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Generalized Likelihood Ratio Test for Detection
of Gaussian Rank-One Signals in Gaussian

Noise With Unknown Statistics
Olivier Besson, Angelo Coluccia, Eric Chaumette, Giuseppe Ricci, and François Vincent

Abstract—We consider the classical radar problem of detecting
a target in Gaussian noise with unknown covariance matrix. In
contrast to the usual assumption of deterministic target ampli-
tudes, we assume here that the latter are drawn from a Gaussian
distribution. The generalized likelihood ratio test (GLRT) is
derived based on multiple primary data and a set of secondary
data containing noise only. The new GLRT is shown to be the
product of Kelly’s GLRT and a corrective, data dependent term.
We also investigate two-step approaches where the GLRT for a
known disturbance covariance matrix is first derived. In order
to come up with detectors that provide a good tradeoff between
detection of matched signals and rejection of mismatched signals,
we also investigate the two-step GLRT when a fictitious signal
is included in the null hypothesis. The constant false alarm rate
properties of the detectors are analyzed. Numerical simulations
are presented, which show that for small sample sizes the newly-
proposed GLRT can outperform Kelly’s GLRT and, in addition,
that detectors including a fictitious signal are very powerful, at
least for low-to-intermediate clutter to noise ratio values.

Index Terms—Adaptive detection, Gaussian rank-one signals,
generalized likelihood ratio test.

I. PROBLEM STATEMENT

RADAR systems are meant at detecting and tracking targets
of interest in a possibly complicated noise environment,

which is often unknown and must be learned from the data itself.
A main objective is thus to produce detectors which offer good
detection probability of matched signals with a constant false
alarm rate (CFAR) so that their threshold can be set irrespec-
tive of the noise statistics, namely its covariance matrix in the
case of Gaussian noise. In its more general form, the problem can

The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Amir Asif. The work of
O. Besson and E. Chaumette was supported in part by the DGA/MRIS under
Grant 2015.60.0090.00.470.75.01. The work of A. Coluccia was supported in
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be formulated as the following composite binary hypothesis test

H0 :

{
xtp

= ntp
; tp = 1, . . . , Tp

yts
= nTp +ts

; ts = 1, . . . , Ts

H1 :

{
xtp

= αtp
v + ntp

; tp = 1, . . . , Tp

yts
= nTp +ts

; ts = 1, . . . , Ts
(1)

where X =
[
x1 · · · xTp

]
∈ CM ×Tp stands for the observa-

tion matrix and corresponds to the radar returns at different range
cells under test (case of range spread target [1]) or at a given
range cell over multiple coherent processing intervals (CPI).
The presence of a target is sought among X and v denotes its
space or time or space-time signature. For instance, in the case

of M pulses within the CPI, v =
[
1 ei2πfd . . . ei2π (M −1)fd

]T

with fd = 2λ−1vTR the Doppler frequency and where v stands
for the radial velocity of the target, λ is the wavelength of the
radar, and TR the pulse repetition period. αtp

stands for the
complex amplitude of the target and is assumed to be constant
over the CPI but varies from one series of observations to the
other. ntp

corresponds to the additive noise, which is assumed
to be zero-mean, complex Gaussian distributed with unknown
positive definite covariance matrix R ∈ CM ×M , which we
denote as ntp

∼ CN (0,R). Additionally, it is assumed that Ts

snapshots yts
are available, which contain noise only, i.e., yts

are independent, zero-mean complex Gaussian vectors drawn
from yts

∼ CN (0,R). These radar data can be collected from
range cells in the vicinity of the cells under test (CUT) [2].

This problem was thoroughly investigated by Kelly in a series
of technical reports and papers now become classic references
[2]–[6]. Kelly’s generalized likelihood ratio test (GLRT) set the
pace and every newly developed detector since then has been
quasi systematically compared to it. The GLR statistic in [2],
[5] was obtained under the assumption that αtp

are unknown
deterministic quantities. For multiple primary data, it takes the
following form

GLR
1/Tt

Kelly =
|ITp

+ XH S−1
y X|

|ITp
+ XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

(2)

where Tt = Tp + Ts , Sy = Y Y H is Ts times the sample co-
variance matrix of the secondary data Y =

[
y1 . . . yTs

]
,

P ⊥
S

−1 / 2
y v

denotes the orthogonal projector onto the subspace

orthogonal to S−1/2
y v. Through the paper, ITp

denotes the iden-
tity matrix of size Tp , |.| stands for the determinant of a matrix
and .H is the Hermitian (conjugate transpose) operator. Kelly
provided a detailed statistical analysis of this detector both in



the case of matched and mismatched signature [4], [6]. Under
the same assumption and in the case Tp = 1, Robey et al. de-
rived the adaptive matched filter in [7]. This is indeed a two-step
GLRT where at the first step R is assumed to be known (and the
GLR is derived from X only), and at the second step T−1

s Sy is
substituted for R.

Surprisingly enough, considering αtp
as a random variable

has received little attention, and the quasi totality of recent
studies followed the lead of [2] and considered αtp

as deter-
ministic parameters. To the best of the authors knowledge, no
references have addressed detection of a Gaussian signal in col-
ored noise with unknown covariance matrix (while the case of
white noise has been examined thoroughly). In [8], detection of
an arbitrary Gaussian signal is addressed but this signal is not
aligned on a known signature. However, a stochastic assump-
tion for αtp

makes sense to take into account the unpredictable
fluctuation of the radar cross-section. Indeed, the widely ac-
cepted Swerling I-II target model [9], [10] corresponds to as-
suming that αtp

are independent and drawn from a complex
Gaussian distribution with zero mean and unknown variance
P , i.e., αtp

∼ CN (0, P ). This is the approach we take in this
paper. In fact, when Tp = 1, we have a constant but random
amplitude along the CPI which corresponds to a Swerling I
target, while for Tp > 1, the target amplitude varies randomly
from CPI to CPI with no intra-pulse fluctuation, which leads
to a Swerling II target. Compared to the classical “conditional”
model where αtp

are treated as deterministic unknowns, it may
be felt that the “unconditional” model suffers some drawbacks.
Firstly, a statistical assumption is made about αtp

while this
is not the case in the conditional model. Secondly, derivations
in the conditional model involve a simple linear least-squares
problem with respect to αtp

while the derivations in the uncon-
ditional model are more complicated, see below. On the other
hand, a drawback of the conditional model is that the number
of unknowns grows with Tp while it is constant in the uncon-
ditional model. Therefore, an unconditional model is worthy
of investigation and thus we address the equivalent of (1) in a
stochastic framework, i.e., we consider the problem

H0 :

{
X ∼ CN

(
0,R, ITp

)

Y ∼ CN (0,R, ITs
)

H1 :

{
X ∼ CN

(
0,R + PvvH , ITp

)

Y ∼ CN (0,R, ITs
)

. (3)

In (3), Z ∈ CM ×T ∼ CN (0,Σ,Ω) stands for the com-
plex matrix-variate Gaussian distribution, given by p(Z) =
π−M T |Σ|−T |Ω|−M etr

{
−ZH Σ−1ZΩ−1

}
, where etr {.}

stands the exponential of the trace of a matrix. The main
difference with the deterministic approach is that, under H1 ,
the signal of interest is embedded in the covariance matrix
of X instead of in its mean value. In Section II, the exact
GLRT for problem (3) is derived, see (4) below. Additionally,
we investigate in Section III two-step approaches where R is
first assumed to be known. Technical derivations are deferred
to the appendices and we only state the main results, namely

the expressions of the GLRT, see Propositions 1 and 2, and
the analysis of the CFARness of all detectors. Numerical
simulations are then reported in Section IV to illustrate the
performance of the new detection schemes compared to Kelly’s
GLRT.

II. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the GLRT for the problem described
in (3) and relate it to Kelly’s GLRT in the deterministic case.
The main result is stated in the following proposition.

Proposition 1: Suppose Ts ≥ M . The GLR for the compos-
ite hypothesis testing problem in (3) is given by

GLR
1/Tt

Gaussian =
|ITp

+ XH S−1
y X|

|ITp
+ XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

× max
b

|ITp
+ (1 + b)−1XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

(1 + b)Tp /Tt |ITp
+ (1 + b)−1XH S−1

y X|

=
vH S−1

y v

vH
(
Sy + XXH

)−1
v

× max
b

vH
(
Sy + (1 + b)−1XXH

)−1
v

(1 + b)Tp /Tt
(
vH S−1

y v
) . (4)

Proof: See Appendix A. �
A few remarks are in order from the expression in (4):� The GLR is a product of two terms, the first of which

is recognized as Kelly’s test statistic, i.e., the GLR for
deterministic amplitudes αtp

. The second term (which is
always lower than one) is a corrective term due to the
fact that now αtp

are considered as Gaussian distributed
random variables. Note that b corresponds to the signal-
to-noise ratio and is proportional to P , see Appendix A.
The numerator of the second term measures the gain of
the filter

(
Sy + (1 + b)−1XXH

)−1
v towards the target.

When the latter is absent or very weak, X contains noise
only, and the filter is more efficient when (1 + b)−1 grows
close to 1, or equivalently when b goes to 0: in this case,
the estimated target power will be small. In contrast, if
X contains a strong target,

(
Sy + (1 + b)−1XXH

)−1
v

will tend to eliminate it if (1 + b)−1 is too large: in such a
case, the estimated b should be large.� Since the above GLR involves the same quantities as
Kelly’s GLR, it follows that is has a constant false alarm
rate with respect to R, i.e., its distribution under H0 is
independent of R.� The new detector requires solving the optimization prob-
lem in (4). In order to solve it efficiently, let us define
η = (1 + b)−1 ∈ [0, 1] and Sxy = Sy + XXH . Then, if
the determinant form is employed, one can make use of the
fact that |I + ηM | =

∏
j [1 + ηλj (M)] where λj (M)

are the eigenvalues of M , to efficiently compute the func-
tion to be maximized with respect to η. Likewise, if the



TABLE I
VALUE OF λ1 FOR THE CONSIDERED ASSUMPTIONS ON u. λmax (A, B) STANDS FOR THE LARGEST GENERALIZED EIGENVALUE OF THE MATRIX PENCIL (A, B)

second form of the detector is used, one can notice that

f(η) = vH
(
Sy + ηXXH

)−1
v

= vH
(
Sxy + (η − 1)XXH

)−1
v

= vH S−1
xy v − (η − 1)vH S−1

xy X

[
ITp

+ (η − 1)XH S−1
xy X

]−1
XH S−1

xy v (5)

which can be used, e.g., to compute efficiently f(η) over
a grid of values of η and solve the optimization problem.� As a final remark, note that the GLRT exists under the
weaker condition Tp + Ts ≥ M , see equations (21) and
(34) of Appendix A.

III. TWO-STEP APPROACHES

The previous GLR is usually referred to as a one-step GLRT
as it is computed from both X and Y and maximization of the
likelihood function is carried out with respect to all unknown
parameters, namely P and R here. Similarly to what was pro-
posed in [7], we now investigate two-step approaches where R
is first assumed to be known, and the GLRT is derived based
on X only. Then, an estimate of R, based on Y only, is substi-
tuted for R. This is the principle of the adaptive matched filter
(AMF) of [7]. As was illustrated in the literature, AMF yields
some loss compared to Kelly but it is not that significant, at least
for Ts large enough and in the matched case where the assumed
target signature coincides with the actual one. However, in the
mismatched case, i.e., when v differs from the actual target
signature, AMF lacks sensitivity, i.e., it still provides a good
probability of detection even for non negligible mismatches. In
order to overcome this drawback, a common approach consists
in injecting a fictitious signal under H0 , “orthogonal” to v, so
that the detector is less inclined to decide in favor of H1 in
the case of signature mismatch, see e.g., [11]–[13]. We adopt
the same philosophy here and consider the following detection
problem

H0 : X ∼ CN
(
0,R + uuH , ITp

)

H1 : X ∼ CN
(
0,R + PvvH , ITp

)
. (6)

where the vector u can be either zero (similarly to AMF), or-
thogonal to v, i.e., u ⊥ v or orthogonal to v in the whitened
space, i.e., R−1/2u ⊥ R−1/2v.

A. Expressions of the Two-Step Detectors

In Appendix B, we successively derive the three correspond-
ing detectors and summarize the result below.

Proposition 2: Assuming that R is known, the GLR corre-
sponding to the composite hypothesis testing problem (6) is

given by

GLR|R(X) =
g

(
max

[
vH R−1 Sx R−1 v

(vH R−1 v)Tp
, 1

])

g
(
max

[
λ1

Tp
, 1

]) (7)

where Sx = XXH , g(x) = x−Tp exp {(x − 1)Tp}, and the
value of λ1 is given in Table I.

In order to make the detectors adaptive (and assuming
Ts ≥ M ), T−1

s Sy should be substituted for R in (7). We will
refer to the three detectors above as two-step GLRT, two-step
ABORT and two-step WABORT, respectively.

B. Analysis

We now provide stochastic representations of the test statistics
upon which the various detectors depend. Although they do not
allow to provide expressions for the probability of false alarm
Pf a and probability of detection Pd , they provide qualitative
insights into the detectors properties. In particular, we show
that the two-step GLRT and two-step WABORT are CFAR with
respect to the covariance matrix R, and that their probability of
detection depends only on signal-to-noise ratio. In contrast, the
two-step ABORT is not CFAR.

Let us first observe that the detectors are function of the
following statistics

t1(X,Y ) =
vH S−1

y SxS−1
y v

vH S−1
y v

(8a)

t2(X,Y ) = λmax

(
V H

⊥ S−1
y SxS−1

y V ⊥,V H
⊥ S−1

y V ⊥
)

(8b)

t3(X,Y ) = λmax

(
V H

⊥ SxV ⊥,V H
⊥ SyV ⊥

)
. (8c)

More precisely, the two-step GLRT depends on t1(X,Y )
only, while the two-step ABORT and two-step WABORT
depend on the couples (t1(X,Y ), t2(X,Y )) and (t1(X,Y ),
t3(X,Y )), respectively. Let R = GGH denote a square-root
factorization of R. It follows that under both H0 and H1 ,

Y
d
= GN y where

d
= means “distributed as” and N y ∼ CN

(0, IM , ITs
). Moreover, X

d
= GFNx where Nx ∼ CN (0,

IM , ITp
) and F = IM under H0 , FF H = IM +

PG−1vvH G−H under H1 , where G−H is a short-hand notation
for (GH )−1 . For any unitary matrix Q, one can write that

S−1
y SxS−1

y
d
=

(
GN yNH

y GH
)−1 (

GFNxNH
x F H GH

)

(
GN yNH

y GH
)−1

d
= G−H

(
N yNH

y

)−1

(
FNxNH

x F H
) (

N yNH
y

)−1
G−1

d
= G−H Q

[
W −1

y W xW −1
y

]
QH G−1 (9)



where W y = QH N yNH
y Q and W x = QH FNxNH

x F H Q.
Similarly, one has

S−1
y

d
= G−H Q W −1

y QH G−1 . (10)

Let us consider the following unitary matrix

Q =
[

G−1 v

‖G−1 v‖ GH V ⊥T −H
]

(11)

where V H
⊥ RV ⊥ = TT H . It is readily verified that

QH G−1v = (vH R−1v)1/2e1 where e1 =
[
1 0 · · · 0

]T
.

Consequently,

t1(X,Y ) =
vH S−1

y SxS−1
y v

vH S−1
y v

d
=

eT
1

[
W −1

y W xW −1
y

]
e1

eT
1 W −1

y e1

. (12)

Since QH N y ∼ CN (0, IM , ITs
) and QH FNx ∼ CN (0,

QH FF H Q, ITp
) with

QH FF H Q = QH
[
IM + PG−1vvH G−H

]
Q

= IM + P (vH R−1v)e1e
T
1 (13)

it follows that, under H0 (corresponding to P = 0), the
distribution of t1(X,Y ) does not depend on R, while, under
H1 , it depends only on P (vH R−1v). As a consequence, the
two-step GLRT is CFAR with respect to R and its proba-
bility of detection depends only on the signal-to-noise ratio
SNR = P (vH R−1v).

Let us consider now the two-step WABORT, whose distribu-
tion depends on the joint distribution of (t1(X,Y ), t3(X,Y )).
Considering the same transformation Q as for t1(X,Y ) and
observing that

QH GH V ⊥ =

[
0

T H

]
= E (14)

it ensues that

V H
⊥ SxV ⊥

d
= V H

⊥
(
GFNxNH

x F H GH
)
V ⊥

d
= V H

⊥ GQW xQH GH V ⊥

d
= EH W xE

d
= T [W x ]22 T H (15a)

V H
⊥ SyV ⊥

d
= V H

⊥
(
GN yNH

y GH
)
V ⊥

d
= V H

⊥ GQW yQH GH V ⊥

d
= EH W yE

d
= T [W y ]22 T H (15b)

where [.]22 stands for the lower-right (M − 1) × (M − 1) cor-
ner of the matrix between brackets. Moreover, the generalized
eigenvalues of the matrix pencil (TA22T

H ,TB22T
H ) are the

same as those of the matrix pencil (A22 ,B22) and therefore

t3(X,Y )
d
= λmax

(
[W x ]22 , [W y ]22

)
. (16)

Now, from (13),
[
QH FF H Q

]
22

= IM −1 and, hence, the dis-
tribution of t3(X,Y ) is the same and is independent of R under
both H0 and H1 . Moreover, the stochastic representations of
t1(X,Y ) in (12) and t3(X,Y ) in (16) imply that the joint dis-
tribution of (t1(X,Y ), t3(X,Y ) does not depend on R under
H0 and depends on SNR only under H1 . Finally, this proves
that the two-step WABORT is also CFAR with a probability of
detection that depends on SNR only.

Let us finally consider the two-step ABORT and thus the joint
distribution of (t1(X,Y ), t2(X,Y )). One can write

V H
⊥ S−1

y SxS−1
y V ⊥

d
= V H

⊥ G−H Q
[
W −1

y W xW −1
y

]

QH G−1V ⊥ (17a)

V H
⊥ S−1

y V ⊥
d
= V H

⊥ G−H QW −1
y QH G−1V ⊥. (17b)

Now, one has

QH G−1V ⊥ =

[
vH R−1V ⊥/

∥∥G−1v
∥∥

T −1

]
(18)

which shows that the joint distribution of (t1(X,Y ), t2(X,Y ))
depends on R and, consequently, the two-step ABORT is not
CFAR.

Summarizing the results, we have that
1) the two-step GLRT and the two-step WABORT possess

the CFAR property while the two-step ABORT does not;
2) the probability of detection of the two-step GLRT and the

two-step WABORT depends on signal-to-noise ratio only.

IV. NUMERICAL SIMULATIONS

We now provide numerical illustrations of the performance
of the new detectors and compare them with Kelly’s GLRT.
We consider a radar scenario with M = 8 pulses. The target

signature is given by v =
[
1 ei2πfd . . . ei2π (M −1)fd

]T
with

fd = 0.09, a value such that the target competes with noise.
The amplitudes αtp

are drawn from a complex Gaussian distri-
bution with zero mean and power P . The signal-to-noise ratio
is defined as SNR = PvH R−1v. In contrast to all other de-
tectors the probability of false alarm and probability of detec-
tion of the two-step ABORT detector depend on R and, hence,
we will consider two different noise covariance matrices R in
order to measure the impact on two-step ABORT. In a first
scenario, the noise vectors ntp

and nTp +ts
include both ther-

mal noise and clutter components, which are assumed to be
uncorrelated so that R = Rc + σ2

nIM . The clutter covariance
matrix is selected as [Rc ]m 1 ,m 2

∝ exp{−2π2σ2
f (m1 − m2)

2}
with σ2

f = 0.01. The clutter to white noise ratio (CNR) is defined
as CNR = Tr{Rc}/Tr{σ2

nIM } and is set to CNR = 10 dB or
CNR = 30 dB in the simulations. A second model for R will
also be used, namely the standard exponentially-correlated ma-
trix [R]m 1 ,m 2

= ρ|m 1 −m 2 | with different values of the one-lag
correlation coefficient ρ. For the plain GLRT, the maximum



Fig. 1. Probability of detection vs SNR for Tp = 1, Ts = M + 1 = 9.

of the function f(η) in (5) was searched over a grid with step
0.1 dB between −6 dB and 0 dB.

In all simulations, the probability of false alarm is set to
Pf a = 10−3 . The thresholds of the detectors are obtained from
100/Pf a Monte-Carlo runs while 103 simulations are used to
estimate the probability of detection Pd . We first consider the
case of matched signals, then the case where the actual target
signature differs from the assumed v. To not burden too much
the figures, only the curves that appreciably change with the
varying parameters are shown.

A. Case of Matched Signals

We first discuss the point-like target case Tp = 1. A different
behavior can be observed based on both the number of training
data Ts and CNR. Fig. 1 reports the Pd as function of SNR for
Ts = M + 1 = 9 and different values of CNR: it is apparent
that the two-step ABORT exhibits a peculiar robustness to ill-
conditioning of the matrix Sy arising at small sample, which
however weakens as CNR increases and practically vanishes
at CNR = 30 dB. Analogous considerations hold true for the
exponentially-correlated matrix.

This behavior is anyway absent when Ts is larger, and in that
case one finds the typical loss of the two-step ABORT compared
to plain GLRT, as reported in Fig. 2 for Ts = 2M = 16. Notice
also that the loss of two-step GLRT and the two-step WABORT

Fig. 2. Probability of detection vs SNR for Tp = 1, Ts = 2M = 16.

is limited compared to the corresponding one-step counterpart
under matched conditions with sufficient number of training
data.

Finally, in the above results there is no significant differ-
ence between the stochastic GLRT detector and the corre-
sponding deterministic one, namely Kelly’s detector. An ad-
vantage is conversely observed for extended targets: Fig. 3
reports the case Tp = 4 for Ts = M + 1 = 9, which shows
some gain with respect to Kelly’s detector. Such a gain seems
independent of the CNR; the two-step ABORT detector ex-
hibits conversely a much larger gain that however turns into
a loss for CNR = 30 dB. Analogous considerations hold true
for the exponentially-correlated matrix. By increasing Ts to
2M = 16, the superior performance of Kelly’s detector show
up, given that there is no mismatch compared to the assumed
steering vector (Fig. 4); the stochastic version of the GLRT is
comparable.

B. Mismatched Case

We evaluate now the performance of the detectors by simulat-
ing a mismatched scenario, where the actual steering vector has
a Doppler frequency fs + δ

M whereas the nominal one assumed
by all detectors is fs . We set δ = 0.25, which for instance corre-
sponds to a square cosine between the nominal steering vector
and the true one equal to about 0.85 when R is exponentially-



Fig. 3. Probability of detection vs SNR for Tp = 4, Ts = M + 1 = 9.

Fig. 4. Probability of detection vs SNR for Tp = 4, Ts = 2M = 16.

Fig. 5. Probability of detection vs SNR for Tp = 1 in the mismatched case,
Ts = M + 1 = 9.

correlated with ρ = 0.9. We analyze the curves of Pd vs SNR
in the same cases presented for the matched case.

Fig. 5 shows that, as consequence of the detection power loss
in matched conditions for low Ts , all detectors have a low Pd

except for the two-step GLRT and two-step WABORT. This is
however a side-effect of the power detection loss in matched
condition. In fact, as Ts increases, the GLRT lacks rejection
capabilities (see Fig. 6). The two-step WABORT appears quite
non-selective too, but this should be compared with analogous
settings in the deterministic scenario, which in fact do not seem
to provide better results (see curves in [12]).

Finally, results for Tp = 4 are reported in Figs. 7-8 for
Ts = M + 1 = 9 and Ts = 2M = 16, respectively. Interest-
ingly, while in the former case there is no appreciable difference
compared to Tp = 1 (see Fig. 5), for Ts = 2M = 16 Fig. 8 spot-
lights a dependency of the GLRT on the CNR which was not
observed before: it seems that the GLRT eventually detects the
mismatch at large SNR.

V. CONCLUSION

In this paper, the problem of detecting a target buried in
Gaussian noise with unknown covariance matrix was addressed,
using a stochastic model for the target’s amplitude, namely a
Gaussian assumption which complies with the Swerling I-II



Fig. 6. Probability of detection vs SNR for Tp = 1 in the mismatched case,
Ts = 2M = 16.

Fig. 7. Probability of detection vs SNR for Tp = 4 in the mismatched case,
Ts = M + 1 = 9.

Fig. 8. Probability of detection vs SNR for Tp = 4 in the mismatched case,
Ts = 2M = 16.

target model. The exact generalized likelihood ratio test was de-
rived and was shown to bear close resemblance to its determin-
istic counterpart, Kelly’s GLRT. Two-step approaches were also
presented where the noise covariance matrix is first assumed
to be known. The GLRT was then derived for three different
assumptions under the null hypothesis, either no signal or a
fictitious signal orthogonal to the target signature. All but one
detectors were proved to possess the CFAR property. Moreover,
it was shown that the new detectors could significantly improve
over Kelly’s GLRT when the number of secondary (noise only)
data is small. Additionally, some of the detectors achieve a good
compromise between detection of matched signals and rejection
of unwanted signals.

APPENDIX A
DERIVATION OF PLAIN GLRT

This appendix is devoted to derivation of the plain GLRT for
the composite hypothesis testing problem (3). Since both P and
R are unknown, the GLR in this case writes

max
P,R

p1 (X,Y )

max
R

p0 (X,Y )
(19)

where p	(X,Y ) is the probability density function (pdf) of the
observations under hypothesis H	 .



Under H0 the pdf of the observations is given by

p0 (X,Y ) ∝ |R|−Tt etr
{
−R−1

(
Sy + XXH

)}
(20)

where ∝ means proportional to. In this case, it is well known
[14] that the maximum of p0 (X,Y ) is achieved for R =
T−1

t

(
Sy + XXH

)
and is thus given by

max
R

p0 (X,Y ) ∝ |Sy + XXH |−Tt . (21)

With no loss of generality, we assume that v is unit-norm and
let V =

[
v V ⊥

]
be a unitary matrix, with V ⊥ a basis for the

subspace orthogonal to v, i.e., V H
⊥ v = 0 and V H

⊥ V ⊥ = IM −1 .

This transformation brings v to V H v = e1 =
[
1 0 · · · 0

]T
.

Let us define the transformed data X̃ = V H X =

[
X̃1

X̃2

]

and Ỹ = V H Y =

[
Ỹ 1

Ỹ 2

]
, and transformed covariance matrix

R̃ = V H RV . The joint pdf of X and Y can be expressed as

p1 (X,Y ) ∝ |R̃|−Ts |R̃ + Pe1e
H
1 |−Tp etr

{
−R̃

−1
Ỹ Ỹ

H
}

× etr
{

−(R̃ + Pe1e
H
1 )−1X̃X̃

H
}

. (22)

Let us decompose R̃ as

R̃ =

(
R̃11 R̃12

R̃21 R̃22

)
(23)

and let R̃1.2 = R̃11 − R̃12R̃
−1

22 R̃21 and β = R̃
−1

22 R̃21 . Observe
that R̃ can be equivalently parametrized by (R̃11 , R̃21 , R̃22)
or (R̃1.2 , β, R̃22). Using the facts that |R̃| = R̃1.2 |R̃22 | and

R̃
−1

= R̃−1
1.2

(
1 −βH

−β ββH

)
+

(
0 0

0 R̃
−1

22

)
(24)

one can rewrite (22) as

p1 (X,Y ) ∝ |R̃22 |−Tt R̃−Ts
1.2

(
P + R̃1.2

)−Tp

× etr
{

−R̃
−1

22

(
Ỹ 2Ỹ

H

2 + X̃2X̃
H

2

)}

× exp

{
−

[
1 −βH

]
Ã

[
1

−β

]}
(25)

where we temporarily define

Ã = R̃−1
1.2S̃y +

(
P + R̃1.2

)−1

X̃X̃
H

(26)

with S̃y = Ỹ Ỹ
H

. Since

[
1 − βH

]
Ã

[
1

−β

]
=

(
β − Ã

−1

22 Ã21

)H

Ã22

×
(
β − Ã

−1

22 Ã21

)
+ Ã11 − Ã12Ã

−1

22 Ã21 (27)

it follows that

p1 (X,Y ) ∝ |R̃22 |−Tt etr
{

−R̃
−1

22

(
Ỹ 2Ỹ

H

2 + X̃2X̃
H

2

)}

× exp

{
−

(
β − Ã

−1

22 Ã21

)H

Ã22

(
β − Ã

−1

22 Ã21

)}

× R̃−Ts
1.2

(
P + R̃1.2

)−Tp

exp
{

−Ã1.2

}
. (28)

The first term in the previous equation is recognized, up to a
scalar factor, as the usual complex multivariate Gaussian likeli-
hood function with covariance matrix R̃22 and is maximized at

R̃22 = T−1
t

(
Ỹ 2Ỹ

H

2 + X̃2X̃
H

2

)
[14]. The quadratic form in

the second line is minimized for β = Ã
−1

22 Ã21 and, hence, for
any P and R̃1.2

max
R̃2 2 ,β

p1 (X,Y ) ∝ |Ỹ 2Ỹ
H

2 + X̃2X̃
H

2 |−Tt exp
{

−Ã1.2

}

× R̃−Ts
1.2

(
P + R̃1.2

)−Tp

. (29)

Next, observe that Ã−1
1.2 is the upper-left corner of Ã

−1
and the

latter is given by

Ã
−1

= R̃1.2

[
S̃y + (1 + PR̃−1

1.2)
−1X̃X̃

H
]−1

= R̃1.2V
H

[
Sy + (1 + PR̃−1

1.2)
−1XXH

]−1

V . (30)

It ensues that

Ã−1
1.2 = R̃1.2v

H
[
Sy + (1 + PR̃−1

1.2)
−1XXH

]−1

v. (31)

For the sake of notational convenience, let us introduce
a = R̃1.2 = vH R−1v > 0 and b = PR̃−1

1.2 . Observe that b =
PvH R−1v is tantamount the signal-to-noise ratio at the output
of the optimal filter R−1v. Then, one can rewrite (29) as

max
R̃2 2 ,β

p1 (X,Y ) ∝ |V H
⊥

(
Sy + XXH

)
V ⊥|−Tt

× a−Tt (1 + b)−Tp

× exp

{
−a−1

[
vH

(
Sy + (1 + b)−1XXH

)−1
v
]−1

}
.

(32)

Let f(a) = a−Tt exp
{
−ξ−1a−1

}
where ξ = vH (Sy +

(1 + b)−1XXH )−1v > 0, and note that

∂ log f(a)

∂a
=

−aTt + ξ−1

a2

is positive for a ≤ (Ttξ)
−1 and negative otherwise. Therefore,

the maximum is achieved at a = (Ttξ)
−1 > 0 and is given by

max
a>0

a−Tt exp
{
−ξ−1a−1

}
=

(
e

Tt

)−Tt

ξTt . (33)



It follows that

max
R̃2 2 ,β,a

p1 (X,Y ) ∝ |V H
⊥

(
Sy + XXH

)
V ⊥|−Tt

× (1 + b)−Tp

[
vH

(
Sy + (1 + b)−1XXH

)−1
v
]Tt

. (34)

Let us now observe that

|V H
⊥

(
Sy + cXXH

)
V ⊥|

= |V H
⊥ SyV ⊥||ITp

+ cXH V ⊥
(
V H

⊥ SyV ⊥
)−1

V H
⊥ X|

= |V H
⊥ SyV ⊥||ITp

+ cXH S−1/2
y P

S
1 / 2
y V ⊥

S−1/2
y X|

= |V H
⊥ SyV ⊥||ITp

+ cXH S−1/2
y P ⊥

S
−1 / 2
y v

S−1/2
y X| (35)

and

|ITp
+ cXH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

= |ITp
+ cXH S−1

y X − c
XH S−1

y vvH S−1
y X

vH S−1
y v

|

= |ITp
+ cXH S−1

y X|

×
[
1 − c

vH S−1
y X

(
ITp

+ cXH S−1
y X

)−1
XH S−1

y v

vH S−1
y v

]

= |ITp
+ cXH S−1

y X|

×
vH

[
S−1

y − cS−1
y X

(
ITp

+ cXH S−1
y X

)−1
XH S−1

y

]
v

vH S−1
y v

= |ITp
+ cXH S−1

y X|v
H

(
Sy + cXXH

)−1
v

vH S−1
y v

. (36)

Furthermore, since V H SyV =

[
vH Syv vH SyV ⊥
V H

⊥ Syv V H
⊥ SyV ⊥

]
, one

has

|Sy | = |V H SyV |
= |V H

⊥ SyV ⊥|

×
[
vH Syv − vH SyV ⊥

(
V H

⊥ Syv
)−1

V H
⊥ Syv

]

= |V H
⊥ SyV ⊥|

[
vH S1/2

y P ⊥
S

1 / 2
y V ⊥

S1/2
y v

]

= |V H
⊥ SyV ⊥|

[
vH S1/2

y P
S

−1 / 2
y v

S1/2
y v

]

= |V H
⊥ SyV ⊥|

(
vH S−1

y v
)−1

(37)

so that (34) can be indifferently written as

max
R̃2 2 ,β,a

p1 (X,Y )

∝ |Sy |−Tt |ITp
+XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|−Tt (1+b)−Tp

×
|ITp

+ (1 + b)−1XH S−1/2
y P ⊥

S
−1 / 2
y v

S−1/2
y X|Tt

|ITp
+ (1 + b)−1XH S−1

y X|Tt
(38)

or

max
R̃2 2 ,β,a

p1 (X,Y ) ∝ |Sy |−Tt |ITp
+ XH S−1

y X|−Tt

×(1 + b)−Tp

[
vH

(
Sy +(1 + b)−1XXH

)−1
v

vH
(
Sy + XXH

)−1
v

]Tt

. (39)

Finally, using the previous equations along with (21), the GLR
for Gaussian signals is given by

GLR
1/Tt

Gaussian =
|ITp

+ XH S−1
y X|

|ITp
+ XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

× max
b

|ITp
+ (1 + b)−1XH S−1/2

y P ⊥
S

−1 / 2
y v

S−1/2
y X|

(1 + b)Tp /Tt |ITp
+ (1 + b)−1XH S−1

y X|

=
vH S−1

y v

vH
(
Sy + XXH

)−1
v

× max
b

vH
(
Sy + (1 + b)−1XXH

)−1
v

(1 + b)Tp /Tt
(
vH S−1

y v
) . (40)

APPENDIX B
DERIVATION OF TWO-STEP GLRT

In this appendix, we derive the GLRT for the detection prob-
lem in (6), for the three different hypotheses on u, namely
u = 0, u ⊥ v and R−1/2u ⊥ R−1/2v.

A. Noise Only under H0 , u = 0

When R is known and u = 0, only P is unknown and there-
fore only p1(X) needs to be maximized. One has

p1(X) = π−M Tp |R + PvvH |−Tp

× etr
{

−XH
(
R + PvvH

)−1
X

}

= π−M Tp |R|−Tp
(
1 + PvH R−1v

)−Tp

× etr
{
−R−1XXH

}

× exp

{
PvH R−1SxR−1v

1 + PvH R−1v

}
. (41)

where Sx = XXH . One needs to maximize (41) with respect
to P . Let u = vH R−1v and v = vH R−1SxR−1v and let us
define the function

h(P ) = (1 + uP )−Tp exp

{
vP

1 + uP

}
. (42)

Differentiating the logarithm of h(P ) yields

∂ log h(P )

∂P
=

v − uTp − u2TpP

(1 + uP )2
(43)

which is positive for P ≤ (v − uTp)/(u2Tp) and negative oth-
erwise. Now since P is necessarily positive, the maximum of
h(P ) is achieved at P = 0 if v ≤ uTp and at (v − uTp)/(u2Tp)



otherwise. Therefore, one has

max
P ≥0

h(P ) =

⎧
⎨
⎩

1 v/(uTp) ≤ 1

g

(
v

uTp

)
otherwise

(44)

where

g(x) = x−Tp exp {(x − 1)Tp} . (45)

It then follows that

max
P ≥0

p1(X) = π−M Tp |R|−Tp etr
{
−R−1XXH

}

× g

(
max

[
vH R−1SxR−1v

(vH R−1v)Tp

, 1

])
(46)

and hence the GLR for known R is given by

GLRu=0
|R (X) = g

(
max

[
vH R−1 Sx R−1 v

(vH R−1 v)Tp
, 1

])
. (47)

B. u Orthogonal to v

Let us assume now that u ⊥ v. There is no difference from the
previous case for p1(X) but now p0(X) should be maximized
with respect to u under the constraint that u ⊥ v. It means that
u = V ⊥η for some vector η ∈ CM −1 . The pdf of X under H0

is now

p0(X) = π−M Tp |R + V ⊥ηηH V H
⊥ |−Tp

× etr
{

−XH
(
R + V ⊥ηηH V H

⊥
)−1

X
}

= π−M Tp |R|−Tp
(
1 + ηH V H

⊥ R−1V ⊥η
)−Tp

× etr
{
−R−1XXH

}

× exp

{
ηH V H

⊥ R−1SxR−1V ⊥η

1 + ηH V H
⊥ R−1V ⊥η

}
. (48)

Let

f(η) =
(
1 + ηH Gη

)−Tp
exp

{
ηH Fη

1 + ηH Gη

}
(49)

where G > 0. Differentiating the logarithm of f(.) yields

∂ log f(η)

∂η
= − Tp

Gη

1 + ηH Gη

+
Fη

1 + ηH Gη
− (ηH Fη)Gη

(1 + ηH Gη)2
. (50)

Equating the result to 0 results in Gη ∝ Fη, which means
that η is a generalized eigenvector of the matrix pencil (F ,G).
Let e1 , · · · ,eQ , · · · ,eM −1 be the generalized eigenvectors of
(F ,G) associated with generalized eigenvalues λ1 ≥ · · · ≥
λQ > 0, · · · , 0 where Q = min(Tp,M − 1). Note that one can
choose eq such that eH

q Geq = 1. Then, η = βeq for some q. It
follows that

f(βeq ) =
(
1 + |β|2

)−Tp exp

{
λq |β|2

1 + |β|2
}

. (51)

Let us thus study the function h(x, λq ) = (1 + x)−Tp exp{
λq x
1+x

}
for x > 0. One has

∂ log h(x, λq )

∂x
=

λq − Tp − xTp

(1 + x)2
. (52)

This derivative is positive for x ≤ (λq − Tp)/Tp , negative
otherwise. It follows that h(x, λq ) achieves its maximum at
(λq − Tp)/Tp if the latter is positive, at 0 otherwise. Some sim-
ple calculations enable one to show that

max
x≥0

h(x, λq ) =

⎧
⎨
⎩

1 λq/Tp ≤ 1

g
(

λq

Tp

)
otherwise

(53)

where g(.) is defined in (45). Now, it is easily verified that g(x)
is monotonically increasing for x > 1, which means that f(η)
will be maximized when η is proportional to e1 . Gathering the
previous findings, we find out that

max
η

p0(X) = π−M Tp |R|−Tp etr
{
−R−1XXH

}

× g

(
max

[
λmax

(
V H

⊥ R−1SxR−1V ⊥,V H
⊥ R−1V ⊥

)

Tp
, 1

])
.

(54)

The GLR for known R and u ⊥ v is thus given by

GLRu⊥v
|R (X) =

g
(
max

[
vH R−1 Sx R−1 v

(vH R−1 v)Tp
, 1

])

g

(
max

[
λm a x (V H

⊥ R−1 Sx R−1 V ⊥,V H
⊥ R−1 V ⊥)

Tp
, 1

]) . (55)

C. R−1/2u Orthogonal to R−1/2v

We finally consider orthogonality in the whitened space. We
now have R−1/2u = R1/2V ⊥η for some vector η ∈ CM −1 .
The covariance matrix under H0 can be written as

R + RV ⊥ηηH V H
⊥ R

= R1/2
[
IM + R1/2V ⊥ηηH V H

⊥ R1/2
]
R1/2 (56)

whose inverse is

(
R + RV ⊥ηηH V H

⊥ R
)−1

= R−1 − V ⊥ηηH V H
⊥

1 + ηH V H
⊥ RV ⊥η

.

(57)

The pdf of X under H0 thus becomes

p0(X) = π−M Tp |R|−Tp
(
1 + ηH V H

⊥ RV ⊥η
)−Tp

× etr
{
−R−1XXH

}

× exp

{
ηH V H

⊥ SxV ⊥η

1 + ηH V H
⊥ RV ⊥η

}
. (58)



Obviously (58) bears much resemblance with (48) and one can
avail the previous derivations to simply show that

max
η

p0(X) = π−M Tp |R|−Tp etr
{
−R−1XXH

}

× g

(
max

[
λmax

(
V H

⊥ SxV ⊥,V H
⊥ RV ⊥

)

Tp
, 1

])
. (59)

The GLR for known R and R−1/2u ⊥ R−1/2v is thus given
by

GLRR−1 / 2 u⊥R−1 / 2 v
|R (X)

=
g

(
max

[
vH R−1 Sx R−1 v

(vH R−1 v)Tp
, 1

])

g

(
max

[
λm a x (V H

⊥ Sx V ⊥,V H
⊥ RV ⊥)

Tp
, 1

]) . (60)
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Toulouse, France. His main domains of interest are related to detection and
estimation theory applied to radar, GNSS, and navigation.

Giuseppe Ricci was born in Naples, Italy, on
February 15, 1964. He received the Doctorate degree
and the Ph.D. degree, both in electronic engineering,
from the University of Naples “Federico II,” Naples,
Italy, in 1990 and 1994, respectively. Since 1995, he
has been with the University of Salento (formerly
University of Lecce), first as an Assistant Professor
of telecommunications and, since 2002, as a Profes-
sor. His research interests include field of statistical
signal processing with emphasis on radar processing,
localization algorithms, and CDMA systems. More

precisely, he has focused on high-resolution radar clutter modeling, detection of
radar signals in Gaussian and nonGaussian disturbance, oil spill detection from
SAR data, track-before-detect algorithms fed by space-time radar data, localiza-
tion in wireless sensor networks, multiuser detection in overlay CDMA systems,
and blind multiuser detection. He has held visiting positions at the University
of Colorado at Boulder, CO, USA, in 1997–1998 and in April/May 2001, at
the Colorado State University, CO, USA, in July/September 2003, March 2005,
September 2009, and March 2011, at Ensica, Toulouse, France, in March 2006,
and at the University of Connecticut, Storrs CT, USA, in September 2008.

François Vincent received the Engineer degree in
electronics and signal processing from ENSEEIHT,
University of Toulouse, France, the PhD. Degree in
signal processing from the University of Toulouse and
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