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Abstract—This paper deals with estimation of gain and phase presence of nuisance parameters. In particular, we assume
errors possibly present in FMCW radars. In particular, the  that the level of the bandpass noise at the input of the

CRLB of unbiased estimators of gain and phase errors in yqcejver together with the (deterministic) amplitude ahdge
presence of nuisance parameters IS Computed. It is used as a

reference for the performance of already proposed estimais F’f a single target echo are UnkDOWn parametgr's. Sectloh Il
(computed by Monte Carlo simulation). introduces the models for the involved quantities. Section

lll focuses on the computation of the CRLB while Section
IV shows its relevance to assess the performance of already
proposed estimators. Finally, Section V gives the conchssi

I. INTRODUCTION of the paper.

Index Terms—FMCW radar, 1/Q imbalance, CRLB.

ADARS for automotive scenarios are typically frequency
modulated continuous wave (FMCW) sensors due to [1. NOISE AND USEFUL SIGNAL MODELS

computational power and cost concerns [1], [2], [3]. In auto Assume an FMCW radar located at the origin of a Cartesian
motive scenarios, target detection has to deal with maeltipl

ossibly extended taraets. The oresence of non ideali,[Icoordinate system. The radar transmits a continuous carrie
P y : gets. P . . fddulated by a periodic function such as a triangular wave
makes the detection task even more challenging. For instal

this is the case of gain and phase errors in the computatk?gqplzg\rlllcdye arsirl:?r?e Sd ?rt]i }gl?gw;gee;g?;asr;tizge((()wt;esﬂq';ransm|tted
of I and Q components that give rise to additional frequency

terms, namely to image responses at frequencies that are the f(t) = fo+at

negative of the actual ones, and to correlated basebane. nois

The problem has been dealt with in [4], [5], [6], [7]. [8], [9] where« is the chirp rate and, the transmitted frequency at
In particular, [4], [5] present “a method to orthogonalizeg time ¢ = 0. The phase of the carrier, ovéd, T'), is given by

I and Q components by means of correction coefficients; such .

coefficients are derived from measurements of a test signal. o(t) = 271-/ f(7)dr = 2r fot + mat?.

In [6], [7], [8], [9] estimation of gain and phase errors is 0

further addressed without using test signals. Compensatifigyre 1 shows the zero IF quadrature transceiver typically
of 1/Q imbalance is of relevant interest also in the conteXjsed in FMCW radar applications.

of direct conversion of wideband communication signalse Th The signal at the output of the local oscillator (LO) can be
algorithms proposed in [10], [11] exploit the proper natafe \yritten as
complex communication waveforms. In fact, under quite rea-
sonable assumptions, a composite intermediate frequéRky (

signal, consisting of multiple modulated IF carriers, isger. The received signal (in presence of a single target withén th
Then, since I/Q imbalance can destroy signal propernessgiifrveillance region) is a delayed and attenuated version of
is possible to compensate imbalance by recovering suchh@ transmitted one. Supposing the target moves with consta
property. Remarkably, such solutions can handle the caseygfocity v along a radial trajectory, the range of the target to

frequency-dependent I/Q imbalance that may come into plgye radar at time, sayr(t), is given by
with large bandwidths. A modification of the above idea is

also applied to compensate 1/Q imbalance in FMCW radars; r(t) =ro + vt
however, a notch filter is necessary to guarantee the proper
nature of the complex envelope of the radar signal [12].

In the following, we compute the Cramér-Rao lower bound
(CRLB) of unbiased estimators of gain and phase errors Ky

I(t) = A cos (27 fot + mat?) .
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with r the range at = 0. It follows that the received signal
can be written as

s(t) = Ag cos [27rf0 (t—7(t) + ma(t — T(t))z] +w(t)
wherew(t) is the received noise and

2r(t) _ 2r(t)
c(1+2) -

(1) =

c

is the round trip delay witt, in turn, the speed of light.

II. COMPUTATION OF THECRLB

The following proposition gives the expression of the CRLB
for the problem at hand.

Proposition 3.1: Lety = [y7(0)---
y(k) = [21(k) zq(k)]" with

yI'(N — 1)]T, where

zi(k) = Acos(2nvrk +0) + ny(kTs),
zqg(k) = Agsin (2rvrk + 60+ ¢) + ng(kTs),
k=0,...,N—1, A= 2d, and” the transpose operator.

The noise termsy;(kTs), no(kTs), k = 0,...,N — 1, are

If we take into account phase and amplitude errors, denotggro-mean, jointly Gaussian random sequences with $tatist
by ¢ andg, respectively, the two branches of the LO can beharacterization given by Equations (2). Finally, dengte b=

written as follows

ﬁ cos (27rfot + 7rat2)

V2
lo(t) =y

l](t)

Ar
== cos

V2

S1
G

The received signad(t) is mixed withi;(t) andig(t). After

(27Tf0t + Tat? + ¢ — g)

n (27rfot + mat? + ¢) .

lowpass filtering, thel and Q components, in presence of a

target echo, can be approximated as

br(t) =2a’ cos (27 frt + 0)
+nr(t)

bo(t) =2a’gsin 2n frt + 0 + ¢)
+nq(t)

AL AR

where fr = 22 fo + 222, § = 47270, anda’ =

V2
Suppose that the Iowpass filters (LPFs) can be approxmated‘hl

by ideal filters with cut-off frequency equal " > fr and

that the baseband signals are sampled with sampling freguen Agy
fs = 1/T, = 2W. The corresponding discrete-time signal is

(approximately) given by

2(k) = z(k) + jzq(k) 1)
= d'[(1 - geI?)eICTvrk+O)
+ (1+gej¢)€j(27ruq~k+6)}
+ n(k), k=0,...,.N—1
where vy = frTs is the normalized frequency shift of

the target,z;(k) = br(kTy), zq(k) = bo(kTs), n(k)
ni(kTs) + jng(kTs), ni(kTs),ng(kTs) € R. Equation (1)

highlights the presence of the image response at frequenclyr’

—vp whether¢ # 0 and/org # 1. The random variables
(rvs) n(k) are assumed jointly Gaussian and zero-mean;
particular, from the analysis in [8] it turns out that

Elni(Tng(sT)] = go’singd,,  (2)
E[’I’L[ (TTS)nI(STS)] = J26T7S
Elng(rTnq(sTy)] = g0°6.s

with o2 > 0 a proper factor and, ; denoting, in turn, the
Kronecker delta.

[g ¢ 0 A 6]T the parameter vector. The Fisher information
matrix J associated with the probability density functionyof
is given by

J:%A+B 3)

where
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A2N
o2’

N
By = §7345 =0,Bs5 =

Finally, Dy = Dy(—2vr) andD}; = Dy (2v7) with Dy (v)
the Dirichlet function (discrete-time Fourier transforrhtbe
causal rectangular window of lengfi).

Proof: y is a Gaussian vector with expected valec
R2Vx1 and covariance matrixC € R*V*2N_ Moreover, the
(1, j)th term of the Fisher information matrikassociated with
the probability density function of, say.J;;, is given by [14]

1 _,0C _, ,0C om\" | om

where tr(-) is the trace of the matrix argumer@,~* denotes
the inverse of the matrixC, andz,, is the hth component of
the vectorx = [g ¢ 02 A 6]T. Thus, letting

(4)

oC oC
L. o= _1_ _1_
Ajj tr(C &Tic 89@»)
and
5 (0m\" o 10m
7\ Oz 0z

Thus, it follows that

N-1
omT(r) _,0m(r)
B = Cc;t
1 rz:O 6581 8x1
1 N-1
= R s Z [0 Asin(2mvrr + 6 + ¢)]
r=0
g°  —gsing : T
X _gsing 1 [0 Asin(2rvrr + 0 + ¢)]
A2 N—-1
.2
= S5 5 Z sin®(2wvpr + 0 + ¢)
0%g® cos? ¢ £
A2 [ N-1
= ——— |N - Z cos(4mvpr + 20 + 2¢)
202 cos2
202¢g? cos? ¢ =
and, finally,
A2 03 (20+20)
By = DRy p—— [ — Dn(—2vr)
o3 (20+20)
- fDN(QVT)] .

we can compute the terms of Equation (4) and, eventualy,» other non-zero terms ok and B can be analogously

prove the theorem. To this end, observe that

C= diag(Co, ey Co)
is the block diagonal matrix with blocks equal @y, given
by

o? go?sin ¢

Co = go?sin ¢ g?o?
and thatm can be re-written as
m = [m”(0)---m" (N - 1)]",
with
m? (r) = [Acos(2nvrr + ) Agsin(2rvrr + 60 + ¢)],

r=20,...,N —1. Thus, the elementd,, of A for h and/or
k greater than 3 are zero sin€zdoes not depend oA and

f. As to the non-zero terms, they can be easily computed as

follows. First notice that

L 1

O 7 62¢2cos2 ¢

g* —gsing |
—gsing 1 ’
moreover, for instance, we have,(= g)

0Cy o2 0 sin ¢
ory sing  2g
and, hence,
c12C _ 1 —gsin®¢  —g®sing
O dx;  g2cos?¢ sin ¢ 29 —gsin¢ |-
Thus,
_10Co 1 0Cy 2N (2 —sin? ¢)
Ay = Ntr(Cyt—¢C;! -
H ( O Oz 0 3$1> g2 cos? ¢

Similarly, we can compute the non-zero terms of the matrix

B. For instance, we have that
omT (r)
axl

= [0 Asin(2mvrr + 0 + ¢)].

computed, thus completing the proof. [ ]
Notice thatB,s = 0. Even more important, we can easily
compute the2 x 2 north-west block of the matrid—! and
show that it does not depend énThis result is the object of
the next proposition.
Proposition 3.2: The matrixJ~! can be written as

J_l _ D x
* %
where
D11 Dia
D =
{ D12 Daa }
with
Dl N(2 — sin? ¢) AN N
1 g2 cos? ¢ 202g%2cos? ¢ g2
A’D DY, AN AN
NN - tan? ¢
ANo2g2cos?2 ¢ 402g?  402g?
B N A2N L DD 5)
© g2cos2¢p  402g2cos? ¢ N2

N(1 +sin? ¢) AN

Dy, = — N tan® 6
22 cos? ¢ 202 cos? ¢ an” ¢ ©)
A’N A’N  A?2Dy D}
— tan? ¢ — _ NZN _ 2Dt
107 A0 e T INoTeog Y P

Dy, 0,

while thex denote submatrices of proper dimensions. Finally,

we remember thaDy = Dy(—2vr) and DY, = Dn(2v7)
with Dy (v) the Dirichlet function.
Proof: It is sufficient to decompose the matidxe R>*?

i-| |

as
Ju

Joy

Ji2
Joo



with J11 S R2X2, J12 S R2X3, J21 (S R?’Xg, anngg S R3X3,

and compute the x 2 north-west block of its inverse as [14] B 102
_ -1 3
D= (Ji1 —Ji2J5 Ja1) . =
It turns out that the off-diagonal terms d = Jy; — g loy Z
J12J2_21J21, say F1» and F»;, are zero. In fact, we have that 5
1 1 A13423  BiyBas
Eip = En= §A12 + Biz — 2 A3 Bu °%5 0 10 20 30 40
BisBos SNR [dB]
Bss = 0. 1.505
Thus, it also follows that the diagonal termskof say F'1; and E
Eso, are the inverse oD, and Dss, respectively. Moreover, g
= 1.5 X — =
1 1 A? B? B3, E
FEi1==-A By — -3 _~14 15 2
1= 5An + B11 9 Ass  DBu Do iz
and s ‘ ‘ ‘
B 1A T B 1 A3, B3, B3 1495 0 10 20 30 40
22 = B 22 22 2 Ass Bus Bss’ SNR [dB]

Computation OfEH. and B, is tedious, but straightforward, Fig. 2. Estimated values of[¢] and E[j] vs the SNR for different values

and re_tums Equations (5) and (7). LI z/T Green lineiwr = 5-1073, orange line:wr = 7-1073, red line:
Notice thatD,; and D42 do depend oy through a term o, = 102, cyan line:vy = 5 - 10~2, brown line:vp = 10~ 1,

proportional toDy D}, /N?; however, for large values ai

and v not too close to zero such term can be neglected.

Finally, if v = 0, the second addend at the right-hand-sic

of Equation (5) vanishes.

=
&

IV. PERFORMANCE ANALYSIS

This section uses the computed CRLB as a reference
the performance of the estimators ofand g, say ¢ and g,
respectively, considered in [8], [9]. Performance of th&-es
mators have been computed by Monte Carlo simulations. «
this end, we assume a stationary radar (with carrier freqquer SNR [dB]
fo = 24 GHz) and the presence of a point-like stationary targ
with (deterministic) amplitude, located at a certain diser,
from the radar. In particular, the radar bandwidth i MHz
and the transmit frequency is modulated by a linear up a
down ramp over an interval of approximatély = 34.1 ms
for each ramp. Remember tha = fr7T, and fr = 2a72
(for stationary targets). The number of samples per ramp
equal toN = 2048. The true values of the | and Q imbalanc
parameters are set to= 1.5 and¢ = 10 degrees. Finally, we
assume® = 1 and consider several ValueSAmf' Fig. 3. Estimated values of the RMSE ¢fand § vs the SNR for different

. In Figure.2 we .p|0t the sarr_lple mean ofand g vs the va?ﬁeé ofvr. Green Iinue:uT =5-10"3, grangg linewy = 7-1073, red
signal-to-noise ratio (SNR) defined as line: v = 102, cyan line:vy = 5-10~2, brown line:vp = 10~ 1. Black

=
T

increasing Vi

Estimated RMSE oqu

Estimated RMSE of g

40

SNR [dB]

line with circle marker: CRLB fory = 10~ 1.
2a')* /2
sNR= (2)°/2
g
while Figure 3 reports the root of the sample mean square erro
(estimated root mean square error (RMSE)}andg vs the V. CONCLUSIONS

SNR. Both figures are computed ovér trials per SNR value.

Figures suggest that the considered estimators are udbiase

and that they guarantee adequate performances for SNRsvalueThe main result of this paper is the computation of the
greater than 15 dB and values of not too close to zero. In CRLB for unbiased estimators of I/Q imbalance in presence
fact, the estimated RMSE df is close to the correspondingof nuisance parameters (amplitude and phase of a detetiminis
CRLB for values ofur greater than or equal th0—2. As to sinusoid and the variance of the noise). The extension to the
the estimated RMSE af, its distance from the correspondingsum of multiple sinusoids (of known frequency) is in prifeip
CRLB is less than 0.5 for SNR values greater than 15 dB asttaightforward, but even more cumbersome. The CRLB has
again values of/; not too close to zero (greater than or equddeen used to assess performances of already proposed gain
to 1072). and phase estimators by Monte Carlo simulation.



REFERENCES

[1] H. Rohling, “Radar CFAR Thresholding in Clutter and Mple Target
Situations”,|EEE Trans. on Aerospace and Electronic Systems, Vol. 19,
No. 4, pp. 608-621, July 1983.

[2] H. Rohling and R. Mende, “OS CFAR performance in a 77 GHz
radar sensor for car applicationGIE International Radar Conference,
Beijing, China, 8-10 October 1996.

[3] K. Pourvoyeur, R. Feger, S. Schuster, A. Stelzer, and auidr, “Ramp
sequence analysis to resolve multi target scenarios for@aHzZ FMCW
radar sensor”11th International Conference on Information Fusion,
Cologne, Germany, 30 June-3 July 2008.

[4] F. E. Churchill, G. W. Ogar, and B. J. Thompson, “The Cotien of |
and Q Errors in a Coherent ProcessdEEE Trans. on Aerospace and
Electronic Systems, Vol. 17, No. 1, pp. 131-137, January 1981.

[5] F. E. Churchill, G. W. Ogar, and B. J. Thompson, “Corrent to The
Correction of | and Q Errors in a Coherent ProcesstEEE Trans. on
Aerospace and Electronic Systems, Vol. 17, No. 2, p. 312, March 1981.

[6] Z. Wang and A. B. Kostinski, “A random wave method for dzieg
phase imbalance in a coherent radar receivérof Atmospheric and
Oceanic Technology, Vol. 10, No. 6, pp. 887-891, December 1993.

[7] M. D. Kulkarni and A. B. Kostinski, “A Simple Formula for hitoring
Quadrature Phase Error with Arbitrary SignalsEEE Trans. on Geo-
science and Remote Sensing, Vol. 33, No. 3, pp. 799-802, May 1995.

[8] V. Dodde, A. Masciullo, and G. Ricci, “Adaptive competisa of
amplitude and phase conversion errors for FMCW radar ssgn2015
Intelligent Sgnal Processing, London, UK, 1-2 December 2015.

[9] A. Coluccia, V. Dodde, A. Masciullo, and G. Ricci, “Estation and
compensation of 1/Q imbalance for FMCW radar receiver)16
IEEE Workshop on Satistical Sgnal Processing (SSP 2016), Palma de
Mallorca, Spain, 26-29 June 2016.

[10] L. Anttila, M. Valkama, and M. Renfors, “Blind Moment Esation
Techniques for 1/Q Imbalance Compensation in QuadratueeiRers,”
The 17th Annual |EEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC' 06), Helsinki, Finland, 11-
14 September 2006.

[11] L. Anttila, M. Valkama, and M. Renfors, “Circularity-d&sed 1/Q Imbal-
ance Compensation in Wideband Direct-Conversion ReciVHEEE
Trans. on Vehicular Technology, Vol. 57, No. 4, pp. 2099-2113, July
2008.

[12] G. Vallant, M. Epp, W. Schlecker, U. Schneider, L. Afaitiand M.
Valkama, “Analog IQ Impairments in Zero-IF Radar Receivekaaly-
sis, Measurements and Digital Compensati@2 |EEE International
Instrumentation and Measurement Technology Conference (12MTC),
Graz, Austria, 13-16 May 2012.

[13] A. G. Stove, “Linear FMCW radar techniquesEE Proceedings-F, \Vol.
139, No. 5, pp. 343-350, October 1992.

[14] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis, Addison-Wesley, 1991.



