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A B S T R A C T

The odor emissions generated by treatment plants imply complex environmental and economic issues. The
modern instrumental odor monitoring systems, based on an array of several sensors, continuously record
the gaseous compounds. However they are characterized by poor selectivity, compromising the possibility to
discriminate and identify the emission sources. In this paper, the ability of odor sensors to distinguish between
the treatment plant sections generating the gaseous compounds is evaluated on the basis of the random forest
classifier, and is also compared to the discriminant analysis performance. Taking into account that a multi-
parametric system of sensors can be affected by the presence of a small sample size with imbalanced classes,
several strategies for data balancing are proposed and analyzed. The findings show that the random forest
classifier is characterized by a better capacity to distinguish the emissions sources with respect to the classical
multiple discriminant analysis, in terms of all evaluation metrics. This is also confirmed for different resampling
techniques, especially in the over-sampling case. The data concerning measurements from 10 sensors of multi-
parametric systems of odor monitoring collected from a company specialized in environmental assistance are
considered for this analysis.
1. Introduction

The accelerated urbanization and the lack of suitable sites have
led to build treatment plants close to existing urban areas, raising
health risks for human beings [1]. Indeed, odor emissions from in-
dustrial and environmental protection plants are often the cause of
olfactory nuisance capable of generating annoyance in citizens residing
in their neighborhood [2]. The annoyance is often continuous and can
interfere with the state of human well-being, generating complaints
and triggering conflicts that can also have repercussions on economic,
commercial, and touristic activities [3]. According to [4], odor emis-
sions are environmental pollutants that are given by the interaction of
different volatile chemical species (e.g., sulfides, mercaptans), nitrogen
compounds (e.g., ammonia, amines), and volatile organic compounds
(VOCs). The VOCs are a group of organic chemicals characterized by
a certain volatility in space and magnitude. The most common sources
of odor emissions are the wastewater treatment plants (WWTPs), es-
pecially in urbanized areas [5,6]. They generate a huge amount of
gaseous compounds characterized by unpleasant odors that are harmful
to the environment and to the human health. For this reason, many
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countries proposed different strategies for odor measurements and
assessment, which are essential for odor regulation and for controlling
the interactions between chemical components and their dilution in
the atmosphere [7]. Overall, the measurement of odor concentration
in WWTP includes sensory techniques based on human examiners or
analytical (instrumental) methodologies [8].

According to this classification, sensory techniques include dy-
namic olfactometry, field inspection, and recording from residents; on
the other hand, analytical methodologies include mass spectrometry,
identification of specific compounds, and electronic nose (E-nose).

In particular, the measurement of an odor concentration can be ob-
tained in three different ways, i.e., by analytical determinations based
on the mass spectrometry, by the olfactory perception from a group
of panelists and by the E-nose (IOMS, Instrumental Odor Monitoring
System), based on the interaction between special sensors and volatile
molecules. The application of the E-nose is increased in many research
areas of industrial systems, such as pharmaceutical companies, food
industries, agriculture, and biotechnology, as well as for the monitoring
process of the treatment plants. It is based on a set of chemical sensors,
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each of them with its specificity, and an appropriate pattern recognition
system capable of identifying simple or complex odors [9]. In the case
of a treatment plant, several odor sensors are installed along the various
sections of the plant, and therefore they represent the key components
for continuously monitoring and controlling odor emissions. However,
the odors are emitted from different areas of the plant, so that the
identification of the exact source of a particular odor may be difficult.

Several recent studies investigated the characterization of odor
emission in WWTPs [10] and the prediction of odor concentration
emitted from waste treatment, by using machine-learning models [11].
In addition, [12] applied artificial neural network and decision trees
to predict the odor properties of post-fermentation sludge from two
biological–mechanical treatment plants located in the North of Poland;
in [13] the Random Forest (RF) was applied to recognize odor classes
nearby a WWTP. The results obtained from the analysis established to
what extent the unpleasant odors perceived by the citizens came from
the monitored plant.

It is also worthy to mention the analysis of the relationship be-
tween odor indices measured with the so-called ‘‘triangle odor method’’
(Japanese standard method) [14], and odor concentration measured
with dynamic olfactometry. The results suggested a strong linear cor-
relation between the two methods, in the case of high concentra-
tions [15].

Furthermore, [16] applied different algorithms for emission disper-
sion estimation in WWTPs with the use of Lagrangian atmospheric
models. More recently, the work by [17] provided a review on the
biochar-based odor mitigation in WWTPs that emerged in the last five
years.

Within this context, the present work aims to propose a comparison
between one of the most widely used learning method for classification,
that is the RF classifier, and the classical multiple discriminant analysis
(MDA), to investigate and evaluate the capacity of the multi-parameter
sensors system (based on 10 sensors with sensitivity to different VOCs)
to distinguish the waste treatment plant sections. A further innovative
aspect concerns the integration of appropriate resampling techniques to
process an imbalanced dataset. More specifically, this analysis provides
an assessment of the possible influence of the dataset balancing on
accuracy, discrimination, and identification of the emission sources.
Several strategies have been proposed to generate synthetic samples
for balancing datasets in the training of multi-class algorithms. It has
been highlighted that the RF classifier has shown a better capacity to
classify with respect to the classical MDA, in terms of the specified
evaluation metrics, and the over-sampling approach has improved the
classification performance of the multi-class algorithms.

Thus, differently from the works on this subject, in this contribution
the odor measurements from the sensors installed on some treatment
plants have been analyzed through a multi-class RF model, and the abil-
ity of the sensors to distinguish the sections of the treatment plant that
produced the specific VOC at all stages of the plants has been assessed
by considering also the effects of various resampling approaches used
to balance the data.

As known, the sensors used in the E-noses are sensitive to a wide
range of chemical compounds and therefore they are characterized
by poor selectivity. The sensor matrix is generally made up of 6–10
sensors which are devoted to give a set of responses that constitutes
the so-called ‘‘finger print’’, that is a kind of ‘‘olfactory pattern’’, of
the odor source. Measuring at what extent the sensors are able to
discriminate the odor sources could be extremely useful for managing
and controlling a WWTP.

In this paper, after a short discussion on the resampling approaches,
a brief review of the basic theoretical models of analysis such as the
RF and MDA classifiers is presented (Section 2). Moreover, a review on
classification measures to assess the performance between the two clas-
sifiers and the combination of each classifier with different resampling
approaches are described (Section 3). Section 4 provides a detailed
2

description of the dataset used in the multi-class classification problem.
Thus, the case study concerning the ability of a multi-parametric system
of 10 sensors to discriminate and identify the treatment plant sections
generating the gaseous compounds is thoroughly discussed (Section 5).
In particular, the RF classifier is implemented (Section 6) and compared
with MDA traditional model (Section 7) when different resampling
approaches are adopted. Finally, some concluding remarks are reported
in Section 8.

2. Theoretical framework

Nowadays, WWTPs are considered as the main unpleasant odor
sources in urbanized areas [5,6], and the reduction of their emissions
is one of the most crucial aspects in air monitoring. Moreover, the
identification of the emission source is a complex issue to be tackled
in order to preserve possible environmental damages. This research
compares two classification techniques developed to assess the ability
of sensors to distinguish the emission sources (the sections of the
treatment plant) using a sample dataset composed by measurements
from 10 metal oxide semiconductors of the IOMS installed at various
treatment plants. In the pre-processing step, a preliminary resampling
has been considered and the multi-classification problem has been
faced through a supervisioned learning method, that is, the RF, and
its performance has been compared to the one of a traditional method
such as the discriminant analysis.

According to the number of classes, there are two different classi-
fication problems, namely, binary classification in case of solely two
classes or multi-classification problem when the number of classes is
greater than two. In this paper, the aim is to learn from the train-
ing dataset how to categorize new unlabeled samples, in a multi-
classification problem. Further, the presence of imbalanced data and
possible problems related to unsuitable training observations have been
treated through resampling techniques before fitting the model.

In the following, a brief description regarding the resampling meth-
ods and the classifiers adopted has been provided.

2.1. Resampling approaches for balancing classes

The imbalance classification problem occurs when the number of
observations belonging to one class is significantly larger than the
number of data of the other classes.

Dealing with imbalanced datasets in classification tasks became
a relevant topic in data mining and machine learning [18,19]. In
fact, the presence of imbalanced data might affect the learning process
of a classification model. In particular, the study in [20] explored
imbalanced data characteristics and [21] provided a classification of
methods in the presence of class imbalance.

In the literature, several approaches were proposed to reduce the
negative influence of class imbalance, that can be distinguished into
data-level and algorithm-level strategies [22]. The former aims to
balance the class distribution by resampling the original data in the pre-
processing step. The latter attempts to develop new algorithms which
are more suitable to identify the minority/majority class in imbalanced
classification or adapt existing learning algorithms for this aim [23]. In
this paper, the first approach has been considered, since it is generally
adopted to deal with imbalanced data, and it is independent from the
selected classifier. In particular, the data-level approaches are based on
the idea of resampling in order to change the distribution of classes in
the training dataset and to generate a new dataset with an equal ratio
among the classes of the output variable, as well as to decrease the bias
of the predictive algorithm [24].

The resampling techniques can be further classified into three dif-
ferent methods that include over-sampling, under-sampling, and hybrid

methods. More specifically,
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• the under-sampling approach balances the distribution of the
classes by removing the cases linked to the majority class. One
of the most widely-used method is the random under-sampling
(RUS), which involves the random elimination of elements from
the majority class [25]. The limitation of RUS is twofold: often
the samples removed from the majority class might be useful,
informative and if the samples within the majority class are
unevenly distributed, the removal of randomly selected samples
might change and worsen the classification performance. In
addition, under-sampling can be achieved also applying statistical
information (Informed under-sampling) as with the Tomek Links
or Neighborhood Cleaning Rule;

• the over-sampling approach generates new cases linked to the
minority class by producing more synthetic data or duplicating
the existing ones. The most commonly adopted techniques for cre-
ating synthetic minority samples are the following: random dupli-
cation of minority samples known with the acronym ROS which
stands for random over-sampling, adaptive synthetic (ADASYN)
and synthetic minority over-sampling technique (SMOTE) [26].
The ROS algorithm replicates the minority class until the class dis-
tribution is balanced. The SMOTE algorithm generates synthetic
data by using all samples from the minority class for uniformly
over-sampling without considering the majority class distribution,
which increases the overlap between classes. More specifically,
in the SMOTE algorithm the synthetic data are found by using
the 𝑘 nearest neighbors (𝑘NN) algorithm as linear combination
of the existing data. The ADASYN is an extended version of
the method SMOTE and generates a different sample using a
weighted distribution for different minor class samples based on
their level of learning difficulties. In particular, the algorithm
generates more samples where the density of the minority class is
low and fewer where the density is high. Therefore, with respect
to the SMOTE algorithm, the ADASYN improves data distribution
learning by reducing bias caused by class imbalance. In this
paper, the ADASYN and ROS algorithms have been applied as
over-sampling approaches;

• the hybrid approach combines both over-sampling and under-
sampling methods at the same time to avoid over-generalization
or the loss of useful data information. Within this context, mul-
tiple classifiers are combined to create a stronger and more
accurate classifier in order to achieve a better performance than
relying on a single classifier. Some hybrid-resampling approaches
are the variants of the SMOTE algorithm, such as edited near-
est neighbor (ENN) undersampling and the combination of the
SMOTE and Tomek’s procedures [27].

lthough resampling procedures can improve the classification prob-
em [28] they have some benefits and drawbacks. Taking into account
he above-mentioned resampling strategies, it can be pointed out that
he over-sampling procedure does not loose information from the
raining sample, but at the same time, it may lead to overfitting, since
his method replicates existing observations of the minority class and
ncreases the model-training time required to learn the process. On
he other hand, under-sampling procedures reduce the samples from
he original dataset potentially removing useful data that might be
mportant for the learning process.

.2. An overview of RF model

The RF model, introduced by Breiman [29] in 1984, has been
pplied in different research fields, as a supervised learning approach
or classification and regression tasks.

As stated in [30], in the classification problem, the aim is to
rganize the dataset into classes by using predetermined class labels.
n this supervised learning approach, the outcome is categorical and
3

he aim is to ‘‘classify’’ new units into one of 𝐾 possible classes. In this
paper, 𝐾 is greater than two and the tasks are referred to as multi-class
classification problems.

RF is an ensemble random-decision tree with a randomized selection
of variables, where each tree is generated through bagging or bootstrap
sampling from the original training data. Each tree has nodes and leaves
representing variables and decisions. Generally, the RF model consists
of two main steps referred to as training and classification step. In
the first step, RF builts trees from a randomly selected subset of the
training dataset. Each tree is trained by using a bootstrap sample of
cases from the data, and each split of candidate variables in the tree is
randomly selected. Then, the classification step in the RF is based on
the criteria known as plurality vote.

Formally, let 𝐗 ∈ R𝑛×𝑝 be the training set with 𝑥𝑖𝑗 the observed
value of the 𝑗th variable on the 𝑖th case (unit), and let 𝑌 be the set
of responses, within 𝐾 possible classes, in the training set. 𝐵 sample
sets are selected from the original training set using bagging sampling
and the corresponding decision trees models [𝑓𝑁1

(𝑥), 𝑓𝑁2
(𝑥),… , 𝑓𝑁𝐵

(𝑥)]
are built. Then, the validation test is used to check the classification
results of each decision tree model. In the classification problem, the
classifier uses the classification results from the trees and provides
the decision according to the principle called ‘‘plurality vote’’ (multi-
class response), determining the overall classification of an observation,
defined as follows:

𝐹 (𝑥) = argmax
𝑦

𝐵
∑

𝑏=1
𝐼(𝑓𝑁𝑏

(𝑥) = 𝑦), with 𝑦 ∈ {1,… , 𝐾}, (1)

where 𝐹 (𝑥) is the final classification result obtained by the plurality
vote method, 𝐼 is the indicator function, 𝑓𝑁𝑏

represents a single deci-
sion tree multi-class classification model, 𝑥 is the test set, and 𝑦 is the
prediction result.

The choice to apply this approach has been justified, on the one
hand, by the possibility to identify non-linear patterns of data, and
on the other hand, by the consideration that RF does not need vari-
able scaling. Moreover, RF is robust in case of overfitting which may
decrease the impact of different sample sizes. In the process of classi-
fication it assesses the impact of each variable providing the level of
importance [31]. RF is also suitable for classification in the presence of
an imbalanced dataset compared with other supervised methods. The
RF algorithm used in this paper is defined as reported in the following
Algorithm 1

Algorithm 1: RF classification
Data: Training step
1. 𝐗: training set with 𝑛 cases and 𝑝 variables, and 𝑌 outcome

variable
2. 𝐾: number of classes in outcome variable
3. 𝐵: number of classifiers
Procedure
𝑏 = 1 to 𝐵
1. Generate a bootstrapped sample from the 𝐗
2. Grow a tree using a random variable subset from bootstrapped

sample
3. Construct trained classifiers 𝑓𝑁𝑏

Data: Classification step
Aggregate 𝐵 trained classifiers using the plurality vote, where the
predicted class label from classifier 𝑓𝑁𝑏

is given in (1).

2.3. An overview of MDA

The discriminant analysis is a popular supervised technique which
is widely applied in computer-vision, machine learning, pattern recog-
nition and in other fields of research. This approach allows the dimen-
sionality reduction preserving as much of the class discriminatory in-
formation as possible. Among the traditional classification approaches
there are Bayesian discriminant analysis, distance discriminant anal-
ysis, linear discriminant analysis (LDA), and quadratic discriminant
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analysis (QDA) [32]. In particular, LDA allows the definition of a linear
combination of the observed variables which best separate two classes
of cases. By applying LDA on a multivariate dataset, a model, called
discriminant function for the classification of the cases under study, is
efined.

When three or more classes are involved, the technique is referred
o as MDA and more than one discriminant function can be computed.

ith respect to other techniques of multivariate analysis, such as
luster analysis, in MDA the clusters are known a priori; defining a
atent discriminant function synthesizing the explanatory (quantita-
ive) variables, new cases can be assigned to one of the groups of the
rimary (qualitative) variable. Hence, MDA can be used for descriptive
cases classification), as well as predictive (assignment of a new case to
group) purposes. In this paper, the use of discriminant analysis has

een extended for multi-class classification problems. Thus MDA can be
sed only for classification, when the outcome variable presents more
han two classes.

Let 𝐗 = {(𝑋𝑖𝑗 ) ∶ 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑝} be the data matrix
referred to the variables that describing the cases, where 𝑥𝑖𝑗 is the
value of the 𝑗th variable for the 𝑖th case. Given a (𝑛 × 𝑝) matrix 𝐗
of 𝑝 > 2 random variables observed on 𝑛 sample cases, assume that the
cases under study belong to 𝐾 mutually exclusive groups defined by 𝐾
different attributes of a categorical variable. Each group is composed
by 𝑛𝑘 cases, such that ∑𝐾

𝑘=1 𝑛𝑘 = 𝑛.
Thus, the generalization of the Fisher’s procedure to 𝐾 classes con-

sists in a supervised method with the aim of constructing an objective
function, as a linear transformation of 𝐗 through 𝐀, such that the
known Rayleigh coefficient (the ratio of the between-class variance on
the within-class variance) is maximized with respect to 𝐀, as follows:

𝐽 (𝐀) = argmax 𝐀′𝐁𝐀
𝐀′𝐖𝐀

(2)

where 𝐁 is the between-class covariance matrix of dimension (𝑝×𝑝) and
is the within-class covariance matrix, defined as follows:

=
𝐾
∑

𝑖=1
𝑛𝑖(𝑦𝑖. − 𝑦..)(𝑦𝑖. − 𝑦..)′

=
𝐾
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
(𝑦𝑖𝑗 − 𝑦𝑖.)(𝑦𝑖𝑗 − 𝑦𝑖.)′

here 𝑦𝑖. denotes the mean of the class 𝑖 and 𝑦.. denotes the mean of
ll classes. Eq. (2) can be obtained from the generalized eigenvector
quation |𝐁 − 𝜆𝐖| = 0, thus for the eigenvalues �̂�𝑚, the associated
ectors 𝐚𝑚 for 𝑚 = 1,… 𝑠, where 𝑠 = 𝑚𝑖𝑛(𝐾 − 1, 𝑝), maximize the ratios
′
𝑚𝐁𝐚𝑚∕𝐚

′
𝑚𝐖𝐚𝑚. The 𝑠 uncorrelated functions are the linear discriminant

unctions and have been built to provide the maximum separation on
verage based upon the sample.

. The evaluation metrics with multi-classification problem

In this section, a theoretical review on classification measures useful
o compare the RF and the classical MDA, especially when different
esampling methods are applied on the dataset, is provided.

In particular, the evaluation metrics have been used to measure
nd assess the effectiveness and adequacy of models, highlighting the
dvantages and disadvantages during the development of classification
ethod, as well as they have been applied to quantify the quality of

he trained classifier when validated with the unseen dataset.
For multi-class classification with imbalanced data, two main widely

verall measures of model’s performance are computed: macro and
icro averaged metrics. The first one assigns equal importance (weight)

o the classes regardless to the number of samples in a given class,
hereas the second one assigns equal weight to each observation. More

pecifically, the macro averages provide a measure of effectiveness on
lasses with small observations, while the micro averages provide a
easure of effectiveness on classes with large observations. For this
4

eason, the macro-averaged metrics have been considered. o
These measures, which include the accuracy, precision, recall, F1-
core and balance accuracy, are based on the confusion matrix 𝐂,

since it encloses the information concerning the classification rule and
classification algorithm [33]. Formally, let 𝐂 be a confusion matrix
(𝑘 × 𝑘) referred to a classifier, i.e.,

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐11 𝑐12 𝑐13 𝑐1𝑘
𝑐21 𝑐22 𝑐23 𝑐2𝑘
⋮ ⋮ ⋱ ⋮

𝑐𝑘1 𝑐𝑘2 𝑐𝑘3 𝑐𝑘𝑘

⎤

⎥

⎥

⎥

⎥

⎦

(3)

where 𝑐𝑖𝑗 is the number of outcomes associated to the 𝑗th observed
class in column and the 𝑖th predicted class in row, with 𝑖, 𝑗 = 1,… , 𝑘.
The diagonal elements 𝑐𝑖𝑖 represent the number of observations of each
class adequately classified, while the others constitute misclassification.
Moreover,

𝑐.𝑖 =
𝑘
∑

𝑗=1
𝑐𝑗𝑖, ∀𝑖 = 1,… , 𝑘, 𝑖 ≠ 𝑗, (4)

𝑐𝑖. =
𝑘
∑

𝑗=1
𝑐𝑖𝑗 , ∀𝑖 = 1,… , 𝑘, 𝑖 ≠ 𝑗, (5)

represent, respectively, the number of observed cases and the number
of predicted cases, for the 𝑖th class. Thus, the evaluation metrics
generated from the confusion matrix are defined and described as
follows:

• the overall accuracy

𝐴𝐶𝐶 =
∑

𝑖 𝑐𝑖𝑖
∑

𝑖𝑗 𝑐𝑖𝑗
(6)

represents the ratio of the total number of data correctly pre-
dicted, averaged over all classes. The accuracy gives an overall
estimate of predictive power of a model. High values of classi-
fication accuracy obtained by a classifier are considered optimal
because reflecting the better classification;

• the balance accuracy

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝑘

𝑘
∑

𝑖=1

𝑐𝑖𝑖
𝑚𝑎𝑥(𝑐𝑖., 𝑐.𝑖)

(7)

where the main difference between the two metrics is mainly due
to the weighting applied on each actual class;

• the macro average precision

𝑃𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1

𝑐𝑖𝑖
𝑐𝑖.

(8)

which measures the proportion of predicted correct outcomes to
the total number of predicted outcomes, averaged over all classes;

• the macro average recall

𝑅𝑚𝑎𝑐𝑟𝑜 =
1
𝑘

𝑘
∑

𝑖=1

𝑐𝑖𝑖
𝑐.𝑖

(9)

which measures the proportion of predicted correct cases to the
total number of observed cases, averaged over all classes;

• the F1-score (also known as Dice Similarity Coefficient)

F1-score = 2 ∗
𝑃𝑚𝑎𝑐𝑟𝑜𝑅𝑚𝑎𝑐𝑟𝑜

𝑃𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑚𝑎𝑐𝑟𝑜
(10)

which represents the harmonic mean of 𝑃𝑚𝑎𝑐𝑟𝑜 and 𝑅𝑚𝑎𝑐𝑟𝑜 provid-
ing a balance assessment between these two metrics, as defined
by [34].

inally, it is worth highlighting that all metrics lie within [0; 1].
igh values of accuracy, precision, recall, and F1-score are considered
ptimal.
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Fig. 1. Scheme of a typical WWTP, with its 9 sections and 4 macro-sections: 1-grit removal and 2-primary sedimentation, included in the first macro-section or primary treatment;
3-biological oxidation 7-stabilization of sludge, 8-sludge storage and 9-sludge thickening, included in second macro-section or secondary treatment; 4-secondary sedimentation,
included in the third macro-section; 5-denitrification and 6-equalization, included in the fourth macro-section or tertiary treatment.
Source: Arpat.it.
4. Dataset description and pre-processing

A WWTP is a complex system which includes a series of treatment
processes. Generally, WWTPs treatments can be distinguished into pri-
mary and secondary treatments. As a consequence, several groups of air
pollutants can be generated at different stages as well as the formation
of odoriferous compounds. For this reason, one should monitor in real
time the odor emissions from a WWTP by employing an IOMS, also
known as E-nose. In this context, the use of an E-nose provides several
advantages compared to other techniques for odor measurement, such
as chemical analysis, which are more expensive and discontinuous [35].
The E-nose is related to a multivariate response of the gas sensor array
quantitatively characterizing odors [36].

The dataset used in this study has been collected in 2021 by a
company specialized in technical and scientific environmental assis-
tance and consultancy services for private and public enterprises. To
enhance data quality and the adequacy to perform the modeling, a
pre-processing phase has been faced. This phase is very important to
overcome the limits related with real world dataset as in this case study.

Therefore, the filtering has been carried out, so that missing data
as well as irrelevant and unnecessary data, which might decrease the
accuracy of the learning approach, have been deleted. Afterwards, a
data exploration analysis has been performed to detect the presence
of possible extreme values. The median absolute deviation (MAD) has
been applied for removing outliers from the dataset.

More specifically, after the pre-processing phase, the dataset con-
sists of 285 measurements from 10 sensors of a IOMS, which record
different types of gaseous compounds, namely W1C-Aromatic, W5S-
Broad range (broad range sensitivity, react on nitrogen oxides), W3C-
Aromatic (Ammonia), W6S-Hydrogen, W5C-Aromatic aliphatic (alka-
nes, aromatic compounds, less polar compounds), W1S-Broad methane,
W1W-Sulphur organic (terpenes and sulphur organic compounds), W2S-
Broad alcohol (alcohols, partially aromatic compounds), W2W-Sulphur
chloride (sulphur organic compounds), and W3S-Methane aliphatic
(sensitive to high concentration of methane). The sensors’ measure-
ments are expressed in 𝑚𝐴 (milliamperes).

The list of all considered sensors, jointly with their description,
is presented in Table 1. An additional categorical variable, called
‘‘treatment plant section’’, that defines the section of the plant at
which the sensor data have been recorded, has been considered in
the following analysis. More specifically, the ‘‘treatment plant section’’
variable regards 9 sections, categorized in 4 macro-sections, of the
plant (Fig. 1), that are: 1-grit removal and 2-primary sedimentation, in-
cluded in the first macro-section; 3-biological oxidation 7-stabilization
of sludge, 8-sludge storage and 9-sludge thickening, included in the
second macro-section; 4-secondary sedimentation, included in the third
5

macro-section; 5-denitrification and 6-equalization, included in the
fourth macro-section. As already specified, the available dataset has
been used to evaluate to what extent the sensor’s measurements allow
the separation of the sections of the treatment plant which have pro-
duced the specific odor emission. By analyzing the descriptive statistics,
it has been underlined that the sensors W1C, W3C, and W5C registered,
on average, the lowest values, while the sensors W1W and W2W
provided the highest values. The behavior of chemical gas sensors
could be attributed to two main aspects, i.e., cross-sensitivity and low
selectivity. In fact, the sensors are affected by a mixture of gases with
similar chemical properties [37]. In the following, the ability of the
sensors to distinguish the emission sources of the treatment plant has
been evaluated with respect to 4 macro-sections of the plant. To this
aim, the sensors’ average values have been first compared with respect
to 4 macro-sections of the plants by using the non parametric Kruskal–
Wallis test [38]. Table 1 highlights some statistics of the sensors values
classified into the 4 plant macro-sections and shows that, at significance
level of 5%, the sensors data are different on average.

Remark
The steps of the proposed multi-classification algorithm for imbal-

anced data are the following:

• data pre-processing removing the missing data and exploration
data analysis, to detect possible extreme values (outliers) among
the olfactometric measurements;

• class balancement through the resampling approaches;
• multi-classification by using RF and MDA;
• assessment of multi-classification models based on some evalua-

tion metrics.

5. Imbalanced data analysis and resampling

In this article, a novel approach on odor source classification is
provided. A machine learning classifier, such as RF, is implemented and
compared with respect to the MDA; then the effect of some resampling
methods on the performance of the classifiers RF and MDA is assessed.

In particular, different resampling approaches are used to improve
the recognition accuracy of both majority and minority classes, taking
into account the non-uniform distribution of the training data, as
described in Section 2.1. For this reason, the imbalance ratio (IR)
is computed to measure the degree of class-imbalance extent and its
impact on the classification performance. The IR is obtained as the ratio
between the majority and minority classes, where a dataset with an IR
value equal to 1 can be considered perfectly balanced, while a dataset
with an IR > 1 is considered imbalanced [39]. The index is a good
imbalance metric for binary class data, while for multi-class data it only
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Table 1
Mean values and standard deviations (in brackets) for the distributions of the sensor data, classified into 4 plant macro-sections (∗𝑝-value < 0.05).

Nr. Gaseous Description Sensitive substance Plant macro-section

compound I II III IV Test

1 W1C Affects the skin, eyes, and respiratory tract. Aromatic 0.7 0.7 0.7 0.7 8.4∗

Used in the production of paints and rubber (0.2) (0.1) (0.1) (0.2)

2 W5S Produced by biogenic sources such as plants and Broadrange 4.9 7.7 2.9 0.7 13.9∗

yeasts. Some are toxic, and all contribute to ozone. (7.6) (13.9) (0.7) (12.8)

3 W3C A liquid that smells like gasoline and boils at 80 ◦𝐶 Aromatic 0.7 0.8 0.7 0.7 0.7∗

(0.2) (0.1) (0.7) (0.2)

4 W6S It is found in oil, human and animal waste, and Hydrogen 1.7 1.6 1.6 1.7 43.2∗

sewage treatment. Used for producing chemicals (0.2) (1.2) (0.1) (0.2)

5 W5C Produced from crude oil refinement. Aromatic aliphane 0.7 0.8 0.8 0.7 27.9∗

Causes headaches, dizziness, and even death. (0.2) (0.1) (0.1) (0.2)

6 W1S A colorless gas with a pungent odor. Broad methane 8.5 6.5 5.9 8.1 18.6∗

Toxic to human and aquatic organisms. (5.8) (5.8) (3.3) (6.4)

7 W1W A compound gas with distinctive aromatic flavors 35.2 19.8 10.8 29.1 14.7∗

like citrus. Prevent inflammatory diseases. Sulphur organic (49.2) (30.9) (10.7) (46.3)

8 W2S A poisonous gas. Originates from vehicle engines, Broad alcohol 10.8 7.4 9.0 10.2 12.6∗

waste burning and forest wildfires. (9.1) (6.9) (7.6) (8.5)

9 W2W It is found in garlic and in crude oil. Sulphur chloride 29.7 14.3 8.9 23.0 14.8∗

Causes extreme global warming and acid rain (47.3) (29.4) (8.2) (41.2)

10 W3S A gas with important greenhouse gas Methane aliphatic 7.5 4.9 3.9 5.6 21.2∗

properties. Fuel production and engines. (5.3) (3.3) (1.3) (3.0)
Table 2
Descriptive statistics for the dataset sensor system, classified in 4 plant macro-sections
used in the classification process. IR measure, N: the sample size, class+ and class−:
he size of the majority and minority class, respectively.
dataset IR N class+ class−

original database 4.5 285 109 22
training set 5 213 85 17
under-sampling (RUS) 1 76 15 15
over-sampling (ROS) 1 328 88 88
over-sampling (ADASYN) 1.07 325 83 77
hybrid-resampling 1.5 105 33 22

considers the information of the majority class and the minority class
and ignores the information of classes in between. In Table 2 is reported
the IR index, the sample size for each dataset with indication about the
size of majority and minority classes with respect to the study dataset
where the categorical variable has been defined by grouping the WWTP
into 4 macro-sections, called indistinctly classes hereafter. According
to Table 2, the IR shows values greater than one, equal to 4.5 and
5, for the original dataset and training dataset, respectively; on the
other hand, all the resampling approaches have reduced significantly
the value of this index, achieving datasets with less imbalanced classes.

It is important to specify that the original dataset has been divided
into two sets: 75% for training and 25% for independent testing. To
correctly compute the RF classifier, the Gridsearch has been used to
tune the hyper-parameters, and the model’s performance has been
evaluated on the 25% test set.

Hence, the training sample has been used to generate new balanced
datasets for improving the classification model. The class frequencies
of the datasets involved in the analysis are reported in Table 3. It is
evident that in the RUS method, the size of classes has been reduced
by randomly removing some cases in order to match the size of the
minority class (class 3).

More specifically, all wastewater treatment sections have been re-
sampled with a class numerosity corresponding to minority class, that
is the plant section of the secondary sedimentation (class 3). Note that
the purpose of this section is to remove the biological solids, referred to
as biological sludge, that are normally combined with primary sludge
for its processing. On the other hand, the over-resampling with the
ROS method has increased the size of all classes (the three macro
sections relating to primary treatment, tecondary treatment and tertiary
6

Table 3
Class sizes by datasets and resampling techniques.

dataset class 1 class 2 class 3 class 4 N

original dataset 77 109 22 77 285
training set 58 82 15 58 213
test set 19 27 7 19 72
under-sampling (RUS) 15 15 15 15 60
over-sampling (ROS) 82 82 82 82 328
over-sampling (ADASYN) 77 82 83 83 325
hybrid-resampling 22 33 30 20 105

treatment) by randomly resampling some cases to match the size of
the majority class (secondary treatment). The secondary treatment,
corresponding to the majority class, includes biological activities (di-
vided into aerobic and anaerobic parts) which are used to remove
biodegradable, soluble, organic and nutrient substances from wastew-
ater. Indeed, the main widespread treatment is the activated sludge.
In the over-resampling with ADASYN, the number of synthetic samples
generated for each minority sample has been decided through a density
distribution. For this reason, the wastewater treatment sections have
been resampled by considering as a reference the class numerosity
corresponding to the majority class (class 2).

Similarly, in the hybrid-resampling, a combination of the data-
based and algorithmic approaches has been used to handle the im-
balanced datasets. The R statistical software has been used for all the
computational aspects concerning cleaning, exploratory data analysis,
classification-model fitting, and performance evaluation.

6. RF classifier and resampling approaches

In this study, the multi-classification RF models have been imple-
mented on the no-resampling dataset (training dataset) and on different
resampled training datasets, obtained through over-sampling, under-
sampling, and hybrid-resampling. The resampling has been performed
at the pre-processing step by changing the class distribution of the
training set and the influence of the IR on the classification capabilities
of the RF model has been measured. In other terms, it has been assessed
the influence of different resampling approaches on the RF algorithm
used to detect the ability of sensors array to discriminate and identify
the emission source related to WWTP.

Therefore, the RF classifier has been trained on the basis of different
training datasets, as described in the following:
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• Model 1 is built by using the no-resampling dataset as a training
set;

• Model 2 is built by using the under-resampling dataset where
samples of the majority class are randomly generated to be ex-
cluded from the database for training. This process is repeated
until the class distribution is balanced, and each class has the
same size, equal to the size of the minority class;

• Models 3 and 4 are built by using two different over-sampling
approaches. Model 3 is built by using the random over-sampling
with the ROS method where this strategy replicates the instances
present in the dataset and these replications are randomly se-
lected from the minority classes. Model 4 is built by using
ADASYN, where this strategy generates minority data samples
according to their distributions. The latter approach allows the re-
duction of the learning bias introduced by the original imbalanced
data distribution;

• Model 5 is built based on the hybrid-resampling approach com-
bining the two previous methods, by removing the instances of
the majority class and increasing the instances of the minority
class at the same time to create a balanced synthetic dataset.

he comparison among classification models has been assessed through
he confusion matrix. More specifically, Fig. 2 shows the confusion
atrix for each RF classifier model from which the different evaluation
easures have been generated. The diagonal elements represent the
umber of observations correctly classified, while the off-diagonal
lements represent misclassification. In this way, one can immediately
ind out both the correct and wrong recognition of each type, where
he class is referred to a section of the treatment plant. Focusing on
he diagonal elements of the confusion matrices, it is evident that 41
ut of 72 sections used for testing, have been detected correctly from
he RF algorithm, trained on the dataset balanced through ADASYN
Fig. 2d). In the other cases, the RF classifier has correctly detected a
ower number of sections.

Hence, according to the confusion matrix in Fig. 2d, the perfor-
ance of the model might be improved by focusing on the predictive

esults of class 1 and class 4, namely the sections of the treatment
lants which are referred to primary treatment and tertiary treatment,
espectively. Class 2, referred to as ‘‘secondary treatment’’, is the one
ith the greatest accuracy in prediction. This means that, for this

ection, the sensor’s measurements allow the separation of the sections
f the treatment plant that have produced a specific odor emission.

The comparison among the goodness of the classification for each
ype of models has been evaluated by using the balance accuracy, as
hown in Fig. 2. Such a measure highlights that the RF, together with
DASYN, significantly outperforms the others on each class/sections,
amely this model shows a greater ability of odor sensors to distinguish
he treatment plant sections. In addition, for all models, class 4 is
he one that has achieved the lowest value of balance accuracy. This
lass/plant section is referred to as tertiary treatment, which is intended
o remove the specific wastewater constituents that have not been
liminated with the secondary treatment (class 2). This result might be
ustified considering that this treatment is sometimes combined with
he primary or secondary treatment to remove the smaller particles not
aptured by primary sedimentation.

From Fig. 2, it is clear that class 2 (associated with biological oxida-
ion processes in the WWTP such as activated sludge) presents a higher
ecall index value than the precision index for each assessed model
with classified values ranging from 15 to 20). Note that, in this case,
he biological treatments are considered as artificial ecosystems where
hat sludge system has been reproduced in a limited space denominated
‘biological reactor’’. Then, class 1, namely primary treatment, is the
ne with the highest number of misclassifications particularly with
espect to model 5.

On the other hand, the RF has been used to rank the importance
f the variables in classification problems by using a measure of sig-
7

ificance, referred to as Mean Decrease Accuracy. For each variable,
the Mean Decrease Accuracy is obtained by averaging the difference
in out-of-bag errors before and after the permutation over all trees.
Fig. 3 shows the Mean Decrease Accuracy score for each variable
over the RF classifier, where they are sorted according to increasing
importance. Three of the top-ranked features such as W6S, W3C, and
W5S, have played the most important roles in the RF model based
on over-resampling with ADASYN. In addition, it is evident that all
models have identified W6S as the first most important variable for the
classification model, compared with the rest of the sensors. However,
the second variable has been different for the applied models. In partic-
ular, the RF with original training set has identified W5S as the second
most relevant variable. W3S has resulted as the second most relevant
variable for the RF model with under-sampling and over-sampling
with ROS, whereas the hybrid model has identified the sensor W1W.
Conversely, the sensors W2W and W1S have been the ones considered
less important in the multi-classification process. This methodology for
selecting the most frequent variables in the construction of the most
accurate trees has been powerful in identifying the sensors that best
contribute to classification models. From the applied variable-selection
method, it is possible to check and explore sensor array optimization of
the E-nose to identify different sections in WWTP. However, external
environmental conditions and the odor emitted from many different
areas of the plant diminish the classification accuracy; this issue will
be addressed in a future study.

7. Comparison of different sampling approaches for RF and MDA

In the previous section, the ability of the sensors to distinguish the
emission sources of the treatment plant has been evaluated. To this
aim, the supervised machine-learning RF has been also compared with
MDA, where the target variable is related to the 4 macro-sections of
the plant. In particular, in the following it is presented the performed
analysis of the benchmarks of the two classifiers, and the combination
of each classifier with different resampling approaches including data-
level over-sampling, under-sampling and hybrid-resampling. Thus, the
effects of IR on the performance of the multi-class classification models
have been highlighted. The evaluation measures have been computed
on the basis of the confusion matrices to assess and test classification
efficiency, as reported in Table 4. The first column in Table 4 lists
the classifiers and models used, then the obtained values of evaluation
metrics.

Overall, the results of the metrics computed for this case study do
not present very high values. This might be justified by taking into
account that the VOC concentrations are characterized by a significant
variability over space. However, it is evident that for both classifiers the
use of resampling methods allowed to achieve a higher classification
balance accuracy than on unbalanced datasets. The RF classifier based
on the given training sets has provided a better performance than the
MDA classifier. In particular, the best balance accuracy (with a value
equal to 0.70) has been achieved through the RF with the ADASYN
algorithm; this is also confirmed by the F1-score, which is greater than
0.5. Note that all the metrics go down when the data are balanced
through the under-sampling approach. Compared to the use of the
un-resampled training dataset, the RF classifier, trained on the best
resampled data set (over-sampled with the ADASYN algorithm), has
showed an increase of 0.05 for the balance accuracy and of 0.07 for the
F1-score. However, it is worth pointing out that the balance accuracy
is a preferable index in presence of imbalanced data as performance
metric.

In terms of precision and recall measures, the RF significantly
outperforms the MDA. Both recall and precision represent measures
of trustworthiness and completeness. As a consequence, these met-
rics can be useful to measure the performance of models trained on
imbalanced data. According to these considerations, the RF model
based on over-sampling with ADASYN presents the highest values in

terms of the aforementioned measures. According to these findings,
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Fig. 2. Colormaps of the confusion matrices achieved with RF with training sets based on different class distributions: (a) Model 1 based on original dataset, (b) Model 2 based
on RUS, (c) Model 3 based on ROS, (d) Model 4 based on ADASYN, (e) Model 5 based on hybrid-resampling. A darker color demonstrates more accurate prediction, and the
diagonal shows the labels predicted correctly.
Fig. 3. The variable importance based on Mean Decrease Accuracy achieved with RF with training sets based on different class distributions: (a) Model 1 based on original dataset,
(b) Model 2 based on RUS, (c) Model 3 based on ROS, (d) Model 4 based on ADASYN, (e) Model 5 based on hybrid-resampling.
Table 4
Comparison of the proposed models for multi-class classification.

Balance accuracy Accuracy 𝑃𝑚𝑎𝑐𝑟𝑜 𝑅𝑚𝑎𝑐𝑟𝑜 F1-score

RF model
training set 0.65 0.51 0.55 0.48 0.50
under-sampling (RUS) 0.64 0.48 0.44 0.48 0.45
over-sampling (ROS) 0.66 0.50 0.48 0.50 0.48
over-sampling (ADASYN) 0.70 0.57 0.61 0.55 0.57
hybrid-resampling 0.61 0.50 0.48 0.50 0.48

MDA model
training set 0.59 0.48 0.42 0.38 0.36
under-sampling (RUS) 0.65 0.47 0.47 0.50 0.45
over-sampling (ROS) 0.60 0.39 0.36 0.40 0.36
over-sampling (ADASYN) 0.58 0.45 0.27 0.39 0.25
hybrid-resampling 0.58 0.28 0.35 0.36 0.33
8
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;

the macro-level metric for precision (𝑃𝑚𝑎𝑐𝑟𝑜) is greater than the macro-
level recall (𝑅𝑚𝑎𝑐𝑟𝑜) for the RF with ADASYN resampling. This result
might be influenced by the poor selectivity of the sensors of the WWTP,
regardless of the number of observations. However, the recall of 0.55%
and precision of 0.61% obtained with the ADASYN algorithm might
be adequate to be implemented in a decision-support system. This
highlights the impact of including sampling approaches especially by
using the RF classifier.

8. Conclusions

This study focused on the ability of the RF classification method
to evaluate the extent to which the sensors of a treatment plant can
separate its macro-sections. The goodness of the proposed method was
highlighted in terms of balance accuracy, precision, recall, and F1-score
measures. Then, it was pointed out that the RF algorithm out-performs
the classical MDA. The main contribution of this paper concerned the
comparison among classification models based on different resampling
methods. Indeed, the resampling approaches may help to handle multi-
class imbalance, which can characterize sensor system data, as in the
proposed application. The results are noteworthy because the over-
sampling with ADASYN method for the RF classifier performs better
with respect to the use of the original training set. Moreover, on the
basis of the findings, it is possible to learn not only which method could
be reasonably chosen according to the context, but also which variables
are more relevant in the classification for each method. However, the
evaluation metrics obtained for the RF, based on hybrid-resampling,
might be adequate to be implemented in a decision-support system,
taking into account that these models are more complex to train a
multi-class classification algorithm.

Further developments will evaluate an improved RF classifier ap-
proach to better separate the odor emission sources by considering
a combination of RF machine learning approach and a filter method
for variable selection. Furthermore, it might also be interesting to
assess classification algorithm for cost-sensitive learning to improve
classification accuracy on an imbalanced dataset. Finally, an additional
aspect that can help to improve the results is the expansion of the
dataset, in particular for less frequent sections, and the combination
of a binary classification with a multi-class classifier. In this way, the
binary classification might identify the events and increase the values
of some evaluation metrics such as recall and precision, while the multi-
classification algorithm helps to identify in a more detailed manner the
VOCs emitted by WWTP and the section of treatment plant.
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