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A new method is presented to study the interaction of multiple cracks, especially for the areas near crack tips by using the
extended finite element method. In order to track the cracks, a new geometric tracking technique is proposed to track enriched
elements and nodes along the crack instead of using the narrow band level set method. This allows to accurately determine
enriched elements and nodes and calculate enrichment values. A method is proposed for constructing a multicrack matrix,
which involves numbering enriched nodes of multiple cracks and solving the global stiffness matrix. In this approach, the
stress fields around multiple cracks can be studied. The interaction integral method is employed to study the crack propagation
and its direction by calculating the stress intensify factor. The developed model has been coded in MATLAB environment and
validated against analytical solutions. The application of the model in the crack interaction study is demonstrated through a
number of examples. The results illustrate the influence of the interaction of multiple cracks as they approach each other.

1. Introduction

Crack propagation can be efficiently simulated by resorting
to the eXtended Finite Element Method (XFEM), saving a
great deal of computational time and costs, given that no
remeshing and refinement are performed [1-8]. Great
advantages are gained over other methods such as the stan-
dard Finite Element Method (FEM) [9, 10], Element-Free
Galerkin (EFG) method [11, 12], Boundary Element Method
(BEM) [13-15], and Discrete Element Method (DEM) [16,
17]. With XFEM, by enriching the nodes along the crack,
additional degrees of freedom are given to reproduce the
jump of the variables across the discontinuities. XFEM is
associated with the Partition of Unity Method (PUM)
[18-21], and the shape functions for the enriched elements
consist of standard shape functions, Heaviside step func-
tions, and near-tip asymptotic functions [2].

In the context of XFEM, as a crack grows, the elements at
the crack tips are sectioned and new elements containing a
crack tip are formed. In order to deal with extending cracks,
the narrow band level set method [22, 23] is used to track the

crack path and to search for the advancing crack tips. This
method can be sometimes inaccurate, especially when a
crack forms a kink angle (see Section 2.1), so there is the
need to find alternatives in order to overcome the shortcom-
ings of the narrow band level set method.

Many researchers in the past decades studied the growth
and mutual interaction of multiple cracks, mainly focusing
on method developments and practical field applications
[24-26]. With reference to the mutual interaction of two
cracks, Lawler [27] and Tanaka et al. [28] experimentally
defined a relation between the crack propagation rate and
the J integral [29]. Carpinteri and Monetto [30] employed
BEM to model the propagation of multiple cracks and
implemented a global nonlinear stress-strain relationship
associated with the geometry changes for the extension,
intersection, and coalescence of the cracks. Budyn et al.
[31] studied the growth of multiple cracks in brittle materials
and presented a displacement equation for intersecting
cracks. Daux et al. [32] proposed a theory for branched
and intersecting cracks based on XFEM. Fageehi and
Alshoaibi [33] studied nonplanar crack growth of multiple
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cracks by developing a code using FEM. Broumand [34] pre-
sented two methods, based on XFEM, to accurately detect
multiple cracks of diverse size, shape, and orientation in
2D elastic bodies. Pham and Weijermars [35] used the linear
superposition method to calculate stress tensor fields with
multiple pressure-loaded fractures and further developed
analytical solutions for the domains with large numbers of
internally pressurized fractures and boreholes in a homoge-
neous elastic medium. Santoro et al. [36] discussed the
response from a beam under static loads with multiple
cracks and proposed an approach to evaluate the response
in the presence of multiple cracks.

Even though an abundant literature is available concern-
ing the numerical analysis of multiple cracks, the application
of XFEM in this context is very limited. In this paper, a new
method is proposed, based on XFEM, for the analysis of the
propagation and interaction of multiple cracks in two-
dimensional domains. The enriched nodes of the cracks are
tracked by a proposed Geometric Tracking Technique
(GTT). The enrichments for shape functions are ascribed to
the enriched nodes of all fractures. Different rules for the
Gauss points apply for the elements crossed by cracks and
for those containing tips. An approach is presented to solve
multiple cracks. In this approach, each crack in the domain
is set as a unit prone to coalesce into the whole framework
of the multiple cracks by combining all enriched stiffness
matrices into one matrix. A node numbering rule is presented
for multiple cracks. The interaction between cracks is based
on domain forms of the Interaction Integral Method (IIM)
[37-40]. By studying the distancing and intersection of inte-
gral areas around tips, the crack behaviors can be predicted.
The method is implemented into a MATLAB code. In what
follows, the theoretical basis, steps of the analysis, and numer-
ical implementation of the method are reported. In addition,
numerical simulations for validation are illustrated to show
the effectiveness and robustness of the method.

The paper is structured as follows: in Section 2, GTT is
presented and an example is set up to verify the effective-
ness with respect to the narrow band level set method; in
Section 3, combining GTT and XFEM, the numerical
results of two standard models are compared to corre-
sponding analytical solutions; in Section 4, the simulation
scheme for multiple cracks and the features of the XFEM
solution are also presented; finally, in Section 5, the applica-
tion of the method to multiple crack interaction and crack
propagation prediction is illustrated. Concluding remarks
are reported in Section 6.

2. Geometric Tracking Technique

In order to track the cracks in a domain, GTT is introduced
for the accurate search and location of crack nodes and ele-
ments. The proposed technique can be used with different
types of elements according to the given mesh and geometry.
It is implemented in several steps. The first step involves of
the selection of a rectangular area Q, enclosing all the crack
segments (each segment assumed linear), by checking the
coordinates of the crack extremities (see Figure 1). The area
Q,, can be represented by the set S:
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S:{x’yEQw|xslSxstZ’f(xsl)SySf(xSZ)}' (1)

Each crack segment i, enclosed by the subdomain O
can be represented by a linear equation, as follows:

subi?®

Ax+By+C;=0, (2)

where A;, B;, and C; are the coefficients of the straight
line of segment i of the crack.
Subdomain Q;; can be represented by the set S

subi subi*

Ssubi = {X,y € qubi|xsubm sx< xsubn’f(xsubm) Sy Sf(xsubn)}'

(3)

The enriched elements crossed by a crack can be located
by finding the intersection between the crack linear seg-
ments (Equation (2)) and the boundaries of the elements.
Each element e has a given area and can be represented by
the following set:

Fe = {X,y € ‘Qelxel sSxs< xez’f(xel) Sf(X) Sf(er)}' (4)
Substituting x,; and x,, into Equation (2) yields y,, and y ,,:

—Ci - Axy
Ya=——F%
el Bi
(5)
y, = —Ci—Aix,
e2 Bi
If y,;, or y,,, is in the range of [f(x,,),f(x,,)], the crack
certainly intersects the element e; therefore, e is an enriched
element. Alternatively, by substituting f(x,,) and f(x,,) in
the same equation, one obtains

X = -C;i—Af(x,)
el Bi ’ (6)
1 —Ci—Af(x,)

X, = —3

1

If x/,, or x.,, is in the range of [x,,x,], element e
is enriched.

An example follows about the use of the technique for
rectangular elements. With reference to Figure 2, where
crack segment 1 and enclosing subdomain Qg ;, of
Figure 1 are shown, subdomain g, can be represented
by the set S;:

Si={%y € Qg |x; Sx<x3 f(x1) <y < f(x3)}- (7)

The equation of the straight line of crack segment I,
enclosed by subdomain Q,, is

Ax+By+C, =0. (8)
The set I',, of element A is

Fop ={%y € Quplxy; <X <5, f(x11) S f(x) < f(x30)} (9)
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FIGURE 1: Sketch of a simulation domain with Q, Q;, and segments i and i + 1; the equation of the line of segment i is A;x + B;y + C; = 0.
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FIGURE 2: Searching for elements intersecting crack segment 1.

where Q,, is the domain of element A. By substituting
the x coordinates of this element in Equation (2), the coordi-
nate y (P) of the intersection node P can be obtained; it is

-C,-A
y(P)= L (10)
1

Since the coordinates x,;, y(P) of node P are included by
the set I',,, it is proven that the crack segment 1 certainly
goes through element A. Similarly, by substituting the y
coordinate of the other intersection node Q (still in
Figure 2) in Equation (2), the relative x coordinate is

x@ - ), (1)

It can be shown that both x(Q) and y(Q) are inside the
domain of element B, so element B is also crossed by the crack
segment 1; therefore, element B is an enriched element.

Note that GTT, in association with XFEM, could be
potentially used also in Nonlinear Fracture Mechanics
(NLFM) problems. In fact, the technique is apt to track crack
paths following any geometric shape, irrespective of the
cracking process (linear or nonlinear).

2.1. Comparison with the Narrow Band Level Set Method. In
what follows, an example is given to explain the advantages



in using GTT when dealing with cracks having large kink
angles if compared to the narrow band level set method.

In the narrow band level set method, circular ranges
around crack tips, supposedly containing all the enriched
elements, are defined first [41]. However, within those
circles, some of the elements inside may not intersect the
crack, so a narrow band is introduced for further sifting
the enriched elements. The distances between nodes and
cracks can be calculated by using the nodal coordinates
and the linear equations of the crack segments. Normally,
the nodes within the range of the narrow band are regarded
as target nodes and are saved in the set of the enriched
nodes. The level set functions of the enriched nodes are used
to ascertain if these nodes are located within the narrow
band. With reference to Figure 3, where domain A and
domain B encompass all the enriched elements, the linear
equations of the two segments of the crack (Equation (2))
have coefficients 0.05, -1, and 1.7 (A,, B,, and C,, respec-
tively) and 0.65, -1, and -1.122 (A,, B,, and C,, respectively)
for segment 1 and segment 2, respectively.

The distance d, between node P(2, 3) and crack segment
1is

: 0.05x2-1x3+1.7

d
! V0.052 + 1

=1.199. (12)

The intersection node N between the line x = 6 and crack
segment 2 has coordinates (6, 2.778). As 2.778 is between 2
and 3 and node N is on the edge of element D, the element
D is an enriched element and node Q is an enriched node.

The distance d, between node Q(7, 2) and crack segment
2 is

_10.65x7-1%x2-1.122

d, = ~1.199. (13)
g V0.652 + 1

According to the above calculations, node P and node Q
have the same distance to crack segments 1 and 2, respec-
tively. Since node Q is on the enriched element D, the dis-
tance from node Q to the crack should be equal to or less
than the size of the narrow band. As node P has the same
distance to the crack as node Q, the distance from the crack
to node P is also equal to or less than the size of the narrow
band. However, it is shown in Figure 3 that node P is not an
enriched node. So, in this case, the application of the narrow
band level set method produces an error.

Different from the narrow band level set method, the
proposed GTT determines all the enriched elements that
crack segments pass through by judging whether the element
edges intersect with the crack segment. All the elements are
examined for this quest with respect to each crack segment,
so it is ensured that all the enriched elements are picked as
target elements, no extra elements are included, and no
enriched elements are ignored.

With reference to Figure 3, the intersection node M of
line x =2 and crack segment 1 has the coordinates (2, 1.9).
The y coordinate of element C ranges from 2 to 3, so element
C is not regarded as an enriched element; therefore, node P
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is not be counted as an enriched node. However, the range of
the y coordinate of the left edge of element F is from 1 to 2,
including the y coordinate of node M. So element F can be
regarded as an enriched element, and the relative nodes are
enriched nodes.

Based on the above comparison, one may state that the
proposed GTT is accurate and effective and constitutes a
robust procedure for tracking the crack growth trajectories.

3. Numerical Simulation of Single Cracks

With reference to the single crack in a solid domain in
Figure 2, according to GTT, the elements A, B, C, and D
can be part of a set of Heaviside-enriched elements (crack
passing through) and tip-enriched elements (crack tips stay).
This set contains element numbers and corresponding node
numbers. In the next step, those elements are classified into
two subsets. The elements including a crack tip are removed
from the initial set (except the ones that contain crack tips
bordering the edge of the domain) and then inserted in
another set. The remaining elements of the initial set are
then considered Heaviside-enriched elements. If an element
includes both a Heaviside-enriched node and a tip-enriched
node, it is denoted as a tip-enriched element or as the last
Heaviside-enriched element before a tip-enriched element,
so these two types of elements are differentiated. The
enriched nodes normally include three types: Heaviside-
enriched nodes, tip-enriched nodes, and mix-enriched
nodes. Different types of enriched nodes are separately dealt
with, according to the location of the elements.

After rearranging the Heaviside-enriched elements and
the tip-enriched elements into different sets, an enrichment
¢; of the shape function N; can be adopted to represent

the jump of displacements across the crack surfaces [42]:
¢;(x.y)=H(x ), (14)

where H(x, y) is the step function that, for example, in the
case of a horizontal crack, is equal to 1 when y is greater than
0, and equal to -1 when y is less than 0.

For tip-enriched nodes, the enrichment ¢, can be
expressed as a tip branch function [2, 43]:

@y(r,0) = By(r, 6)
6 6 (7] 6
= [/ sin =, /7 sin = sin 6, /7 cos —, \/r cos — sin B,
2 2 2 2
(15)

where B, is the tip branch function (I=1,2,3,4) and r and 0
are the local polar coordinates at the crack tip.

The approximation for the displacement u can be
expressed by using the enrichments of Equations (14)
and (15):



Journal of Applied Mathematics

Element C

Segment 2

Element D

e}

y
Domain A 4
o] |
3
ay
2 £
M
Element F —
SegmentT| \
4

2

[ Tip enriched element

(O Heaviside enriched element

FIGURE 3: Sketch for the comparison of the proposed tracking technique and the narrow band method.
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F1GURE 4: Single edge crack: (a) schematic of a w x L plate with an a-long horizontal edge crack and loaded by vertical tractions o; (b) shaded
plot of the von Mises stress o,,, for a 100 x 100 m* plate mesh and a =7.5m.
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(16)

where u; are the standard degrees of freedom (dofs); a;, b,gl),

and b,(cz) are additional dofs; H(x,y) are the enrichment

values of Heaviside-enriched nodes; B§1) are the enrichment

values of nodes around crack tip 1; sz) are the enrichment
values of nodes around crack tip 2; N; are the standard shape
functions; ng is the number of standard nodes; n, is the
number of Heaviside-enriched nodes; and n,; and n,, are
the sets of tip-enriched nodes for the first and second crack
tips, respectively.

In order to demonstrate the validity of GTT combined
with XFEM, in what follows, the solutions of two standard
examples are reported. A comparison is made among the
obtained values of the Stress Intensify Factor (SIF) with
those descending from analytical solutions. IIM is used to
calculate the SIF values.
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TasLE 1: Comparison between the SIF values (unit: 10” Pa/m?) of the numerical solution with those of the analytical solution for a plate with

an edge crack.

SIF numerical solution

Length (m) Mesh 50 x 50 Mesh 100 x 100 Mesh 200 x 200 SIF analytical solution
35 13569 13525 13701 13630
55 17296 17185 1.7096 17086
7.5 2.0699 2.0054 2.0010 1.9950
95 2.3976 23712 2.3595 2.2450
115 27247 26933 2.6824 2.4700

—~
o

)

0.5 1 Oy (X107Pa) 2 2.5

(®)

F1GURE 5: Central crack: (a) schematic of a w x L plate with an a-long horizontal central crack and loaded by normal tractions ¢ on all the
edges; (b) shaded plot of the von Mises stresses a,,,, for a 100 x 100 m* plate mesh and a = 15m.

3.1. Edge Crack. The first example refers to an a-long single-
edge crack (Figure 4(a)). It is horizontal and runs from the
left vertical boundary of a rectangular plate of width (w)
100m and height (h) 100 m, loaded by vertical tractions o
of 3.67 MPa on the top and bottom edges. Four-node quad-
rilateral elements are used. In order to examine the sensitiv-
ity of the model results to the element size, different
structured meshes, all having equal-size square elements,
are tested of 50 x50, 100 x 100, and 200 x 200 elements.
The elastic modulus (E) and Poisson’s ratio (v) are 15 GPa
and 0.25, respectively. Cracks having lengths 3.5, 5.5, 7.5,
9.5, and 11.5m are considered. The shaded plot of the von
Mises stress o, for the case with a 7.5m long crack and
100 x 100 elements is shown in Figure 4(b). The comparison
between the numerical solution and analytical solution in
terms of SIF values is reported in Table 1. An analytical solu-
tion for the Mode-I SIF K| is [44]

K; = Co+/am, (17)

where ¢ is the dominant vertical tensile stress (equal to the
vertical tractions applied in the example), a is the crack
length, and C is a correction coefficient, equal to

a a\ 2 a\3 a\4
c=1.12—0.231(_) +10.55(_) —21.71(-) +30.382(—) .
w w w w

(18)

3.2. Central Crack. A plate with a central crack is loaded by an
isotropic tensile stress o of 3.67 MPa (Figure 5(a)). The dis-
crete length values selected for the crack are 3, 7, 11, 15, and
19m. In Figure 5(b), the shaded plot of the von Mises stress
predicted by using XFEM for the 15m long crack and the
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TasLE 2: Comparison between the SIF values (unit: 10” Pa/m?) of the numerical solution with those of the analytical solution for a plate with

a central crack.

SIF numerical solution

Length (m)

SIF analytical solution

Mesh 50 x 50 Mesh 100 x 100 Mesh 200 x 200
3.0 1.0789 0.7598 0.7726 0.7965
7.0 1.2619 1.1865 1.1971 1.2166
11.0 1.5760 1.5013 1.5037 1.5251
15.0 1.8404 1.7778 1.7832 1.7810
19.0 2.0752 2.0371 2.0189 2.0049
TaBLE 3: Numbering scheme for the node-numbering matrix for the k™ crack.
Columns
1 2+10(k—1)  3+10(k-1)  4+10(k-1)  5+10(k—1) 10+10(k—1)  11+10(k-1)
1
2
3 m+1 ev. m+3 ev. m+6 ev.
4 m+2 ev.
a-1
a

e.v.: enriched value.

100 x 100-element mesh is shown. The corresponding analyt-
ical solution for the Mode-I SIF K] is [45]

K;=0v/an, (19)

with o here the dominant isotropic stress (equal to the normal
tractions applied in the example).

In Table 2, the comparison between the analytical solution
and the numerical solution for different meshes is reported.

Observing the results in Tables 1 and 2, one may notice
that when the mesh size is 100 x 100, the numerical solution
is very close to the analytical solution, so there is no point in
further refining the mesh, given that enough accuracy is
gained. One may also state that with the proposed method,
the crack growth propagation and direction for the two
examples is effectively predicted.

4. Numerical Simulation of Multiple Cracks

For a multiple-crack problem, a specific numbering rule is
applied (see Table 3). The nodes of a crack k are reported
in a column set from 2 + 10(k — 1) to 11 + 10(k — 1); column
1 contains the numbers of the standard nodes; a is the num-
ber of total standard nodes; m represents the number of the
last enriched node in the last crack; m + 1 and m + 2 are the
numbers of Heaviside-enriched nodes; and m + 3, m+4, m
+5, and m + 6 are the numbers of the tip-enriched nodes.

The governing equation for the whole domain can be
written as

Ku="P, (20)

where P is the global load matrix, u is the global displace-
ment matrix of Equation (16), and K is the global stiffness
matrix, consisting of the standard stiffness matrix and the
enriched stiffness matrices of the cracks; in formula,

Ky Koi Ky Koz Kot Koy
K, K 0 - 0 0 0
K, 0 K, - 0 0 0
K= )
K,,,0, 0 0 K,, O 0
K,,, 0 0 0 K, O
| K, 0 0 0 0 K, |

(1)

in which K, is the standard stiffness matrix; K;, K,...., K,
are the enriched stiffness matrices of cracks 1 to n, with n
being the number of cracks; and K, is the cross-term
between the standard elements and the enriched elements.
The matrices are as follows:

K, = QBiTDBde, ij=u,
K, = QB}DBjle, i,j=a,b, (22)
Ky, = QBiTDBde, i,j=u,a,b,




where D is the elasticity matrix, B,, B,, and B, are strain
differential operator matrices, respectively defined as:

_aNl O -
ox
B,=| O ON;
u - ay >
ON; 0N,
L dy  oOx
[ON;[H - H(x;y,)] 0 1
ox
N.[H - H(x,, y,
. . ON,[H - H(x,y,)]

dy

ON;[H — H(x;y;)]  ON;[H~H(x; ;)]
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L oy 0x _
_ _ (23)
ON,[B, — B, (x5 y;)] 0 ON;,[B, — B,(x;, ;)] 0
ox ox
0 ON;[B, — B, (x;, ;)] 0 ON;,[B, — B,(x;, ;)]
oy ay
ON;[B, - By (x; ;)] ON;[B; - By(x;,;)]  ON;[B, = By(x;,5;)]  ON;[B, — By(x;,3))]
B — dy 0x oy 0x
b— 5
ON;[B; — B5(x;,y,)] 0 ON,[By — By(x;, ;)] 0
ox ox
0 ON;[B; — B3(x;, ;)] 0 ON;[By — By(x;, ;)]
dy dy
ON;[B; — By(x;,y;)]  ON;[By = Bs(x;,9,)]  ON[By—By(x;, ;)]  ON;[By — By(x;, ;)]
i dy 0x oy 0x ]

with By, B,, B;, and B, the tip branch functions around the
crack tips and B, (x;, y;), B, (x; ), B3(x;»y;), and By(x;, y;)
the enrichment values of the tip branch functions at the
tip-enriched nodes.

A Delaunay triangulation is adopted herein to partition
the enriched elements [46]. For the solutions of the integrals,
the number of Gauss points is 9 for the standard elements, 3
for the triangular Heaviside-enriched elements, and 7 for the
triangular tip-enriched elements.

5. Interaction of Multiple Cracks

The proposed method is used to analyze the interaction
among multiple cracks through the following illustrative
examples.

The stress field around a crack tip is influenced by other
cracks in proximity, thus leading to stress-shadowing effects
and redirection of the crack propagation [47]. SIF is useful to
check if a crack propagates and to predict the propagation
trajectory [48-51]. IIM is often used to calculate SIF values

since it has a high degree of accuracy compared with other
methods [52-55], although the involved process is quite
complex; for the application, it is required to solve an energy
integral, based on the J integral method [29], covering a
zone around the crack tip. Two states are considered: pres-
ent state (1) and auxiliary state (2). If Q is the domain of
integration (the zone around the tip), bounded by I, for a
local reference system x,, x, of the crack, with origin at the
tip and x, aligned with it, the interaction integral I can be
written as [2]

@ M
- 12)8 ()0~ (20
of oo %

ndl,  (24)

where § is the Dirac delta function, n is the vector normal to
I', and W is the interaction strain energy, equal to [1, 3]

W(l’z) = 0'(1)8(2) = 0'(2)5<1)

ij ©ij ij “ij (25)
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The integral I can also be expressed by using the values
of SIF K; and Kj;, respectively, for Mode-I and Mode-II,
for both the present state and the auxiliary state, as follows:

2 1), 1), (2
2 (kPP ), )

where E is Young’s modulus, and

E

KI — 5 I(I,Mode-l)) (27)
E

Ky = = 7(1:Mode-11). (28)

Equation (24) can be transformed as follows:

7 0x 70x Yl ox;

(2) (1
I= J |f)'§.1> 0 Ui + o'(.z) 0 i _ w2)s.. a_qu’ (29)
Q J

where g(x,,x,) is a weighting function. The solution of the
integral in Equation (29) is relatively straightforward.

With reference to Figure 6(a), the radius R of the zone is
assumed equal to the square root of three times the element
area [56]. The weighting function q is as follows:

0, r=R,
q(r) = { (30)

1 r<R,

where r originates from the crack tip. When a portion of the
zone is outside the domain, as in Figure 6(b), the weighting
function (g,) on the edge of the domain is assumed equal to
zero [57].

In the following subsections, two examples of interaction
are described, with two and five interacting cracks,
respectively.

5.1. Two-Crack Example. In this example, two cracks, & and
, are considered. Domain, loading, material and mesh are the
same used in Section 3.1. In a first case (case 1, Figure 7(a)),
the cracks are parallel, both 5.5m long and 25m mutually
distant. In a second case (case 2, Figure 7(b)), they are still
parallel only 5m distant. A third and a fourth case (case 3,
case 4) with a slanted crack follow. For all the cases, four-
node quadrilateral elements are employed. The vertical trac-
tion at the top and at the bottom boundaries is 3.67 MPa.

In case 1, the stress fields around the crack tips do not
significantly interact. In case 2, the two stress fields overlap
with mutual interference, producing a shadowing effect
and causing an alteration of the SIFs resulting in the redirec-
tion of the crack propagation; in fact, given the mesh size,
the zones for IIM overlap (Figure 7(b)) and Equation (29)
for crack h becomes

The overlapped integral domain I, is then

au(z)' .
1 lh,i
Ilh:J [Ggh,lj %, TO
o Ih,1

(1.2) i
-WiAey, | S doy,
th U 1 axlh,j

(1)
@ Ouy, ;
Ih,ij axlh,l

(33)

where y, is the intersection zone. For Equations (31), (32),
and (33), subscripts & and [ indicate crack h and crack I,
respectively, based on Equation (24). The remaining equa-
tions follow the same notation rule, so the comprehensive
interaction integral for crack 4 is equal to the superposition
of I, and I,

Iy =Ty + Iy, (34)

and the comprehensive interaction integral for crack / is

Thus, by employing Equations (27) and (28), SIFs in
Mode-I and Mode-II for the two cracks are

E
KL] — EI(IZ’MOd&I))
K. = EI(”,MOdefH)
1LI 2 > (36)
E
KLh — EI(}’ll’l,N[OClE*I))
E
KILh — EI(}’ll’l,l\/IOdCfH) .

The results of the XFEM calculations in terms of the von
Mises stress for two cases are shown in Figures 8 and 9. It
can be seen that the cracks propagate horizontally (along
the alignment of the cracks) only in case 1, whereas in case
2, the propagation directions deviate due to the mutual
interaction. The results are in good agreement with those
reported in the literature [58].
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FIGURE 6: Zone of integration around a tip for IMM: (a) zone inside the domain; (b) zone outside the domain.
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FIGURE 7: Schematic of the two-crack example: (a) case 1; (b) case 2.

In Figures 10(a) and 10(b), the schemes of cases 3 and 4
are reported, respectively. There is a 5.5m long horizontal
crack (the “minor” crack, k) and a 10m long slanted crack
(inclined 45° with respect to the x-axis) (the “major” crack,
D). In case 3, the major crack is rather far from the minor
crack (50m from the tip of h to the center of /). In case 4,
the two cracks are closer. It is assumed that the propagation
of crack h is affected by the other crack when this one lies
within the domain of the interaction integral of h. The major
crack / can be seen as a border “arresting” the effect on the
stress field of the minor crack h, so the actual interaction
integral domain for crack / is equivalent to the entire circu-
lar area minus the shaded area (Figure 10(b)). The interac-
tion integral for crack A is as Equation (31).

The interaction integral I ,, of the shaded area Ah of case
4 is (domain Q)

au(z) . au(l) . 2

(1) Ahi @) Ahi (12) dan

I, = , . - W70 1 dQ,,.
Ah JQM |:O'Ah,11 axAh,l + O'Ah,z] axAh,l Ah PAnj i Ah

0x
(37)
Thus, the final interaction integral of crack h is equal to
L=1y~ Ly, (38)

The results for these two cases are shown in Figure 11.
It can be seen that in case 3, the minor crack propagates
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FIGURE 8: Results of the two-crack example, case 1: (a) mesh; (b) shaded plot of the von Mises stress o,,,, (lengths in m).
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FIGURE 9: Results of the two-crack example, case 2: (a) mesh; (b) shaded plot of the von Mises stress o, (lengths in m).

along the initial horizontal direction, while in case 4, when  5.2. Multiple-Crack Example. In order to study the interac-
the interaction integral domain includes the other crack,  tion of more complicated patterns with more than two
the propagation trajectory deviates from the horizontal  cracks, two cases are considered in what follows. In case 1,
along the shortest pathway towards the major crack, there are five parallel edge cracks. Again, the domain, load-
according to the results reported in the literature [3]. ing, material and mesh are the same as the previous
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FIGURE 10: Schematic of the two-crack example: (a) case 3; (b) case 4.
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F1GURE 11: Shaded plots of the von Mises stress o,

example. The results in terms of von Mises stress are shown
in Figure 12(a). It can be noticed that the cracks far from the
horizontal middle line have a higher stress concentration
and also show a larger deflection angle, while the cracks near
to it have a smaller stress concentration and a mild deflec-
tion. Obviously, given the symmetry, the crack right along
the middle line has no deflection. In front of the crack tips,
the stress fields join to form a relatively large symmetric
shadow area.

In case 2, five slanted cracks are randomly distributed.
Similar to case 1, the farther the crack is from the middle

_ (L L

Vm(xlo7pa) 2 14 16 18

(b)

for the two-crack example: (a) case 3; (b) case 4 (lengths in m).

line, the stronger the stress concentration is; some of the
stress fields intersect each other to form a large shadow area
(Figure 12(b)). However, the stress concentration area is
smaller than that in case 1, for the weaker stress-
shadowing effect, given the larger distances among the
cracks. In fact, as the cracks propagate, they get closer to
each other, and the shadowing effect starts to increase and
become visible as shown in Figure 13. The consequential
effect is that the shadowing areas extend and intersect with
the other ones, and also, the values of the stress concentra-
tion increase.
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FiGure 12: Shaded plots of the von Mises stress o, for the multiple-crack example: (a) 5 parallel edge cracks (case 1); (b) 5 randomly
located cracks (case 2) (lengths in m).
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FiGure 13: Shaded plots of the von Mises stress o,,,, for the multiple-crack example, case 2, for an increased propagation (lengths in m).

6. Conclusion ment Method (XFEM) formulation. The application of the

method is illustrated by simulating three different examples,
This paper presents the development of a method for the  single crack, two cracks, and multiple cracks. The results of
analysis of propagation and interaction of multiple cracks.  the first two examples are in good agreement with the corre-
The method consists of the combination of a Geometric ~ sponding solutions available in the literature. The third
Tracking Technique (GTT) with an eXtended Finite Ele- example is proposed to simulate the interaction among
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multiple cracks. The Interaction Integral Method (IIM) is
employed to derive the Stress Intensify Factors (SIFs), useful
for the prediction of the magnitude and direction of the
crack propagation. From the results, one may derive that
when the stress field around a crack tip is influenced by
another crack in proximity, the propagation trajectory devi-
ates off the crack alignment, thus producing a stress-
shadowing effect. The closer the cracks are, the stronger this
effect is. The patterns of the computed stress distributions
well reflect the interaction among the cracks and as such
are proofs of the good quality of the proposed method.
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