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Abstract—This paper addresses adaptive radar detection of
N pulses coherently backscattered by a prospective target in
heterogeneous disturbance. As customary K ≥ N range cells
adjacent to the one under test are used for estimation purposes.
The disturbance in each range cell is described by a non-Gaussian
model based on a mixture of L < K Gaussian distributions.
Gaussian components are characterized by an unknown low-rank
matrix plus thermal noise with unknown power level. We first
derive a detector inspired by the generalized likelihood ratio test
that adaptively estimates the statistical properties of the distur-
bance from the observed data. To overcome the intractability of
the involved maximum-likelihood estimation problem, a suitable
approximate strategy based on the expectation-maximization
algorithm is developed. This also allows us to classify the cell
under test by selecting the “maximum a posteriori Gaussian
distribution” for the disturbance (under both hypotheses). Ac-
cordingly, a likelihood ratio test is also proposed. An extensive
performance analysis, conducted on synthetic data as well as
on two different experimental datasets (PhaseOne and IPIX for
land and sea radar returns, respectively), shows that the proposed
approaches outperform state-of-the-art competitors in terms of
both detection capabilities and false alarms control.

Index Terms—Radar detection, heterogeneous environments,
expectation-maximization algorithm, generalized likelihood ratio
test, non-Gaussian models.

I. INTRODUCTION

In the last decades the design of adaptive decision schemes
capable of detecting coherent targets buried in Gaussian and
non-Gaussian noise has attracted a great interest in the signal
processing community. In a seminal paper, Kelly used the
generalized likelihood ratio test (GLRT) to design an adaptive
decision scheme aimed at detecting coherent pulse trains in the
presence of Gaussian disturbance with unknown covariance
matrix [1]. Therein, it is assumed that a set of secondary
data, free of signal components, but sharing the same statis-
tical characterization of the overall interference (i.e., clutter,
thermal noise, and possible noise-like jammers) in the cell
under test (CUT), is available (homogeneous environment).
To reasonably meet this condition, secondary data are usually
picked from a window of range cells adjacent to the CUT.
Building upon such a pioneering work, a plethora of detectors
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have been designed by following procedures that include sta-
tistical tests with modified hypotheses, asymptotic arguments,
approximations, and ad-hoc strategies [2]–[6].

However, experimental data [7]–[11] have demonstrated that
the Gaussian assumption is not always valid; in particular,
in high-resolution radars (especially at low grazing angles)
non-Gaussian clutter is generally modeled as a compound-
Gaussian process that, when observed on sufficiently short
time intervals, degenerates into a spherically invariant random
process (SIRP), namely the product of a random variable (RV)
(texture) times a Gaussian process [12], [13]. An asymptoti-
cally optimum approximation of the GLRT to detect a coherent
signal when the disturbance is modeled in terms of a SIRP, has
been derived in [14]. Therein the covariance matrix of the dis-
turbance is supposed to be known at the design stage and the
corresponding detector is commonly referred to as the normal-
ized matched filter (NMF). Remarkably, in clutter-dominated,
non-Gaussian environments such a detector possesses the
constant false alarm rate (CFAR) property with respect to the
probability density function (PDF) of the texture. Adaptive
versions of the above NMF (ANMF) can be obtained when
secondary data are available by means of the estimate-and-plug
paradigm [15], [16]. Specifically, a sample covariance matrix
based on normalized secondary data can be used to estimate
the unknown covariance matrix if the secondary data share
the same covariance matrix of the disturbance in the CUT up
to possibly different power levels (the so-called heterogeneous
environment) [17], [18]. Such a detector inherits the CFAR
property with respect to the power levels from the NMF, but
it is not CFAR with respect to the structure of the clutter
covariance matrix (even in clutter-dominated environments).
It is commonly referred to as Σ-ANMF. Recursive estimators
for the structure of the clutter covariance matrix have been
proposed in [19]–[22] based on secondary data drawn from
a heterogeneous environment; plugging such estimators into
the NMF in place of the unknown covariance matrix can
guarantee a distribution of the decision statistic under the
noise-only hypothesis independent of both the power levels
and the structure of the clutter covariance matrix, provided
that the environment is clutter-dominated. An approximation
of the GLRT for heterogeneous environments has been pro-
posed in [23]. Interestingly, exploiting a specific initialization,
it also guarantees the CFAR property in clutter-dominated
environments with respect to all of the unknown parameters
and may guarantee better performance than the previously-
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proposed estimate-and-plug solutions. Finally, in [24], adaptive
detectors for point-like targets in heterogeneous scenarios have
been devised by resorting to the so-called directional statistics
and the expectation-maximization (EM) algorithm [25], [26].

All the above contributions share the common assumption
that the structure of the disturbance covariance matrix remains
unaltered over the entire extent (in space) of the secondary data
window. Actually, it depends on the spatial distribution of the
clutter point scatterers and, in practice, it is not guaranteed
that such a distribution is invariant with respect to the range.
In fact, heterogeneous terrains in the form of variations in
topology, land cover variations, and land-sea interfaces might
lead to different structures for the disturbance covariance
matrix [27]. Accounting for these variations at design stage
and exploiting the maximum likelihood (ML) approach yield
optimization problems that, from a mathematical point of view,
become very difficult and it is not guaranteed to obtain closed-
form expressions for their solutions. For this reason, subop-
timum approaches have been pursued such as in [28], [29]
where the EM algorithm has been used to address the direction
of arrival estimation problem and clutter clusterization in the
presence of heterogeneities (i.e., clutter returns characterized
by possibly different covariance structures). Finally, the EM
algorithm has been employed in [30] to devise detection
architectures capable of classifying the range bins according
to their clutter properties and detecting possible multiple
targets whose positions and number are unknown. Therein,
the covariance matrix of each range cell is assumed to belong
to a finite set of different classes.

With the above remarks in mind, in this paper we address
the detection of a coherent point-like target under a new
heterogeneous scenario where both clutter power levels and
covariance structures are modeled as parameters that can
vary over the range. Specifically, we formulate the detection
problem assuming that in each range cell the disturbance
components are non-Gaussian but can be modeled as a mix-
ture of Gaussian terms, each with zero-mean and covariance
matrix given by one out of L low-rank covariance matrices,
representative of classes of different heterogeneous clutter
(e.g., originating from land, sea, etc.), plus thermal noise with
unknown power. To the best of authors’ knowledge, these
more general assumptions have not yet been investigated in
the context of target detection in heterogeneous environments.
We then provide the following contributions:
• We formulate the binary hypothesis testing problem us-

ing a latent variables model: hidden random variables
(weights of the mixture model) are introduced to specify
in a probabilistic manner the clutter in each range cell.
For this problem, the GLRT-based detector that adaptively
estimates the statistical properties of the disturbance is
derived.

• To overcome the intractability of the ML estimation
problem stemming from the GLRT approach, we propose
a suitable strategy based on the EM algorithm, which
provides approximate ML estimates of the unknown
parameters under both hypotheses and efficiently solve
the detection problem. The outcome of the EM is also
used to derive an alternative decision scheme based on

the likelihood-ratio test (LRT) fed by the maximum a-
posteriori (MAP) classification of the disturbance distri-
bution in the CUT, i.e., a detector that decides based on
the most probable environment at hand.

• We conduct an extensive performance analysis to test
the effectiveness of the proposed detectors in terms of
detection capabilities, false alarms control, and robustness
to mismatches on the assumed non-Gaussian heteroge-
neous disturbance model. The algorithms are validated
both on synthetic data as well as on two different ex-
perimental radar datasets (PhaseOne and IPIX) including
different types of heterogeneous clutter (land and sea,
respectively), and also compared against the state-of-the-
art detectors. Results show that the proposed strategies
guarantee noticeable advantages in terms of detection
performance for a preassigned value of the false alarm
probability over state-of-the-art methods. Moreover, on
real data, the proposed strategies tend to guarantee values
of the false alarm rate closer to the nominal one than
all the considered competitors except for one of them
which, however, experiences an important detection loss
with respect to the proposed approaches.

The remainder of the paper is organized as follows: the
next section deals with the problem formulation while Section
III is devoted to the design of the newly-proposed decision
schemes relying on the EM algorithm. Section IV assesses
the performance of the proposed algorithms also in comparison
with natural competitors over synthetic and real recorded data.
Finally, Section V contains some concluding remarks.

Notation: Vectors and matrices are denoted by bold-
face lower-case and upper-case letters, respectively. Symbols
det(·), (·)−1, (·)T and (·)† denote the determinant, inverse,
transpose, and conjugate transpose, respectively. As to numer-
ical sets, C is the set of complex numbers, CN×M is the
Euclidean space of (N ×M)-dimensional complex matrices,
and CN is the Euclidean space of N -dimensional complex
vectors. The nth entry of the vector x is denoted by [x]n.
The symbol 0 denotes a matrix of zeros of proper dimensions
while the identity matrix of size N ×N is indicated by IN .
The acronym RV means random variable while IID means
independent and identically distributed. The set function P
denotes a probability measure. We write x ∼ CNN (0,M) if
x ∈ CN is a complex normal (N -dimensional) vector with
zero mean and (Hermitian) positive definite covariance matrix
M ∈ CN×N .

II. PROBLEM FORMULATION AND DEFINITIONS

The general radar detection problem for a coherent point-
like target can be formulated as the following hypothesis test:{

H0 : z = n, zk = nk, k = 1, . . . ,K
H1 : z = αv + n, zk = nk, k = 1, . . . ,K

(1)

where z ∈ CN is the vector of samples from the CUT,
v ∈ CN is the known (space, time, or space-time) steering
vector, α ∈ C is an unknown parameter accounting for channel
propagation, radar cross section of the target, etc., the zks
are secondary data, K ≥ N , and n,n1, . . . ,nK are the
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disturbance terms. As customary, secondary data are taken
from a window of cells adjacent in range to the CUT, and
are supposed free of signal components.

We resort to hidden random variables (latent variable model
[26]) to identify the covariance matrix modeling the clutter
components in each range cell. As a matter of fact, we
introduce the RV ck for the kth secondary range cell (and
c for the CUT) that takes on the value l with probability pl,
l = 1, . . . , L, namely P (ck = l) = pl (P (c = l) = pl), and
ck = l (c = l) implies that the N -dimensional noise vector
nk (n) is a complex normal vector with covariance matrix

Rl + σ2
wIN ∈ CN×N . (2)

In the last equation, Rl is an unknown low-rank1 positive
semidefinite matrix with known rank r < N , and σ2

w > 0 is
the unknown level of the thermal noise. Due to the inherent
complexity of the considered problem, we suppose that L is
less than the number K of secondary data. In addition, we
suppose that c, c1, . . . , cK are IID RVs.

It follows that n is modeled by a multivariate contaminated
normal distribution, i.e., a convex mixture model of Gaussian
terms, each conditioned on one of the L classes. Otherwise
stated, n|c = l ∼ CNN (0,Rl + σ2

wIN ) and, hence, the
(unconditional) PDF of n is given by

f (n;P0) =

L∑
l=1

pl
1

πN det (Rl + σ2
wIN )

× exp
[
−n†

(
Rl + σ2

wIN
)−1

n
]

(3)

where we recall that pl is the probability that c = l. For future
reference, we indicate by P0 the set of the unknown parameters
in the above PDF associated to the H0 hypothesis, namely
p1, . . . , pL, σ

2
w and the elements of the set of the deterministic

entries of the positive semidefinite matrices R1, . . . ,RL, say
R. Thus, P0 = {p1, . . . , pL, σ

2
w}∪R. Notice that some of the

entries of the covariance matrices are related by a one-to-one
mapping (due to Hermitian symmetry), thus impacting the set
of unknowns forming R.

Similarly, the PDF of nk is given by

f (nk;P0) =

L∑
l=1

pl
1

πN det (Rl + σ2
wIN )

× exp
[
−n†k

(
Rl + σ2

wIN
)−1

nk

]
. (4)

Assuming that n and the nks are independent random vectors,
it follows that the logarithm of the joint PDF of z and Z =
[z1 · · · zK ] is given by

L0 (z,Z;P0) = log f(z;P0) +

K∑
k=1

log f(zk;P0) (5)

1Notice that in space-time adaptive processing (STAP), the disturbance
covariance matrix exhibits a structure that comprises the sum of (white) noise
and clutter covariances, with the clutter component being positive semidefinite
and rank deficient [31]–[33]. For a uniform array and for fixed pulse repetition
frequency, the space-time clutter covariance matrix is essentially low rank
due to the inherent oversampling nature of the STAP architecture [34, and
references therein]. In addition, the rank of the clutter covariance matrix is an
indicator of both severity of the clutter scenario and the number of degrees
of freedom required to equalize the clutter component [35]–[38].

under H0 and

L1 (z,Z;P1) = log f(z − αv;P0) +

K∑
k=1

log f(zk;P0) (6)

under H1 with P1 = P0 ∪ {α}.
Under these assumptions, we aim at estimating the unknown

probabilities pl > 0,
∑L
l=1 pl = 1, together with all the other

unknown parameters from the available data. We remark that
the solution of the corresponding hypothesis test via GLRT, for
this rather general clutter model, based on a convex mixture of
Gaussian terms, is a challenging problem. Thus, to derive an
adaptive detector able to estimate the resulting large number
of parameters involved in the sets P0 and P1, we adopt the
EM algorithm, which yields approximate local maxima of the
log-likelihood functions (L0 and L1) required in the GLRT.
Moreover, we present two different ways to solve the detection
problem.

The first decision scheme relies on the GLRT where the
compressed likelihoods2, modeled according to the contam-
inated normal distribution, are computed by implementing
the EM algorithm under both hypotheses. The corresponding
detector will be referred to in the following as EM-based
GLRT (labeled EM-GLRT). The EM algorithm can also be
used to construct the MAP estimates of c and the cks, given
the CUT and the secondary data, and eventually to select
a reasonable Gaussian distribution of the disturbance within
each cell (a point better clarified in due course). An ad hoc
detector, based upon the LRT and implemented by replacing
the actual contaminated-normal distribution of the CUT with
the Gaussian distribution associated to the MAP estimates of
c, will also be investigated. Such a detector will be referred
to as the EM-MAP-based LRT (labeled EM-MAP-LRT).

III. DESIGN OF DETECTORS FOR HETEROGENEOUS
ENVIRONMENTS

As already anticipated, to solve the hypothesis testing
problem (1) under the modeling assumptions of Sec. II, we
propose two different design approaches. Let us start with the
plain GLRT relying on the (approximate) ML estimates of the
unknown parameters obtained by the EM algorithm (under
both hypotheses). The logarithm of the GLRT is given by

max
P1

L1 (z,Z;P1)−max
P0

L0 (z,Z;P0) (7)

from which the EM-GLRT decision scheme is obtained by
replacing the ML estimates with their EM counterparts, i.e.,

ΛEM-GLRT(z,Z) = L1

(
z,Z; P̂1

)
− L0

(
z,Z; P̂0

) H1
>
<
H0

η

(8)
where η is the threshold to be set according to the desired
probability of false alarm (Pfa) while P̂1 and P̂0 denote the
estimates of P1 and P0, computed by the EM algorithm.

An alternative to the above approximation of the GLRT
can be obtained by considering the MAP estimates of c (i.e.,

2Compressed likelihood refers to the maximum of the likelihood function
with respect to its unknown parameters.
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the class of the CUT) obtained starting from the posterior
probability

P
(
c = l|z; P̂1

)
, (9)

computed by the EM algorithm under H1 and the analogous
quantity computed under H0. Accordingly, we can estimate
the value c takes on under H0 and H1, respectively. As a
matter of fact, we compute

l̂1 = arg max
l

P
(
c = l|z; P̂1

)
, (10)

under H1 and

l̂0 = arg max
l

P
(
c = l|z; P̂0

)
, (11)

under H0. It turns out that the EM-MAP-LRT is given by

ΛEM-MAP-LRT(z,Z) =
f̃
(
z; α̂, R̂l̂1

, σ̂2
w1

)
f̃
(
z; 0, R̂l̂0

, σ̂2
w0

) H1
>
<
H0

η (12)

where

f̃
(
z;α,Rl, σ

2
w

)
=

1

det (Rl + σ2
wIN )

× exp
[
−(z − αv)†

(
Rl + σ2

wIN
)−1

(z − αv)
]
. (13)

R̂l̂0
and σ̂2

w0 denote the estimates of Rl and σ2
w under H0,

respectively (again computed by the EM algorithm); similarly,
α̂, R̂l̂1

, and σ̂2
w1 are the estimates of α, Rl, and σ2

w under H1.
We finally derive the EM algorithm for the problem ad-

dressed in this work, which is necessary to implement the
proposed decision schemes. This approach allows us to recur-
sively estimate the parameters of the sets Pi, i = 0, 1. For
the sake of clarity, let us denote by3 Θl the set formed by σ2

w

and the entries of Rl, and by P̂
(h−1)
i and Θ̂

(h−1)
l the sets of

the estimates of the parameters in Pi and Θl, respectively, at
the (h− 1)th iteration of the EM algorithm. The hth iteration
computes P̂

(h)
i starting from P̂

(h−1)
i to guarantee

Li(z,Z; P̂
(h)
i ) ≥ Li(z,Z; P̂

(h−1)
i ). (14)

The EM procedure consists of the following two steps, referred
to as the E-step and the M-step.

A. E-step
The E-step is tantamount to implementing the update rule

q
(h−1)
k (l) = P

(
ck = l|zk; P̂

(h−1)
0

)
=

f
(
zk|ck = l; Θ̂

(h−1)
l

)
p̂

(h−1)
l∑L

i=1 f
(
zk|ck = i; Θ̂

(h−1)
i

)
p̂

(h−1)
i

, (15)

under both hypotheses for the secondary data, while for the
primary data we have

q(h−1)(l) = P
(
c = l|z; P̂

(h−1)
0

)
=

f
(
z|c = l; Θ̂

(h−1)
l

)
p̂

(h−1)
l∑L

i=1 f
(
z|c = i; Θ̂

(h−1)
i

)
p̂

(h−1)
i

, (16)

3For notational convenience we omit the dependence of the estimates on
the hypothesis on which they are obtained.

under H0 and

q̃(h−1)(l) = P
(
c = l|z; P̂

(h−1)
1

)
=

f
(
z − α̂(h−1)v|c = l; Θ̂

(h−1)
l

)
p̂

(h−1)
l∑L

i=1 f
(
z − α̂(h−1)v|c = i; Θ̂

(h−1)
i

)
p̂

(h−1)
i

, (17)

under H1, respectively. In the above formulas
f
(
·|ck = l; Θ̂

(h−1)
l

)
and f

(
·|c = l; Θ̂

(h−1)
l

)
are the

estimates of the conditional PDFs of zk and z under H0

(or z − αv under H1) given ck = l and c = l, respectively,
at the (h − 1)th iteration of the EM algorithm, namely the
PDF of a complex normal random vector with zero mean
and covariance matrix given by R̂

(h−1)

l + σ̂
2(h−1)
w IN , with

R̂
(h−1)

l and σ̂2(h−1)
w the estimates of Rl and σ2

w, respectively,
at the (h − 1)th iteration. Similarly, α̂(h−1) and p̂

(h−1)
l are

the estimates of α and pl, respectively, at the previous step.

B. M-step

We now focus on the M-step under the H1 hypothesis,
as it provides as special case also the equations for the H0

hypothesis (for which α = 0 hence does not need to be
estimated). We can write that

P̂
(h)
1 = arg max

P1

[
g1

(
p1, . . . , pL,R, σ

2
w

)
+ g2

(
p1, . . . , pL,R, σ

2
w, α

)]
(18)

with

g1

(
p1, . . . , pL,R, σ

2
w

)
=

K∑
k=1

L∑
l=1

q
(h−1)
k (l)

× log
f (zk|ck = l; Θl) pl

q
(h−1)
k (l)

(19)

and

g2

(
p1, . . . , pL,R, σ

2
w, α

)
=

L∑
l=1

q̃(h−1)(l)

× log
f (z − αv|c = l; Θl) pl

q̃(h−1)(l)
(20)

where f (·|ck = l; Θl) and f (·|c = l; Θl) are the conditional
PDFs of zk and z under H0, given ck = l and c = l,
respectively. The maximization with respect to the pls is
tantamount to solving the following optimization problem:

max
pl,l=1,...,L

L∑
l=1

[(
K∑
k=1

q
(h−1)
k (l) + q̃(h−1)(l)

)
log(pl)

]

s.t.
L∑
l=1

pl = 1

.

(21)
By applying the method of Lagrange multipliers, it is not
difficult to prove (see Appendix A) that

p̂
(h)
l =

1

K + 1

[
K∑
k=1

q
(h−1)
k (l) + q̃(h−1)(l)

]
. (22)
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To the best of authors’ knowledge, the problem of esti-
mating the remaining parameters in the right-hand side of
eq. (18) cannot be solved in closed form. Thus, we pursue
an alternative path and seek for an approximate solution
using the following two-step procedure: first we estimate the
disturbance-related parameters R and σ2

w by maximizing g1

only, which is a function of z1, . . . ,zK , thus obtaining R̂(h)

and σ̂
2(h)
w ; then, we plug these estimates into g2, which is a

function of z, in place of R and σ2
w and maximize it with

respect to the remaining target-related parameter α obtaining
α̂(h). Similar suboptimal strategies have been used in the radar
signal processing literature to conceive many detectors as, for
instance, the well-known adaptive matched filter (AMF) [15].

We start with the maximization of g1, which can be con-
ducted using the results reported in Proposition 3 of [29] that
we restate here for the sake of completeness.

Proposition 1: An approximation to the maximizer of the
function

g′1(R, σ2
w) =

K∑
k=1

L∑
l=1

q
(h−1)
k (l) log f (zk|ck = l; Θl) (23)

can be obtained as follows

σ̂2(h)
w =

{
L∑
l=1

N∑
n=r+1

γ
(h−1)
l,n

}
/

{
L∑
l=1

K∑
k=1

q
(h−1)
k (l)(N − r)

}
(24)

and

R̂
(h)

l = Û
(h)

l Λ̂
(h)

l (Û
(h)

l )†, l = 1, . . . , L, (25)

with Û
(h)

l the unitary matrix whose columns are the eigen-
vectors corresponding to the eigenvalues γ(h−1)

l,1 ≥ γ
(h−1)
l,2 ≥

. . . ≥ γ
(h−1)
l,N of the matrix S(h−1)

l =
∑K
k=1 q

(h−1)
k (l)zkz

†
k

and

Λ̂
(h)

l = diag

(
max

{
γ

(h−1)
l,1∑K

k=1 q
(h−1)
k (l)

− σ̂2(h)
w , 0

}
, . . . ,

max

{
γ

(h−1)
l,r∑K

k=1 q
(h−1)
k (l)

− σ̂2(h)
w , 0

}
, 0, . . . , 0

)
. (26)

As a final comment, notice that, although the above propo-
sition assumes that R1, . . . ,RL have the same known rank r,
the result can be generalized to the case that the matrices have
unknown, possibly different, values of the rank [29]. Moreover,
it is important to remark that the EM algorithm derived in the
present contribution conveniently uses only a part of the results
in [29]: in fact, while [29] deals with clutter classification,
here we address target detection and, hence, in addition to
estimating the unknown disturbance parameters (appearing
in g1) it is also necessary to handle unknown parameters
associated to the presence of a target buried in a heterogeneous
clutter environment (appearing in the g2 function).

CUT

Radar Data Window

Data
Selection

EM-based
Estimation
Procedure

Detector

Fig. 1. Possible signal processing unit architecture that includes the proposed
approach.

Maximizing g2 with respect to α is tantamount to maximiz-
ing

g′2 (α) =

L∑
l=1

q̃(h−1)(l) log f
(
z − αv|c = l; Θ̂

(h)
l

)
=

L∑
l=1

q̃(h−1)(l)

[
−N log π − log det

(
R̂

(h)

l + σ̂2(h)
w IN

)

− (z − αv)
†
(
R̂

(h)

l + σ̂2(h)
w IN

)−1

(z − αv)

]

where f
(
·|c = l; Θ̂

(h)
l

)
is the estimate of the conditional PDF

of z − αv, under H1 and given c = l, at the hth iteration
of the EM algorithm. Moreover, neglecting additive terms
independent of α, we introduce the function

g′′2 (α) = − (z − αv)
†
A(h) (z − αv)

with

A(h) =

[
L∑
l=1

q̃(h−1)(l)

(
R̂

(h)

l + σ̂2(h)
w IN

)−1
]
.

It is not difficult to show that the maximum is achieved at

α̂(h) =

∑L
l=1 q̃

(h−1)(l)v†l ζl∑L
l=1 q̃

(h−1)(l)v†lvl
(27)

where

vl =

(
R̂

(h)

l + σ̂2(h)
w IN

)−1/2

v (28)

and

ζl =

(
R̂

(h)

l + σ̂2(h)
w IN

)−1/2

z. (29)

Estimation of P̂0 under H0 is tantamount to maximizing g in
eq. (18) with α = 0 and can be conducted exploiting the same
proposition used to maximize g1 under H1.

Fig. 1 shows a possible architecture that incorporates the
proposed approach into the signal processing unit of a radar
system.

C. EM Initialization

We now propose how to properly initialize the EM algo-
rithm. In this respect, we assume equiprobable priors for the
values of pl’s, namely, p̂(0)

l = 1/L, whereas the initial value
of the clutter covariance matrices R̂(0)

l is set according to the
following strategy:
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(i) for each range bin, compute the power g(k) = 1
N z
†
kzk,

k = 1, . . . ,K;
(ii) sort the power values g(k)’s in ascending order, namely

g̃(1) ≤ · · · ≤ g̃(K);
(iii) denote by z̃i the vector corresponding to g̃(i);
(iv) use the subsets of4 K/L vectors z̃i, i = (l − 1)KL +

1, . . . , lKL , representative of a coarse similarity among the
different range bins, to compute the following matrix, that
will be used to initialize Rl

R̃
(0)
l =

L

K

lKL∑
i=(l−1) K

L +1

z̃iz̃
†
i , l = 1, . . . , L. (30)

To set the initial value of the noise power, we first compute
the sample covariance matrix Σ = (1/K)ZZ†. Denoting with
λ1 ≤ λ2 ≤ . . . ≤ λN the ordered eigenvalues of Σ, we set

σ̂2(0)
w =

1

N − r
N−r∑
j=1

λj . (31)

The initial estimate of Rl is computed by removing from (30)
the estimated contribution of the noise power (31) as

R̂
(0)
l = R̃

(0)
l − σ̂2(0)

w IN , l = 1, . . . , L. (32)

As to the complex amplitude α, we set its initial value (only
required under the H1 hypothesis) as

α̂(0) =
v†z

v†v
, (33)

that is the ML estimate of α in white Gaussian noise. The
discussion about the number of iterations required to obtain
P̂1 and P̂0 is part of the analyses conducted in the next section.

IV. PERFORMANCE ASSESSMENT ON SYNTHETIC AND
REAL DATA AND RESULTS

In this section, we present an extensive performance analysis
of the proposed detectors based on both synthetic and real data.
We start by determining the number of iterations required to
compute P̂1 and P̂0. The analysis over synthetic data allows us
to firstly evaluate the advantages in terms of nominal detection
performance of the proposed approaches against that of the
natural competitors. The analysis also tests the robustness of
the newly-proposed decision schemes with respect to possible
mismatches related to the design assumptions. In the second
part, the behavior of the proposed detectors is assessed on live
data recorded by real radar systems. Such data are character-
ized by the presence of heterogeneous clutter disturbances in
different operational environments.

A. Simulation Setup

The numerical assessment on synthetic data is conducted
assuming N = 8 and considering two different configurations
of K and number of clutter classes L, i.e., K = 48, L = 2,
and K = 96, L = 3. It is important to stress here that
the proposed approach goes beyond the limitations of the
conventional radar window used to select secondary data.

4For the considered values of K and L, the ratio K/L is an integer.

We use a spatial steering vector v steered at 0◦. A desired
Pfa = 10−3 is assumed and the performance is assessed by
Monte Carlo simulations with 100/Pfa independent trials to
estimate the thresholds; the Pd values are obtained over 103

trials. We adopt the general definition for the signal to clutter-
plus-noise ratio (SCNR)

SCNR = |α|2v†(RCUT + σ2
wIN )−1v (34)

with RCUT denoting the covariance matrix associated to the
specific clutter class affecting the returns in the CUT (i.e.,
one among the L possible matrices Rl, l = 1, . . . , L). The
power of the thermal noise is instead set to σ2

w = 0.5.
1) Clutter Covariance Matrix: for simplicity, we consider a

spatial-only processing performed through a uniformly-spaced
linear array of N identical and isotropic (at least in the angular
sector of interest) sensors with inter-element distance equal to
λ/2, with λ being the wavelength corresponding to the radar
carrier frequency. Accordingly, clutter samples can be modeled
as the summation of individual patch returns at distinct angles
[39], leading to the following covariance structure

Rl = σ2
c,l

∑
φl
i∈Φl

v(φli)v(φli)
† (35)

where
• v(φli) denotes the spatial steering vector having the
nth entry equal to [v(φli)]n = 1/

√
Nejπn sinφl

i , n =
0, . . . , N − 1;

• Φl = {φl1, φl2, . . . , φlN l
c
}; for simplicity, we assume that

the number of patch returns is the same for each class,
namely N l

c = Nc,∀l.
We set Nc = 3 and hence r = 3 (in fact, Nc is the rank of
Rl). The specific Nc directions for each class of clutter used
in the simulations are Φ1 = {−5.96◦,−1.76◦,−2.97◦}, Φ2 =
{−11.24◦, 4.86◦,−9.17◦}, Φ3 = {13.95◦,−14.17◦, 3.13◦},
respectively5. As to σ2

c,l, it denotes the lth class clutter power
and is set as σ2

c,l = 10l dB, l = 1, . . . , L.
2) State-of-the-art Competitors: We compare the perfor-

mance of the newly-proposed detectors against a set of dif-
ferent algorithms designed to operate in heterogeneous envi-
ronments. More specifically, we consider the ANMF detectors
obtained by employing different estimates of the disturbance
covariance matrix:
• the Σ-ANMF in [18] relying on a sample covariance

matrix based on normalized secondary data;
• the R-ANMF detector, relying on the recursive procedure

devised in [19];
• the RP-ANMF detector based on a recursive estimate

exploiting the persymmetric structure of the covariance
matrix proposed in [21].

In addition, we also consider the approximate GLRT (AGLRT)
detector proposed in [23], proven to be a viable approach
to detect coherent targets in clutter-dominated heterogeneous
environments. The considered competitors represent the state-
of-the-art references for radar detection in heterogeneous

5Each φli is drawn from a uniform distribution within the first null-to-null
beamwidth of the linear array (whose extent is about 4/N ).
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Fig. 2. Average ∆Li(h) as a function of the iteration number h.

scenarios.6. The number of iterations used by the R-ANMF
and RP-ANMF detectors to recursively estimate the clutter
covariance matrix is set to 3, being this number sufficient
to guarantee an acceptable convergence as corroborated by
the related literature. On the other hand, the AGLRT uses 20
iterations in its cyclic estimation procedures.

B. Results on Synthetic Data

First, we set K = 48, L = 2 and, as preliminary step,
analyze the requirements of the proposed procedures in terms
of number of EM iterations. To this aim, we consider as
metric the absolute value of the relative difference between the
values assumed by the “compressed” log-likelihood functions,
i.e., L0

(
z,Z; P̂

(h)
0

)
or L1

(
z,Z; P̂

(h)
1

)
, over two successive

iterations h − 1 and h, evaluated under H0, as a function of
the number of iterations h, namely, i = 0, 1

∆Li(h) =

∣∣∣∣∣∣
(
Li

(
z,Z; P̂

(h)
i

)
− Li

(
z,Z; P̂

(h−1)
i

))
Li

(
z,Z; P̂

(h)
i

)
∣∣∣∣∣∣ . (36)

In Fig. 2 we report the average values of ∆Li(h) under both
hypotheses as a function of the number of iterations h, com-
puted over 105 Monte Carlo trials. As it can be observed, the
curves quickly decrease with the iteration number under both
hypotheses, and already at h = 10 achieve variations lower
than 10−4. Notice that such curves represent the log-likelihood
variations and, hence, do not have to experience an increasing
monotone behavior unlike the sequence of likelihood values.
Similar results are obtained also for other parameters setting,
hence are omitted for brevity. Therefore, in the following we
will consider for the proposed detectors a number of maximum
iterations equal to 10.

The detection performances in terms of Pd as a function of
the SCNR are shown in Fig. 3. It can be observed that both
the proposed detection schemes significantly outperform the
state-of-the-art competitors over the whole range of SCNR,

6Notice that such competitors are the ultimate achievements of different
research groups from the radar community, who contributed to their derivation
and analysis. In addition to [18], [19], [21], the interested reader is also
referred to, e.g., [2], [7], [9], [10], [20], [22], [40]
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Fig. 3. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, for the case N = 8, K = 48, and
L = 2.

with a gap that in the low SCNR regime is around 4 dB
for the EM-MAP-LRT, and increases up to about 5 dB for
the EM-GLRT, when compared with the Σ-ANMF detector,
the latter providing the best Pd’s among the considered com-
petitors. These interesting outcomes demonstrate improved
performance, i.e., a better capability to exploit the available
information in the detection task, despite the higher number
of free parameters to be estimated. Differently put, although
more parameters need to be estimated to cope with the L
clutter classes, the proposed detectors are able to learn the
different structures and powers associated with the diverse
clutter conditions; consequently, they fully adapt to heteroge-
neous environments and offer superior performance compared
to existing approaches that model clutter heterogeneity only
through different power levels. Furthermore, the behavior
of the EM-MAP-LRT also reveals that the proposed EM-
based recursive estimation scheme is able to correctly infer
the specific class of clutter the CUT is embedded in. As a
byproduct, it can be used for a coarse clutter classification.

To test the robustness of the proposed approaches to mis-
matches with respect to the assumed heterogeneous model,
we now stick to different scenarios that match the design
assumptions of the considered competitors. More specifically,
we change the distribution of the disturbance and assume for
the clutter contribution a compound-Gaussian model charac-
terized by a texture component distributed as the square root
of a Gamma RV with parameters (ν, 1/ν) (so that the mean
square value is unitary), with ν = 0.5, multiplied by a complex
Gaussian vector with zero mean and covariance matrix R.
As to R, we set it equal to the covariance matrix of the
class l = 1 generated according to (35). In addition, texture
values of different range cells (i.e., CUT and secondary data)
are supposed to be independent RVs. The disturbance also
includes a thermal noise component.

The obtained results in terms of Pd as a function of the
SCNR are reported in Fig. 4. Remarkably, the two proposed
detectors incur a very limited gap compared to the considered
competitors. Overall, we can conclude that the novel detectors
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Fig. 4. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 48, and L = 2,
using a compound-Gaussian model for the clutter.
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Fig. 5. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, for the case N = 8, K = 96, and
L = 3.

offer performance comparable to state-of-the-art competitors
in environments where the clutter has the same structure
(covariance matrix) and its heterogeneity is related to a varying
level of powers in range, whereas significant improvements are
achieved when clutter heterogeneity (in range) is described by
(a limited number of) different covariance matrices. As better
discussed later in Sec. IV-C, these conditions can be typically
found in real experimental data.

To corroborate the above results, we investigate a second
configuration consisting in K = 96 secondary data and L = 3,
which is representative of a processing performed over a larger
portion of the monitored area including an additional class
of clutter. In Fig. 5 we report the curves of the Pd as a
function of the SCNR for the proposed detectors and con-
sidered competitors. The obtained performance confirms the
superiority of the proposed detection schemes over the state-
of-the-art. Remarkably, the proposed EM-GLRT guarantees
an advantage that reaches more than 10 dB for Pd = 0.8
compared to the Σ-ANMF and RP-ANMF, and even higher
with respect to the R-ANMF and the AGLRT. The EM-MAP-
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Fig. 6. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 96, and L = 3,
using a compound-Gaussian model for the clutter.

LRT also provides significantly higher Pd values than the
ANMF and AGLRT detectors, though with a slightly smaller
performance gap (about 8 dB at Pd = 0.8) compared to the
EM-GLRT algorithm. On the other hand, it is also interesting
to observe the worse performance of the ANMF detectors: this
behavior is related to the increased level of heterogeneity of
the clutter returns along the different range bins, and reveals
the inability of ANMF detectors to adapt to this type of
heterogeneity. Similarly, the AGLRT detector is inherently
penalized by the underlying assumption that the structure of
the clutter covariance matrix remains the same across the L
clutter classes, and that the heterogeneity of the clutter can
be sufficiently captured by just considering different power
levels in each range bin. Finally, the superior performance
of the EM-GLRT with respect to the EM-MAP-LRT can be
explained by the fact that the former exploits all the available
information, while the decision statistic of the EM-MAP-LRT
considers only the class returned by the MAP classifier. As
a consequence, the remaining information related to the other
classes is not exploited.

We also assess the performance of the proposed detectors
in the presence of a mismatch on the assumed design model,
as done for Fig. 4. The obtained results, reported in Fig. 6,
confirm that both the proposed EM-MAP-LRT and EM-GLRT
are quite robust against the introduced mismatch with a limited
loss with respect to the competitors, which however operate
under conditions perfectly tailored to their design assumptions.

We conclude the analysis by quantifying the computational
load of the proposed algorithms, in comparison with the
considered state-of-the-art detectors. To this aim, we have
run all the algorithms on the same hardware platform and
computed the average execution time on 100 distinct trials.
The findings are presented in Table I. Notably, the Σ-ANMF
detector is the fastest among all the considered detectors. This
can be attributed to its lightweight processing that does not
entail any iterative or recursive steps. The R-ANMF and RP-
ANMF methods exhibit only slightly higher execution times,
attributable to their recursive covariance matrix estimation.
Comparatively, the proposed EM-GLRT showcases an average



9

10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

increasing L

SCNR [dB]

P
d

Σ-ANMF

R-ANMF

RP-ANMF

AGLRT

Prop. EM-GLRT (L = 2)

Prop. EM-MAP-LRT (L = 2)

Prop. EM-GLRT (L = 3)

Prop. EM-MAP-LRT (L = 3)

Prop. EM-GLRT (L = 5)

Prop. EM-MAP-LRT (L = 5)

Fig. 7. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 72, for varying
settings of L, on the PhaseOne real dataset, using as CUT the range bin 37.

execution time in between one and two orders of magnitude
greater than R-ANMF and RP-ANMF. This is noteworthy
considering that the EM procedure adaptively estimates a
larger number of parameters (within the P̂0 and P̂1 sets) to
account for the more complex heterogeneous environment at
hand. The EM-MAP-LRT is only slightly more complex than
the EM-GLRT owing to the two additional one-dimensional
maximizations performed in (10) and (11) to infer the most
probable clutter class in the CUT under the two hypotheses.
In contrast, the AGLRT algorithm shows the highest average
execution time, around two times greater than the proposed
EM-GLRT. Overall, it is crucial to emphasize that all recorded
average execution times are measured in absolute temporal
units, meaning that all detectors necessitate mere fractions of
a second for their execution.

TABLE I
AVERAGE EXECUTION TIME (IN SECONDS) OF THE CONSIDERED

DETECTORS FOR N = 8, K = 48.

Σ-ANMF R-ANMF RP-ANMF AGLRT EM-GLRT EM-MAP-LRT

5.29 · 10−4 0.0016 0.0038 0.21 0.098 0.113

C. Results on Real Radar Data

In this section, we assess the effectiveness of the proposed
detection schemes when applied on two real radar datasets,
each characterized by a different type of heterogeneous clutter.
Clearly, such data do not match the underlying design assump-
tions used to derive the proposed detectors and described in
Sec. II. Therefore, the analyses conducted on these experimen-
tal data allow us to unveil to what extent the novel approaches
are able to effectively adapt to heterogeneous environments
found in real operating scenarios.

1) Analysis on PhaseOne Data: We start the analysis by
considering the L-band land clutter data, recorded in 1985
using the MIT Lincoln Laboratory Phase One radar at the
Katahdin Hill site, MIT Lincoln Laboratory. We process the

dataset contained in the file H067037.2, which consists of
30720 temporal returns from 76 range cells with VV po-
larization. From the 3D-clutter intensity field of the dataset
H067037.2, reported in [41, Fig. 8], it is evident that the mon-
itored area consists of two major regions, the first extending
from range bin 1 to 48, and the second one from 49 to 76. As
discussed in [42], these two macro-regions correspond to range
cells containing agricultural fields and windblown vegetation.
At a finer scale analysis, it is possible to identify five main
categories of terrains spread across the two macro-regions. In
what follows we set r = 2 [43] and consider different values
of L; we refer the reader to [42], [44], [45] and references
therein for more details about the PhaseOne datasets.
Pd Performance Analysis: We first compute the thresholds

for all detectors in order to guarantee exactly the same Pfa on
the range bin R = 37, selected as CUT, with the secondary
data picked from range bins adjacent to the CUT, with indices
in [R − K/2, R − 1] ∪ [R + 1, R + K/2]. The number of
primary data is set to N = 8 pulses, whereas the number of
secondary data is set to K = 72 so as to cover the whole
extent (in range) of the dataset. Given the limited availability
of samples, thresholds are set to guarantee a Pfa = 10−2,
and from one trial to the next one, the data window is slid
by 3 pulses until a sufficient number of 100/Pfa = 104

trials is reached. The Pd is estimated in a similar manner
using 103 trials, with data generated by adding a synthetic
target αv to the CUT at different values of the SCNR, with
v = [1 exp(j2πfd) · · · exp(j2π(N − 1)fd)]

T , being fd the
normalized Doppler frequency. For the specific dataset at hand,
the value of fd is set to 0 in accordance with the normalized
power spectral density (PSD) curves reported in [41], which
show that the clutter exhibits a peak in correspondence of 0
Hz. This is tantamount to considering the average worst case
of a target embedded in clutter. Finally, we re-define the SCNR
as |α|2/σ̂2, where σ̂2 is the average power of the clutter plus
noise estimated from the I/Q samples of each range bin.

In Fig. 7 we report the Pd curves of all the detectors as
a function of the SCNR, considering three different choices
of L, namely L = 2, L = 3, and L = 5. Remarkably,
the EM-GLRT and the EM-MAP-LRT confirm their superior
performance compared to state-of-the-art detectors, providing
an improvement in the detection power that is already about 2
dB for L = 2. Under this setup, the proposed algorithms are
able to fit the heterogeneous environment only on a larger spa-
tial scale, following the dimension of the two macro-regions
discussed above. Accordingly, in the estimation process they
try to assign the CUT (both algorithms) and the secondary
data (only the EM-GLRT) to one of the two possible clutter
classes. When a value of L = 5 is used to re-parameterize
the proposed algorithms, it becomes possible to distinguish
between all the five terrains found in the dataset, allowing in
turn a better adaptation of the algorithms to the different clutter
classes on a much finer scale. This immediately translates into
an evident increase of the performance in terms of Pd, leading
to an improvement of up to about 5 dB compared to the ANMF
schemes and AGLRT.
Pfa Sensitivity Analysis: for completeness, we also investi-

gate the CFAR behavior of the considered detectors, namely
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TABLE II
P̂fa/Pfa FOR PHASEONE DATASET H067037.2, WITH Pfa = 10−2 .

Σ-ANMF R-ANMF RP-ANMF AGLRT EM-GLRT EM-MAP-LRT

W-A 38.36 4.81 4.19 7.62 4.74 1.98
W-B 14.19 2.53 2.64 6.08 3.21 1.51
W-C 10.82 2.79 2.48 4.95 2.55 1.87

their sensitivity in terms of variations of the actual Pfa from
its nominal value. The analysis is conducted by assuming that
the thresholds for all the algorithms are simply set on synthetic
data to guarantee a nominal Pfa = 10−2, considering the sole
presence of additive white noise in the initial model given
in (1)-(2), i.e., Rl = 0, l = 1, . . . , L, and σ2

w = 1. Since
the size of the secondary data (K = 72) occupies almost the
entire extent (in range) of the PhaseOne dataset to capture the
heterogeneity of the observed scenario, we opted to compute
different estimates of the Pfa using the temporal (slow time)
dimension of the CUT (range bin 37). More specifically, we
consider three different time windows (denoted as Window
A, B, and C and labeled as W-A, W-B, and W-C for short)
that divide the first 30000 samples of range bin 37 in equal
parts (10000 samples per each). Within each window, the N -
dimensional vector of primary data is slid by 1 pulse until
reaching the end of the considered window. An estimate of the
actual Pfa of each detector, denoted by P̂fa, is then obtained
by counting the total number of false alarms across each
individual temporal window. The results reported in Table II
reveal that the proposed EM-MAP-LRT is the least sensitive to
deviations from the nominal Pfa, whereas the Σ-ANMF turns
out to be the most sensitive. Notably, the proposed EM-GLRT
shares the same weak sensitivity of the R-ANMF and RP-
ANMF detectors, while the AGLRT detector appears slightly
more sensitive. Overall, the analysis shows that the proposed
detectors guarantee Pfa values that do not deviate too much
from the desired nominal one when operating on the PhaseOne
dataset H067037.2, despite the fact that their thresholds were
set to a simplified synthetic model of white noise only, which
is clearly mismatched with respect to the actual disturbance
found in the dataset.

2) Analysis on IPIX Data: We now consider another well-
known real dataset collected by the McMaster IPIX radar
overlooking Lake Ontario from the shore in Grimsby, in
the winter of 1998; the database is freely available at [46].
The acquisition system is a fully-coherent X-band radar, with
advanced features such as dual transmit/receive polarization.
The radar was originally developed for iceberg detection, but
after major upgrades between 1993 and 1998, it became a
benchmark for testing advanced detection algorithms. The
dynamic range is 10 bits, the transmitted power is 8 kW, the
carrier frequency is 9.39 GHz (fixed) or ranges from 8.9 to
9.4 GHz (agile), with a bandwidth of 25 MHz [46].

For the analysis purpose, we process the dataset file
19980223 165836 antstep.cdf (D84 for short), which con-
tains samples corresponding to ranges from 3000 m to 3990 m,
with a range resolution of 30 m and for a total of 34 different
range bins with VV polarization. For each range bin, the signal

Fig. 8. 3-D normalized intensity field of clutter returns for IPIX D84 dataset.

is recorded for 60 seconds, corresponding to a total of 60000
pulses. The dataset has been pre-processed to remove mean
and normalise standard deviation from the I and Q channels
separately and to compensate the phase imbalance due to
hardware imperfections. In Fig. 8, we report the 3-D clutter
intensity field from the IPIX D84 dataset. Compared to the
PhaseOne dataset, which captures returns from land, the sea
clutter returns in the D84 are visibly contaminated by power
variations over the different range bins, clutter discretes, and
other outliers that introduce variations also over the temporal
(slow-time) domain. Overall, two main regions extending from
range bin 1 to 17 and from 18 to 34 can be identified. For
a more detailed discussion on the IPIX datasets, we refer the
interested reader to [9], [47], [48].

To better inspect the strong heterogeneity of the D84 dataset,
in Fig. 9 we report the normalized PSD for the range bin 17.
Different curves are obtained by applying the Welch method
[49] fed with data over the integer set [Noffset +1, Noffset +Nd]
where Nd is the number of processed data and a 50% overlap
between segments of length Nw = 4096 is considered;
segments are multiplied by a Blackman window (of length
Nw) using the built-in Matlab function pwelch(x,window)
(version 2020b). By fixing Nd = 10000, the parameter Noffset
is then used to select Nd samples corresponding to the first
(Noffset = 0), mid (Noffset = 20000), and last (Noffset = 50000)
10 seconds of acquisition, respectively, so as to assess the
variations of the PSD over the slow time (i.e., intra-cell
variations). Some interesting conclusions can be deduced from
the analysis of Fig. 9. First, it is evident that the clutter has
a peak around about 80 Hz, and that the gap between the
peak and the floor levels at higher frequencies varies between
about 25 dB and 40 dB. More generally, although the general
shape of the PSDs is shared among the three intervals of
samples, curves visibly differ among each other, revealing that
the nature of the clutter is non-stationary over time. Overall,
Fig. 9 coupled with other findings in [47] confirms a marked
heterogeneity of D84 in both fast time (spatial dimension) and
slow time, also with different floor levels.
Pd Performance Analysis: The thresholds for all the detec-

tors are computed by using as CUT the range bin R = 17
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Fig. 10. Pd as a function of the SCNR for the proposed detectors, in
comparison with natural competitors, assuming N = 8, K = 32, for L = 2,
on the IPIX D84 dataset, using as CUT the range bin 17.

previously analyzed in Fig. 9, following the same procedure
as for the PhaseOne dataset and for Pfa = 10−2. In this case,
however, we set the number of secondary data to K = 32
since the number of range bins available in the dataset is lower
than that of PhaseOne data. Furthermore, we set fd = 0.08 to
generate the synthetic target in order to be consistent with the
clutter peak found in Fig. 9. Finally, we set r = 3.

In Fig. 10 we report the Pd curves of all the detectors as
a function of the SCNR, assuming L = 2 as observed in
Fig. 8. Further analysis not reported here for brevity confirms
the above results using L = 3. Interestingly, we observe
that the novel detection schemes continue to outperform all
the competitors, with a less marked but still visible Pd
improvement. Among the competitors, the Σ-ANMF and the
AGLRT offer the best performance, whereas the RP-ANMF
exhibits an evident loss compared to its previous behavior
observed in Fig. 7. The outcome of this analysis confirms
the effectiveness of the proposed algorithms, highlighting their
ability to correctly deal also with the presence of stronger
heterogeneous and non-stationary clutter conditions as those
found in D84.
Pfa Sensitivity Analysis: we conclude the analysis by testing

the sensitivity of the algorithms to variations of their actual

TABLE III
P̂fa/Pfa FOR IPIX DATASET D84, WITH Pfa = 10−2 .

Σ-ANMF R-ANMF RP-ANMF AGLRT EM-GLRT EM-MAP-LRT

W-A 17.94 5.56 2.52 6.61 2.86 3.82
W-B 12.24 3.63 1.49 4.68 3.12 3.42
W-C 7.58 1.87 0.54 3.45 2.74 1.58

Pfa compared to its nominal value. The analysis is carried out
following the same procedure adopted for Table II. The results
reported in Table III confirm the goodness of the proposed ap-
proaches, which experience small deviations from the nominal
Pfa value despite the more challenging operational scenario
under consideration. In this case, the RP-ANMF algorithm
turns out to be the least sensitive, whereas the Σ-ANMF
exhibits significant deviations towards much larger values of
Pfa, confirming its too high sensitivity.

V. CONCLUSIONS

We have addressed the detection of a coherent target in
heterogeneous environments where both power levels and
covariance structures of the clutter may vary in range. To this
end, the clutter covariances for the CUT and secondary data
are modeled as low-rank matrices belonging to a set of L
classes, each representing a different type of clutter return.

To handle the unknown association of each range cell
to one of the L possible clutter classes, we introduced a
latent variables mixture model and formalized a binary hy-
pothesis test with observations modeled by a multivariate
contaminated Gaussian distribution. We tackled the resulting
detection problem via a GLRT approach and proposed a novel
strategy based on the EM algorithm to adaptively estimate
the unknown parameters related to the statistical properties
of the disturbance. As a byproduct of the EM procedure,
we have also derived an alternative detection scheme that
tries to infer the most probable disturbance distribution in
the CUT using a MAP classification rule followed by a LRT.
When tested on synthetic data, the two detection schemes can
achieve significant improvements in terms of detection power
compared to state-of-the-art algorithms.

Furthermore, they can also operate under mismatches on
the assumed design model. Remarkably, the proposed strate-
gies confirmed their effectiveness also when operating on
two rather different experimental datasets, each comprising a
different type of clutter (land and sea). From these analyses,
we conclude that the novel algorithms are able to fully adapt
to heterogeneous environments and offer superior performance
compared to existing approaches.

Future research tracks might encompass the detection of
range-spread targets whose position and extension are un-
known under the same heterogeneous assumptions and/or the
exploitation of special structures for the covariance matrices.
Moreover, other approaches might be investigated, as for
instance those relying on the theory of machine learning. A
very simple attempt in this respect has been done in [50] where
the potential of a K-nearest neighbour classifier is investigated.
We expect that more general approaches based on neural
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networks [51], [52] might lead to even more powerful decision
schemes at the price of a more challenging training stage.

Finally, the presence of outliers in the secondary data is a
problem of relevant interest in radar detection, as they can lead
to increased false alarms or missed detections. To mitigate the
influence of outliers, a possible generalization of the proposed
decision scheme could include an initial stage focused on
detecting and eliminating cells near the CUT (secondary
data) that are affected by outliers. This approach aligns with
established methodologies in radar detection contexts such as
[40] and [53]. Building on a similar idea, the algorithm intro-
duced in [30], when applied to the secondary data, is able to
adaptively exclude range cells that might contain components
related to targets (hence representing outliers for secondary
data, which are usually assumed free of target components).
Developing an effective strategy that incorporates an outlier
detection method capable of handling the heterogeneous en-
vironments in which the newly proposed detection schemes
are deployed thus represents another interesting direction for
future work.
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APPENDIX A
PROOF OF EQ. (22)

As to the estimation of the pls, we preliminarily observe
that constraints pl ≥ 0, l = 1, . . . , L, will be automatically
satisfied by the solution of the following problem

max
pl,l=1,...,L

L∑
l=1

[(
K∑
k=1

q
(h−1)
k (l) + q̃(h−1)(l)

)
log pl

]

s.t.
L∑
l=1

pl = 1

.

Using the method of Lagrange multipliers, we construct the
function

g(p1, . . . , pL, λ) =

L∑
l=1

al log pl + λ

(
L∑
l=1

pl − 1

)
with

al =

K∑
k=1

q
(h−1)
k (l) + q̃(h−1)(l)

while λ is the Lagrange multiplier. Computing the derivative
of g with respect to pl and setting such derivative equal to
zero, yields

∂g(p1, . . . , pL, λ)

∂pl
=
al
pl

+ λ = 0

and, hence, we have that

pl = −al
λ
.

The constraint implies that

L∑
l=1

pl = − 1

λ

L∑
l=1

al = − 1

λ

L∑
l=1

(
K∑
k=1

q
(h−1)
k (l) + q̃(h−1)(l)

)
= 1

and, hence, λ = −(K + 1) exploiting the conditions
L∑
l=1

q
(h−1)
k (l) = 1, k = 1, . . . ,K,

and
L∑
l=1

q̃(h−1)(l) = 1.

Eq. (22) follows in a straightforward manner.
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