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Abstract—This paper deals with estimation of gain and phase
errors possibly present in FMCW radars. In particular, the
CRLB of unbiased estimators of gain and phase errors in
presence of nuisance parameters is computed. It is used as a
reference for the performance of already proposed estimators
(computed by Monte Carlo simulation).

Index Terms—FMCW radar, I/Q imbalance, CRLB.

I. I NTRODUCTION

RADARS for automotive scenarios are typically frequency
modulated continuous wave (FMCW) sensors due to

computational power and cost concerns [1], [2], [3]. In auto-
motive scenarios, target detection has to deal with multiple,
possibly extended targets. The presence of non idealities
makes the detection task even more challenging. For instance,
this is the case of gain and phase errors in the computation
of I and Q components that give rise to additional frequency
terms, namely to image responses at frequencies that are the
negative of the actual ones, and to correlated baseband noise.
The problem has been dealt with in [4], [5], [6], [7], [8], [9].
In particular, [4], [5] present “a method to orthogonalize”the
I and Q components by means of correction coefficients; such
coefficients are derived from measurements of a test signal.
In [6], [7], [8], [9] estimation of gain and phase errors is
further addressed without using test signals. Compensation
of I/Q imbalance is of relevant interest also in the context
of direct conversion of wideband communication signals. The
algorithms proposed in [10], [11] exploit the proper natureof
complex communication waveforms. In fact, under quite rea-
sonable assumptions, a composite intermediate frequency (IF)
signal, consisting of multiple modulated IF carriers, is proper.
Then, since I/Q imbalance can destroy signal properness, it
is possible to compensate imbalance by recovering such a
property. Remarkably, such solutions can handle the case of
frequency-dependent I/Q imbalance that may come into play
with large bandwidths. A modification of the above idea is
also applied to compensate I/Q imbalance in FMCW radars;
however, a notch filter is necessary to guarantee the proper
nature of the complex envelope of the radar signal [12].

In the following, we compute the Cramér-Rao lower bound
(CRLB) of unbiased estimators of gain and phase errors in
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presence of nuisance parameters. In particular, we assume
that the level of the bandpass noise at the input of the
receiver together with the (deterministic) amplitude and phase
of a single target echo are unknown parameters. Section II
introduces the models for the involved quantities. Section
III focuses on the computation of the CRLB while Section
IV shows its relevance to assess the performance of already
proposed estimators. Finally, Section V gives the conclusions
of the paper.

II. N OISE AND USEFUL SIGNAL MODELS

Assume an FMCW radar located at the origin of a Cartesian
coordinate system. The radar transmits a continuous carrier
modulated by a periodic function such as a triangular wave
to provide range data [13]. The instantaneous transmitted
frequency assumes the following expression over(0, T )

f(t) = f0 + αt

whereα is the chirp rate andf0 the transmitted frequency at
time t = 0. The phase of the carrier, over(0, T ), is given by

φ(t) = 2π

∫ t

0

f(τ) dτ = 2πf0t+ παt2.

Figure 1 shows the zero IF quadrature transceiver typically
used in FMCW radar applications.

The signal at the output of the local oscillator (LO) can be
written as

l(t) = AL cos
(
2πf0t+ παt2

)
.

The received signal (in presence of a single target within the
surveillance region) is a delayed and attenuated version of
the transmitted one. Supposing the target moves with constant
velocity v along a radial trajectory, the range of the target to
the radar at timet, sayr(t), is given by

r(t) = r0 + vt
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Fig. 1. Zero IF quadrature transceiver.
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with r0 the range att = 0. It follows that the received signal
can be written as

s(t) = AR cos
[
2πf0

(
t− τ(t)

)
+ πα

(
t− τ(t)

)2]
+w(t)

wherew(t) is the received noise and

τ(t) =
2r(t)

c
(
1 + v

c

) ≈ 2r(t)

c

is the round trip delay withc, in turn, the speed of light.
If we take into account phase and amplitude errors, denoted

by φ andg, respectively, the two branches of the LO can be
written as follows

lI(t) =
AL√
2
cos

(
2πf0t+ παt2

)

lQ(t) = g
AL√
2
cos

(
2πf0t+ παt2 + φ− π

2

)

= g
AL√
2
sin

(
2πf0t+ παt2 + φ

)
.

The received signals(t) is mixed with lI(t) and lQ(t). After
lowpass filtering, theI andQ components, in presence of a
target echo, can be approximated as

bI(t) =2a′ cos (2πfT t+ θ)

+ nI(t)

bQ(t) =2a′g sin (2πfT t+ θ + φ)

+ nQ(t)

wherefT = 2 v
c f0 + 2α r0

c , θ = 4π f0r0
c , anda′ = ALAR

4
√
2

.
Suppose that the lowpass filters (LPFs) can be approximated

by ideal filters with cut-off frequency equal toW > fT and
that the baseband signals are sampled with sampling frequency
fs = 1/Ts = 2W . The corresponding discrete-time signal is
(approximately) given by

z(k) = zI(k) + jzQ(k) (1)

= a′
[
(1− ge−jφ)e−j(2πνT k+θ)

+ (1 + gejφ)ej(2πνT k+θ)
]

+ n(k), k = 0, . . . , N − 1

where νT = fTTs is the normalized frequency shift of
the target,zI(k) = bI(kTs), zQ(k) = bQ(kTs), n(k) =
nI(kTs) + jnQ(kTs), nI(kTs), nQ(kTs) ∈ R. Equation (1)
highlights the presence of the image response at frequency
−νT whetherφ 6= 0 and/or g 6= 1. The random variables
(rvs) n(k) are assumed jointly Gaussian and zero-mean; in
particular, from the analysis in [8] it turns out that

E[nI(rTs)nQ(sTs)] = gσ2 sinφ δr,s (2)

E[nI(rTs)nI(sTs)] = σ2δr,s

E[nQ(rTs)nQ(sTs)] = g2σ2δr,s

with σ2 > 0 a proper factor andδr,s denoting, in turn, the
Kronecker delta.

III. C OMPUTATION OF THECRLB

The following proposition gives the expression of the CRLB
for the problem at hand.

Proposition 3.1: Let y = [yT (0) · · ·yT (N − 1)]T , where
y(k) = [zI(k) zQ(k)]

T with

zI(k) = A cos (2πνTk + θ) + nI(kTs),

zQ(k) = Ag sin (2πνTk + θ + φ) + nQ(kTs),

k = 0, . . . , N − 1, A = 2a′, and T the transpose operator.
The noise termsnI(kTs), nQ(kTs), k = 0, . . . , N − 1, are
zero-mean, jointly Gaussian random sequences with statistical
characterization given by Equations (2). Finally, denote by x =
[g φ σ2 A θ]T the parameter vector. The Fisher information
matrix J associated with the probability density function ofy
is given by

J =
1

2
A+B (3)

where

A =




A11 A12 A13 0 0
A12 A22 A23 0 0
A13 A23 A33 0 0
0 0 0 0 0
0 0 0 0 0




and

B =




B11 B12 0 B14 B15

B12 B22 0 B24 B25

0 0 0 0 0
B14 B24 0 B44 B45

B15 B25 0 B45 B55




with

A11 =
2N(2− sin2 φ)

g2 cos2 φ
,A12 = −2N

g
tanφ,A13 =

2N

σ2g
,

A22 =
2N(1 + sin2 φ)

cos2 φ
,A23 = −2N

σ2
tanφ,A33 =

2N

σ4
,

B11 =
A2

2σ2g2 cos2 φ

[
N − ej(2θ+2φ)

2
D−

N − e−j(2θ+2φ)

2
D+

N

]
,

B12 =
A2

2σ2g cos2 φ

[
ej(2θ+2φ−π

2 )

2
D−

N +
e−j(2θ+2φ−π

2 )

2
D+

N

]
,

B14 =
AN

2σ2g
− A

σ2g cosφ

[
D−

N

ej(2θ+φ)

4
+D+

N

e−j(2θ+φ)

4

]
,

B15 =
A2N

2σ2g cosφ

{
sinφ− j

D−
N

2N
ej(2θ+φ) + j

D+
N

2N
e−j(2θ+φ)

}
,

B22 =
A2

2σ2 cos2 φ

[
N +

ej(2θ+2φ)

2
D−

N +
e−j(2θ+2φ)

2
D+

N

]
,

B24 = −AN sinφ

2σ2 cosφ
− A

4σ2 cosφ

[
D−

Nej(2θ+φ+π
2 )

+ D+
Ne−j(2θ+φ+π

2 )
]
,

B25 =
A2N

2σ2
+

A2

4σ2 cosφ

[
D−

Nej(2θ+φ) +D+
Ne−j(2θ+φ)

]
,
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B44 =
N

σ2
, B45 = 0, B55 =

A2N

σ2
.

Finally, D−
N = DN (−2νT ) andD+

N = DN (2νT ) with DN(ν)
the Dirichlet function (discrete-time Fourier transform of the
causal rectangular window of lengthN ).

Proof: y is a Gaussian vector with expected valuem ∈
R2N×1 and covariance matrixC ∈ R2N×2N . Moreover, the
(i, j)th term of the Fisher information matrixJ associated with
the probability density function ofy, sayJij , is given by [14]

Jij =
1

2
tr

(
C−1 ∂C

∂xi
C−1 ∂C

∂xj

)
+

(
∂m

∂xi

)T

C−1 ∂m

∂xj
(4)

where tr(·) is the trace of the matrix argument,C−1 denotes
the inverse of the matrixC, andxh is thehth component of
the vectorx = [g φ σ2 A θ]T . Thus, letting

Aij = tr

(
C−1 ∂C

∂xi
C−1 ∂C

∂xj

)

and

Bij =

(
∂m

∂xi

)T

C−1 ∂m

∂xj

we can compute the terms of Equation (4) and, eventually,
prove the theorem. To this end, observe that

C = diag(C0, . . . ,C0)

is the block diagonal matrix with blocks equal toC0, given
by

C0 =

[
σ2 gσ2 sinφ

gσ2 sinφ g2σ2

]
,

and thatm can be re-written as

m = [mT (0) · · ·mT (N − 1)]T ,

with

mT (r) = [A cos(2πνT r + θ) Ag sin(2πνT r + θ + φ)],

r = 0, . . . , N − 1. Thus, the elementsAhk of A for h and/or
k greater than 3 are zero sinceC does not depend onA and
θ. As to the non-zero terms, they can be easily computed as
follows. First notice that

C−1
0 =

1

σ2g2 cos2 φ

[
g2 −g sinφ

−g sinφ 1

]
;

moreover, for instance, we have (x1 ≡ g)

∂C0

∂x1
= σ2

[
0 sinφ

sinφ 2g

]

and, hence,

C−1
0

∂C0

∂x1
=

1

g2 cos2 φ

[
−g sin2 φ −g2 sinφ
sinφ 2g − g sin2 φ

]
.

Thus,

A11 = N tr

(
C−1

0

∂C0

∂x1
C−1

0

∂C0

∂x1

)
=

2N(2− sin2 φ)

g2 cos2 φ
.

Similarly, we can compute the non-zero terms of the matrix
B. For instance, we have that

∂mT (r)

∂x1
= [0 A sin(2πνT r + θ + φ)].

Thus, it follows that

B11 =
N−1∑

r=0

∂mT (r)

∂x1
C−1

0

∂m(r)

∂x1

=
1

σ2g2 cos2 φ

N−1∑

r=0

[0 A sin(2πνT r + θ + φ)]

×
[

g2 −g sinφ
−g sinφ 1

]
[0 A sin(2πνT r + θ + φ)]T

=
A2

σ2g2 cos2 φ

N−1∑

r=0

sin2(2πνT r + θ + φ)

=
A2

2σ2g2 cos2 φ

[
N −

N−1∑

r=0

cos(4πνT r + 2θ + 2φ)

]

and, finally,

B11 =
A2

2σ2g2 cos2 φ

[
N − ej(2θ+2φ)

2
DN(−2νT )

− e−j(2θ+2φ)

2
DN (2νT )

]
.

The other non-zero terms ofA and B can be analogously
computed, thus completing the proof.

Notice thatB45 = 0. Even more important, we can easily
compute the2 × 2 north-west block of the matrixJ−1 and
show that it does not depend onθ. This result is the object of
the next proposition.

Proposition 3.2: The matrixJ−1 can be written as

J−1 =

[
D ⋆
⋆ ⋆

]

where

D =

[
D11 D12

D12 D22

]

with

D−1
11 =

N(2− sin2 φ)

g2 cos2 φ
+

A2N

2σ2g2 cos2 φ
− N

g2

− A2D−
ND+

N

4Nσ2g2 cos2 φ
− A2N

4σ2g2
− A2N

4σ2g2
tan2 φ

=
N

g2 cos2 φ
+

A2N

4σ2g2 cos2 φ

(
1− D−

ND+
N

N2

)
(5)

D−1
22 =

N(1 + sin2 φ)

cos2 φ
+

A2N

2σ2 cos2 φ
−N tan2 φ (6)

− A2N

4σ2
tan2 φ− A2N

4σ2
− A2D−

ND+
N

4Nσ2 cos2 φ
= g2D−1

11 ,

D12 = 0,

while the⋆ denote submatrices of proper dimensions. Finally,
we remember thatD−

N = DN (−2νT ) andD+
N = DN (2νT )

with DN (ν) the Dirichlet function.
Proof: It is sufficient to decompose the matrixJ ∈ R5×5

as

J =

[
J11 J12

J21 J22

]
,
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with J11 ∈ R2×2, J12 ∈ R2×3, J21 ∈ R3×2, andJ22 ∈ R3×3,
and compute the2× 2 north-west block of its inverse as [14]

D =
(
J11 − J12J

−1
22 J21

)−1
.

It turns out that the off-diagonal terms ofE = J11 −
J12J

−1
22 J21, sayE12 andE21, are zero. In fact, we have that

E12 = E21 =
1

2
A12 +B12 −

1

2

A13A23

A33
− B14B24

B44

− B15B25

B55
= 0.

Thus, it also follows that the diagonal terms ofE, sayE11 and
E22, are the inverse ofD11 andD22, respectively. Moreover,

E11 =
1

2
A11 +B11 −

1

2

A2
13

A33
− B2

14

B44
− B2

15

B55

and

E22 =
1

2
A22 +B22 −

1

2

A2
23

A33
− B2

24

B44
− B2

25

B55
.

Computation ofE11 andE22 is tedious, but straightforward,
and returns Equations (5) and (7).

Notice thatD11 andD22 do depend onνT through a term
proportional toD−

ND+
N/N2; however, for large values ofN

and νT not too close to zero such term can be neglected.
Finally, if νT = 0, the second addend at the right-hand-side
of Equation (5) vanishes.

IV. PERFORMANCE ANALYSIS

This section uses the computed CRLB as a reference for
the performance of the estimators ofφ and g, say φ̂ and ĝ,
respectively, considered in [8], [9]. Performance of the esti-
mators have been computed by Monte Carlo simulations. To
this end, we assume a stationary radar (with carrier frequency
f0 = 24 GHz) and the presence of a point-like stationary target
with (deterministic) amplitude, located at a certain distancer0
from the radar. In particular, the radar bandwidth is150 MHz
and the transmit frequency is modulated by a linear up and
down ramp over an interval of approximatelyT = 34.1 ms
for each ramp. Remember thatνT = fTTs and fT = 2α r0

c
(for stationary targets). The number of samples per ramp is
equal toN = 2048. The true values of the I and Q imbalance
parameters are set tog = 1.5 andφ = 10 degrees. Finally, we
assumeσ2 = 1 and consider several values ofνT .

In Figure 2 we plot the sample mean ofφ̂ and ĝ vs the
signal-to-noise ratio (SNR) defined as

SNR=
(2a′)2 /2

σ2

while Figure 3 reports the root of the sample mean square error
(estimated root mean square error (RMSE)) ofφ̂ and ĝ vs the
SNR. Both figures are computed over103 trials per SNR value.
Figures suggest that the considered estimators are unbiased
and that they guarantee adequate performances for SNR values
greater than 15 dB and values ofνT not too close to zero. In
fact, the estimated RMSE of̂g is close to the corresponding
CRLB for values ofνT greater than or equal to10−2. As to
the estimated RMSE of̂φ, its distance from the corresponding
CRLB is less than 0.5 for SNR values greater than 15 dB and
again values ofνT not too close to zero (greater than or equal
to 10−2).
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Fig. 2. Estimated values ofE[φ̂] andE[ĝ] vs the SNR for different values
of νT . Green line:νT = 5 · 10−3 , orange line:νT = 7 · 10−3, red line:
νT = 10−2, cyan line:νT = 5 · 10−2, brown line:νT = 10−1.
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Fig. 3. Estimated values of the RMSE ofφ̂ and ĝ vs the SNR for different
values ofνT . Green line:νT = 5 · 10−3 , orange line:νT = 7 · 10−3, red
line: νT = 10−2, cyan line:νT = 5 · 10−2, brown line:νT = 10−1. Black
line with circle marker: CRLB forνT = 10−1.

V. CONCLUSIONS

The main result of this paper is the computation of the
CRLB for unbiased estimators of I/Q imbalance in presence
of nuisance parameters (amplitude and phase of a deterministic
sinusoid and the variance of the noise). The extension to the
sum of multiple sinusoids (of known frequency) is in principle
straightforward, but even more cumbersome. The CRLB has
been used to assess performances of already proposed gain
and phase estimators by Monte Carlo simulation.
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