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Abstract: This paper focuses on a morphological study of the MnTe-like structures, carried out
by the evaluation of the tortuosity tensor and other related parameters using a computational
fluid dynamics approach recently developed by our research group. The present work focuses
on all possible crystals—existing or not developed yet—having the same structure as that of the
manganese telluride. This analysis provides new information not present yet in the open literature.
The motivation behind this study lies in the importance of this type of structure in physics and
material science. In particular, the structures investigated are anisotropic and bi-disperse, with
two independent geometrical parameters controlling the structure shape: the ratio of the particle
diameters (r1) and the normalised inter-particle distance (r2). Exploiting this fact, several different
structures of the same family are created, changing these two parameters independently, also allowing
inter-penetration of particles to enlarge the study’s applicability. The results are primarily obtained in
terms of the tortuosity tensor, needed to catch and quantify the anisotropy of the structures. Then,
other morphological parameters, such as connectivity, principal diffusion directions, and anisotropy
factors, are evaluated, obtaining in this way a novel morphological characterisation of the structure.
It is found that high values of tortuosity are observed at lower and higher values of {r1, r2}, which
means that there exists a minimum value between them. Additionally, the anisotropy factor is found
to be higher at lower values of {r1, r2} and lower at higher ones. This is in accordance with the fact
that, as the inter-particle distance and the ratio between particle diameters increase, the structure
enlarges, which implies a lower influence of the particle distribution and, thus, a gradually more
isotropic structure.

Keywords: effective diffusivity; tortuosity tensor; anisotropy; connectivity; morphology

1. Introduction

The manganese telluride, MnTe, is a material of interest for a number of applications
in physics and material science. In the relatively new branch of physics, called spintronics,
which studies the intrinsic property of electrons called spin to be applied to storage, transfer,
and manipulation of information pieces, MnTe is recognised as a promising material for
exhibiting interesting magnetic and electronic properties.
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Actually, this material has been studied at least since the sixties of last century. In
particular, Kunitomi et al. (1964) [1] carried out a neutron diffraction study on MnTe,
establishing that the manganese ion in MnTe has five unpaired electrons. Later, Allet et al.
(1977) [2] evaluated the optical properties and electronic structure of MnTe, observing
that it showed a relatively large energetic p-d overlap, which is typical in NiAs-structured
materials. Wei et al. (1986) [3] modelled the structural, magnetic, and electronic properties
of a zinc-blended-like MnTe structure, reporting peculiar properties related to ferromagnetic
and antiferromagnetic spin ordering.

Oleszkiewicz et al. (1988) [4] analysed the optical and dielectric properties of MnTe
thin films, estimating a direct energy gap of around 1.27 eV at room temperature. In order
to improve the optical and magnetic properties, Wang et al. (1996) [5] synthesised novel
ternary MnTe-based structures described by the general brute formula of MxMnyTez (with
M = Li or Na), studying the number of different phases and crystallographic structures
generated from the addition of the Na element. Since these preliminary studies, the MnTe
structures have shown several interesting magnetic properties, as reported by Kriegner
et al. (2016) [6], who observed multiply stable anisotropic magneto-resistance memory in
antiferromagnetic MnTe.

Han et al. (2018) [7] reported interesting semiconductor properties of zinc-stabilised
manganese telluride for application in optoelectronics. Specifically, they observed a great
reduction (from 100 up to 10,000 times lower) in the electrical conductivity of the wurzite
MnTe with respect to the nickeline one when the zinc content is below 8 at%, explaining
such an observation by the strong preference of the Zn atoms to rearrange in tetrahedral
coordination more than in octahedral.

Luo et al. (2023) [8] fabricated polycrystalline MnSb2Te4 to reduce the thermal con-
ductivity of the MnTe structure. They also showed that a further substitution of some Mn
atoms with Ge ones further decreased the thermal conductivity, making these materials
particularly promising for the fabrication of thermoelectric generators.

Li et al. (2023) [9] determined several thermodynamic and electronic parameters of Mn-
and Mg-doped SnTe alloys, such as formation energies of defects, the nature of chemical
bonding, and electronic structures, via a first-principles approach. They calculated that the
solubility of Mg in the SnTe alloys is higher than that of Mn, with a more significant lattice
distortion due to the Mn replacement in the Sn sites.

Recently, Shah et al. (2024) [10] developed a facile fabrication of a MnTe and graphene
oxide (GO) nanostructure for applications to energy storage. In particular, such a nanocom-
posite structure shows an improved specific capacity and a significant retention rate of 99%
over 2000 cycles, which is explained by considering the effective inter-penetration of MnTe
into GO, causing an enhanced electron transfer rate as well as a larger electrochemical
active area.

In the same field, Selestina et al. (2024) [11] investigated MnTe as a potential p-
type semiconductor thermoelectric material to be used in the middle-temperature range,
incorporating magnesium in the structure. In particular, they observed a synergistic effect of
magnesium, which increases the electrical property and reduced the thermal conductivity.

Autieri (2024) [12] underlined that it is predicted that a newly observed kind of
magnetism, known as alter-magnetism, can arise in some class materials, with such a
property being more useful than ferromagnetism for some applications. At the same time,
Lee et al. (2024) [13] reported direct spectroscopic evidence for alter-magnetism in α-MnTe,
which represents another significant peculiarity of this type of structure.

The number of possible applications even increases if considering that Chowde Gowda
et al. (2024) [14] synthesised MnTe quantum dots (QDs) for exploitation in photocatalysis.
In particular, they showed that the quantum confinement leadsleads to a larger energy
bandgap, which in turn leads to a good photocatalytic degradation efficiency boosted by
the enhanced magnetic field.

Despite the number of aforementioned studies, there are no examples of applications
based on morphological properties, mainly because there is a lack of information for
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this type of structure. One important application that deserves to be explored for MnTe-
like structures is the gas separation, including the material, for example, as a layer of
multifunctional composite membranes (see, for example, references [15–17]), for which the
evaluation of the effective diffusivity tensor and, thus, of the tortuosity tensor, is crucial [18].

All these studies highlight that no analyses have been performed yet on the mor-
phological properties of this type of structure, which, in our opinion, is a gap to be filled
to possibly apply existing and new materials to gas separation and mass-transfer-based
technology. In fact, to the best of our knowledge, there is no morphological study in the
literature reporting the assessment of the tortuosity tensor of MnTe-like structures.

In this context, the aim of this work is to report new morphological properties of
MnTe-like structures that have not been reported yet in the open literature. The importance
of such morphology data lies in the possibility of developing new applications based on
mass transfer selectivity, such as gas separation by multilayer membranes.

Specifically, here, we evaluate the diffusional effective diffusivity tensor and, from
it, the diffusional tortuosity tensor, for different MnTe-like structures created in the CAD
environment of the commercial software Comsol Multiphysics® by changing its structural
parameters.

For this purpose, we use the novel methodology based on a computational fluid dynamics
(CFD) approach recently developed by our research group [19] to evaluate the morphological
properties of complex porous structures. The related CFD simulations are performed in the
same software. The details of our investigation are reported in the next sections.

2. Methodology

Figure 1 summarises the main steps for the evaluation of the morphological parameters
of the structure considered in this work. The following sections report the details of the
construction of the geometries considered for simulations as well as the meshing and
simulation settings.
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Figure 1. Flow diagram of the methodology.

2.1. Geometry

The original manganese telluride (MnTe) has a hexagonal crystal structure that is
determined by two main parameters: the MnTe bond length, d (equal to 2.68 Å [20]),
and the height of the unit cell, c (equal to 5.946 Å [9]). The edge of the base of the unit
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cell, a, is calculated by using these two parameters according to the following equation
(Equation (1) [9]):

a =

√
3
(

d2 +
c2

16

)
(1)

Figure 2 shows an example of the unit cell considered for simulation, where symmetry
is exploited. In this scheme, the three orthographic views are shown along with the
parameters a and c characterising the unit cell of the MnTe structure.
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Figure 2. Example of the unit cell considered for simulation. The lengths D1 and D2 are the diameters
of the particle 1 (manganese) and particle 2 (tellurium).

Since this structure is characterised by two different particles with independent size
(bi-disperse structure), given the same type of unit cell, the original ratio, r0 ≡ a/c, which
is kept constant in the present work, is 0.87451 from Equation (1). Therefore, once r0 is
fixed, the family of the MnTe-like structures can be constructed by changing three different
geometrical quantities, which in the present study are chosen to be: the diameter (D1) of the
particle 1 (nominally manganese), the diameter (D2) of the particle 2 (nominally tellurium),
and the edge of the base of the unit cell (a).

However, tortuosity—as well as all the morphological parameters of a structure,
such as porosity, anisotropy, and diffusional preferential paths—does not depend on
the particular scale of investigation and, thus, the aforementioned three independent
geometrical parameters—D1, D2, and a—can be normalised with respect to one of them.

This implies that the structure properties are controlled by two dimensionless pa-
rameters only. In the present paper, we chose D1 as such a reference geometrical length
for normalisation purpose, which means that the controlling parameters are specified as
follows (Equation (2)):

ro ≡
a
c
(fixed), r1 ≡ a

D1
, r2 ≡ D2

D1
(2)
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Equation (3) shows the other structure parameters obtained from the controlling
ones. Furthermore, to enlarge the applicability of the present study, we also allowed
inter-penetration of the particles:

c
D1

= 1
ro

a
D1

= r1
ro

d
D1

=

√
1
3 r2

1 −
1

16

(
c

D1

)2
= r1

√
1
3 − 1

16ro

(3)

The ranges of the values for r1 and r2 used in the simulation are reported in Table 1. It
is noted that, for simulation purposes, we need to obtain the negative void space of the
structures, which is the domain available to diffusion (Figure 3).

Table 1. Values for r1 and r2 parameters.

Parameters Pairs of Values

{r1, r2}
{1.4, 1}, {1.5, 1}, {1.6, 1},

{1.94, 1}, {1, 0.01},
{3, 3}, {5, 5}, {8, 8}, {9, 10}

Processes 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

( ) 21 21 1fixed , ,o
Da ar r r

c D D
≡ ≡ ≡

 
(2)

Equation (3) shows the other structure parameters obtained from the controlling 
ones. Furthermore, to enlarge the applicability of the present study, we also allowed inter-
penetration of the particles: 

11 1 221 11 1

1
1 1 1 13 16 3 16

o o

o

rc a
D r D r

d cr r
D D r

= =

 
= − = − 

   

(3)

The ranges of the values for r1 and r2 used in the simulation are reported in Table 1. 
It is noted that, for simulation purposes, we need to obtain the negative void space of the 
structures, which is the domain available to diffusion (Figure 3). 

Table 1. Values for r1 and r2 parameters. 

Parameters Pairs of Values 

{r1, r2} 
{1.4, 1}, {1.5, 1}, {1.6, 1}, 

{1.94, 1}, {1, 0.01}, 
{3, 3}, {5, 5}, {8, 8}, {9, 10} 

 
Figure 3. All the structures considered for simulation: (a) r1 = 1.4, r2 = 1; (b) r1 = 1.5, r2 = 1; (c) r1 = 1.6, 
r2 = 1; (d) r1 = 1.94, r2 = 1; (e) r1 = 1, r2 = 0.01; (f) r1 = 3, r2 = 3; (g) r1 = 5, r2 = 5; (h) r1 = 8, r2 = 8; (i) r1 = 9, 
r2 = 10. 

2.2. Simulation Settings 
Once we constructed the geometries, the appropriate physics has to be applied to 

them. In order to better understand the calculation approach used in the present work, 
the details of our previous work are briefly summarised in this section. 

As mentioned above, to evaluate the tortuosity tensor along with the derived mor-
phological parameters, we use a novel approach recently developed by our research 
group, consisting of carrying out simulations in pure-diffusion conditions along three dif-
ferent directions—namely, x, y, and z—corresponding to the main directions of a parallel-
epiped unit cell [19]. 

Figure 3. All the structures considered for simulation: (a) r1 = 1.4, r2 = 1; (b) r1 = 1.5, r2 = 1; (c) r1 = 1.6,
r2 = 1; (d) r1 = 1.94, r2 = 1; (e) r1 = 1, r2 = 0.01; (f) r1 = 3, r2 = 3; (g) r1 = 5, r2 = 5; (h) r1 = 8, r2 = 8;
(i) r1 = 9, r2 = 10.

2.2. Simulation Settings

Once we constructed the geometries, the appropriate physics has to be applied to
them. In order to better understand the calculation approach used in the present work, the
details of our previous work are briefly summarised in this section.

As mentioned above, to evaluate the tortuosity tensor along with the derived morpho-
logical parameters, we use a novel approach recently developed by our research group,
consisting of carrying out simulations in pure-diffusion conditions along three different
directions—namely, x, y, and z—corresponding to the main directions of a parallelepiped
unit cell [19].

The details of our novel methodology, its novelties, and validation are already reported
extensively in [19], where the approach is validated in terms of tortuosity values of several
FCC structures obtained by a different numerical methodology, i.e., by the random-walk
algorithm [21].

The characterisation of the structure anisotropy is performed by the so-calledaverage
effective diffusivity tensor (Equation (4)), which is defined analogously to the local binary
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diffusivity tensor appearing in the constitutive equations of the pure-diffusive flux of a
species in a 3D space [19]: JT,x

JT,y
JT,z

 = −

 De,xx De,xy De,xz
De,yx De,yy De,yz
De,zx De,zy De,zz

 ·

 ∆C
∆x
∆C
∆y
∆C
∆z

 ⇔ JT = −De · ∆C (4)

The advantage of the used approach lies in the simplicity of the simulations that
have to be carried out to obtain the desired morphological properties, as pure-diffusion
simulations are suitable to be run even by non-experts in numerical calculation.

According to this approach, the form reported in Equation (4) is inverted in order to
express the components of the gradient as functions of the components of the corresponding
flux (Equation (5)), where the coefficients Re,ij in Equation (5) are diffusion resistivities [19]:

∆C
∆x = −Re,xx JT,x − Re,xy JT,y − Re,xz JT,z
∆C
∆y = −Re,yx JT,x − Re,yy JT,y − Re,yz JT,z
∆C
∆z = −Re,zx JT,x − Re,zy JT,y − Re,zz JT,z

(5)

The form in Equation (5) allows us to calculate the resistivity coefficients along a
specific direction, as it is only necessary to carry out simulations in which the other two
average fluxes, JT,i, different from that in the considered specific direction, are zero.

Equation (6) shows an example of the calculation for the x components of the resistivity
tensor, for which the fluxes along the y and z directions (JT,y and JT,z) are set to zero by
choosing the boundary conditions reported in Figure 4 [19]:



∆C
∆x

∣∣∣
JT,y=JT,z=0

= −Re,xx JT,x

∆C
∆y

∣∣∣
JT,y=JT,z=0

= −Re,yx JT,x

∆C
∆z

∣∣∣
JT,y=JT,z=0

= −Re,zx JT,x

⇒



Re,xx = −
∆C
∆x |JT,y=JT,z=0

JT,x

Re,yx = −
∆C
∆y

∣∣∣
JT,y=JT,z=0

JT,x

Re,zx = −
∆C
∆z |JT,y=JT,z=0

JT,x

(6)

Therefore, each simulation allows the evaluation of three components of the resistivity
tensor, which means that three different simulations are needed for each geometry to
evaluate the entire tensor.

It is specified here that other types of boundary conditions are not suitable to eval-
uate the tortuosity tensor, as for this purpose it is necessary both to set a concentration
difference along the investigated direction and, at the same time, to ensure that the flux
streamlines enter the high-concentration surface and exit the low-concentration one (see
Equations (5) and (6) for the mathematical details). These boundary conditions allowing
tortuosity evaluation do not have to be confused with boundary conditions related to real
applications, which need to be chosen according to the specific external conditions of the
system investigated.
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Once the resistivity tensor is obtained, the effective diffusivity one is calculated by a
simple inversion of it (Equation (7)):

De
=

= Re
=

−1 (7)

Afterwards, the diagonal form of the diffusivity tensor is evaluated, allowing us to
identify the principal diffusional path represented by the eigenvectors. Finally, from the
diagonal diffusivity tensor, we obtain the diagonal tortuosity tensor as the natural extension
to the three-dimensional case (Equations (8) and (9)):

τ
=

(d) = DεD
=

(d)−1

e
(8)

τ
=

(d) =

τ
(d)
11

τ
(d)
22

τ
(d)
33


{

Diagonal form of
Tortuosity Tensor

}
(9)

The overall tortuosity, τov, is also evaluated, defined as the norm of the diagonal
tortuosity tensor (Equation (10)):

τov ≡
√

τ
(d)2

11 + τ
(d)2

22 + τ
(d)2

33 (10)

As important derived morphological parameters, we also evaluate the overall con-
nectivity factor, φov (Equation (11)), and the anisotropy factor, α (Equation (12)) [22] of the
structure, the former of which is defined as the norm of the connectivity tensor, which
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is in turn defined as the inverse of the tortuosity tensor, according to the works reported
in [19,23,24].

The anisotropy factor is equivalently evaluated here using the principal connectivity
factors reported in Equation (11) instead of using the eigenvalues of the effective diffusivity
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As an important remark, we underline that the diffusional tortuosity is a geometrical
parameter independent of the particular species used for simulation [25,26], different from
other types of tortuosity, such as thermal, acoustic, or hydraulic tortuosity, which depend
on the particular field applied to generate the flux of a certain physical quantity [27–37].
In the present paper, we use the binary decane–oxygen mixture in all simulations, whose
parameters are reported in Table 2.

Table 2. Operating conditions considered for simulation.

Parameter Value

Binary mixture in pure diffusion (zero convection) {C10H22, O2}
Pressure, Pa 101,325
Mass fraction of species 1 (decane) over the
higher-concentration area 2·10−4

Mass fraction of species 1 (decane) over the
lower-concentration area 10−4

Temperature, ◦C 25
Binary diffusivity, m2 s−1 10−5

2.3. Computational Mesh

Once having set up the simulation physics, the computational mesh of the structures
needs to be built. As inter-penetration of particles is allowed in the present work, there can
be part of the structure where the channel for diffusion is severely narrow, which implies
high-concentration gradients. Therefore, the meshing procedure must be setup to account
for such a situation, which can affect the simulation correctness. At the same time, the final
results must be mesh independent.

In general, efficient meshing should be such that the elements are preferentially ori-
ented along the flux direction, which, however, is not known before running the simulation.
As the generated structures can be quite complex and, thus, the void channel can be ori-
ented along different directions, a good strategy is to increase the mesh density in the
narrowest channel. In our case, we find that our adaptive meshing procedure ensures an
accuracy up to the fourth digit without prohibitively increasing the computational duty,
which is satisfactory for our purpose. Other meshing strategies are also possible, such as
the generation of a boundary layer near the surface. However, such a strategy is required
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in CFD studies in the presence of convection and local eddy vortices in the bulk, which
is not related to our pure-diffusion systems. In the present work, all meshes are built to
ensure at least five elements (tetrahedral) in the narrowest channels of the structure, which
ensured a semi-automatic meshing procedure.

To check the required mesh independency, we repeated all simulations by building
two different computational meshes and ensuring three and five elements in the narrowest
regions, respectively. By doing so, we found a difference in tortuosity values at the fourth
decimal digit between the two cases (see Table 3).

Table 3. Mesh independency of the results for all the cases considered in this work.

Tortuosity Components
τ11, − τ22, − τ33, −

Number of Mesh Elements in the Narrowest Region
3 5 3 5 3 5

5.53193 5.53181 5.23663 5.23651 1.44556 1.44544
7.45090 7.45078 2.86816 2.86804 2.05677 2.05665
2.11487 2.11475 1.59753 1.59741 1.17920 1.17908
1.18865 1.18853 1.18155 1.18143 1.10124 1.10112
2.03772 2.03760 2.03342 2.03330 1.30116 1.30104
3.50189 3.50177 2.78992 2.78980 2.56907 2.56895
2.66186 2.66174 2.56521 2.56509 1.72301 1.72289
2.68382 2.68370 2.61089 2.61077 1.71169 1.71157
8.15568 8.15572 6.44101 6.44117 6.31910 6.31909

Therefore, based on these preliminary results, we decided to use five elements for
a matter of accuracy. Figure 5 shows an example of meshing for a certain structure with
inter-penetrating particles, where a zoomed detail is reported to highlight the shape of the
computational mesh in the narrowest regions.
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structure corresponding to r1 = 1.4, r2 = 1.

3. Results and Discussion

Figure 6 shows an example of the simulation results in terms of molar concentration
profiles of species 1 (decane) for the case at r1 = 1.4 and r2 = 1 along the three chosen
diffusional directions, which correspond to the x-, y-, and z-directions for the particular
orientation chosen for the unit cell. The value of the concentration difference at the opposite
faces is the same in the three cases (see Figure 4 and Table 2 for details).
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(a) x-direction, (b) y-direction, and (c) z-direction for r1 = 1.4, r2 = 1.

It can be observed that, for the particular choice of r1 and r2, this structure is made of
inter-penetrating particles. For such types of structure, the steepest gradient is found near
the inter-penetration boundaries (see also the previous Figure 5), which thus provided the
highest deviation of the diffusional flux with respect to the virtual unconstrained straight
lines. In fact, at a fixed concentration difference, when the streamlines are constrained
to pass through narrow channels (small cross-sectional area), the related diffusional flux
is higher, which implies a local higher concentration gradient according to Fick’s law.
Therefore, these regions are the main ones responsible for high tortuosity values, which
theoretically reach the infinite value for completely disconnected regions [23].

Figure 7 shows the principal components of the tortuosity tensor (Equation (9)) along
with the overall tortuosity (Equation (10)) as functions of r1 for r2 = 1. Let us recall that
changing r1 means changing the a/D1 ratio, which in turn means that, for increasing r1, the
structure goes from a situation of particles’ inter-penetration (higher tortuosity) to a larger
unit cell, where particles are progressively farther from each other (lower tortuosity).

However, as the structure is anisotropic, the preferential paths of the diffusional flux
could change direction due to the complex redistribution of the void space owing to the
presence of new obstacles. Therefore, the change in the principal tortuosity components is
not expected to be monotonic with the increasing/decreasing of r1. This is just the situation
depicted in the plots in Figure 7, where the components τ11 and τ33 show a maximum with
r1. As a consequence, the overall tortuosity shows a maximum as well.

Referring to the case at r1 = 1.5, the highest tortuosity, τ11, means that, along the
direction identified by the first eigenvector, the diffusional flux is the lowest, which means
that the path has more obstacles to diffusion. Additionally, the lowest tortuosity, τ33,
indicates the highest diffusional flux along the third eigenvector.

From a practical point of view, this means that the sample should be oriented along the
third eigenvector to maximise the diffusion flux and along the first eigenvector to minimise it.
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Figure 7. Principal components of the tortuosity tensor, τii, (a–c), and overall tortuosity, τov (d) as
functions of r1 for r2 = 1.

This concept can be generally applied to the other structures, for which our study
assesses important morphological properties that are not yet reported in the open literature.

Figure 8 shows the three eigenvectors for each of the structures considered in the
present investigation. Specifically, the red vector corresponds to the highest effective
diffusivity, the blue vector the middle one, and the green vector the lowest. Therefore, by
looking at the length of the eigenvectors in each structure, one can directly observe the
extent of the anisotropy: the more different the lengths, the higher the anisotropy level.

For a single structure, the lengths of the three vectors are proportional to their respec-
tive effective diffusivities and, thus, are comparable to each other. Differently, vectors of
different structures cannot be compared with each other, as their lengths are adjusted to
make them visible as a matter of clarity.

As can be observed, as the particle distance becomes larger (Figure 8a–d), which
also means a larger structure, the geometry goes from inter-penetrating conditions to a
non-inter-penetrating one, which also implies that the porosity gradually increases. In such
an increasing procedure, all the components of the effective diffusivity tensor becomes
progressively higher, which leads to progressively lower components of the tortuosity
tensor.

As the lower bound for tortuosity is the unity, two consequences of a larger inter-
particle distance are that the connectivity of the structure generally becomes gradually
higher—even though some irregularity owing to the complexity of the geometry could be
found at low porosity values—and that the structure becomes less anisotropic.

These geometrical and morphological considerations leads to the situation depicted in
Figure 9, which shows the overall anisotropy factor and overall connectivity in the same
conditions as those considered in Figure 7.
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Figure 8. Principal diffusion directions (eigenvectors of the tortuosity tensor) for all the structures
considered in the present work. The green, blue, and red colours represent the lowest, middle,
and highest diffusional directions, respectively, corresponding to the lowest, middle, and highest
eigenvalues. (a) r1 = 1.4, r2 = 1; (b) r1 = 1.5, r2 = 1; (c) r1 = 1.6, r2 = 1; (d) r1 = 1.94, r2 = 1; (e) r1 = 1,
r2 = 0.01; (f) r1 = 3, r2 = 3; (g) r1 = 5, r2 = 5; (h) r1 = 8, r2 = 8; (i) r1 = 9, r2 = 10.
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Although these two parameters are calculated as average values (norm) of the three
principal eigenvalues of the respective tensors (see Equations (10) and (11)), they provide
useful information about the structures that is not so much related to their orientation but
rather to their overall morphological properties.

Figure 10 shows the tortuosity tensor components and the overall tortuosity of all the
structures considered in this work as functions of r1 and r2. Besides the particular values of
the three components, it is possible to observe that, for all three components as well as the
overall tortuosity, there are minima in the plot, which could be calculated more precisely
by spanning the parameters r1 and r2 with a narrower grid of values.
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Figure 10. Principal components of the tortuosity tensor, τii (a–c), and overall tortuosity, τov (d), as
functions of r1 and r2 for all the structures considered in the present work.

A low tortuosity is desirable, for example, to facilitate the mass transport through a
porous structure, whereas a high value of it can be desirable for the intermediate layer for
diffusion-barrier purposes.

What we want to underline here is that, to obtain a certain value of tortuosity, it is
possible to work not only with the structure’s spatial orientation, but also with the inter-
particle geometrical distance, which can be obtained using a precise chemical synthesis and
fabrication of the porous layer.

Figure 11 shows anisotropy and connectivity factors for the same values considered in
Figure 10. It can be observed that the highest anisotropy is in the mathematical range of
low values of r1 and r2, whereas lower anisotropy is found at higher values. This situation
corresponds to the depiction in the previous Figure 8, where the eigenvectors’ lengths,
scaled according to the eigenvalues, are close to each other.
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4. Conclusions

In this work, a morphological investigation was carried out on MnTe-like structures
via the evaluation of the tortuosity tensor as well as other morphological properties using a
computational fluid dynamics (CFD) approach.

In particular, after choosing the two parameters determining the geometry of this bi-
disperse structure (see above, the parameters r1 and r2) and constructing the necessary com-
putational mesh, several CFD simulations were carried out using a novel three-dimensional
methodology recently developed by our research group.

A total of nine structures were analysed in representation of the entire structure family,
calculating the three principal components of the tortuosity tensor for each of them as well
as anisotropy and connectivity factors, which quantitatively measured the dependence
of morphology on the spatial orientation of the structure and the facility of the transport
along the principal directions represented by the eigenvectors, respectively.

It was observed that high values of tortuosity components were found at both lower
(=1 and 2) and higher (=9 and 10) values of {r1, r2}, which led to the conclusion that there
must be at least a minimum at middle values. Additionally, the anisotropy factor was
found to be higher at lower {r1, r2} values and lower at higher {r1, r2} values.
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This was in line with the geometrical consideration that by increasing the inter-particle
distance (represented a-dimensionally by r1) and the ratio between particle diameters (rep-
resented a-dimensionally by r2), the structure experienced an enlargement and a decreasing
influence of one of the particles with respect to the other one, leading to a progressively
more isotropic structure.

Overall, the morphological analysis in this paper provided new morphological infor-
mation about the structure that can be exploited for existing practical purposes, as well
as for future novel applications in new areas of science and technology. From this point
of view, this work leads to wider future perspectives. In fact, some of the considered
structures showed an interestingly high tortuosity if properly oriented, which means that
layers with an effective diffusion barrier could be developed in the form of membranes or
thin films. In this regard, the methodology used allowed us to preliminarily design the
target material with the desired properties on a computer, thus saving time and resources.
At the same time, the same procedure could be applied to other polymorphic forms in
order to shed light on new and interesting morphological features that could be useful in
tuning these materials for innovative applications.
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