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Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit 
from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets 
describing oscillatory dynamics, like spiral waves, relaxation oscillations and spatio-temporal Turing instability. 
Inspired by the classical “divide and conquer” approach, we propose a piecewise version of DMD (pDMD) to 
overcome this problem. The main idea is to split the original dataset in 𝑁 submatrices and then apply the exact 
(randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail 
and we introduce some error indicators to evaluate its performance when 𝑁 is increased. Numerical experiments 
show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of certain 
reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, a 𝜆-𝜔 system and the DIB morpho-chemical 
system for battery modeling. Finally, a discussion about the overall computational load and the future prediction 
features of the new algorithm is also provided.
1. Introduction

The large amount of available temporal datasets has increased in 
the last decade and with that the study of hidden structures. Specifi-

cally, mathematical models can describe rigorously datasets where no 
information is provided. A data-driven model can help to understand 
physical phenomena and forecast future development. Recently, the use 
of machine learning techniques has further improved the capability to 
discovery mathematical models and has significantly enlarged this area 
of research. The literature on this topic is rather spread. Here we, first, 
recall two methods based on different strategies: sparse optimization 
and neural networks. Finally, we will revoke the Dynamic Mode Decom-

position (DMD) which is the building block for the method proposed in 
this manuscript.

One technique goes back to 2016 where the authors in [1] have used 
sparse optimization methods, e.g. Lasso algorithm, to recover Ordinary 
Differential Equations (ODEs). The method relies on a large library in-

cluding elements that may appear in the model and through a sparse 
optimization algorithm it is possible to discover the weights of the terms 
in the library. Thus, if a coefficient is zero, the corresponding element 
in the library does not appear in the model. This also justifies the use 
of sparse optimization methods, because only few terms are required 
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in the searched model. Later, this method has been extended in [2] to 
PDEs with constant coefficients. The library in this case was built from 
derivatives of the dataset to include further terms in the model. Finally, 
extension to PDEs with non constant coefficients was presented in [3].

Another method to construct data-driven modeling is built on Deep 
Neural Networks (DNNs). Specifically, a new class of DNNs, namely 
Physics-Informed Neural Networks (PINNs), is trained to solve super-

vised learning using information from the hidden physical laws one 
wants to discover. The physical law may be described by an ODE or a 
PDE model. The great novelty in PINNs is the use of the physical laws 
together with the mean square error for dataset in the minimization of 
loss function. Therefore, the output of this approach provides the coef-

ficients needed to discover the model. In this way, the method is forced 
to converge to the model and to consider the physics behind the dataset. 
PINNs have been introduced in [4–6].

Another powerful technique for data-driven modeling is the Dy-

namic Mode Decomposition (DMD). DMD was firstly introduced in [7]

and its algorithm finds the best linear fit model without explicit knowl-

edge of the dynamics hidden in the data. Specifically, the DMD algo-

rithm determines eigenvalues and eigenvectors of an approximate linear 
model. Later, in [8] the authors introduced the exact DMD based on a 
low rank approximation of the original method. Afterwards other algo-
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rithms have been proposed to further improve the above DMD method; 
we refer to e.g. the optimal DMD [9,10], the extended DMD [11] and 
the higher order DMD (HODMD, [12,13]) which is based on the fit-

ting of multilinear models. Despite the tremendous effort to improve 
the method and its computational efficiency, there are (at least) two 
classes of datasets where DMD still does not work properly, to the best 
of authors’ knowledge.

Specifically, periodic datasets and Turing instability may lead to a 
wrong (in the first case) or an inaccurate (in the second case) DMD 
reconstruction, as shown in [14,15] and later in Section 4 of this pa-

per. In [14], the authors show that the DMD algorithm for systems is 
more accurate when a unique dataset is considered instead of different 
datasets, one for each variable. They refer to this approach as coupled 
or uncoupled DMD, respectively. Furthermore, in [14], it is mentioned 
that DMD may fail in the case of Reaction-Diffusion PDE (RD–PDE) 
systems. In [15], the uncoupled DMD implementation was applied to 
Turing instability dynamics leading to stationary pattern solutions. The 
authors have shown that DMD cannot reconstruct accurately those tem-

poral datasets even if large ranks are used in the algorithm.

The main goal of this paper is to propose an alternative DMD algo-

rithm to face these drawbacks. Stemming from the “divide and conquer” 
principle, well known in the numerical analysis framework, we intro-

duce a piecewise version of the exact DMD, that we will define as pDMD. 
In the first part of the paper, we will present in details which drawbacks 
arise when the exact DMD is applied to reconstruct the spatio–temporal 
dynamics of a selection of RD–PDE systems in two variables. Following 
the results in [14], in this manuscript, we always use a coupled DMD 
approach. Furthermore, a randomized DMD algorithm based on the 𝑄𝐵

decomposition (see [16]) is applied to reduce the computational costs. 
In this context, it is worth mentioning two methods based on the split-

ting of the data to improve the DMD accuracy: (i) the multiresolution 
DMD [17] splits the data into slow modes and fast modes and uses a 
model for each part and (ii) an online DMD method for time varying 
system in [18]. Both cited methods share the same goal of this paper 
but they propose different algorithms.

Here, we consider the following RD–PDE systems whose solutions 
exhibit an oscillatory dynamics: i) the FitzHugh-Nagumo model [19]

1D in space and with relaxation oscillations in time leading to a limit 
cycle in the phase plane; ii) the 𝜆-𝜔 system from [20,21] with spiral 
waves solutions. In the first case, also for the full rank approximation, 
the oscillatory solutions and the corresponding limit cycle cannot be 
recovered at all. In the second case, for a certain range of ranks, the 
final spiral wave is approximated with low accuracy, but the amplitude 
and phase of the oscillating behavior are not preserved. Moreover, for 
larger ranks, where a better approximation is expected, ill-conditioning 
of the fitting procedure behind DMD emerges and the time dynamics is 
lost also at the final time. These results are reported in Section 4.1.

To deepen the discussion started in [15] about DMD defects, we 
apply here the “coupled” exact randomized DMD to follow the Turing 
dynamics of the morphochemical RD–PDE model, introduced in [22]

and known as DIB model. In Section 4.2, we deal with the Turing in-

stability, where a transient unstable regime is present (said reactivity

zone) before reaching the spatially inhomogeneous Turing pattern at 
the steady state (stabilizing zone). Finally, in Section 4.3, we also con-

sider an example of Turing–Hopf instability [23] where there exists an 
interplay between Turing and Hopf instabilities. After the initial unsta-

ble behavior, the solutions are patterns that oscillate both in space and 
time. In the first case (Section 4.2), we show that after a certain rank 
the DMD error dramatically increases and indeed blows up, because 
also here the ill–conditioning of the fitting procedure appears. Never-

theless for small ranks it is possible to reconstruct with few accuracy 
the time dynamics and the final pattern (see e.g. Fig. 8). For the more 
complicated Turing-Hopf dynamics (Section 4.3), that, at best of au-

thor’s knowledge, has not been studied so far by DMD, very inaccurate 
approximations are obtained until the full rank choice. In particular, 
the best case exhibits large errors both for the final pattern and all the 
109
time history, as documented by the limit cycle approximation (see e.g. 
Figures 11, 12).

Our proposed pDMD algorithm will work as follows. Given a dataset 
𝑆 , corresponding e.g. to periodic or Turing dynamics in the time inter-

val [0, 𝑇 ], and a tolerance 𝑡𝑜𝑙 > 0, we start with DMD on the whole 
dataset. If the obtained error, that is the maximum of the worst-

approximation in time between the dataset and its DMD reconstruction, 
is above the threshold 𝑡𝑜𝑙, then we split 𝑆 = [𝑆1, 𝑆2] into 𝑁 = 2 parts 
and compute DMD in each submatrix 𝑆𝑖. This error indicator is checked 
at each iteration and, if the 𝑖-th dataset is not reconstructed accurately, 
we directly increase the number of subdivisions 𝑁 . We iterate this 
splitting in 𝑁 parts till we reach the desired accuracy on all subma-

trices 𝑆𝑖, 𝑖 = 1, … , 𝑁 . This procedure will identify the first acceptable 
partition size, say 𝑁∗. In a second step, we decide to increase the par-

tition size for 𝑁 >𝑁∗ in order to look for a sort of convergence along 
the whole time dynamics, by controlling another error indicator in the 
Frobenius norm accounting for the whole time DMD reconstruction. 
This further piecewise iteration will tend to improve an initial good 
reconstruction, as we will show in our numerical experiments. More 
details will be discussed in the formalized algorithms reported in Sec-

tion 5 and in Section 6. An extensive numerical study of our algorithm 
is deeply discussed by considering the snapshot matrices obtained by 
the numerical solutions of the RD–PDE models described above. We 
will show that pDMD increases the accuracy of the approximation re-

moving the drawbacks discussed. As a consequence, pDMD does not 
identify a single model, but several different models in each subinter-

val for a fixed N-partition. This feature will improve accuracy at the 
cost of increasing the number of degrees of freedom. In Section 6.5, we 
discuss these questions in details and we introduce some indicators to 
quantify the computational cost required by pDMD. Hence, for all our 
simulations, we will show that, beside accuracy, a significant spatial 
reduction in memory occupation is obtained by pDMD. Also, we de-

vote a brief section to the study of pDMD for future state predictions. 
It is worth remarking that our pDMD will work with several datasets of 
small sizes, if many subintervals are required, and this allows to better 
follow “locally” the dynamics of the problem and then to better capture 
its behavior with a linear regression method.

The paper is organized as follows. Section 2 recalls the exact DMD 
method and its variant based on the randomized QB decomposition. In 
Section 3, we briefly introduce the general reaction-diffusion PDE sys-

tem in exam and the IMEX Euler method in matrix form for its time 
approximation, because the obtained numerical solutions are used to 
build our datasets. As discussed above, in Section 4, we show how the 
exact (randomized) DMD fails on different datasets for periodic data 
or Turing dynamics. The pDMD is introduced in Section 5 together 
with a complete description of our algorithm. Finally, in Section 6, we 
present our numerical results including the discussion about computa-

tional costs and future prediction features. Conclusions are drawn in 
Section 7. All numerical simulations have been performed in MATLAB 
(ver. 2019a) on a computer DELL, i7 Intel Core processor 2.8 GHz and 
16Gb RAM.

2. Dynamic mode decomposition

The Dynamic Mode Decomposition (DMD) technique aims at recon-

structing the best linear dynamical system hidden in a given temporal 
dataset 𝑆 = [𝐱0, 𝐱1, … , 𝐱𝑚] ∈ℝ𝑛×(𝑚+1) where the 𝑖-th column of the ma-

trix 𝑆 corresponds to the data at time 𝑡𝑖−1 and 𝑡𝑖−1 < 𝑡𝑖, 𝑖 = 1, … , 𝑚. 
DMD fits the following linear model on these data:

𝐲̇(𝑡) =𝐴𝐲(𝑡) 𝑡 ∈ [0, 𝑇 ],

𝐲(0) = 𝐲0 ∈ℝ𝑛,
(1)

where 𝐴 ∈ ℝ𝑛×𝑛 is an unknown operator, 𝐲(𝑡) ∶ [0, 𝑇 ] → ℝ𝑛, the initial 
condition 𝐲0 coincides with the first element of the dataset 𝐱0 and the 
data are such that 𝐱𝑖 ≈ 𝐲(𝑡𝑖), 𝑖 = 1, … , 𝑚. To discover the matrix 𝐴, DMD 
starts by splitting the snapshot matrix 𝑆 into two matrices
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𝑆𝐿 =
⎡⎢⎢⎣
| | … |
𝐱0 𝐱1 … 𝐱𝑚−1| | … |

⎤⎥⎥⎦
∈ℝ𝑛×𝑚, 𝑆𝑅 =

⎡⎢⎢⎣
| | … |
𝐱1 𝐱2 … 𝐱𝑚| | … |

⎤⎥⎥⎦
∈ℝ𝑛×𝑚

and then, assuming that there exists a linear relation between 𝐱𝑘+1 and 
𝐱𝑘 for 𝑘 = 0, … , 𝑚 −1, tries to find the best fitting matrix 𝐴 ∈ℝ𝑛×𝑛 such 
that

𝑆𝑅 =𝐴𝑆𝐿, ⟺ 𝐱𝑘+1 =𝐴𝐱𝑘, 𝑘 = 0,… ,𝑚− 1. (2)

Therefore, for this purpose, the following least squares optimization 
problem can be formulated

𝐴 ∶= argmin
∈ℝ𝑛×𝑛

‖𝑆𝑅 −𝑆𝐿‖𝐹 (3)

where ‖ ⋅ ‖𝐹 is the Frobenius norm. It is well known that (3) can be 
solved by computing the Moore-Penrose pseudo-inverse of 𝑆𝐿, such that 
the best fit solution is given by 𝐴 = 𝑆𝑅𝑆

†
𝐿

. However, the dimension 𝑛 of 
the problem may be large and, from a computational point of view, it is 
not convenient to calculate 𝐴 directly by the above product. Indeed, for 
this reason, the exact DMD algorithm proposed in [8] computes a low 
rank approximation of the matrix 𝑆𝐿 ≈ Ψ𝑟Σ𝑟𝑉

𝑇
𝑟 =∶ 𝑆𝐿,𝑟 where Σ𝑟 ∈

ℝ𝑟×𝑟 is a diagonal matrix whose entries 𝜎𝑖 ≥ 0 are the first 𝑟 singular 
values of 𝑆𝐿 sorted in decreasing order, Ψ𝑟 ∈ ℝ𝑛×𝑟 and 𝑉𝑟 ∈ ℝ𝑚×𝑟 are 
matrices with orthonormal columns and usually 𝑟 ≪ 𝑛. Therefore, an 
approximation 𝐴𝑟 of the full matrix 𝐴 can be obtained by computing 
the pseudoinverse of 𝑆𝐿,𝑟 given by 𝑆†

𝐿,𝑟
= 𝑉𝑟Σ−1

𝑟
Ψ𝑇

𝑟
, such that

𝐴𝑟 ∶= 𝑆𝑅𝑆
†
𝐿,𝑟

= 𝑆𝑅𝑉𝑟Σ−1
𝑟
Ψ𝑇

𝑟
≈𝐴.

Then, by projecting it onto the POD modes (the 𝑟 leading left singular 
vectors Ψ𝑟), it is possible to compute the reduced matrix

𝐴̃ =Ψ𝑇
𝑟 𝑆𝑅𝑉𝑟Σ−1

𝑟 ∈ℝ𝑟×𝑟. (4)

We observe that 𝐴̃ has the same leading 𝑟 eigenvalues of 𝐴 (see [8, 
Theorem 1] for a detailed proof). Thus, we compute the spectral decom-

position 𝐴̃𝑊 =𝑊 Λ where the columns of 𝑊 are the eigenvectors of 𝐴̃
and Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑟) is a diagonal matrix containing the correspond-

ing leading 𝑟 eigenvalues of the full matrix 𝐴. Finally, we reconstruct 
the high-dimensional DMD modes of 𝐴 by

Φ= 𝑆𝑅𝑉𝑟Σ−1
𝑟 𝑊 ∈ℝ𝑛×𝑟,

and the state variable as

𝐱𝑘 ≈ 𝐱̃𝑘 ∶=
𝑟∑

𝑖=1
𝝓𝑖𝜆

𝑘
𝑖 𝑏𝑖 =ΦΛ𝑘𝐛. (5)

The DMD modes 𝝓𝑖 are the columns of Φ (eigenvectors of 𝐴), 𝜆𝑖 are 
the corresponding eigenvalues, while 𝑏𝑖 can be obtained by solving in 
the least squares sense the overdetermined system Φ𝐛 =

∑𝑟
𝑖=1𝝓𝑖𝑏𝑖 = 𝐱0, 

where 𝐱0 is the first snapshot. The notation 𝐱̃𝑘 will indicate the DMD 
reconstruction of 𝐱𝑘.

We briefly summarize these steps in Algorithm 1, defined as the 
exact DMD in [8].

Algorithm 1 (Exact) DMD.

1: INPUT Snapshots {𝐱0, 𝐱1, … , 𝐱𝑚}, rank 𝑟
2: OUTPUT DMD modes {𝝓1, … , 𝝓𝑟}, eigenvalues {𝜆1, … , 𝜆𝑟}, reduced solu-

tion {𝐱̃𝑘}𝑚𝑘=0
3: Set 𝑆𝐿 = [𝐱0, … , 𝐱𝑚−1], 𝑆𝑅 = [𝐱1, … , 𝐱𝑚]
4: Compute the truncated SVD of 𝑆𝐿 , 𝑆𝐿 ≈ 𝑆𝐿,𝑟 =Ψ𝑟Σ𝑟𝑉

𝑇
𝑟

5: Compute 𝐴̃ =Ψ𝑇
𝑟
𝑆𝑅𝑉𝑟Σ−1

𝑟

6: Compute the spectral decomposition of 𝐴̃, 𝐴̃𝑊 =𝑊 Λ
7: Calculate the DMD modes as Φ = 𝑆𝑅𝑉𝑟Σ−1

𝑟
𝑊

8: Set 𝐛 =Φ†𝐱0
9: Set ̃𝐱𝑘 =

∑𝑟

𝑖=1𝝓𝑖𝜆
𝑘
𝑖
𝑏𝑖, 𝑘 = 0, … , 𝑚

10: 𝑆(𝑟) = [𝐱̃0, ̃𝐱1, … , ̃𝐱𝑚]
110
2.1. Randomized DMD

The exact DMD method as presented in Algorithm 1 can be still 
computationally very expensive if 𝑛 is very large. Therefore, in this sub-

section we recall the method introduced in [16] based on the random-

ized 𝑄𝐵 decomposition. The aim is to write the dataset 𝑆 ≈𝑄𝐵 where 
𝑄 ∈ ℝ𝑛×𝑟 is a matrix with orthonormal columns and 𝐵 ∈ ℝ𝑟×(𝑚+1). 
Once the QB decomposition is obtained for the snapshot matrix 𝑆 , one 
will directly apply the DMD algorithm to the matrix 𝐵 = [𝐛0, … , 𝐛𝑚] ∈
ℝ𝑟×(𝑚+1) which is clearly much smaller than the original matrix 𝑆 . 
In this way, after splitting the matrix into 𝐵𝐿 = [𝐛0, … , 𝐛𝑚−1] and 
𝐵𝑅 = [𝐛1, … , 𝐛𝑚] we can solve the optimization problem

𝐴 ∶= argmin
̃∈ℝ𝑟×𝑟

‖𝐵𝑅 − ̃𝐵𝐿‖𝐹 . (6)

It turns out that the solution of (6) is 𝐴 =𝐵𝑅𝐵
†
𝐿

. We note that 𝐴 is a low 
rank approximation of 𝐴 and differs from (4). This computation is now 
doable since the dimensions of the matrices 𝐵𝐿 and 𝐵𝑅 are (eventu-

ally1) very small. Then, we can compute the eigenvalue decomposition 
𝐴̃𝑊 =𝑊 Λ and set the DMD modes Φ =𝑄𝐵𝑅𝑉 Σ−1𝑊 . Therefore, the 
reduced solution 𝐱𝑘, ∀𝑘 can be obtained as in Algorithm 1.

In the remainder of this section we recall how to obtain the random-

ized QB decomposition.

First of all, one has to choose the so called target rank 𝑟 and the 
number of oversampling 𝑝 usually 5 ≤ 𝑝 ≤ 10. Then, we generate a ran-

dom test matrix Ω ∈ ℝ(𝑚+1)×𝓁 with 𝓁 = 𝑟 + 𝑝 drawn from the normal 
Gaussian distribution. The oversampling needs to guarantee the tar-

get rank 𝑟 (see e.g. [24]), in fact it is common to build slightly larger 
test matrix to obtain improved basis. The sampling matrix can be com-

puted as 𝑌 = 𝑆Ω ∈ ℝ𝑛×𝓁 or by using the power iteration method as 
𝑌 = ((𝑆𝑆𝑇 )𝑞𝑆)Ω, 𝑞 ∈ ℕ. The matrix 𝑄 is then obtained from the 𝑄𝑅

decomposition of the sampling matrix 𝑌 . It is shown in [16] that the 
power iteration improves the quality of the approximated basis matrix 
𝑄 using just one or two iterations, i.e. 𝑞 = {1, 2}. Finally, the low rank 
matrix 𝐵 will be such that 𝐵 =𝑄𝑇𝑆 . The QB algorithm is summarized 
in Algorithm 2 using Matlab notations.

Algorithm 2 Randomized QB decomposition.

1: INPUT Snapshots 𝑆 , target rank 𝑟, oversampling 𝑝, number of power itera-

tions 𝑞
2: OUTPUT 𝑄 ∈ℝ𝑛×𝑟, 𝐵 ∈ℝ𝑟×(𝑚+1)

3: 𝓁 = 𝑟 + 𝑝

4: Ω = 𝚛𝚊𝚗𝚍(𝑚 + 1, 𝓁)
5: 𝑌 = 𝑆Ω
6: for j=1,. . . ,q do

7: [𝑄, ⋅] = 𝚚𝚛(𝑌 )
8: [𝑍, ⋅] = 𝚚𝚛(𝑆𝑇𝑄)
9: 𝑌 = 𝑆𝑍

10: end for

11: [𝑄, ⋅] = 𝚚𝚛(𝑌 )
12: 𝐵 =𝑄𝑇𝑆

3. Full model and its numerical approximation

In this paper, our aim is to apply DMD to reconstruct in time both 
oscillatory dynamics, leading for example to relaxation oscillations and 
spiral waves, and Turing pattern formation dynamics, that presents a 
transient unstable regime, known as reactivity, before reaching a struc-

tured spatially inhomogeneous pattern as stationary solution at the 
steady state. A common feature is that all these time behaviors can 
characterize the solutions of a RD–PDE system for different choices of 
the involved parameters. More details can be found e.g. in [25].

1 Here, a low rank structure for the dataset is assumed, even if this assumption 
is not guaranteed a priori.
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For this reason, here we consider the following general RD–PDE sys-

tem:

⎧⎪⎪⎨⎪⎪⎩

𝑢𝑡 = 𝑑𝑢Δ𝑢+ 𝑓 (𝑢, 𝑣), 𝒛 ∈Ω ⊂ℝ𝑑 , 𝑡 ∈ (0, 𝑇 ],
𝑣𝑡 = 𝑑𝑣Δ𝑣+ 𝑔(𝑢, 𝑣),
(𝐧∇𝑢)|𝜕Ω = 𝑏𝑢(𝑡), (𝐧∇𝑣)|𝜕Ω = 𝑏𝑣(𝑡),
𝑢(𝑥, 𝑦,0) = 𝑢0(𝑥, 𝑦), 𝑣(𝑥, 𝑦,0) = 𝑣0(𝑥, 𝑦),

(7)

where 𝑑𝑢, 𝑑𝑣 ∈ℝ+ are the diffusion coefficients, 𝑇 > 0 the final time of 
integration, 𝑑 ∈ {1, 2} is the space dimension of (7). In the case 𝑑 = 2, 
we have 𝒛 = (𝑥, 𝑦). The nonlinear reaction terms 𝑓, 𝑔 ∶ℝ2 →ℝ account 
for biological, chemical and other kind of phenomena. We will consider 
Neumann boundary conditions, where 𝐧 denotes the exterior normal 
to the boundary 𝜕Ω and 𝑏𝑢(𝑡), 𝑏𝑣(𝑡) ∶ [0, 𝑇 ] → ℝ are scalar functions, 
identically zero in the case of homogeneous Neumann BCs. Our aim 
is to solve numerically (7) to generate a dataset 𝑆 of our interest and 
then apply the DMD directly to this dataset without using any extra 
information coming from the (known) PDE.

The model (7) depends on various parameters that will be chosen ad 
hoc in order to study different kinds of dynamics, as follows. Indeed, in 
the next sections we will consider: 1) the FitzHugh-Nagumo model [19]

with relaxation oscillations and related limit cycle and 2) a 𝜆-𝜔 system 
[20,21] with spiral waves. Concerning Turing pattern formation, we 
consider the DIB morphochemical model [22,23,26,27]. Furthermore, 
we study this model also in presence of a combination of oscillatory 
and Turing behaviors, arising from the so-called Turing-Hopf patterns, 
that are spatial inhomogeneous Turing patterns oscillating both in space 
and time ([23,28]).

For all the above models, the construction of the snapshot matrix 𝑆 , 
to feed the DMD method, follows from the numerical approximation of 
(7). Hence, for the spatial semi-discretization we apply standard second 
order finite differences with a total number 𝑛 of meshpoints inside Ω. 
For the approximation in time, we apply the IMEX Euler scheme (i.e. 
we treat implicitly the diffusion part and explicitly the nonlinear reac-

tion terms) on the meshgrid 𝜏𝑖+1 = 𝜏𝑖 + ℎ𝑡 𝑖 = 0, … , 𝑛𝑇 with timestep 
ℎ𝑡 = 𝑇 ∕𝑛𝑇 . To simulate oscillatory solutions and Turing patterns we re-

quire both fine spatial meshes and integration for long times (𝑇 ≫ 1) 
to attain the standing asymptotic oscillations (i.e. the limit cycle in the 
phase space) or the stationary Turing pattern. For this reason the com-

putational load of the usual vector approach solving a large sparse linear 
system at each timestep for the IMEX Euler method, can be very expen-

sive. Then, here we apply the recent matrix-oriented approach and in 
particular the rEuler method proposed in [29], solving at each timestep 
a Sylvester matrix equation in the reduced spectral space.

To further reduce the computational cost, we will store only some 
of the computed snapshots on a temporal sub-grid 𝑡𝑖+1 = 𝑡𝑖+𝜅ℎ𝑡, where 
𝜅 ∈ ℕ allows to select equidistributed snapshots from the original grid 
{𝜏𝑖}

𝑛𝑇
𝑖=0. Note that, if 𝜅 = 1 we consider all the snapshots, if 𝜅 = 4 we 

store snapshots every 4 timesteps from the original grid. Hence, for the 
simulations presented in the next sections, we build the snapshot matrix 
𝑆 ∈ ℝ2𝑛×(𝑚+1), where 𝑚 + 1 = 𝑛𝑇 ∕𝜅 and, for 𝑖 = 0, … , 𝑚, the (𝑖 + 1)-th 
column is the extended vector 𝐱𝑖+1 ∶= [𝐮𝑖+1; 𝐯𝑖+1] ∈ ℝ2𝑛 given by the 
concatenation of the numerical solutions for both unknowns 𝑢 and 𝑣, 
i.e. 𝐮𝑖+1 ≈ 𝑢(⋅, 𝑡𝑖), 𝐯𝑖+1 ≈ 𝑣(⋅, 𝑡𝑖).

4. Examples of inaccurate approximations by (exact) DMD for 
oscillatory dynamics

The examples discussed in this section have in common that the 
exact randomized DMD method, recalled in Section 2, does not ap-

proximate the dataset accurately. In the first two examples for periodic 
datasets, we will see that DMD completely fails even with a full rank 
approximation. In the case of Turing instability dynamics, we will show 
that DMD exhibits poor approximation with also an error behavior dra-

matically increasing with the rank 𝑟 in case of stationary patterns.
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In all tests presented, to measure the quality of the DMD approxi-

mation of rank 𝑟, we use the following relative error in the Frobenius 
norm between the dataset 𝑆 and its DMD reconstruction 𝑆 :

(𝑆, 𝑟) = ‖𝑆 −𝑆‖𝐹
‖𝑆‖𝐹 . (8)

Furthermore, for each kind of dynamics considered, we are inter-

ested in comparing the behavior in time of the full dataset with that 
approximated by the DMD for a given rank 𝑟. For this reason, we will 
compare the time behavior of the spatial mean of the full and reduced 
solutions, defined for 𝑢 by

⟨𝑢(𝑡)⟩ ∶= 1
|Ω| ∫

Ω

𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 ≈ mean(𝐮𝑘), 𝑘 = 0,… ,𝑚 (9)

and mean(𝐮̃𝑘), 𝑘 = 0, … , 𝑚, respectively. Similar computations are done 
for the variable 𝑣. In all examples shown in this section, DMD is per-

formed with the QB decomposition from Algorithm 2 and the results 
presented are referred to the value 𝑟 which minimizes (𝑆, 𝑟), as can be 
extracted by the corresponding reported figures.

4.1. Examples with periodic datasets

The first example will focus on the approximation of the limit cycle 
generated by the FitzHugh-Nagumo model [19]. The second example 
concerns the reconstruction of the spiral wave solution and dynamics of 
the 𝜆-𝜔 system in [20,21]. As already outlined, we are interested in the 
reconstruction of the whole spatio-temporal history.

4.1.1. FitzHugh-Nagumo model: limit cycle

The one dimensional FitzHugh-Nagumo (FHN) model describes the 
activation and deactivation dynamics of a spiking neuron and it is a 
simplified version of the more famous Hodgkin-Huxley model [19]. The 
nonlinear reaction terms in (7) are given by

⎧⎪⎨⎪⎩
𝑓 (𝑢, 𝑣) = 𝑢(𝑢− 0.1)(1 − 𝑢)

𝑑𝑢
− 𝑣

𝑑𝑢
+ 𝑐

𝑑𝑢
,

𝑔(𝑢, 𝑣) = 𝑏𝑢− 𝛾𝑣+ 𝑐.

(10)

To build the dataset 𝑆 , here we solve the FHN system on the 1D domain 
Ω = [0, 1], for 𝑡 ∈ [0, 𝑇 ], 𝑇 = 6, and 𝑑𝑢 = 0.015, 𝑑𝑣 = 0, 𝑏 = 0.5, 𝛾 = 2, 𝑐 =
0.05. The initial and boundary conditions are given by

𝑢0(𝑥) = 0, 𝑣0(𝑥) = 0, 𝑥 ∈Ω,

𝑢𝑥(0, 𝑡) = −(5 ⋅ 104𝑡3𝑒−15𝑡), 𝑢𝑥(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ].
(11)

For the spatial meshgrid we consider 𝑛 = 1024 internal points. We inte-

grate in time by applying the IMEX Euler scheme with ℎ𝑡 = 10−3, thus 
we have 𝑚 + 1 = 6000. The parameters in (10) and (11) are taken from 
[19].

In the left panel of Fig. 1, we show the relative error (𝑆, 𝑟), 
for 𝑟 = 1, … , 𝑅, where 𝑅 = 51 is the rank of the snapshot matrix 
𝑆 ∈ ℝ2048×6000 computed by the Matlab command rank. This error is 
very high and erratic, indicating that the DMD reconstruction for both 
variables is completely wrong. Even worse, the error increases when we 
consider higher values for the rank, which is something not expected a 
priori. The minimum value is reached for 𝑟 = 28, i.e. (𝑆, 28) = 0.9618. 
For this 𝑟 value, in the middle and right panels of Fig. 1 we compare the 
spatial mean of the data (9) with that of the DMD reconstruction, for 𝑢
and 𝑣 respectively. It is clear that the DMD reconstruction does not cap-

ture neither the periodic dynamics nor the amplitude of the relaxation 
oscillations of the FHN model.

In Fig. 2, right panel, we show the DMD reconstructions of 𝑢 and 𝑣
in space and time on the domain Ω × [0, 𝑇 ]. By comparing the dataset 
𝑆 reported in the left panels, it becomes still more evident how the 
DMD method fails. The effect of this DMD failure on the limit cycle 
reconstruction is shown in Fig. 3.
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Fig. 1. FHN model, relaxation oscillations. Relative error (8) of the DMD reconstruction 𝑆 with respect to the dataset 𝑆 (left). Comparison of the spatial means for 
the variables 𝑢 (center) and 𝑣 (right) for DMD of rank 𝑟 = 28 corresponding to the minimum of the error.

Fig. 2. FHN model, relaxation oscillations. Full model solutions 𝑢 and 𝑣 (left panels) and corresponding DMD reconstructions (right panels) for 𝑟 = 28.

Fig. 3. FHN model, relaxation oscillations. Limit cycle corresponding to the dataset 𝑆 in the phase plane (⟨𝑢⟩, ⟨𝑣⟩) (left) and its DMD approximation for 𝑟 = 28
(right).
4.1.2. 𝜆-𝜔 system: spiral waves

Here we consider the 𝜆-𝜔 system from [20,21], with nonlinear ki-

netics (7) given by
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𝑓 (𝑢, 𝑣) = 𝜌(𝜆(𝑢, 𝑣)𝑢−𝜔(𝑢, 𝑣)𝑣),

𝑔(𝑢, 𝑣) = 𝜌(𝜔(𝑢, 𝑣)𝑢+ 𝜆(𝑢, 𝑣)𝑣),
(12)

where 𝜆 = 1 −(𝑢2 +𝑣2) and 𝜔 = −𝛽(𝑢2 +𝑣2), 𝛽 > 0, 𝜌 > 0. On the 2D spa-

tial domain Ω = [0, 𝐿] × [0, 𝐿], with 𝐿 = 130, we choose the parameter 
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Fig. 4. 𝜆−𝜔 system. Spiral wave generated for the variable 𝑢 at different times in [0, 𝑇 ], see more details in the main text.

Fig. 5. 𝜆-𝜔 system, spiral wave. DMD relative error in (8) for the dataset 𝑆 (left plot). Comparison of the spatial means for 𝑢: DMD is applied with 𝑟 = 217 (center 
plot) and 𝑟 = 300 (right plot). The choice of 𝑟 = 217 corresponds to the minimum value of (𝑆, 𝑟) = 0.0019, whereas we choose 𝑟 = 300 which is a value close to the 
rank of the dataset 𝑆 .
values and initial conditions from [21] for which spiral waves solutions 
arise:

𝑑𝑢 = 4, 𝑑𝑣 = 4, 𝜌 = 10, 𝛽 = 1,

𝑢0(𝑥, 𝑦) =
1
10

(𝑥− 𝐿

2
), 𝑣0(𝑥, 𝑦) =

1
10

(−𝑦

2
+ 𝐿

4
)

and homogeneous Neumann boundary conditions 𝑏𝑢(𝑡) ≡ 0 ≡ 𝑏𝑣(𝑡) in 
(7). The domain Ω is discretized by 𝑛𝑥 = 𝑛𝑦 = 99 interior points, such 
that the total number of mesh points is 𝑛 = 𝑛𝑥𝑛𝑦 = 9801. We integrate 
in time with timestep ℎ𝑡 = 10−3 until 𝑇 = 50, by using the IMEX Eu-

ler scheme in matrix-oriented form (see [29]). We save the snapshots 
every four timesteps (𝜅 = 4), such that the considered dataset 𝑆 has 
dimension 2𝑛 × (𝑚 + 1) and 𝑚 + 1 = 12500.

Departing from the step values of the initial data, for both 𝑢 and 𝑣, in 
a transient regime the numerical solution starts to form an archimedean 
spiral wave with “core” (fixed point) in the center of the domain 
(𝑥𝑐, 𝑦𝑐) = (𝐿2 , 

𝐿

2 ) which arms oscillate in space and time until at a cer-

tain time, say 𝑡, when the entire Ω is covered (as shown in Fig. 4). 
Thereafter, for 𝑡 ≥ 𝑡 a new time regime arises where the spiral contin-

ues indefinitely in its oscillating dynamics such that in the phase plane 
we can say that a limit cycle is attained by the spatial means (⟨𝑢⟩, ⟨𝑣⟩). 
We show the dynamics of ⟨𝑢(𝑡)⟩ in Fig. 5 (center), where the two time 
regimes in [0, ̄𝑡], [𝑡, 𝑇 ] with 𝑡 ≈ 25 are evident, the 𝑢-snapshot at the final 
time 𝑇 in Fig. 6 (left) and the corresponding limit cycle in Fig. 7(left).
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In Fig. 5 (left) we show the relative error (𝑆, 𝑟), obtained by the 
DMD for 𝑟 = 1, … , 𝑅, where the rank of the dataset 𝑆 is 𝑅 = 314. After 
an initial decreasing trend, for 𝑟 >≈ 100 an erratic plateau around 3e-3 
can be observed where the minimum value (𝑆, 𝑟) = 0.0019 is reached 
for 𝑟 = 217. Moreover, this low accuracy gets worse for 𝑟 ≥ 250 when 
the error dramatically increases due to ill-conditioning of the matrix 
𝐴. We stress this DMD drawback because usually better results are ex-

pected by increasing the value of 𝑟 and this clearly does not happen 
here. To support this conclusion, in Fig. 5, we also report the spatial 
mean dynamics for the variable 𝑢 obtained by DMD for 𝑟 = 217 (middle 
plot) and 𝑟 = 300 (right plot) when (𝑆, 300) = 0.8471. In both cases, 
we note that: i) the approximation of the two distinct time regimes is 
missed, ii) a large difference in the wave amplitude is present; iii) in the 
best case 𝑟 = 217 (center plot), the frequency of the oscillations is pre-

served, but they are in phase opposition as shown in the middle panel 
of Fig. 5.

In Fig. 6, we show the full model solution (left panel) and the DMD 
reconstructions with rank 𝑟 = 217 (middle plot) and 𝑟 = 300 (right plot) 
at the final time 𝑇 = 50. For 𝑟 = 300, DMD fails essentially in the core 
of the spiral, instead for 𝑟 = 217, where the global Frobenius error is 
minimum, DMD seems to be in great agreement with the data, even 
though its time history is really different, as discussed above. To further 
support the above points (i)–(iii) concerning the defects of DMD in the 
time dynamics approximation, in Fig. 7 we report the DMD reconstruc-
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Fig. 6. 𝜆-𝜔 system, spiral wave. Data for the variable 𝑢 at the final time 𝑇 = 50 (left) and its DMD reconstructions with 𝑟 = 217 (center plot) and 𝑟 = 300 (right plot).

Fig. 7. 𝜆-𝜔 system, spiral wave. Comparison of the limit cycles in the phase plane (⟨𝑢⟩, ⟨𝑣⟩): data (left) and DMD with 𝑟 = 217 (center) and 𝑟 = 300 (right).
tions for 𝑟 = 271 and 𝑟 = 300 (center and right plot, respectively) in the 
phase plane (⟨𝑢⟩, ⟨𝑣⟩). Indeed, by comparing the attained limit cycles 
with that for the data (left plot) it is still more evident that both DMD 
reconstruction fails.

To conclude, in this section we have shown two examples with os-

cillatory datasets where DMD fails its reconstruction.

4.2. Example on the Turing instability

In this section, we deal with a RD model that exhibits the so-called 
Turing instability. In this case, the initial data are spatially random per-

turbations of the equilibrium of the model in absence of diffusion, say 
(𝑢𝑒, 𝑣𝑒). This peculiar dynamics presents essentially two time regimes: i) 
the reactivity zone where (𝑢𝑒, 𝑣𝑒) destabilizes from the initial conditions 
because of diffusion and ii) the stabilizing regime where the solution 
starts to be attracted towards a steady state spatially structured pattern, 
known as Turing pattern of different morphologies, see e.g. [25,30,31]. 
The challenges for low rank techniques, like Proper Orthogonal Decom-

position (POD) and Discrete Empirical Interpolation Method (DEIM), to 
reconstruct both regimes have been already highlighted in [32]. For the 
DMD performance an initial study is reported in [15] where the authors 
have considered an uncoupled approach, that is they have reconstructed 
independently the unknowns.

This example focuses on the DIB morphochemical system that is 
an important realistic application for electrochemical phase formation 
modeling ([22,23,27]). The kinetics in (7) are given by

𝑓 (𝑢, 𝑣) = 𝜌
(
𝐴1(1 − 𝑣)𝑢−𝐴2𝑢

3 −𝐵(𝑣− 𝛼)
)
,

𝑔(𝑢, 𝑣) = 𝜌
(
𝐶(1 + 𝑘2𝑢)(1 − 𝑣)[1 − 𝛾(1 − 𝑣)] −𝐷𝑣(1 + 𝑘3𝑢)(1 + 𝛾𝑣)

)
.

(13)

If 𝐷 = 𝐶(1−𝛼)(1−𝛾+𝛾𝛼)
𝛼(1+𝛾𝛼) , there exists the spatially homogeneous equilib-

rium (𝑢𝑒, 𝑣𝑒) = (0, 𝛼) that can undergo Turing instability [22]. Here, we 
consider the parameter values taken from [32]:

𝐴1 = 10, 𝐴2 = 1, 𝛼 = 0.5, 𝐵 = 66, 𝐶 = 3, 𝛾 = 0.2,

𝑑𝑢 = 1, 𝑑𝑣 = 20, 𝑘2 = 2.5, 𝑘3 = 1.5, 𝜌 = 25
.

4
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The initial conditions are spatially random perturbation of the homoge-

neous equilibrium, given by 𝑢0(𝑥, 𝑦) = 𝑢𝑒 + 10−5𝚛𝚊𝚗𝚍(𝑥, 𝑦), 𝑣0(𝑥, 𝑦) =
𝑣𝑒 + 10−5𝚛𝚊𝚗𝚍(𝑥, 𝑦). We discretize the spatial domain Ω = [0, 20] ×
[0, 20] with 𝑛𝑥 = 𝑛𝑦 = 100 meshpoints, such that 𝑛 = 𝑛𝑥𝑛𝑦 = 10000 and, 
for stability reasons, we consider the timestep ℎ𝑡 = 10−3 until the fi-

nal time 𝑇 = 40. We save the snapshots every four timesteps, such that 
the dataset is 𝑆 ∈ ℝ2𝑛×10000. In the left panel of Fig. 8, we show the 
DMD relative error (𝑆, 𝑟) for 𝑟 = 1, … , 𝑅, 𝑅 = 303 corresponding to the 
rank of 𝑆 . The error dramatically increases for large values of 𝑟 and in-

deed blows up for 𝑟 ≥ 50. Its minimum is obtained for (𝑆, 22) = 0.1008
(almost 10%). Nevertheless the time dynamics of the spatial mean re-

construction for 𝑟 = 22 exhibits an oscillating behavior around the mean 
⟨𝑢(𝑡)⟩ of the dataset, as shown in the right panel of Fig. 8.

In Fig. 9, we show the full model solution, i.e. the labyrinth Turing 
patterns for the variables 𝑢 and 𝑣 attained at the final time 𝑇 = 40 (left 
plots) and their DMD reconstructions with 𝑟 = 22 (center plots). The 
DMD approximates quite well the shape of the final patterns, although 
the amplitude is not correct, as highlighted by computing the spatial 
absolute errors between them that are reported in the right panels of 
Fig. 9.

In addition, the relative error gets worse when the rank increases 
and it never gets lower than 10%. It is worth noting that a similar bad 
DMD behavior for the DIB model was already discussed in [15]. Even 
if here we consider a different DMD implementation, that is a coupled 
approach based on a randomized version of DMD to improve the com-

putational efficiency, we are not able to remove the DMD drawbacks 
for Turing pattern approximation.

4.3. Example with spatio-temporal oscillatory dynamics in the Turing-Hopf 
instability

The last class of problems in exam exhibits a Turing-Hopf instabil-

ity, that is an interplay between Turing and Hopf instabilities [23]. In 
particular, the solutions of (7) are oscillatory patterns both in space and 
time. We consider the DIB morpho-chemical model, whose kinetics in 
(7) are the same as in (13), but the new dynamics arises for different 
model parameter values given by: 𝐴2 = 30, 𝐵 = 109, 𝐶 = 2.794, 𝜌 = 50. 
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Fig. 8. DIB model, Turing instability. Left plot: relative error (8); right plot: the spatial mean for the variable 𝑢 in the dataset shows the two time regimes for the 
reactivity (until 𝑡 ≈ 4) and the stabilizing zone, whereas the DMD reconstruction for 𝑟 = 22 destabilizes early and exhibits an oscillating behavior for long times.

Fig. 9. DIB model: Turing instability. Full model solutions at 𝑇 = 40 (left) and DMD reconstruction (center) with 𝑟 = 22, and absolute errors of the DMD reconstruction 
with respect to data (right).
The initial conditions are again spatially random perturbation of the ho-

mogeneous equilibrium, as in the previous section.

We discretize the rectangular spatial domain Ω = [0, 100] × [0, 70]
with 𝑛𝑥 = 𝑛𝑦 = 100 meshpoints, thus 𝑛 = 𝑛𝑥𝑛𝑦 = 10000. We integrate in 
time again by the IMEX-Euler in matrix oriented form with timestep 
ℎ𝑡 = 10−4 and final time 𝑇 = 4.5. We emphasize that, to the best of au-

thor’s knowledge, the IMEX Euler scheme in the matrix form has never 
been applied to this kind of problems. This approach reduces signif-

icantly the computational execution time with respect to a standard 
vector form, therefore it allows to speed-up the offline stage, that is 
the construction of the dataset 𝑆 . We save the snapshots every four 
timesteps (𝜅 = 4, see discussion in Section 3), such that the dataset is 
𝑆 ∈ℝ2𝑛×(𝑚+1) with 𝑚 + 1 = 11250.

In the top left panel of Fig. 10, we show the relative error (𝑆, 𝑟)
for 𝑟 = 1, … , 𝑅, where 𝑅 = 130 is the rank of the snapshot matrix 𝑆 . 
We can observe that the behavior is very erratic and the minimum is 
(𝑆, 102) = 0.0111, reached for 𝑟 = 102. Different time dynamics of the 
spatial means are obtained, as shown in the bottom plots of Fig. 10, for 
the data 𝑢 (left) and for DMD reconstruction with 𝑟 = 102 (right). In the 
top right picture we report a zoom of both spatial means over 0 < 𝑡 < 0.5
to show that DMD does not match the mean of the dataset also in the 
transient regime. Instead for 𝑡 >≃ 1, DMD catches the frequency but 
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not the amplitude of the spatial mean. To further emphasize the above 
significant difference, in Fig. 11 we also report the corresponding limit 
cycles obtained in the phase plane (⟨𝑢⟩, ⟨𝑣⟩) for the data (left plot) and 
DMD reconstruction alway for 𝑟 = 102 (right plot).

To complete the discussion on this example, where the more com-

plicated spatio-temporal oscillating dynamics is presented, in Fig. 12

we report the pattern solutions at the final time 𝑇 = 4.5: the left pan-

els concern the full model solutions 𝑢 and 𝑣, the middle ones are for the 
corresponding DMD reconstructions. As expected from the previous re-

sults on the temporal dynamics, DMD does not approximate accurately 
also the final patterns both for 𝑢 and 𝑣, as confirmed quantitatively from 
the absolute errors with respect to the data shown in the right panels.

5. The piecewise DMD method

In the previous section, we have shown a selection of examples 
where DMD fails its reconstruction during the time dynamics and 
where, in addition, the relative error with respect to the dataset in-

creases when the rank does. It is worth remarking that we have tested 
the Higher Order DMD (HODMD, [12,13]) on the same examples with-

out any improvement on the quality of the DMD approximation. In 
this section, we propose a new approach to tackle safely the spatio-
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Fig. 10. DIB model: Turing-Hopf instability. Top left plot: DMD relative error in (8) for the dataset 𝑆 . Top right plot: zoom on the spatial means for short times. 
Bottom left plot: spatial mean for the full model solution 𝑢; bottom right plot: spatial mean for the DMD reconstruction with 𝑟 = 102 (i.e. minimum error in the top 
left plot).

Fig. 11. DIB model: Turing-Hopf instability. Comparison of spatial means in the phase plane for data (left) and DMD with 𝑟 = 102 (right).
temporal features of the peculiar solution dynamics discussed so far, 
that is datasets with oscillating behaviors and pattern formation by Tur-

ing instability.

The main idea here is to propose a piecewise version of the DMD al-

gorithm, that we will denote by pDMD. Indeed, we suppose that for 
oscillatory and Turing spatio-temporal dynamics, the main assumption 
underlying the original DMD, that is a “global” linear fitting over the 
full temporal horizon, is not sufficient to recognize different “phenom-

ena” arising along the time pathways. Therefore, instead of performing 
a DMD approximation on the whole time interval [0, 𝑇 ], we propose to 
decompose it and the corresponding dataset into 𝑁 ≥ 1 parts, as fol-

lows.

Consider 𝜈 = ⌈𝑚+1
𝑁

⌉ ≥ 𝜈∗ and the dataset decomposition 𝑆 =
[𝑆1, … , 𝑆𝑖, … , 𝑆𝑁 ], where 𝑆𝑖 is the submatrix of 𝜈 columns of 𝑆 de-

fined by 𝑆𝑖 = [𝑆∶,(𝑖−1)𝜈+1, … , 𝑆∶,𝑖𝜈] ∈ℝ2𝑛×𝜈 for 𝑖 = 1, … , 𝑁 . In practice, 
𝑆𝑖 corresponds to consider those snapshots of 𝑆 belonging to the time 
interval [𝑡(𝑖−1)𝜈 , 𝑡𝑖𝜈−1].

We suppose that 𝜈∗ ≥ 10, such that a minimum number of snapshots 
in each submatrix 𝑆𝑖 is guaranteed and a maximum value for 𝑁 can 
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be chosen. Then, we apply the DMD technique of rank 𝑟𝑖, using Algo-

rithm 2, on each submatrix 𝑆𝑖, 𝑖 = 1, … , 𝑁 , with the convention that 
for 𝑁 = 1, we recover the original dataset 𝑆 ≡ 𝑆1. In Algorithm 3 be-

low, we present in details the pDMD, returning in output not only the 
reconstructed snapshots, but also the vector 𝐫 = [𝑟1, 𝑟2, … , 𝑟𝑁 ] ∈ℝ𝑁 ac-

counting for the ranks considered on each dataset 𝑆𝑖. We can suppose 
to fix a priori the values in 𝐫 or to estimate them.

Our idea stems from the “divide and conquer” approach well known 
in the numerical analysis framework to reduce the “global error” in 
the approximation under exam, as, for example, the main idea behind 
piecewise interpolation and composite quadrature rules. Then, due to 
the basic meaning of the DMD, recalled in Section 2, in each subin-

terval [𝑡(𝑖−1)𝜈 , 𝑡𝑖𝜈−1], for 𝑖 = 1, … , 𝑁 we will get the best linear fit of 
the form (1) on the dataset portion therein. Hence, this local lineariza-

tion can help to look at the different solution regimes along time by 
applying multiple separated linear fittings. Indeed, we will show that 
local/piecewise linear fit can follow better the switches between these 
regimes instead of the classical approach, recovered for 𝑁 = 1, that 
could miss them.
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Fig. 12. DIB model: Turing-Hopf instability. Full model solutions (left panels) and DMD reconstruction (center panels) with 𝑟 = 102. Right plots: absolute error of 
the DMD reconstruction with respect to data.
We summarize the proposed method pDMD in Algorithm 3 and we 
comment it step by step.

Algorithm 3 Piecewise DMD (pDMD).

1: INPUT Dataset 𝑆 ∈𝑅2𝑛×(𝑚+1) in [0, 𝑇 ], threshold 𝑡𝑜𝑙 > 0
2: OUTPUT 𝑆𝑁 piecewise reconstruction in [0, 𝑇 ], 𝐫 vector of ranks for the 

final partition

3: Choose an initial number 𝑁 of partitions

4: Split the dataset 𝑆 = [𝑆1, … , 𝑆𝑖, … , 𝑆𝑁 ]
5: for 𝑖 = 1, … , 𝑁 do

6: set the target rank 𝑟𝑖 = rank(𝑆𝑖)
7: compute the (randomized) DMD solution 𝑆𝑖 of rank 𝑟𝑖 using Algorithm 2

8: compute the error 𝑒𝑟𝑟(𝑖) defined in (14)

9: if 𝑒𝑟𝑟(𝑖) > 𝑡𝑜𝑙 then

10: 𝑁 =𝑁 + 1
11: go to step 4
12: end if

13: end for

14: 𝑆𝑁 = [𝑆1, … , 𝑆𝑖, … , 𝑆𝑁 ], 𝐫 = [𝑟1, … , 𝑟𝑁 ].

Inputs. The inputs of the algorithm are the dataset 𝑆 and a desired 
threshold 𝑡𝑜𝑙 > 0 for the pDMD.

Initialization. We choose an initial value 𝑁 to construct the partition 
of the dataset. One can easily start with 𝑁 = 1, which corresponds to 
the standard DMD discussed in Section 4. We then split the dataset 
𝑆 ∈ ℝ2𝑛×(𝑚+1) in 𝑁 parts and build all the matrices 𝑆𝑖 ∈ ℝ2𝑛×𝜈 , 𝑖 =
1, … , 𝑁, 𝜈 = ⌈𝑚+1

𝑁
⌉.

pDMD. For each matrix 𝑆𝑖 we fix the rank 𝑟𝑖 using the QB decomposi-

tion in Algorithm 2. We then compute the following relative error

𝑒𝑟𝑟(𝑖) = max
(𝑖−1)𝜈+1≤𝑘≤𝑖𝜈

‖𝐱𝑘 − 𝐱̃𝑘‖∞
‖𝐱𝑘‖∞ (14)

that computes the worst approximation in each interval [𝑡(𝑖−1)𝜈+1, 𝑡𝜈+1]. 
This error is faster to compute than (8). It is worth noting that the 
computation of (14) is always possible since we are dealing with DMD 
reconstruction on the training dataset which is the focus of this work.
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If 𝑒𝑟𝑟(𝑖) > 𝑡𝑜𝑙 for some 𝑖 ∈ {1, … , 𝑁}, we do not compute DMD for 
𝑖 > 𝑖, but we directly increase the value of 𝑁 and restart the method 
with a new finer partition. That error indicator is, indeed, meant to 
save computational time whenever possible. In step 10 of Algorithm 3, 
we propose to increase 𝑁 by 1, but clearly other choices can be used 
such as e.g. 𝑁 =𝑁 + 𝑁̃ with 𝑁̃ ∈ ℕ. Note that 𝑁̃ = 1 corresponds to 
the choice in Algorithm 3. We iterate until the desired convergence is 
reached.

Output. The Algorithm returns the pDMD reconstruction 𝑆𝑁 that is 
the union of the DMD matrices 𝑆𝑖, for 𝑖 = 1, … , 𝑁 and the ranks 𝐫 =
[𝑟1, … , 𝑟𝑁 ] used in each subinterval of the partition.

Remark 5.1 (Choice of the rank). It is important to note that the rank 
values in this algorithm plays a crucial role. One can always assume to 
work with a full rank approximation in each 𝑆𝑖, as set in Algorithm 3

but this might be computationally expensive, especially when 𝑚 is large 
and 𝑁 is still small. In some simulations, to avoid the computation 
of the rank for large matrices, we choose the target rank in step 6 of 
Algorithm 3 as 𝑟𝑖 =min{𝜈, 200}, where 𝜈 is the number of snapshots in 
𝑆𝑖. One could also use randomized rank revealing methods as proposed 
in e.g. [33,34], but this is out of the scope of this paper.

6. Numerical experiments based on the piecewise DMD method

In this section, we apply the proposed pDMD Algorithm 3 to the 
datasets generated from the RD–PDE models presented in Section 4

where several drawbacks of the classical DMD have been discussed. 
For each test, we will show different error indicators, as follows. First 
of all, we consider the relative error 𝑝 in Frobenius norm between the 
dataset 𝑆 and its piecewise DMD reconstruction 𝑆𝑁 defined by:

𝑝(𝑆𝑁, 𝐫) =
‖𝑆 −𝑆𝑁‖𝐹

‖𝑆‖𝐹 , (15)

depending on the number 𝑁 used to split the whole dataset 𝑆 and 
𝐫 = [𝑟1, 𝑟2, … , 𝑟𝑁 ] ∈ ℝ𝑁 the vector of all ranks considered, such that 
𝑟𝑖 is used for the subset 𝑆𝑖. We observe that for 𝑁 = 1 we recover 
the error corresponding to the “global” DMD approach, i.e. 𝑝(𝑆1, 𝑟1) =
(𝑆, 𝑟1) defined in (8), where 𝑟1 is the number of degrees of freedom. 
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Fig. 13. FHN model. Left plot: relative error 𝑝(𝑆𝑁, 𝐫) in (15) for increasing values of the partition size 𝑁 . Right plot: relative error 𝜖𝑘(𝑆𝑁, 𝐫) over time 𝑡 in (17) for 
𝑁 corresponding to the minimum (𝑁 = 147) and maximum (𝑁 = 17) errors in the left plot.
For the pDMD, i.e. 𝑁 > 1, we define the number of degrees of freedom 
as follows

dof(𝑁) = ‖𝐫‖1 =
𝑁∑
𝑖=1

𝑟𝑖. (16)

In our numerical tests we will provide the behavior of the error 
𝑝(𝑆𝑁, 𝐫) of the pDMD method for different choices of 𝑁 , that are ob-

tained by the inner computations of the following Algorithm 4, that 
stops when 𝑝(𝑆𝑁, 𝐫) ≤ 𝑡𝑜𝑙 for a given input threshold 𝑡𝑜𝑙 > 0.

Algorithm 4 Stopping criterion for pDMD.

1: INPUT Dataset 𝑆 ∈𝑅2𝑛×(𝑚+1) in [0, 𝑇 ], threshold 𝑡𝑜𝑙 > 0,

2: OUTPUT 𝑆𝑁 piecewise reconstruction in [0, 𝑇 ], 𝐫 the ranks used along the 
partition, the error 𝑝(𝑆𝑁, 𝐫)

3: Choose an initial number 𝑁 of subintervals

4: Split the datasets 𝑆 = ∪𝑁
𝑖=1𝑆𝑖

5: while 𝑝(𝑆𝑁, 𝐫) > 𝑡𝑜𝑙 do

6: compute 𝑆𝑁 and 𝐫 from Algorithm 3

7: N = N+1

8: end while

9: 𝑆𝑁 = [𝑆1, … , 𝑆𝑖, … , 𝑆𝑁 ] 𝐫 = [𝑟1, … , 𝑟𝑁 ], 𝑝(𝑆𝑁, 𝐫)

As second indicator, for the values of 𝑁 identified by Algorithm 4, 
we will also compute the relative error in Euclidean norm over time 
calculated by:

𝜖𝑘(𝑆𝑁, 𝐫) =
‖𝐱𝑘 − 𝐱̃𝑘‖2

‖𝐱𝑘‖2 , 𝑘 = 0,… ,𝑚 (17)

where {𝐱̃𝑘}𝑚𝑘=0 are the snapshots reconstructed by the pDMD with 𝑁
subintervals.

We recall that the target rank value 𝑟𝑖 for the DMD reconstruction 
is fixed on each subset 𝑆𝑖 ∈ ℝ2𝑛×𝜈 and it depends on 𝑁 , because each 
𝑟𝑖 ≤ 𝜈 = ⌈𝑚+1

𝑁
⌉. Of course, the overall computational load of the pDMD 

can depend on how large are the 𝑟𝑖 values used in the algorithm and 
also on the total number of degrees of freedom required and calculated 
by (16). For this reason, in the next simulations we will visualize: i) for 
a fixed 𝑁 , the target rank vector 𝐫 ∈ ℝ𝑁 as a measure of complexity 
along the subsets 𝑆𝑖, 𝑖 = 1, … , 𝑁 (that is on the time subintervals of the 
piecewise technique) and ii) the maximum rank

𝑟(𝑁) = max
𝑖=1,…,𝑁

𝑟𝑖 = ‖𝐫‖∞ (18)

needed by pDMD by varying the partition size 𝑁 of the original dataset 
𝑆 until the optimal value identified by the Algorithm 4. We will also 
discuss the memory occupation cost for the pDMD computed as

(𝑁) = dof(𝑁) =
∑𝑁

𝑖=1 𝑟𝑖
, (19)
2𝑛 2𝑛
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that is the ratio between the total number of degrees of freedom intro-

duced in (16) and the spatial dimension of the snapshots.

Remark 6.1. In Algorithm 4, we suggest to increase 𝑁 only by one 
(line 7). This is mainly done to show our study exhaustively. Clearly, 
one can choose a larger increment to reduce the computational costs.

6.1. FitzHugh-Nagumo model

In this section, we apply the pDMD to the subset 𝑆 generated by 
the FitzHugh-Nagumo model introduced in Section 4.1.1. To start the 
Algorithm 4, we consider the thresholds 𝑡𝑜𝑙 = 10−1, 𝑡𝑜𝑙 = 10−6 and 𝑁 =
1.

In the left panel of Fig. 13, we show the behavior of the relative er-

ror 𝑝(𝑆𝑁, 𝐫) with respect to 𝑁 . The plot starts from 𝑁 = 17 because 
this is the first 𝑁 value that satisfies the condition 𝑒𝑟𝑟(𝑖) ≤ 𝑡𝑜𝑙 for all 
𝑖 = 1, … , 𝑁 , see step 9 of Algorithm 3. We note that the value of 𝑡𝑜𝑙 in 
this example is a rather mild request. We opt for this choice to show 
a more complete history of the error 𝑝(𝑆𝑁, 𝐫) in Fig. 13, left. Indeed, 
by choosing for instance 𝑡𝑜𝑙 = 10−3, 𝑁 = 87 would have been the first 
acceptable value. By incrementing the partition size 𝑁 by one, Algo-

rithm 4 stops for 𝑁 = 147 with stopping criterion 𝑝(𝑆𝑁, 𝐫) < 𝑡𝑜𝑙. We 
can observe that the relative error 𝑝(𝑆𝑁, 𝐫) is almost decreasing with 
respect to 𝑁 , although there are few little jumps, still remaining in the 
same order of magnitude. We remark that for 𝑁 = 147, the datasets in 
the partition have dimension 𝜈 = 41, whereas for 𝑁 = 17, 𝜈 = 353.

In the right panel of Fig. 13, we show how the relative error (17)

changes in time for 𝑁 = 17 and 𝑁 = 147, corresponding to the maxi-

mum and minimum of 𝑝, that is 𝑝(𝑆17, 𝐫) = 0.0124 and 𝑝(𝑆147, 𝐫) =
8.1308 ×10−7, respectively. In the right plot, we can appreciate that for 
larger 𝑁 the error uniformly decreases, especially in the peaks. Then, 
we compare the spatial mean (9) for the variables 𝑢 and 𝑣 obtained 
by the pDMD reconstruction with 𝑁 = 147, with respect to the data. 
The results are shown in Fig. 14, left and middle panels, respectively. 
It is evident that pDMD carefully matches the data, as also confirmed 
looking at the phase plane in the right panel.

Finally, in the left plot of Fig. 15, we report the target rank vec-

tors 𝐫 for 𝑁 = 17 and 147, to show how the pDMD ranks 𝑟𝑖 change in 
each subset 𝑆𝑖. As post-processing, to study the computational load of 
pDMD, in the right plot of Fig. 15 we report 𝑟(𝑁) calculated by (18). 
It easy to see that, this value decreases with 𝑁 and the maximum rank 
used 𝑟(17) = 29 is smaller than 𝚛𝚊𝚗𝚔(𝑆) = 51 for the original dataset. 
Hence, this indicates that pDMD is also convenient from the computa-

tional point of view since we deal with problems of significant small 
size. Indeed, the memory cost (147) = 821∕2048 corresponds to 40% 
reduction of the spatial dimension of the snapshot matrix 𝑆 and the 
CPU time employed by pDMD is 0.22 s. We remark that the original 
dataset for this model is already low dimensional and the reduction is 
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Fig. 14. FHN model. Comparison of the spatial mean for the variable 𝑢 (left plot) and 𝑣 (center plot). Right plot: phase plane for the DMD reconstruction with 
𝑁 = 147, for which the error has its minimum that is 𝑝(𝑆𝑁, 𝐫) = 8.1308 × 10−7.

Fig. 15. FHN model. Left plot: vector 𝐫 = [𝑟1, … , 𝑟𝑁 ] of target ranks used on the subsets 𝑆𝑖 , 𝑖 = 1, … , 𝑁 , for 𝑁 = 17, 147. Right plot: maximum target rank (18) used 
by pDMD with respect to 𝑁 .

Fig. 16. 𝜆-𝜔 system, spiral wave. Left plot: relative error 𝑝(𝑆𝑁, 𝐫) for 𝑡𝑜𝑙 = 10−2 in (15). Right plot: Relative error 𝜖𝑘(𝑆𝑁, 𝐫) over time in (17) for two significant 
values of 𝑁 as discussed in the main text.
not powerful but still active. We will see more impressive reduction in 
the next examples.

6.2. 𝜆-𝜔 RD-PDE system

We apply pDMD to the same dataset 𝑆 generated for the 𝜆-𝜔 system 
discussed in Section 4.1.2 and we consider 𝑡𝑜𝑙 = 10−2, 𝑁 = 1 to start 
the Algorithm 3. In Fig. 16 (left panel), it is shown the error 𝑝(𝑆𝑁, 𝐫)
defined in (15) when the partition size 𝑁 , i.e. number of submatrices 𝑆𝑖

of 𝑆 , is increased. For 𝑁 = 1, corresponding to the “global” DMD case, 
as expected from our results in Section 4.1.2, the condition in step 9 of 
the algorithm is not satisfied and the first acceptable value is 𝑁 = 16
which corresponds to 𝜈 = 1042.

When 𝑡𝑜𝑙 = 10−6, the Algorithm 4 stops for 𝑁 = 48, that is 𝜈 = 261. 
We can see that the error exhibits a slightly oscillating behavior for 
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16 ≤ 𝑁 ≤ 47, such that 10−5 ≤ 𝑝(𝑆𝑁, 𝐫) ≤ 10−6, that is the error re-

mains within the same order of magnitude. As for the previous test, we 
consider the values of 𝑁 for which the error has its maximum and mini-

mum, that are 𝑝(𝑆16, 𝐫) = 9.4858 ×10−6 and 𝑝(𝑆48, 𝐫) = 1.8478 ×10−7. 
In any case, these error approximation levels are much lower than the 
best obtained by the “global” DMD in Section 4.1.2. In Fig. 16, right 
panel, we show the errors in time (17) for 𝑁 = 16 and 𝑁 = 48. We 
can observe in the error behavior two time regimes, corresponding to 
those of the spiral wave dynamics, discussed before in Section 4.1.2. 
Indeed, in both cases, the error rapidly decays immediately after the 
initial phase until 𝑡 ≈ 25, then an almost constant oscillating trend is 
present in [𝑡, 𝑇 ]. We note also that for larger 𝑁 the error uniformly 
decreases along all the interval [0, 𝑇 ].

To further show how the pDMD overcomes the drawbacks of the 
original DMD highlighted in Section 4.1.2, we compare the time dy-
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Fig. 17. 𝜆-𝜔 system, spiral waves. pDMD reconstruction of the spatial mean for the variable 𝑢 (left plot) and 𝑣 (center plot) with 𝑁 = 48, for which the error has its 
minimum that is 𝑝(𝑆𝑁, 𝐫) = 1.8478 × 10−7. Corresponding limit cycle in the phase plane is shown in the right plot, a very good agreement is obtained with respect 
to the best approximation by the original DMD, see Section 4.1.2 and Fig. 7.

Fig. 18. 𝜆-𝜔 system, spiral waves. Left plot: vector 𝐫 = [𝑟1, … , 𝑟𝑁 ] of target ranks used in the subinterval 𝑆𝑖 , by pDMD for 𝑁 = 16, 48. Right plot: maximum target 
rank 𝑟(𝑁) in (18) used by pDMD with respect to 𝑁 .

Fig. 19. DIB model: Turing instability. Left plot: relative error 𝑝(𝑆𝑁, 𝐫) in (15). Relative error 𝜖𝑘(𝑆𝑁, 𝐫) over time in (17) for two meaningful values of 𝑁 , as 
discussed in the main text.
namics of the spatial means ⟨𝑢⟩ and ⟨𝑣⟩ for 𝑁 = 48 with respect to the 
data in Fig. 17 for 𝑢 (left plot) and 𝑣 (middle plot). As for the FHN 
model, the oscillating time dynamics obtained by pDMD matches per-

fectly the dataset, as also confirmed looking at the reconstructed limit 
cycle in the right panel.

Finally, in the left panel of Fig. 18, we show the target rank vec-

tors 𝐫 for 𝑁 = 16 and 48, to show how the pDMD ranks 𝑟𝑖 changes 
along the subsets 𝑆𝑖. We note that, for each 𝑁 , the largest value of the 
rank is always required in the first subset, but in general lower 𝑟𝑖 values 
are required for larger 𝑁 . This result is also confirmed by the behavior

of the maximum 𝑟(𝑁), shown in Fig. 18, right plot, that monotoni-

cally decays with respect to 𝑁 . Moreover, it is worth noting that the 
maximum rank needed by pDMD is 𝑟(16) = 56 which is much smaller 
than the rank of the original dataset 𝑆 , that is 314. The memory cost 
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(48) = 937∕19602 corresponds to about 4% of the spatial memory oc-

cupation of the original snapshot matrix. The CPU time employed for 
𝑁 = 48 is 2.7 s. For this example, we can see how pDMD reduces sig-

nificantly the original problem obtaining the desired accuracy.

6.3. DIB model: Turing instability

In this section, we apply the pDMD to reconstruct the Turing insta-

bility dynamics of the morphochemical DIB model discussed in Sec-

tion 4.2. We consider 𝑡𝑜𝑙 = 10−3 and 𝑁 = 1 as input of the pDMD 
Algorithm 3.

In the left panel of Fig. 19 we show the relative error 𝑝(𝑆𝑁, 𝐫)
defined in (15) for increasing values of 𝑁 until it is less than 𝑡𝑜𝑙 = 10−6
in Algorithm 4, reached for 𝑁 = 48. The first acceptable value is 𝑁 =
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Fig. 20. DIB model: Turing instability. Spatial mean of the variables 𝑢 (left plot) and 𝑣 (right plot) for the pDMD reconstruction with 𝑁 = 48 compared with that of 
the data.

Fig. 21. DIB model: Turing instability. Left plot: vector 𝐫 = [𝑟1, … , 𝑟𝑁 ] of target ranks used in the subsets 𝑆𝑖 , 𝑖 = 1, … , 𝑁 , for 𝑁 = 29, 48. Right plot: maximum target 
rank 𝑟(𝑁) in (18) required by pDMD with respect to 𝑁 .
29, but for 𝑁 < 48 some symbols are missing because for that values 
of 𝑁 there exists a subset 𝑆𝑖 such that 𝑒𝑟𝑟(𝑖) > 𝑡𝑜𝑙. We remark that for 
𝑁 = 29, each subset has dimension 𝜈 = 345 while for 𝑁 = 48, 𝜈 = 209
holds.

In the right panel of Fig. 19, we show how the pDMD error (17)

evolves in time for 𝑁 = 29 and 𝑁 = 48, corresponding to the maximum 
and minimum value attained in Fig. 19, left plot, given by 𝑝(𝑆29, 𝐫) =
4.2932 ×10−6 and 𝑝(𝑆48, 𝐫) = 1.4039 ×10−7, respectively. We note that 
the maximum error is essentially concentrated in the first zone, that is in 
the reactivity Turing regime, and that for larger 𝑁 it decreases almost 
uniformly with respect to time along [0, 𝑇 ].

To further confirm this trend, in Fig. 20, we show the comparison 
of the spatial means for the variables 𝑢 (left panel) and 𝑣 (right panel) 
obtained by the pDMD reconstruction with 𝑁 = 48 with respect to the 
data. The time dynamics of the pDMD solution for all times matches the 
spatial means of the data (compare with the right plot in Fig. 8).

We emphasize that, for the reconstruction of the Turing instability 
dynamics the piecewise approach not only is able to remove the ill-
conditioning in the “global” DMD (see Fig. 8, left), but also it is able 
to adapt the choice of the “local” target ranks to the peculiar dynamics 
along time. For this reason, we report how the rank 𝑟𝑖 in each subset 
𝑆𝑖 changes for 𝑖 = 1, … , 𝑁 for the previous partitions with 𝑁 = 29 and 
𝑁 = 48. The left plot in Fig. 21 highlights that, for both 𝑁 , in the initial 
reactivity zone we need to choose higher values of the rank, whereas 
in the stabilizing zone significantly lower values are required, such that 
𝑟𝑖 ≤ 20. In the right plot of Fig. 21, we report the maximum target ranks 
𝑟(𝑁) for the values of 𝑁 in Fig. 19(left) (that are then attained in the 
initial part of the time interval). Also in this case we observe a mono-

tone decay with respect to 𝑁 and the maximum 𝑟(29) = 43 is again 
much smaller than the rank of the original dataset 𝑆 given by 303. 
Again the piecewise approach is also able to reduce the overall com-
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putational load of the usual DMD implementation. Indeed, the memory 
cost (48) = 592∕10000 corresponds to about 3% of the original spatial 
dimension of the snapshot matrix. The CPU time, employed for 𝑁 = 48
is 1.9 s. Also for this example, we can see how pDMD reduces signif-

icantly the original problem obtaining the desired accuracy and with 
reasonable overall computational load in the online phase.

6.4. DIB model: Turing-Hopf instability

The last experiment concerns again the DIB morphochemical RD sys-

tem but with a different choice of the model parameters that gives rise 
to the so-called Turing-Hopf instability. We recall from Section 4, that 
this is the most complicated dynamics considered in this paper, because 
the PDE solutions exhibit an initial instability and then the formation 
of a pattern oscillating both in space and time. We apply the pDMD to 
the same dataset 𝑆 generated in Section 4 starting the Algorithm 3 with 
𝑁 = 5 and 𝑡𝑜𝑙 = 10−3. We obtain the first useful partition for 𝑁 = 225, 
that is 𝜈 = 50. Then, we increment 𝑁 by 5 and check the error (15) until 
𝑡𝑜𝑙 = 10−5 in Algorithm 4. The final value is 𝑁 = 535 with 𝜈 = 21 where 
𝑝(𝑆535, 𝐫) = 8.5031 × 10−6. In Fig. 22 (left plot) we show that the er-

ror (15) slowly decreases for increasing 𝑁 , even though there are small 
oscillations in a neighborhood of 𝑁 = 500. In this case, it is clear that 
the dynamics is very complex to catch and many iterations are needed 
which means that submatrices 𝑆𝑖 of low dimensions are required.

As for the previous numerical experiments, we consider the values 
of 𝑁 for which the error 𝑝 has its maximum and minimum, that is 𝑁 =
230 where 𝑝(𝑆230, 𝐫) = 2.6059 × 10−4 and 𝑁 = 535 where the pDMD 
stopped with 𝑝(𝑆535, 𝐫) = 8.503 ×10−6. In the right panel of Fig. 22, we 
show the behavior of the error 𝜖𝑘(𝑆𝑁, 𝐫) (see (17)) along the integration 
time interval of the PDE model. For both partition sizes 𝑁 , this error 
is larger in the second part of the time interval that corresponds to 
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Fig. 22. DIB model: Turing-Hopf instability. Left plot: relative error 𝑝(𝑆𝑁, 𝐫) in (15). Relative error 𝜖𝑘(𝑆𝑁, 𝐫) over time in (17) for two meaningful values of 𝑁 .

Fig. 23. DIB model: Turing-Hopf instability. pDMD reconstruction of the variable 𝑢 at the final time 𝑇 = 4.5 for 𝑁 = 230 (left plot) and 𝑁 = 535 (center plot). Right 
plot: limit cycle for the pDMD solution with 𝑁 = 535 in the phase plane of the spatial means, for which the error has its minimum that is 𝑝(𝑆𝑁, 𝐫) = 8.5031 × 10−6.

Fig. 24. DIB model: Turing-Hopf instability. Left plot: vector 𝐫 of the target ranks 𝑟𝑖 used in the subsets 𝑆𝑖 , 𝑖 = 1, … , 𝑁 , for 𝑁 = 230, 535. Right plot: maximum 
target rank 𝑟(𝑁) with respect to the range of partition sizes 𝑁 identified in Fig. 22.
the oscillatory behavior of the spatial mean (see bottom left plot of 
Fig. 10), but it decreases on the whole time interval for the larger value 
𝑁 = 535.

In Fig. 23, we compare the solutions obtained at the final time 𝑇 for 
the 𝑢 variable by applying the pDMD algorithm with 𝑁 = 230 (left plot) 
and 𝑁 = 535 (middle plot). The reconstruction with 𝑁 = 535 (middle 
plot) is almost the same as the data (see Fig. 12); for 𝑁 = 230 almost 
the same shape is reconstructed by pDMD (left plot), with very small 
different amplitudes, as evident by a slight different color distribution. 
Moreover, in Fig. 23 (right plot) we compare the time dynamics in the 
phase plane (⟨𝑢⟩, ⟨𝑣⟩) of the spatial mean values obtained by pDMD 
for 𝑁 = 535 with respect to the data. We can observe that there is no 
evident difference between the limit cycles for pDMD and data.
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Finally, in the right panel of Fig. 24, always for the partition sizes 
𝑁 = 230 and 𝑁 = 535 we show the ranks 𝑟𝑖 chosen in the subsets 𝑆𝑖, for 
𝑖 = 1, … , 𝑁 . In both cases, in the first part of the time interval, increas-

ing values of the target rank are needed, then after a certain subset (or 
time, say 𝑡 ≈ 1 when the limit cycle is reached) smaller and smaller rank 
values are sufficient to follows the oscillatory spatio-temporal regime. 
Moreover, for larger 𝑁 , that is 𝑁 = 535, smaller 𝑟𝑖 are needed. To con-

firm this trend, in the right panel of Fig. 24 we show the behavior of 
the maximum target rank 𝑟(𝑁): it exhibits a decreasing trend and in 
the worst case, the maximum rank needed is 22 ≪ 130 = 𝚛𝚊𝚗𝚔(𝑆), i.e. 
much smaller than the rank of the original dataset. In this example, the 
memory cost (535) = 5326∕11250 corresponds to about 27% reduc-

tion of the original spatial dimension of the matrix 𝑆 . The CPU time, 
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Fig. 25. Error prediction defined in (20). Left plot: FHN, 𝜆 − 𝜔, DIB model (Turing instability) with Δ𝑡 = 4 ⋅ 10−3. Right plot: DIB model (Turing-Hopf instability) 
with Δ𝑡 = 4 ⋅ 10−4.
related to 𝑁 = 535, is 6 s. This example still provides an important re-

duction considering the peculiarity and complexity of the Turing-Hopf 
time evolution combining spatio-temporal oscillatory dynamics.

6.5. Future predictions for pDMD

One of the feature of the DMD algorithm, as common for data-driven 
techniques, is the capability to predict future state developments using 
a single model. On the contrary, the pDMD algorithm by using different 
models in each sub-interval, improves the accuracy with respect to the 
exact DMD. In this subsection, we briefly study how pDMD performs 
for future predictions. This, as for the global DMD, strongly depends on 
the studied data.

For future state predictions, we consider the last model computed 
by pDMD, that is the pDMD reconstruction corresponding to the snap-

shot submatrix 𝑆𝑁 . Hence, we study the error behavior after the time 
interval [0, 𝑇 ] as follows. Let us define:

𝜖𝑓𝑝(𝑆𝑁, 𝑗) =
‖𝐱𝑗+𝑚 − 𝐱̃𝑗+𝑚‖2

‖𝐱𝑗+𝑚‖2 , for 𝑗 = 1,… 𝑗 (20)

where 𝐱𝑗+𝑚 are the solutions taken from the full model, 𝑡𝑗+𝑚 for 𝑗 =
1, … , 𝑗 are the timesteps not included in the original dataset and 𝑡𝑚
corresponds to the final time in the snapshot matrix 𝑆 . Then, the final 
prediction horizon will be defined as 𝑇 ∶= 𝑗Δ𝑡 and 𝑗 will be chosen 
such that 𝜖𝑓𝑝(𝑆𝑁, 𝑗) < 𝑡𝑜𝑙𝑗 for a fixed desired accuracy 𝑡𝑜𝑙𝑗 > 0. In the 
left panel of Fig. 25, we show the error in (20) for 𝑡𝑜𝑙𝑗 = 10−5 and 
Δ𝑡 = 4 ⋅ 10−3. We can observe that pDMD well captures the dynamics 
beyond the timeframe for the oscillatory models and DIB model with 
Turing instability. The final prediction horizon is 𝑇 = 0.156 for FHN, 
𝑇 = 0.288 for 𝜆 −𝜔 system and 𝑇 = 0.324 for the DIB model with Turing 
instability. On the other hand, the error behavior for the DIB model with 
Turing-Hopf instability, with 𝑡𝑜𝑙𝑗 = 10−2 and Δ𝑡 = 4 ⋅10−4 stops early at 
𝑇 = 0.002, as shown in Fig. 25, right, further confirming the complexity 
of this spatio-temporal dynamics. This brief study further validates our 
method, which not only it is able to reconstruct data with accurate 
results but it is also able to make future predictions for moderate time 
horizons.

7. Conclusions

Inspired by the classical “divide and conquer” principle, in this pa-

per we have introduced a piecewise version of the exact DMD technique, 
called pDMD. Given a temporal dataset and fixed tolerances, the new 
approach is implemented in Algorithm 3 and Algorithm 4, when the 
partition size 𝑁 of the original dataset is increased towards a desired 
final accuracy of the reconstruction. The new approach can be applied 
to a general dataset, even if our study has been motivated by the failure 
of the original exact DMD on snapshots describing peculiar spatio–

temporal dynamics arising in Reaction-Diffusion (RD) PDE systems. 
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Indeed, in Section 4 we have shown that DMD exhibits very inaccu-

rate reconstructions or ill-conditioning for large target ranks (where a 
better approximation is expected) for four significant models with: re-

laxation oscillations (FitzHugh-Nagumo 1D in space), spiral waves (𝜆-𝜔

system), Turing pattern formation and Turing-Hopf patterns oscillating 
in space and time (DIB morphochemical system for battery modeling).

In Section 6, for each kind of the above dynamics, we have shown 
that pDMD is able to remove all drawbacks previously highlighted. In 
some cases, like the FitzHugh-Nagumo and Turing-Hopf dynamics, we 
have shown that a suitable partition size 𝑁∗ can be obtained such 
that for 𝑁 ≥ 𝑁∗ an error much lower than the best obtained by the 
“global” DMD in Section 4. In other cases, like for spiral waves and 
Turing instability, both the final spiral/pattern and their time histories 
described by the limit cycle in the phase plane are carefully recon-

structed for 𝑁 ≥𝑁∗. In all cases, pDMD is now able to follow the entire 
spatio-temporal dynamics, including different regimes (e.g. reactivity-

stabilization for Turing, unstable-oscillating for spiral waves). In partic-

ular, in all simulations, for larger 𝑁 the error uniformly decreases along 
all the time interval of the entire dataset and a convergence trend can 
be observed.

In all our simulations, a discussion about the computational load of 
the new algorithm, in terms of memory occupation and execution times 
in the online phase, has also been presented. We show how pDMD re-

duces the spatial dimension of the original dataset, although increasing 
the number of subproblems. Indeed, the maximum rank used by the 
DMDs in each subset is always much smaller than the rank of the orig-

inal dataset 𝑆 . Our work confirms that for some time dynamics, the 
“global” (exact) DMD does not reconstruct the dataset correctly, there-

fore it is necessary to make extra work, as for the pDMD, to achieve 
the desired accuracy. The linear fitting behind DMD is also at the ori-

gin of the observed ill-conditioning of the original DMD (see e.g. Figs. 5

and 8). Moreover, we have shown that pDMD is also able to produce fu-

ture predictions for moderate time horizons for almost all the dynamics 
investigated in this work.

We can conclude that, for oscillatory and Turing spatio-temporal 
dynamics, the main assumption underlying the original DMD, that is a 
“global” linear fitting over the full temporal horizon, is not sufficient 
to recognize different “phenomena” arising along the time pathways. 
Instead, the “local” linear fitting by pDMD does it when a sufficient 
dataset partition size 𝑁 can be identified.

Code availability

The MATLAB source code for the implementations used to com-

pute the presented results can be downloaded from https://github .com /
alessandroalla /pDMD upon request to the corresponding author.

Data availability

Data will be made available on request.

https://github.com/alessandroalla/pDMD
https://github.com/alessandroalla/pDMD
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