losses from

insect infestations by 10 to 25%. Furthermore, high temperatures
can influence their behavior beyond the proliferation of parasites.

[21,58–60,64–71]

4 Water availability

It reduces the amount of water available for plant growth. The
combined effect of water stress caused by heat waves and a drastic

reduction in rainfall can accentuate the lack of water in plants,
resulting in a reduction in productivity.

[21,72,73]

5 Soil alteration

Loss of soil fertility is connected to a greater erosion process created
by a greater frequency and intensity of floods and a lower capacity
of the soil to fix nitrogen and decompose organic matter. Mainly,

the erosion of runoff waters determines the removal of the surface
part of the soil, which is the richest in organic matter. Climate

change will negatively affect the content of organic carbon in soils.

[21,35,74]

6 Increase in soil salinity

This effect can be facilitated by poor groundwater recharge. Indeed,
the combined effect of overexploitation of groundwater and

reduction in rainfall can produce a mixing between freshwater and
saline intrusion water. Therefore, this phenomenon can lead to an
enrichment of the salinity of the soils connected to the use of well

water with a high saline concentration.

[21,35,74]

7 Negative impact on
production costs

Farmers, to reduce the effects of climate change on agricultural
productivity, use greater inputs of natural resources (for example,

irrigation, fertilization, and weeding).
[21,35,52,74]

8 Change in crop types
Farmers are pushing for a change in the use of agricultural crops

and types of livestock that are more profitable and adapted to grow
in difficult climatic conditions.

[21,35,74]

9 Reduction in the
pollination process

Negative impact on agricultural productivity linked to the
pollination process, which could reduce its effectiveness as a result

of high temperatures.
The population of pollinators could be reduced by an increase in

pesticides to fight pests.

[71,75]

10 Intense fires

Fires in agricultural areas subject to intensive cultivation can reach
such intensities as to completely damage the surface organic layer,
with consequent impoverishment of the soils and intensification of

erosion processes.

[76–78]

11 Product quality
alteration

High temperatures or drought events can alter the production of
secondary metabolites in plants, which are essential to defining the

quality of the product.
CO2 concentrations can influence the quantity of nutrients in food

products (vitamin B, protein, and micronutrients).

[49,79–81]

12 Increase crop
productions

An increase in CO2 concentrations is a factor favorable for crop
production because it is the precursor of the photosynthetic activity

of plants and primary production.
[35,44,46,82,83]

13 Increase in the cost of
food

The reduction in crop yield can increase food costs in the global
market, which has a negative effect on food accessibility for the

global population.
[22,37,52,84,85]

3.2. The Impact of Climate Change on Provisioning Ecosystem Services and Food Security

Food security, as well as the agroecosystem, is strongly subjected to climate
change [52,86,87]. Many agronomic plant species could have to adapt their growth to
harsh environmental conditions (water crises and stress, erratic and often abundant rain-
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falls, drought, high temperatures, soil quality due to the changed nutrient composition) [87].
Drought escape and dehydration avoidance are strategies to cope with water stress gener-
ated by adverse climate conditions that exhibit more drastic morphological, physiological,
and biochemical changes to survive. These adaptative strategies of single plants produce
negative direct impacts on the quantity and quality of provisioning ecosystem services gen-
erated by agroecosystems in terms of food security, resulting in reduced crop production
and less desirable edible products (Figure 3).
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Figure 3. Impacts of climate change on ecosystem services connected to food security. We consider
the ecosystem services classification by TEEB.

The following two sections report some vegetation adaptation strategies to climate
change that reduce provisioning ecosystem services and food security.

3.2.1. Water Stress on Food Productions

Global warming and reduced rainfall, alternating with out-of-season floods, cause
extreme environments that represent serious threats to biodiversity and agricultural crop
yield [88]. Several herbaceous species are widely cultivated as important vegetable crops
used for animal and human nutrition. The roots, leaves, stems, and flower buds of these
vegetables are edible parts used as healthy foods because they are rich in fibers and bioactive
compounds with human health benefits [89]. Water stress, caused by both drought and
flooding, is one of the most harmful abiotic stressors that affects food production and
has a subsequent impact on food security. Recently, the extent of drylands around the
world has increased dramatically, leading to a total global loss of agricultural production
of approximately USD 30 billion [90,91]. Flooding is the second-most important climate
disaster after drought [92,93]. Due to the frequency and severity of droughts and floods,
the global vegetation loss caused by these stresses is almost equivalent [94].

The response to adverse environmental conditions due to water stress is mainly vis-
ible in the morphology of the plants [95,96]. The leaf morphology frequently changes,
appearing withered and curled as a result of drought and waterlogging. The lack of water
and nutrients also affects chlorophyll synthesis, causing leaf yellowing and the inhibi-
tion of the photosynthetic process [94]. Furthermore, during drought stress, it has been
observed that both meristematic cell division and expansion are inhibited, leading to a
reduction in stem, leaf area, and thickness [94]. During waterlogging, the aerobic condition
of the underwater roots determines the transfer of chemical signals to the whole plant
organs that lead to the closure of the stomata. The latter phenomenon reduces the loss
of the small amount of oxygen present in the plant [97,98] and also the capacity of CO2
absorption. Thus, less availability of photosynthetic substrates causes a decrease in photo-
synthetic rate. To cope with the effect of waterlogging, some plants show morphological
adaptations such as thin leaves or form special leaves facilitating and promoting CO2 and in-
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organic nutrient absorption to improve gas exchange and maintain respiration under stress
conditions [97–100]. Despite the different plant adaptation mechanisms, drought and flood-
ing seem to maintain the same inhibitory effect on photosynthetic rate and transpiration
capacity in leaves [94].

The roots undergo different morphological adaptations based on the type of water
stress they must counteract. Different behaviors have been observed in roots under water
stress. In drought conditions, a series of root adaptations have been observed to facilitate
water flow or increase the water-absorbing capacity of the roots. To improve water flow,
plants reduce the stele area and xylem vessel diameter and/or increase the number of
vessels in the stem, while an increase in root length, functional root number, root hair, and
density occurs, leading to a higher capacity to explore and find water in dried soil [101–105].
During flooding, the aerenchyma formation in the adventitious roots is the most character-
istic feature that can improve the oxygen content under underwater conditions [106]. This
modification is often associated with the appearance of a barrier to radial oxygen loss (ROL)
in adventitious roots. ROL barriers are usually present in the roots of waterlogging-tolerant
plants, as in the case of a waterlogging-tolerant maize species [107], where a reduction
in the oxygen leakage during its transport from shoot to root tip is reported as impeding
soil phytotoxin entry simultaneously [108,109]. Furthermore, an increase in primary and
secondary cell-wall modifications, such as the suberization of rhizoderm and endoderm
cells and the lignification of vascular bundle cortical cells, was observed in rice (Oryza sativa
L.) grown in stagnant, deoxygenated conditions [108]. The increase in lignin deposition and
suberization could represent a further useful barrier to prevent ion penetration in stagnant
conditions and oxygen leakage. The aerenchyma formation could enhance the storage
space in the cell during adverse conditions; a greater aerenchyma can maintain higher
amounts of gas exchange during a flood, and therefore the plants continue to grow [98,99].

Obviously, plant responses to water stress and their capacity to survive in adverse envi-
ronments are strongly related to the intensity and duration of water stress
events [110–112] and to their co-presence with other stresses [113].

Several studies have been conducted on the water stress responses of important crops.
Wheat, being a dryland crop, is sensitive to flooding stress [114], and when exposed to
waterlogging stress, it significantly experiences a decrease in the dry mass of both the shoot
and root and a reduction in the root/shoot ratio, indicating that root growth is inhibited
more seriously than shoot growth [115,116]. Wheat would appear to tolerate water deficit
stress better than flooding. A study conducted using the moment-based maximum entropy
(MBME) model on the effect of drought on Triticum aestivum from 1985 to 2011 in Kansas
revealed a reduction of approximately 22% of crop yield [117]. Maize was also intolerant
of waterlogging stress, and the trefoil stage was the most sensitive period for it [118,119].
Water stress has a different impact on crops mainly based on the stage of plant development;
such stress is especially critical during reproductive development, and seed germination
is drastically affected by water availability [120,121]. Furthermore, drought experienced
during flowering has been reported to lead to infertility in wheat [122].

Waterlogging inhibited maize growth, resulting in reduced plant height, ear height,
dry weight, leaf area index, and grain characteristics (such as grain number per ear and
1000-grain weight) [123].

In 2003, interesting research conducted in Central Africa (Nigeria), where rainfall
is unpredictable in quantity and distribution, analyzed the ability to tolerate drought in
six different genotypes of maize. Water deficits significantly reduced the grain yield of
landrace maize ecotypes, up to 90% in the Borno-AccNo10 native genotype. The hybrid
genotypes analyzed in this study tolerated the absence of water better, with a reduction in
grain yield ranging between 57 and 59% [124].

The growth and grain yield of soybeans are also affected by flooding [103]. At the
seedling stage, the root growth of soybeans is severely suppressed after submergence lasts
for 10 days [104]. Yield reduction in soybean crops under drought conditions is around
58.5% [125], frequently accompanied by a stem length decrease [126].
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Rice, unlike other cereals, is highly tolerant of water stress, either from submergence (in
which part or all of the plant is under water) or waterlogging (in which excess water in the
soil limits gas diffusion) [127]. On the other hand, rice is highly susceptible to water deficits,
and it has been reported that this stress can cause a decrease in crop yield of approximately
72.5% [128,129]. During the reproductive stage, drought leads to a significant reduction in
grain yield [130,131]. The magnitude of yield loss depends on the growth stage and the
duration and severity of drought stress [132,133]. In one trial, severe drought stress applied
at the vegetative stage and moderate drought stress applied at the flowering stage in rice
resulted in 20% and 28% yield losses, respectively [134].

Even if plants survive water stress, all the morphological and anatomical changes that
plants undergo to cope with water stress could lead to the loss of aesthetically perfect or
eye-catching products, which are increasingly preferred by demanding consumers today.
The actions put in place by agriculture to counteract these stress-induced events, such
as maximum irrigation or the construction of extended greenhouses, have a significant
negative impact from an economic and environmental point of view.

For these reasons, the identification of new ecological strategies to minimize the
negative effects of climate change on food availability and biodiversity appears to be
extremely urgent.

3.2.2. Global Change Impact on Food Quality

Some studies have reported that elevated CO2 results in more rapid growth rates but
reduced plant protein content and micronutrients such as calcium, iron, and zinc [135].

A decrease in macro- and micronutrients and an increase in polyphenols and total
antioxidant capacity were observed in lettuce and spinach following elevated CO2, indi-
cating the complex response of plants to yield and nutritional quality [136]. In fact, high
levels of variability can be observed across plant species, their cultivars or varieties, and
their responses to environmental conditions. In general, temperature variations, rainfalls,
and solar radiation have been shown to have an impact on secondary metabolites such as
polyphenols, terpenoids, and alkaloids in various fruit and vegetable crops, with direct
consequences on their nutritional or organoleptic qualities [137]. For instance, variations
in antioxidant activity and total polyphenol and flavonoid content were observed in dif-
ferent sweet chestnut cultivars in association with climatic and environmental factors and
regions of growth [138]. In this case, increased levels of antioxidant activity and bioactive
compounds were reported following lower environmental temperature exposure, higher
precipitation, altitude, and a longer duration of sunlight Martinez et al., 2022 [138]. On
the other hand, elevated temperatures may also affect flavors due to the changes in sugar
in apples [139,140], sugar and acid content in grapes [141,142], and firmness and aroma
volatile components in avocado fruits [143]. High temperatures have also been shown
to increase antioxidant capacity and flavonoid content in strawberries [144], but reduce
vitamin content in other fruits, such as kiwifruits [145].

Recent studies have reported that some plant species may incur larger impacts on both
yield performance and product quality due to altered flowering and fruit development
under a warmer future climate [146]. For example, in different tomato landraces (from Italy,
URSS, Honduras, and Guatemala), plant responses in terms of yield, firmness, antioxidant
activity, carotenoid content, ascorbate, and polyphenols have been observed following
high temperature exposure in an open field during the critical stages of flowering and
fruit setting. Unlike most of them, some of these tomato landraces presented both good
fruit size and setting and increased levels of phytonutrients. Such data indicate that the
combination of tolerance to high temperatures with medium–high yield performances and
fruit nutritional quality can be considered in the selection and breeding programs of local
tomato landraces [79].

Thus, extreme climate conditions are expected to alter the quality and nutritional value
of foods since the composition of plant health-promoting phytonutrients can dramatically
change [147]. However, there is a lack of evidence regarding the impact of climate change
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on human nutrition and health indicators. Therefore, additional studies are needed to
understand climate change’s impact on plant secondary metabolites potentially beneficial
for human health and the composition of protein, amino acids, essential fatty acids, and
micronutrients such as vitamin B12, zinc, iron, etc. [87].

3.3. Adaptation Strategies to Integrate Resilience Food Security into Climate Change

Food security resilience to climate change is influenced by the human capacity to
develop agroecosystem adaptation to reduce the extreme event impacts on provisioning
ecosystem services. The main strategies for adaptation to climate change in the agroe-
cosystem have been described in Table 2. The table connects the adaptation or mitigation
strategies to the impact of climate change on agroecosystems to address the audience’s
choice of solution in consideration of the problem.

The effects of climate change on food security require a new approach to agricultural
crop management, increasing adaptation strategies capable of reducing the negative effects
generated by perturbative events such as extreme temperatures [148–151]. Thus, the use
of well-adapted and high-yielding varieties with resistance to water stress is important
to reach maximum yield potential for as long as possible while minimizing the risk of
climate change. However, more attention is needed to not encourage exclusively the use of
intensive crops naturally tolerant to water stress and to not worsen fragmentation, habitat
loss, and biodiversity. One of the key strategies to avoid such consequences due to climate
change could be represented by biodiversity conservation and improvement, broadening
food production to include locally adaptable, often underutilized, nutrient-rich species,
and ensuring diversified, healthy diets [152,153].

Nonetheless, this solution could not be sufficient in consideration of the rate of climate
change and population growth, so the important strategies should include the develop-
ment of innovation-based solutions to reduce both the natural resource needs for crop
production and the effect of extreme events on morphology adaptation and physiological
and biochemical vegetation processes. Innovation-based solutions could be highlighted as
technologies combined or applied to the agroecosystem to produce a new system able to
ensure and improve ecosystem service flow.

Genetic diversity is a critical factor for crop variety improvement and selection by
breeding and contributing to the genetic resources to pass down to future generations
and to counteract the genetic erosion of many local species or landraces [154]. Principally,
the identification of stress-related genes provides a strong tool for improving water stress
tolerance. Indeed, a large number of stress-response genes are activated through complex
signal transduction networks, promoting the synthesis of many functional proteins related
to the capability to resist water stress in the tolerance mechanisms [120,155–159]. Several
genes have been identified to increase drought tolerance in plants: high basal levels
of the CiLEA4 and CiXTH29 genes in chicory seem to enhance drought tolerance [120];
a transcription factor involved in the pathway of LEA and dehydrin gene expression,
TaNAC69, has the same effect in wheat [159]; and the heat shock protein HSP70-1 activates
the drought stress tolerance mechanisms in tobacco [160]. Nevertheless, more details on
plants’ water status [161], abiotic stress biology [162], stress targets for modern genetic
manipulation [163], new breeding crops for drought-affected environments, and climate
resilience [164] can be found in the mentioned bibliography.

In this context, biofortification, which aims to improve the content of micro- and
macronutrients and bioactive compounds beneficial for human health, can be an alternative
strategy to implement in order to close the gap between climate change, food quality and
production, and eventually food security. Smart solutions, by increasing knowledge and
biofortification through either conventional or new emerging breeding technologies (NBTs,
e.g., genome-editing technologies), could be useful. NBTs can further help to deal with
climate change challenges, for example, by providing novel genetic solutions for stress
tolerance.
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The climate change strategies for food security include the application of multifunc-
tional projects that can combine agricultural production with energy production in order
to create a winning mutualism between the two international strategies to reduce gas
emissions and maintain food security. In particular, numerous studies have highlighted
that agrivoltaic systems can be effective in reducing the water stress of plants by increasing
productivity (Table 1). For example, some food productions can take more advantage of
the combination of agricultural activities under photovoltaic panels than others. Generally,
shadow-tolerant crops seem to benefit more from the agrivoltaic system. Such is the case of
lettuce, which showed morphological adaptations without yield reduction [165]. Nonethe-
less, shadow is not the only important factor for the choice of vegetation. Amaducci
et al. [166] showed that in the case of water stress and extreme events, some crops such as
maize can benefit from the agrivoltaic system compared to cultivation in full light. Indeed,
the agrivoltaic system helps the vegetation overcome the trouble caused by evapotranspira-
tion and soil water balance, giving it more favorable conditions for growing than in open
fields [166]. Barron-Gafford et al. [167] found that tomato and chiltepin pepper have more
capacity to uptake CO2 in agrivoltaic systems with more food production, whereas the
water use efficiency was higher for jalapeno pepper and tomato in the agrivoltaic systems.
For this reason, in this review, we promote the use of agrivoltaic systems as a possible
ecological weapon to fight and contrast the harmful effects of climate change.

Another important technology that is spreading in agriculture production is the use
of Climate-Smart Agriculture with IT applications based on remote sensing technologies
and applications and field sensors to monitor vegetation parameters such as primary
production and water stress to set in real-time natural resource input when vegetation
needs them. Climate-Smart Agriculture, together with water-saving irrigation techniques,
can reduce natural resource application and agricultural costs, improving food production
at a low cost. On the other hand, the need to save water in agriculture has contributed to
the awareness of the importance of water reuse. In particular, great importance has been
attached to the concept of reuse in the agri-food cycle. For example, the large quantities of
wastewater produced by food processing industries could be an important source of water
if refined with tertiary treatment, converting a ‘waste’ into a ‘resource’ and contributing to
the conservation of water resources in the environment [168].

Innovation-based solutions can be generated by integrating different technologies and
approaches, such as NBTs and agrivoltaic and smart agricultural systems, to offer a way to
create sustainable and resilient food systems and ensure healthy diets that are aligned with
contextual ecosystem functions [52,169].

Table 2. The main strategies to address climate change impacts reported in the literature are high-
lighted in the table. The “ID” numbers refer to the impacts reported in Table 1.

ID Impacts from
Table 1

Adaptation
Strategies Explanation References

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11 Crop diversification

Crop diversification can maintain soil fertility, reduce
pests and insects, and minimize the negative

consequences of extreme weather conditions on the yield
of a whole farm operation.

Crop diversification can improve the stability of
agricultural production and reduce the risk of farm

profitability loss caused by product loss in monoculture.
Crop diversification has been adopted as an important

strategy in many developing countries to meet the
challenge of climate change.

[21,22,170–178]

1, 4, 5, 7, 11 Investment in suitable
business equipment

Equipment is important to improve work efficiency,
develop new cultivation methods, and promote the

diversification of crops.
[22,35,62,177]
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Table 2. Cont.

ID Impacts from
Table 1

Adaptation
Strategies Explanation References

1, 2, 3, 4, 5, 6, 7, 9,
10, 11

Change in management
practices and cropping

practices

Changes in farm management techniques, including
changing fertilizer, pesticide, irrigation, and seed quality.

Some examples are changing crop types and varieties,
changing sowing and harvesting dates, crop rotation, and

intercropping.

[21,22,35,178–181]

2, 3, 4, 6, 11
Water-saving irrigation
techniques and water

reuse

The use of drip irrigation is recommended for both
groundwater depletion and global warming. Sprinklers

and drip irrigation can help minimize climate change and
improve the economy in the long run.

[21,22,35,168,180,
182]

1, 2, 3, 4, 6, 7, 11
Use of crops adapted to

grow in the reference
agricultural context

Reproductive plants are used in the reference agricultural
context because they allow the development of new plant

species in response to the present environmental
conditions.

[35,68,178,183,184]

1, 2, 3, 4, 5, 7, 10,
11

Application of
Climate-Smart

Agriculture

Smart agriculture for climate change includes the
application of technologies to support agricultural

practices that use less water, pesticides, and fertilizers in
relation to the physiological conditions of the plant. The
soil structure is preserved, and water and nutrients are

managed sustainably. These strategies are simple to
implement and have great potential to assist farmers in

increasing production and reducing costs.

[35,42,180,181,185]

1, 2, 3, 4, 5, 6, 7,
10, 11 Agrivoltaic application

The microclimate generated by the photovoltaic panels
can reduce plants’ water stress.

Agrivoltaic systems seem effective in improving the
productivity of some cereal crops and horticultural

productions.

[24,166,167,186–194]

1, 2, 3, 7, 8, 9, 10,
11

Biodiversity
development

Increasing both agricultural and natural biodiversity is
important to support ecological processes that sustain

local well-being. In particular, agricultural biodiversity is
important to increase the specific resilience of agricultural

activities in order to compensate for any losses in
particular years of drought and heat waves. Biodiversity

linked to natural vegetation is essential to increasing
ecological processes supporting agriculture, such as

anemophilous pollination.

[62,185,195]

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11

Promotion of field
research and

dissemination of results

The effect of climate change on agricultural productivity
in different cultures is a phenomenon to be explored, as

currently there are mainly long-term projections. It is
currently difficult to have a complete picture of the

consequences of climate change on food production and,
consequently, of the effectiveness of the different
adaptation strategies to reduce negative impacts.

Therefore, experimentation both in the laboratory and in
the field becomes fundamental in order to test different

solutions on different cultures and produce knowledge on
the subject. In this regard, scientific dissemination is an
important point for sharing results and identifying best

practices.

[21,34,35]

1, 4, 7, 12 Use of adequate seed The use of seed varieties more resistant to drought and
high temperatures is recommended. [22,178]
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Table 2. Cont.

ID Impacts from
Table 1

Adaptation
Strategies Explanation References

7, 11, 13 New emerging breeding
technologies

Biofortification strategies and new breeding technologies
(NBTs) can be alternative ways to conventional breeding

to improve genetic traits, make them more tolerant to
climate change, and guarantee the nutritional quality of

foods.

[52,169]

1,2,3,4,5,6,7,8,9,10,11 Agroforestry

Agroforestry is a good strategy to reduce the impact of
greenhouse gas emissions on climate change and their
effects on the agroecosystem. Agroforestry systems are

also good strategies to improve agricultural production by
maintaining soil, air, and water quality and providing

different sources of income.

[29,196–199]

In the end, agroforestry can be a good strategy for climate change adaptation. Indeed,
if agroforestry could be negatively influenced by climate change by reducing the tree’s
growth and production, at the local scale, it could produce microclimate buffering on
small productions. Moreover, on a global scale, agroforestry could have a strong role
in reducing the impact of greenhouse gas emissions on climate change through carbon
storage [196–199].

4. Conclusions

Due to its vast size and its sensitivity to meteorological variables, the agroecosystem
is the most vulnerable sector to climate change, with significant social and economic
consequences for human life [35].

This review aimed to give an insight into the impact of climate change on agroecosys-
tems from a global to a gene scale to better highlight the negative impacts in terms of
the provisioning of ecosystem services for food security. This has been a useful exercise
involving different disciplines that helped to find the main adaptation strategies, giving
a more complete approach to the problem. Hence, there is no one best strategy but a
synergy of strategies to be applied to preserve the integrity and health of agroecosystems,
such as biodiversity conservation and crop management. However, it is also important to
strengthen the morphological, physiological, and biochemical processes on single plants
that support provisioning ecosystem services that sustain food security and human well-
being. There is a need to develop new innovative base solutions to adapt natural capital
to climate change, including new technologies in agroecosystems such as Climate-Smart
Agriculture and new emerging breeding technologies. Indeed, these strategies also need
a cultural, social, and institutional approach to adapt human-derived capital to improve
innovation-based solutions able to sustain natural capital flow and food security. This
leads to the involvement of all stakeholders, where knowledge dissemination has a crucial
role in informing and forming a new generation of decision-makers, manufacturers, and
consumers.

Many studies have only focused on climate change’s effects on food risk or potential
strategies to counteract them. This review has tried to directly connect these two aspects,
providing information on how the strategies are connected with specific climate change
impacts on food risk (ID impacts from Table 1 column, reported in Table 2). Moreover,
this review has applied a scaling approach to specify how the impact of climate change
on food production is related to the adaptative strategies of crop plants to climate change,
such as water stress and plant responses. This aspect could be useful in developing specific
adaptative strategies for crop production to mitigate food risk. The future evolution of this
work is to study the effects of strategies such as agrivoltaic and smart agriculture on crop
vegetation responses to water stress and extreme temperatures that have not been fully
explored yet.
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Nevertheless, there are some gaps in this review; e.g., we describe the effects of climate
change on food security in terms of the vegetation that characterizes the agroecosystem
without developing consideration about the impact on animal husbandry. Therefore, in the
future, new work could be developed to describe climate change in all food chains.

Author Contributions: Conceptualization, T.S.; methodology, T.S.; validation, A.S., A.L., A.C. and
M.D.C.; formal analysis, T.S., A.S., A.L. and A.C.; investigation, T.S., A.S., A.L., A.C. and M.D.C.;
resources, T.S., A.S., A.L., A.C. and M.D.C.; data curation, T.S., A.S., A.L., A.C. and M.D.C.; writing—
original draft preparation, T.S., A.S., A.L., A.C. and M.D.C.; writing—review and editing, T.S., A.S.,
A.L., A.C. and M.D.C.; visualization, T.S., A.S., A.L., A.C. and M.D.C.; supervision, M.D.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors thank Dalessandro for his contribution in reviewing this work
and suggesting revisions of the text, clarification of some concepts, and suggestions of parts to be
developed. T.S. and M.D.C. thank the ITINERIS project and the NBCF project of PNRR.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Costanza, R.; Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The

value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]
2. De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and

values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [CrossRef]
3. MSCI ESG Research; World Economic Forum; PwC. Nature Risk Rising: Why the Crisis Engulfing Nature Matters for Business and the

Economy; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); The Global Assessment
Report on Biodiversity and Ecosystem Services; World Economic Forum: Cologny, Switzerland, 2020.

4. Robinson, D.A.; Lebron, I.; Vereeckem, H. On the Definition of the Natural Capital of Soils: A Framework for Description,
Evaluation, and Monitoring. Soil Sci. Soc. Am. J. 2009, 73, 1904–1911. [CrossRef]

5. Mace, G.M.; Hails, R.S.; Cryle, P.; Harlow, J.; Clarke, S.J. Towards a risk register for natural capital. J. Appl. Ecol. 2015, 52, 641–653.
[CrossRef] [PubMed]

6. Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosyst.
Serv. 2020, 43, 101096. [CrossRef]

7. Semeraro, T.; Luvisi, A.; De Bellis, L.; Aretano, R.; Sacchelli, S.; Chirici, G.; Marchetti, M.; Cocozza, C. Dendrochemistry: Ecosystem
services perspectives for urban biomonitoring. Front. Environ. Sci. 2020, 8, 558893. [CrossRef]

8. Moonen, A.C.; Bàrberi, P. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 2008, 127, 7–21. [CrossRef]
9. MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well Being: Current State and Trends; Island Press: Washington,

DC, USA, 2005.
10. Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the

global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [CrossRef]
11. Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.; Song, X.P.; Wong, L.W.

A conceptual framework to untangle the concept of urban ecosystem services. Landsc. Urban Plan. 2020, 200, 103837. [CrossRef]
12. Semeraro, T.; Turco, A.; Arzeni, S.; La Gioia, G.; D’Armento, R.; Taurino, R.; Medagli, P. Habitat Restoration: An Applicative

Approach to “Biodiversity Heritage Relicts” in Social-Ecological Systems. Land 2021, 10, 898. [CrossRef]
13. Stian, B.H.; Erling, M. Natural capital in integrated assessment models of climate change. Ecol. Econ. 2015, 116, 354–361.

[CrossRef]
14. Willis, K.J.; Bhagwat, S.A. Biodiversity and climate change. Science 2009, 326, 806–807. [CrossRef] [PubMed]
15. Filho, W.L.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the impacts of climate change on soil

biodiversity. Sci. Total Environ. 2023, 869, 161671. [CrossRef] [PubMed]
16. Kamboj, R.; Kamboj, S.; Kamboj, S.; Kriplani, P.; Dutt, R.; Guarve, K.; Grewal, A.S.; Srivastav, A.L.; Gautam, S.P. Chapter

1—Climate uncertainties and biodiversity: An overview. In Visualization Techniques for Climate Change with Machine Learning and
Artificial Intelligence; Srivastav, A., Dubey, A., Kumar, A., Narang, S.K., Ali Khan, M., Eds.; Elsevier: Amsterdam, The Netherlands,
2023; pp. 1–14. ISBN 9780323997140. [CrossRef]

17. Hopkins, W.G.; Huner, N.P.A. Introduction to Plant Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004;
ISBN 978-0-470-24766-2.

18. Costanza, R.; Fisher, B.; Mulder, K.; Liu, S.; Christopher, T. Biodiversity and ecosystem services: A multi-scale empirical study of
the relationship between species richness and net primary production. Ecol. Econ. 2007, 61, 478–491. [CrossRef]

https://doi.org/10.1038/387253a0
https://doi.org/10.1016/j.ecocom.2009.10.006
https://doi.org/10.2136/sssaj2008.0332
https://doi.org/10.1111/1365-2664.12431
https://www.ncbi.nlm.nih.gov/pubmed/27563153
https://doi.org/10.1016/j.ecoser.2020.101096
https://doi.org/10.3389/fenvs.2020.558893
https://doi.org/10.1016/j.agee.2008.02.013
https://doi.org/10.1016/j.gloenvcha.2014.04.002
https://doi.org/10.1016/j.landurbplan.2020.103837
https://doi.org/10.3390/land10090898
https://doi.org/10.1016/j.ecolecon.2015.05.009
https://doi.org/10.1126/science.1178838
https://www.ncbi.nlm.nih.gov/pubmed/19892969
https://doi.org/10.1016/j.scitotenv.2023.161671
https://www.ncbi.nlm.nih.gov/pubmed/36657677
https://doi.org/10.1016/B978-0-323-99714-0.00016-9
https://doi.org/10.1016/j.ecolecon.2006.03.021


Land 2023, 12, 1117 15 of 21

19. Semeraro, T.; Mastroleo, G.; Pomes, P.; Luvisi, A.; Gissi, E.; Aretano, R. Modelling Fuzzy combination of remote sensing vegetation
index for durum wheat crop analysis. Comput. Electron. Agric. 2019, 156, 684–692. [CrossRef]

20. Semeraro, T.; Luvisi, A.; Lillo, A.; Aretano, R.; Buccolieri, R.; Marwan, N. Recurrence Analysis of Vegetation Indices for
Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest. Remote Sens. 2020, 12, 907.
[CrossRef]

21. FAO. Climate Change Impacts and Adaptation Options in the Agrifood System. 2022. Available online: https://www.fao.org/3/
cc0425en/cc0425en.pdf (accessed on 26 January 2023).

22. Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216,
114674. [CrossRef]

23. Ahmed, N.; Areche, F.O.; Cotrina Cabello, G.G.; Córdova Trujillo, P.D.; Sheikh, A.A.; Abiad, M.G. Intensifying Effects of Climate
Change in Food Loss: A Threat to Food Security in Turkey. Sustainability 2023, 15, 350. [CrossRef]

24. Barati, A.A.; Azadi, H.; Movahhed Moghaddam, S.; Scheffran, J.; Dehghani Pour, M. Agricultural expansion and its impacts on
climate change: Evidence from Iran. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2023;
pp. 1–27. [CrossRef]

25. World Food Summit, Rome Declaration on World Food Security. Report of the World Food Summit, 13–17 November 1996,
Organized by Food and Agriculture Organization of the United Nations. 1996. Available online: https://www.fao.org/3/w354
8e/w3548e00.htm (accessed on 2 May 2023).

26. Agarwala, M.; Atkinson, G.; Baldock, C.; Gardiner, B. Natural capital accounting and climate change. Nat. Clim. Change 2014, 4,
520–522. [CrossRef]

27. Barbier, E.B.; Burgess, J.C. Natural Capital, Institutional Quality and SDG Progress in Emerging Market and Developing
Economies. Sustainability 2023, 15, 3055. [CrossRef]

28. Duan, H.; Yuan, D.; Cai, Z.; Wang, S. Valuing the impact of climate change on China’s economic growth. Econ. Anal. Policy 2022,
74, 155–174. [CrossRef]

29. Bezner, K.R.; Hasegawa, T.; Lasco, R.; Bhatt, I.; Deryng, D.; Farrell, A.; Gurney-Smith, H.; Ju, H.; Lluch-Cota, S.; Meza, F.; et al.
Food, fiber, and other ecosystem products. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working
Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.,
Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University
Press: Cambridge, UK, 2022; pp. 713–906.

30. United Nations. World Urbanization Prospects: The 2014 Revision: Highlights. 2014. Available online: https://population.un.
org/wup/publications/files/wup2014-report.pdf (accessed on 5 February 2023).

31. Ajide, K.B.; Mohammed, A.; Al-Faryan, M.A.S. The Implications of Food Security on Sustainability: Do Trade Facilitation,
Population Growth, and Institutional Quality Make or Mar the Target for SSA? Sustainability 2023, 15, 2089. [CrossRef]

32. FAO; IFAD; WFP; UNICEF; WHO. The State of Food Security and Nutrition in the World: Safeguarding against Economic Slowdown and
Downturns; FAO: Rome, Italy, 2020; pp. 2–25.

33. USDA. U.S. Department of Agriculture. 2023. Available online: https://www.usda.gov (accessed on 2 March 2023).
34. Feliciano, D.; Recha, J.; Ambaw, G.; MacSween, K.; Solomon, D.; Wollenberg, E. Assessment of agricultural emissions, climate

change mitigation and adaptation practices in Ethiopia. Clim. Policy 2022, 22, 427–444. [CrossRef]
35. Naz, N.; Hameed, W.; Tabbassum, R.; Farzand, A.; Asif, A.; Mushtaq, N.; Tahir, N. Impact of Global Climate Change on

Agricultural Productivity. Int. J. Glob. Sci. 2022, 4, 1–11.
36. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses:

The PRISMA statement. PLoS Med. 2009, 339, b2535. [CrossRef]
37. Abeysekara, W.C.S.M.; Siriwardana, M.; Meng, S. Economic consequences of climate change impacts on the agricultural sector of

South Asia: A case study of Sri Lanka. Econ. Anal. Policy 2023, 77, 435–450. [CrossRef]
38. Huang, S. Global Trade Patterns in Fruits and Vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06; USDA-ERS

(Economic Research Service): Washington, DC, USA, 2004. [CrossRef]
39. IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I

and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir,
T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York,
NY, USA, 2012; p. 582.

40. Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova,
R.C.; et al. (Eds.) Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and
Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32.

41. Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems:
Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372.
[CrossRef]

42. Birhanu, L.; Hailu, B.T.; Bekele, T.; Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of
Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 16, 100260. [CrossRef]

https://doi.org/10.1016/j.compag.2018.12.027
https://doi.org/10.3390/rs12060907
https://www.fao.org/3/cc0425en/cc0425en.pdf
https://www.fao.org/3/cc0425en/cc0425en.pdf
https://doi.org/10.1016/j.envres.2022.114674
https://doi.org/10.3390/su15010350
https://doi.org/10.1007/s10668-023-02926-6
https://www.fao.org/3/w3548e/w3548e00.htm
https://www.fao.org/3/w3548e/w3548e00.htm
https://doi.org/10.1038/nclimate2257
https://doi.org/10.3390/su15043055
https://doi.org/10.1016/j.eap.2022.01.019
https://population.un.org/wup/publications/files/wup2014-report.pdf
https://population.un.org/wup/publications/files/wup2014-report.pdf
https://doi.org/10.3390/su15032089
https://www.usda.gov
https://doi.org/10.1080/14693062.2022.2028597
https://doi.org/10.1136/bmj.b2535
https://doi.org/10.1016/j.eap.2022.12.003
https://doi.org/10.2139/ssrn.753525
https://doi.org/10.3390/su11051372
https://doi.org/10.1016/j.rsase.2019.100260


Land 2023, 12, 1117 16 of 21

43. UNESCO. UNWater 2020: United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO.
Available online: https://www.unesco.org/en/wwap/wwdr/2020 (accessed on 10 January 2023).

44. Ozdemir, D. The impact of climate: Change on agricultural productivity in Asian countries: A heterogeneous panel data approach.
Environ. Sci. Pollut. Res. 2022, 29, 8205–8217. [CrossRef]

45. Cramer, W.; Egea, E.; Fischer, J.; Lux, A.; Salles, J.-M.; Settele, J.; Tichit, M. Biodiversity and Food Security: From Trade-Offs to
Synergies. Reg. Environ. Change 2017, 17, 1257–1259. [CrossRef]

46. Hasegawa, T.; Sakai, H.; Tokida, T.; Nakamura, H.; Zhu, C.; Usui, Y.; Yoshimoto, M.; Fukuoka, M.; Wakatsuki, H.; Katayanagi, N.;
et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Funct. Plant Biol. 2013, 40,
148–159. [CrossRef] [PubMed]

47. Reich, P.B.; Hobbie, H.E.; Lee, T.D.; Pastore, M.A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a
20-year field experiment. Science 2018, 6386, 317–320. [CrossRef] [PubMed]

48. Rakhmankulova, Z.; Shuyskaya, E.; Toderich, K.; Voronin, P. Elevated atmospheric CO2 concentration improved C4 xero-
halophyte kochia prostrata physiological performance under saline conditions. Plants 2021, 10, 491. [CrossRef] [PubMed]

49. Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.; Fitzgerald, G.; Seneweera, S. Rising atmospheric CO2 concentration affects
mineral content and protein concentration of wheat grain. Food Chem. 2012, 133, 1307–1311. [CrossRef]

50. Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Broberg, M.; Uddling, J.; Jaramillo, F.; Davies, W.J.; Dentener, F.; Van den Berg,
M.; et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Change Biol. 2018, 8, 3560–3574.
[CrossRef] [PubMed]

51. Wang, Y.; Wild, O.; Ashworth, K.; Chen, X.; Wu, Q.; Qi, Y.; Wang, Z. Reductions in crop yields across China from elevated ozone.
Environ. Pollut. 2022, 292, 118218. [CrossRef] [PubMed]

52. Fanzo, J.; Down, S.M. Climate change and nutrition-associated diseases. Nat. Rev. 2021, 7, 90. [CrossRef]
53. Stone, P.; Nicolas, M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis

heat stress. Funct. Plant Biol. 1994, 21, 887–900. [CrossRef]
54. Blum, A.; Klueva, N.; Nguyen, H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 2001, 117,

117–123. [CrossRef]
55. Semenov, M.A. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface 2009, 6, 343–350. [CrossRef]
56. Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev.

Plant Sci. 2011, 30, 491–507. [CrossRef]
57. Hasan, M.N. Trends in the Availability of Agricultural Land in Bangladesh; Soil Resource Development Institute (SERDI), Ministry

of Agriculture: Dhaka, Bangladesh, 2013. Available online: http://fpmu.gov.bd/agridrupal/sites/default/files/Trends-in-
theavailability-of-agricultural-land-in-Bangladesh-SRDI-Supported-by-NFPCSP-FAO.pdf (accessed on 17 January 2023).

58. Rippey, B.R. The U.S. drought of 2012. Weather Clim. Extrem. 2015, 10, 57–64. [CrossRef]
59. D’Amour, C.B.; Wenz, L.; Kalkuhl, M.; Steckel, J.C.; Creutzig, F. Teleconnected food supply shocks. Environ. Res. Lett. 2016, 11,

35007. [CrossRef]
60. Huai, J. Dynamics of resilience of wheat to drought in Australia from 1991 to 2010. Sci. Rep. 2017, 7, 9532. [CrossRef] [PubMed]
61. Dellal, I.; Unuvar, F. Effect of Climate Change on Food Supply of Turkey. J. Environ. Prot. Ecol. 2019, 20, 692–700.
62. Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, J. A review of the global climate change impacts,

adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [CrossRef]
63. Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I. Global climate change adaptation: Examples from Russian boreal forests.

Clim. Change 1997, 36, 197–215. [CrossRef]
64. Zilberman, D.; Liu, X.; Roland-Holst, D.; Sunding, D. The Economics of Climate Change in Agriculture. In Innovative Approaches

for Sustainable Development; Mahdi, S.S., Singh, R., Eds.; Springer: Cham, Switzerland, 2004. [CrossRef]
65. Compant, S.; Van Der Heijden, M.G.A.; Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions.

FEMS Microbiol. Ecol. 2010, 73, 197–214. [CrossRef]
66. Ziska, L.H.; McConnell, L.L. Climate change, carbon dioxide, and pest biology: Monitor, mitigate, manage. J. Agric. Food Chem.

2016, 64, 6–12. [CrossRef]
67. Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H.M. Impact of climate change on biology and

management of wheat pests. Crop. Protect. 2020, 137, 105304. [CrossRef]
68. Zafar, M.M.; Manan, A.; Razzaq, A.; Zulfqar, M.; Saeed, A.; Kashif, M.; Khan, A.I.; Sarfraz, Z.; Mo, H.; Iqbal, M.S.; et al. Exploiting

Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy 2021,
11, 1885. [CrossRef]

69. Razzaq, A.; Zafar, M.M.; Li, P.; Qun, G.; Deng, X.; Ali, A.; Hafeez, A.; Irfan, M.; Liu, A.; Ren, M.; et al. Transformation and
Overexpression of Primary Cell Wall SynthesisRelated Zinc Finger Gene Gh_A07G1537 to Improve Fiber Length in Cotton. Front.
Plant Sci. 2021, 12, 777794. [CrossRef]

70. Razzaq, A.; Zafar, M.M.; Ali, A.; Hafeez, A.; Batool, W.; Shi, Y.; Gong, W.; Youlu, Y. Cotton germplasm improvement and progress
in Pakistan. J. Cotton Res. 2021, 4, 1. [CrossRef]

71. Razzaq, A.; Zafar, M.M.; Ali, A.; Hafeez, A.; Sharif, F.; Guan, X.; Deng, X.; Pengtao, L.; Shi, Y.; Haroon, M.; et al. The Pivotal Role
of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front. Genet. 2022, 12, 642595. [CrossRef]
[PubMed]

https://www.unesco.org/en/wwap/wwdr/2020
https://doi.org/10.1007/s11356-021-16291-2
https://doi.org/10.1007/s10113-017-1147-z
https://doi.org/10.1071/FP12357
https://www.ncbi.nlm.nih.gov/pubmed/32481095
https://doi.org/10.1126/science.aas9313
https://www.ncbi.nlm.nih.gov/pubmed/29674593
https://doi.org/10.3390/plants10030491
https://www.ncbi.nlm.nih.gov/pubmed/33807685
https://doi.org/10.1016/j.foodchem.2012.01.105
https://doi.org/10.1111/gcb.14157
https://www.ncbi.nlm.nih.gov/pubmed/29604158
https://doi.org/10.1016/j.envpol.2021.118218
https://www.ncbi.nlm.nih.gov/pubmed/34571069
https://doi.org/10.1038/s41572-021-00329-3
https://doi.org/10.1071/PP9940887
https://doi.org/10.1023/A:1004083305905
https://doi.org/10.1098/rsif.2008.0285
https://doi.org/10.1080/07352689.2011.615687
http://fpmu.gov.bd/agridrupal/sites/default/files/Trends-in-theavailability-of-agricultural-land-in-Bangladesh-SRDI-Supported-by-NFPCSP-FAO.pdf
http://fpmu.gov.bd/agridrupal/sites/default/files/Trends-in-theavailability-of-agricultural-land-in-Bangladesh-SRDI-Supported-by-NFPCSP-FAO.pdf
https://doi.org/10.1016/j.wace.2015.10.004
https://doi.org/10.1088/1748-9326/11/3/035007
https://doi.org/10.1038/s41598-017-09669-1
https://www.ncbi.nlm.nih.gov/pubmed/28842585
https://doi.org/10.1007/s11356-022-19718-6
https://doi.org/10.1023/A:1005348614843
https://doi.org/10.1007/978-3-030-90549-1_1
https://doi.org/10.1111/j.1574-6941.2010.00900.x
https://doi.org/10.1021/jf506101h
https://doi.org/10.1016/j.cropro.2020.105304
https://doi.org/10.3390/agronomy11091885
https://doi.org/10.3389/fpls.2021.777794
https://doi.org/10.1186/s42397-020-00077-x
https://doi.org/10.3389/fgene.2021.642595
https://www.ncbi.nlm.nih.gov/pubmed/35401652


Land 2023, 12, 1117 17 of 21

72. Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [CrossRef]
73. Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses

in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 2021, 28, 1465–1476. [CrossRef] [PubMed]
74. Nastis, S.A.; Michailidis, A.; Chatzitheodoridis, F. Climate change and agricultural productivity. Afr. J. Agric. Res. 2012, 7,

4885–4893. [CrossRef]
75. Rodger, J.G.; Bennett, J.M.; Razanajatovo, M.; Knight, T.M.; van Kleunen, M.; Ashman, T.L.; Steets, J.A.; Hui, C.; Arceo-Gómez, G.;

Burd, M.; et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 2021, 7, eabd3524.
[CrossRef]

76. An, H.; Gan, J.; Cho, J.S. Assessing Climate Change Impacts on Wildfire Risk in the United States. Forests 2015, 6, 3197–3211.
[CrossRef]

77. Lozano, O.M.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.T.; Finney, M.A.; Del Giudice, L.; Scoccimarro, E.; Spano,
D. Assessing Climate Change Impacts on Wildfire Exposurein Mediterranean Areas. Risk Anal. 2016, 37, 1898–1916. [CrossRef]

78. Dupuy, J.-l.; Fargeon, H.; Martin, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate
change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [CrossRef]

79. Scarano, A.; Olivieri, F.; Gerardi, C.; Liso, M.; Chiesa, M.; Chieppa, M.; Frusciante, L.; Barone, A.; Santino, A.; Rigano, M.M.
Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric. 2020,
100, 2791–2799. [CrossRef] [PubMed]

80. Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.;
Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 7503, 139–142. [CrossRef] [PubMed]

81. Ebi, K.L.; Ziska, L.H. Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med. 2018, 15,
e1002600. [CrossRef] [PubMed]

82. Ainsworth, E.A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated
ozone concentration. Glob. Change Biol. 2008, 14, 1642–1650. [CrossRef]

83. Cao, L.; Bala, G.; Caldeira, K.; Nemani, R.; Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate
change. Proc. Natl. Acad. Sci. USA 2010, 107, 9513–9518. [CrossRef]

84. Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ.
Anal. Policy 2014, 44, 451–465. [CrossRef]

85. Chalise, S.; Naranpanawa, A. Climate change adaptation in agriculture: A computable general equilibrium analysis of land-use
change in Nepal. Land Use Policy 2016, 59, 241–250. [CrossRef]

86. Leisner, C.P. Review: Climate change impacts on food security—Focus on perennial cropping systems and nutritional value.
Plant Sci. 2020, 293, 110412. [CrossRef]

87. Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The impact of climate change on food
systems, diet quality, nutrition, and health outcomes: A narrative review. Front. Clim. 2022, 4, 941842. [CrossRef]

88. Munné-Bosch, S.; Villadangos, S. 2023. Cheap, cost-effective, and quick stress biomarkers for drought stress detection and
monitoring in plants. Trends Plant Sci. 2023, 28, 527–536. [CrossRef]
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