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Abstract
In this paper, we introduce inductive limits of the Fréchet spaces �(p+), ces(p+),
and d(p+) (1 ≤ p < ∞) and projective limits of the (LB)-spaces �(p−), ces(p−),
and d(p−) (1 < p ≤ ∞). After having established some topological properties of
such spaces as acyclicity and ultrabornologicity, we prove that the generalized Cesàro
operatorsCt (0 ≤ t ≤ 1) act continuously in these sequence spaces, and we determine
the spectra. Finally, we study the ergodic properties, that is, power boundedness,
(uniform) mean ergodicity, and supercyclicity, of the operators Ct acting in the (LF)-
spaces and in the (PLB)-spaces mentioned above.
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1 Introduction

Let ω := C
N0 and 0 ≤ t ≤ 1. The discrete generalized Cesàro operator Ct : ω → ω

is given by

Ct (x) :=
( tnx0 + tn−1x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.1)
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For t = 1, we recover the Cesàro operator C1, given by

C1(x) :=
( x0 + x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n ∈ ω. (1.2)

The spectra of the Cesàro operator C1 defined in (1.2) have been analyzed in several
Banach sequence spaces. For instance, in �p, for 1 < p < ∞, [17, 18, 24, 31], in
the discrete Cesàro space ces(p) [19] and in d(p) [14], for 1 < p < ∞, which is
isomorphic to the strong dual of ces(p′), with p′ the conjugate exponent of p, [12].We
refer the reader to [8] for a vast list of references concerning the study of the Cesàro
operator C1 in other Banach sequence spaces. The research of the operators defined
in (1.1) started later, in the 1980s. This study has been focused on the spectrum of the
generalized Cesàro operator Ct (0 ≤ t < 1) in �p, for 1 < p < ∞, [38, 44], in ces(p)
[19], and in d(p) [14], for 1 < p < ∞, among others, showing, surprisingly enough,
a behaviour rather different from that of the Cesàro operator C1. See also [20, 39, 45].
All the spaces considered satisfy that they are continuously included in the Fréchet
space ω, when it is endowed with the coordinatewise convergence topology.

Since the inclusions �q ⊆ �p, ces(q) ⊆ ces(p), and d(q) ⊆ d(p) are continuous
if 1 < q ≤ p < ∞, for given 1 ≤ p < ∞ and {pn}n∈N0 a sequence satisfying
p < pn+1 < pn , for n ∈ N0, with pn ↓ p, we can define the Fréchet spaces

�(p+) =
⋂
n∈N0

�pn , ces(p+) =
⋂
n∈N0

ces(pn), d(p+) =
⋂
n∈N0

d(pn). (1.3)

Besides, for given 1 < p ≤ ∞ and {pn}n∈N0 a sequence satisfying pn < pn+1 < p,
for n ∈ N0, with pn ↑ p, we can define the (LB)-spaces

�(p−) =
⋃
n∈N0

�pn , ces(p−) =
⋃
n∈N0

ces(pn), d(p−) =
⋃
n∈N0

d(pn). (1.4)

Recently, the spectra of the generalized Cesàro operators Ct (0 ≤ t < 1) acting in
these Fréchet and (LB)-spaces have been studied by the first author, Bonet, and Ricker
in [8]. On the other hand, the same authors described the spectra of the Cesàro operator
C1 acting in the spaces mentioned above [2, 4, 6–8, 15, 16], whose behaviour is still
diverse from that of the generalized Cesàro operators Ct for t 
= 1.

The dynamics of the generalized Cesàro operators (0 ≤ t < 1) acting in the
Banach sequence spaces �p, ces(p), and d(p) (1 < p < ∞), in the Fréchet spaces
defined in (1.3), in the (LB)-spaces defined in (1.4), and in ω, are discussed in [8],
showing that such operators Ct are power bounded and uniformly mean ergodic, but
not supercyclic. This behaviour holds true for the Cesàro operator C1 in ω [2, 7].
However, this contrasts with the fact that C1 is not power bounded nor mean ergodic
nor supercyclic in the aforementioned Banach spaces [4, 5, 11, 14], Fréchet spaces [2,
7, 16] and (LB)-spaces [6, 8, 16].

The aim of this paper is twofold: to introduce and analyze the inductive limits of
the Fréchet spaces �(p+), ces(p+), and d(p+) (1 ≤ p < ∞), and the projective
limits of the (LB)-spaces �(p−), ces(p−), and d(p−) (1 < p ≤ ∞), and to study
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the spectra and the dynamics of the generalized Cesàro operators Ct (1.1), 0 ≤ t < 1,
acting in these new sequence spaces, comparing them to those of the generalized
Cesàro operator Ct acting in the Fréchet and (LB)-spaces, and making the appropriate
rearrangements for the case of the Cesàro operator C1 (1.2).

The paper is divided as follows: in Sect. 2, we introduce some notation and present
preliminary results on general (LF) and (PLB)-spaces. We also recall some properties
regarding the Fréchet and (LB)-spaces mentioned above (see (1.3) and (1.4)).

In Sect. 3 we define the (LF)-spaces L(p−), C(p−), D(p−), with 1 < p ≤ ∞
(the (PLB)-spaces L(p+), C(p+), D(p+), with 1 ≤ p < ∞) as inductive limits
of the Fréchet spaces given in (1.3) (as projective limits of the (LB)-spaces given
in (1.4)), and study their topological properties such as acyclicity, completeness,
reflexitivity or Montel (such as bornologicity, barrelledness, reflexitivity or Mon-
tel), see Proposition 2, Corollary 3 and Proposition 4. In Sect. 3 we also establish
that L(p−) ⊆ L(q−), C(p−) ⊆ C(q−), D(p−) ⊆ D(q−) (L(p+) ⊆ L(q+),
C(p+) ⊆ C(q+), D(p+) ⊆ D(q+)), with continuous inclusions, for 1 < p ≤ q
(for 1 ≤ p ≤ q), as in the (LB)-space case (as in the Fréchet-space case), see Propo-
sitions 7 and 9.

In Sect. 4 we determine the spectra of generalized Cesàro operators Ct (0 ≤ t ≤
1) acting in the (LF) and (PLB)-spaces introduced in Sect. 3 (see Theorems 15, 20,
and 22). The proofs of the results are based on Lemmas 10 and 12. In particular,
we show that the spectra of Ct (0 ≤ t < 1) acting in these (LF) and (PLB)-spaces
coincide with those in the corresponding Fréchet and (LB)-spaces (Theorem 15). We
obtain similar results also for the spectra of C1 acting in these (LF) and (PLB)-spaces
(Theorems 20 and 22).

Finally, in Sect. 5 we study the ergodic properties, i.e., the power boundedness,
the mean ergodicity, and the uniform mean ergodicity, of continuous linear operators
acting in (LF)-spaces (in (PLB)-spaces). We compare such properties with the same
of the continuous linear operators acting in the steps of their inductive spectrum (pro-
jective spectrum), see Theorems 24 and 26. We then apply Theorems 24 and 26 to
establish that the generalized Cesàro operators Ct (0 ≤ t < 1) acting in the (LF) and
(PLB)-spaces introduced in Sect. 3 are power bounded, mean ergodic, and uniformly
mean ergodic (Corollaries 25 and 27). We conclude showing that the Cesàro opera-
tor C1 acting in these sequence spaces is, in contrast, not power bounded nor mean
ergodic, and that Ct is never supercyclic for every 0 ≤ t ≤ 1.

2 Notation and preliminary results

For two locally convex Hausdorff spaces (lcHs, for short) X and Y , we denote
by L(X ,Y ) the space of all continuous linear operators T : X → Y . We write
L(X) = L(X , X) and we denote by � = �X a collection of continuous seminorms
that determine the topology of X . The identity operator onL(X) is denoted by I and the
set of bounded sets of X is denoted byB(X).When the spaceL(X) is endowedwith the
strong operator topology (the topology of uniform convergence onB(X)), it is denoted
by Ls(X) (by Lb(X)). The topological dual of X is denoted by X ′ := L(X , C). We
write X ′

σ (we write X ′
β ) for the space X

′ endowed with the weak* topology σ(X ′, X)
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(the strong topology β(X ′, X)). Some standard references of functional analysis are
[27, 30, 34, 42].

Let X be a lcHs. We will say that X is an (LF)-space if there exists an increasing
sequence {Xn}n∈N of Fréchet spaces such that the inclusion Xn ⊆ Xn+1, for n ∈ N, is
continuous and the topology in X = ⋃

n Xn coincides with the finest locally convex
topology for which each inclusion Xn ⊆ X is continuous. We will denote it by
X = indn Xn ; the sequence {Xn}n∈N is called a defining inductive spectrum of X . We
will say that X is an (LB)-space if each Xn is a Banach space. We remark that every
(LF)-space is ultrabornological [34, Remark 24.36], hence bornological and barrelled.

An (LF)-space X = indn Xn is said to be regular if every B ∈ B(X) is contained
and bounded in Xn , for some n. Every complete (LF)-space is regular. We will say that
X satisfies condition (M) (condition (M0)) of Retakh [37] if there exists an increasing
sequence {Un}n∈N ⊆ X such that Un is an absolutely convex zero-neighbourhood of
(Xn, τn), n ∈ N, for which

(M) for every n there exists m ≥ n such that for every l ≥ m, the topologies τl
and τm induce the same topology on Un .
((M0) for every n there exists m ≥ n such that for every l ≥ m, the topologies
σ(Xl , X ′

l) and σ(Xm, X ′
m) induce the same topology on Un .)

Recall that Vogt [41, Theorem 2.10] established that an (LF)-space X satisfies condi-
tion (M) (condition (M0)) if, and only if, it is acyclic (weakly acyclic) in the sense
of Palamodov [36]. Acyclic (LF)-spaces are complete [36, Corollary 7.1] (cf. [41,
Theorem 3.2]). Moreover, a standard duality proof shows that (M) implies (M0).

If {‖·‖n,�}�∈N denotes a fundamental system of seminorms of the Fréchet space Xn ,
for n ∈ N, we then say that the (LF)-space X = indn Xn satisfies the condition (Q)

(the condition (wQ)) if

(Q) ∀n ∃m > n, N ∈ N ∀k > m, M ∈ N, ε > 0, ∃K ∈ N, S > 0 ∀x ∈ Xn ,

‖x‖m,M ≤ S ‖x‖k,K + ε ‖x‖n,N .

((wQ) ∀n ∃m > n, N ∈ N ∀k > m, M ∈ N ∃K ∈ N, S > 0 ∀x ∈ Xn ,

‖x‖m,M ≤ S(‖x‖k,K + ‖x‖n,N ).)

The condition (wQ) is clearly weaker than the condition (Q). The conditions (Q)

and (wQ) were introduced and studied in [41]. In particular, in [41] it was shown that
such conditions are necessary for the acyclicity and the weak acyclicity and, under
further assumptions, also sufficient. Thereafter, Wengenroth [43, Theorems 2.7 and
3.3] proved that the conditions (M) and (Q) ((wQ) under suitable assumptions on the
spaces Xn) are equivalent. More precisely,

Theorem 1 Let X = indn Xn be an (LF)-space. The space X satisfies condition (M)

(i.e., it is acyclic) if, and only if, X satisfies condition (Q). Furthermore, if X is an
inductive limit of Fréchet-Montel spaces, then X satisfies condition (M) (i.e., it is
acyclic) if, and only if, it is complete if, and only if, it satisfies (wQ).
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We will say that a lcHs X is a (PLB)-space if there exists a decreasing sequence
{Xn}n∈N of (LB)-spaces such that the inclusion Xn+1 ⊆ Xn is continuous, for n ∈ N,
and the topology in X = ⋂

n Xn coincides with the coarsest locally convex topology
for which each inclusion X ⊆ Xn is continuous. We will denote it by X = projn Xn ;
the sequence {Xn}n∈N is called a defining projective spectrum of X . It follows that a
(PLB)-space X is complete provided Xn is a complete (LB)-space for infinitely many
n. The (PLB)-space X is called reduced if the inclusion X ⊆ Xn has dense range for
every n ∈ N. The (PLB)-space X is a Fréchet space if each Xn is a Banach space.

The main problem concerning (PLB)-spaces consists in discussing whether they
are bornological/barrelled. In the case that X = projn(Xn)

′
β is a reduced (PLB)-space

of strong duals of reflexive Fréchet spaces Xn , if the (LF)-space indn Xn is weakly
acyclic, then X is bornological, as shown by Vogt in [41, Lemma 4.2]. Under the
assumption that the steps Xn are Fréchet-Montel spaces, Wengenroth [43, Theorem
3.5] proved that X = projn(Xn)

′
β is bornological if, and only if, the (LF)-space indn Xn

satisfies the condition (wQ). We refer to [40, 41, 43] for further results.
For 1 ≤ p ≤ ∞, we write ‖·‖p for the standard norm in �p. For 1 < p < ∞ we

define

ces(p) = {x ∈ ω : ‖x‖ces(p) = ‖C1(|x |)‖p < ∞}.

The Banach spaces ces(p), 1 < p < ∞, have been deeply studied in Bennett [12]
(see also [10, 19, 25, 32]).

For 1 < p < ∞, the dual Banach spaces (ces(p))′ are rather complicated (see
[29]). An isomorphic identification of (ces(p))′ is given in [12, Corollary 12.17], that
is, it is shown there that

d(p) =
{
x ∈ �∞ : x̂ :=

(
sup
k≥n

|xk |
)
n∈N0

∈ �p

}

is a Banach space, with the norm

‖x‖d(p) = ∥∥x̂∥∥p , x ∈ d(p),

and that it is isomorphic to (ces(p′))′, where 1 < p′ < ∞ satisfies 1/p + 1/p′ = 1.
For 1 < p, q < ∞, we have that p ≤ q if, and only if, �p ⊆ �q , ces(p) ⊆ ces(q)

[5, Proposition 3.2(iii)], d(p) ⊆ d(q) [14, Proposition 5.1(iii)], �p ⊆ ces(q) ([5,
Proposition 3.2(ii)] and [19, Remark 2.2(ii)], where Hardy’s inequality [28, Theorem
326] is used), d(p) ⊆ �q [14, Proposition 2.7(v) and 5.1(ii)], and d(p) ⊆ ces(q) [14,
Proposition 5.1(i)] with continuous inclusions. We have that �p, ces(p) (and hence
d(p)) (1 < p < ∞) are reflexive ([12, p. 61] and [29, Proposition 2]), and also they
are separable. They contain {en}n∈N0 (here, en = (δnk)k∈N0 ) as an unconditional basis.
The spaces �p, ces(q), and d(r) are not isomorphic for 1 < p, q, r < ∞ (see [15,
Proposition 2.2] for references).

We now recall some properties of ω, of the Fréchet spaces defined in (1.3), and
of the (LB)-spaces defined in (1.4). First of all, the definition of the Fréchet spaces
above ((LB)-spaces above) is independent of the choice of the sequence pn ↓ p
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(pn ↑ p). The spaces �(p+) are studied in, among others, [21, 35]. The spaces
�(p+), for 1 ≤ p < ∞, are reflexive and separable, but not Montel. We refer to
[4] (see also [7]) for the properties of the spaces ces(p+). The spaces ces(p+), for
1 ≤ p < ∞, are separable, Fréchet–Schwartz (hence Montel) [4, Theorem 3.1 and
Corollary 3.2], but not nuclear [4, Proposition 3.5(ii)]. Clearly, �p ⊆ �(p+) ⊆ ω and
ces(p) ⊆ ces(p+) ⊆ ω, for 1 ≤ p < ∞, with continuous inclusions. We also know
[4, Proposition 3.5(iii)] that �(p+) is not isomorphic to any ces(q+), 1 ≤ q < ∞. The
spaces d(p+), for 1 ≤ p < ∞, are also separable, Fréchet–Schwartz, not nuclear,
and not isomorphic to any ces(q+), 1 ≤ q < ∞ [15, Theorem 4.7].

As in the Banach case, we have that 1 ≤ p ≤ q < ∞ if, and only if,
�(p+) ⊆ �(q+) [7, Proposition 26(ii)], ces(p+) ⊆ ces(q+) ( [7, Proposition 26(iii)]),
d(p+) ⊆ d(q+) (see for instance [15, (4.2)]), �(p+) ⊆ ces(q+) [7, Proposition
26(ii)], d(p+) ⊆ �(q+) and d(p+) ⊆ ces(q+) (see for instance [15, (4.4)]), with
continuous inclusions.

On the other hand, it is known (see again [21, 35]) that the space �(p−), for
1 < p ≤ ∞, is complete, reflexive, but notMontel. Furthermore, �(p−) is isomorphic
to (�(p′+))′β , and (�(p−))′β is isomorphic to �(p′+), where 1 ≤ p′ < ∞ satisfies
1/p + 1/p′ = 1. In [6], the spaces ces(p−) are studied. There, it is shown that
ces(p−) (and also d(p−)), with 1 < p ≤ ∞, are reflexive, separable, Montel (see
also [13, pp. 61–62]) and not nuclear. Furthermore, by [6, Proposition 5.1], we have
that the inclusions �(p−) ⊆ �(q−), ces(p−) ⊆ ces(q−), d(p−) ⊆ d(q−), �(p−) ⊆
ces(q−), d(p−) ⊆ �(q−), d(p−) ⊆ ces(q−) are continuous provided 1 < p ≤ q ≤
∞. By [15, Proposition 4.3 and Remark 4.4], it holds that

(d(p+))′β = ces(p′−), 1 ≤ p < ∞ and (d(p−))′β = ces(p′+), 1 < p ≤ ∞

isomorphically, where p′ satisfies 1/p + 1/p′ = 1. Therefore, the spaces ces(p−)

and d(p−), for 1 < p ≤ ∞, are (DFS)-spaces.

3 (LF) and (PLB) sequence spaces

For the Fréchet spaces �(p+), ces(p+), d(p+) given in (1.3), we have that �(p+) ⊆
�(q+), ces(p+) ⊆ ces(q+), and d(p+) ⊆ d(q+) continuously if and only if 1 ≤
p ≤ q < ∞ (the continuous inclusions have dense range because {en}n∈N0 is a basis
in each of the spaces �(p+), ces(p+), d(p+)). Thus, for given 1 < p ≤ ∞ and {pn}n
a sequence satisfying pn < pn+1 < p, for n ∈ N0, with pn ↑ p, we can define the
(LF)-spaces

L(p−) :=
⋃
n∈N0

�(pn+), C(p−) :=
⋃
n∈N0

ces(pn+), D(p−) :=
⋃
n∈N0

d(pn+).

On the other hand, we also have that the (LB)-spaces given in (1.4) satisfy that
�(p−) ⊆ �(q−), ces(p−) ⊆ ces(q−), and d(p−) ⊆ d(q−) continuously, provided
1 < p ≤ q ≤ ∞ (the continuous inclusions have dense range because {en}n∈N0 is a
basis in each of the spaces �(p−), ces(p−), d(p−)). Thus, for given 1 ≤ p < ∞ and
{pn}n a sequence satisfying p < pn+1 < pn , for n ∈ N0, and pn ↓ p, we can define
the (PLB)-spaces
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L(p+) :=
⋂
n∈N0

�(pn−), C(p+) :=
⋂
n∈N0

ces(pn−), D(p+) :=
⋂
n∈N0

d(pn−).

The definition of the (LF)-spaces above ((PLB)-spaces above) is independent of the
choice of the sequence pn ↑ p (pn ↓ p).

Clearly, the (LF)-spaces L(p−), C(p−) and D(p−) are continuously included in
ω, as well as the (PLB)-spaces L(p+), C(p+) and D(p+).

Proposition 2 For 1 < p ≤ ∞, the spaces L(p−), C(p−), and D(p−) are acyclic
and hence, complete.

Proof By Theorem 1, it is enough to show that these spaces satisfy the condition (Q).
To this end, we will use a well-known interpolation estimate: for 1 < p < q < r ,

‖·‖q ≤ ‖·‖θ
r ‖·‖1−θ

p , (3.1)

with θ = r(q−p)
q(r−p) ∈ (0, 1), where ‖·‖s denotes the �s-norm (see, f.i., [33, Proposition

1.d.2(ii). p.43]). In order to apply (3.1), we observe that for every θ ∈ (0, 1) and
x, y ≥ 0 we have

xθ y1−θ ≤ x + y,

as it is easy to verify. Furthermore, we have for every x, y ≥ 0 and ε > 0 that

xθ y1−θ = 1

ε1−θ
xθ ε1−θ y1−θ =

( 1

ε(1−θ)/θ
x
)θ · (εy)1−θ .

Therefore, we deduce for every ε > 0, θ ∈ (0, 1) and x, y ≥ 0 that

xθ y1−θ ≤ 1

ε(1−θ)/θ
x + εy.

Thus, by (3.1) it follows for every 1 < p < q < r and ε > 0 that

‖·‖q ≤ 1

ε(1−θ)/θ
‖·‖r + ε ‖·‖p . (3.2)

Now, for a fixed 1 < p ≤ ∞, let {pn}n∈N be any strictly increasing sequence satisfying
pn ↑ p. Then for any n ∈ N, we choose a strictly decreasing sequence {pn,l}l∈N
satisfying pn < pn,l < pn+1, for l ∈ N, and pn,l ↓ pn , and denote by ‖ · ‖n,l the
�pn,l -norm for every l ∈ N. Then {‖ · ‖n,l}l∈N is a fundamental system of seminorms
of the Fréchet space �(pn+) for every n ∈ N.

By (3.2), for every n ∈ N there exists m = n + 1 such that for every k > m,
N , M, K ∈ N and ε > 0 there exists S = 1

ε(1−θ)/θ > 0, where θ = pk,K (pn+1,M−pn,N )

pn+1,M (pk,K−pn,N )
,

such that

‖x‖m,M ≤ S ‖x‖k,K + ε ‖x‖n,N , ∀x ∈ �(pn+). (3.3)
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This implies that L(p−) satisfies the condition (Q). So, by Theorem 1, the (LF)-space
L(p−) satisfies condition (M), i.e., it is acyclic and hence, complete.

To show the acyclicity of the (LF)-space C(p−) (D(p−)), it suffices to replace x
in (3.3) by C1(|x |) (by x̂). Indeed, proceeding in this way, we obtain that for every
n ∈ N there exists m = n + 1 such that for every k > m, N , M, K ∈ N and ε > 0
there exists S = 1

ε(1−θ)/θ > 0, where θ = pk,K (pn+1,M−pn,N )

pn+1,M (pk,K−pn,N )
, such that

‖C1(|x |)‖m,M ≤ S ‖C1(|x |)‖k,K + ε ‖C1(|x |)‖n,N , ∀x ∈ ces(pn+)(∥∥x̂∥∥m,M ≤ S
∥∥x̂∥∥k,K + ε

∥∥x̂∥∥n,N , ∀x ∈ d(pn+)
)

,

that is,

‖x‖ces(pm,M ) ≤ S ‖x‖ces(pk,K ) + ε ‖x‖ces(pn,N ) , ∀x ∈ ces(pn+)(
‖x‖d(pm,M ) ≤ S ‖x‖d(pk,K ) + ε ‖x‖d(pn,N ) , ∀x ∈ d(pn+)

)
.

Since {‖·‖ces(pn,l )}l∈N({‖·‖d(pn,l )}l∈N) is a fundamental system of seminorms of the
Fréchet space ces(pn+) (d(pn+)) for every n ∈ N, we deduce that the (LF)-space
C(p−) (D(p−))) satisfies the condition (Q) and hence, by Theorem 1 it is acyclic
and necessarily complete. ��

Proposition 2 clearly implies that

Corollary 3 Let 1 < p ≤ ∞. Then the following properties are satisfied.

(i) The (LF)-space L(p−) is reflexive.
(ii) The (LF)-spaces C(p−) and D(p−) are Montel and hence, reflexive.

Proof (i) Since L(p−) is an (LF)-space, it is clearly ultrabornological and hence,
bornological and barrelled. So, to conclude that L(p−) is reflexive, it suffices to
show that the sets B ∈ B(L(p−)) are relatively σ(L(p−), (L(p−))′)-compact.
So, we fix B ∈ B(L(p−)). Since by Proposition 2 the (LF)-space L(p−) is
complete and hence regular, there exists n ∈ N such that B is contained and
bounded in �(pn+). But, �(pn+) is a reflexive Fréchet space and so, B is rela-
tivelyσ(�(pn+), (�(pn+))′)-compact. This implies that B is necessarily relatively
σ(L(p−), (L(p−))′)-compact.

(ii) The (LF)-spaceC(p−) (D(p−)) is ultrabornological and hence, bornological and
barrelled. So, to conclude that C(p−) (D(p−)) is Montel, it suffices to show that
the sets B ∈ B(C(p−)) (B ∈ B(D(p−))) are relatively compact. So, we fix
B ∈ B(C(p−)) (B ∈ B(D(p−))). Since by Proposition 2 the (LF)-space C(p−)

(D(p−)) is complete and hence regular, there exists n ∈ N such that B is contained
and bounded in ces(pn+) (d(pn+)). But, by [4, Theorem 3.1 and Corollary 3.2]
(by [15, Theorem 4.7]) ces(pn+) (d(pn+)) is a Fréchet–Schwartz space and so,
B is relatively compact in ces(pn+) (d(pn+)). This implies that B is necessarily
relatively compact in C(p−) (D(p−)). ��
A further immediate consequence of Proposition 2 above combined with [41,

Lemma 4.2] is the following result.
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Proposition 4 Let 1 ≤ p < ∞. Then the following properties are satisfied.

(i) The (PLB)-spaces L(p+), C(p+) and D(p+) are bornological.
(ii) The (PLB)-space L(p+) is reflexive, whereas the (PLB)-spaces C(p+) and

D(p+) are Montel.

Proof (i) It suffices to give the proof only for the (PLB)-space L(p+). The other cases
follow in a similar way.

Let 1 < p′ ≤ ∞ satisfy 1/p + 1/p′ = 1. Then L(p′−) = ⋃
n∈N �(p′

n+), with
1 < p′

n ↑ p′, is a reflexive, acyclic (hence, complete and weakly acyclic) (LF)-
space (by Corollary 3 and Proposition 2). So, it follows that its strong dual (L(p′−))′β
is canonically isomorphic to the projective limit of the strong duals of the spaces
�(p′

n+), i.e., (L(p′−))′β = ⋂
n∈N(�(p′

n+))′β and that by [41, Lemma 4.2] the strong
dual (L(p′−))′β is bornological. But, if for every n ∈ N, we take 1 ≤ pn < ∞
satisfying 1/pn + 1/p′

n = 1, then pn ↓ p and (�(p′
n+))′β = �(pn−). Therefore, we

deduce that

L(p+) = (L(p′−))′β

and hence, it is bornological.
(ii) As it follows from the proof of point (i), we have that

L(p+) = (L(p′−))′β, C(p+) = (D(p′−))′β, D(p+) = (C(p′−))′β,

with 1 < p′ ≤ ∞ satisfying 1/p + 1/p′ = 1. Accordingly, as L(p+) (C(p+) and
D(p+)) is the strong dual of a reflexive (of a Montel) lcHs, it is reflexive (they are
Montel). ��

As an immediate consequence of Corollary 3 and Proposition 4, we obtain that

Corollary 5 (i) Let 1 < p ≤ ∞. If 1 ≤ p′ < ∞ satisfies 1/p + 1/p′ = 1, then

(L(p−))′β = L(p′+), (C(p−))′β = D(p′+), (D(p−))′β = C(p′+).

(ii) Let 1 ≤ p < ∞. If 1 < p′ ≤ ∞ satisfies 1/p + 1/p′ = 1, then

(L(p+))′β = L(p′−), (C(p+))′β = D(p′−), (D(p+))′β = C(p′−).

Weconclude this sectionwith some results regarding the validity of some inclusions
between the spaces introduced above. For this, we recall a characterization for the
continuity of an operator in (LF)-spaces (see [27, p. 147]):

Lemma 6 Let X = indn Xn and Y = indn Yn be two (LF)-spaces. Let T : X → Y
be a linear operator. Then T ∈ L(X ,Y ) if, and only if, for each n ∈ N there exists
m ∈ N such that T (Xn) ⊆ Ym and the restriction T : Xn → Ym is continuous.

Applying Lemma 6 we immediately obtain that
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Proposition 7 We have L(p−) ⊆ L(q−), C(p−) ⊆ C(q−), D(p−) ⊆ D(q−),
L(p−) ⊆ C(q−), D(p−) ⊆ L(q−), and D(p−) ⊆ C(q−) with continuous inclu-
sions if, and only if, 1 < p ≤ q ≤ ∞.

Proof It suffices to give the proof only for the first inclusion. The other cases follow
in a similar way.

So, let 1 < p < q < ∞. If 1 < pn ↑ p and p ≤ qn ↑ q, then pn < qn for every
n ∈ N. Accordingly, �(pn+) ⊆ �(qn+) with continuous inclusion for every n ∈ N.
Since L(p−) = ⋃

n∈N �(pn+) and L(q−) = ⋃
n∈N �(qn+), the continuity of the

inclusion L(p−) ⊆ L(q−) follows from Lemma 6.
Suppose that L(p−) ⊆ L(q−)with continuous inclusion for some 1 < p, q < ∞.

If L(p−) = ⋃
n∈N �(pn+) and L(q−) = ⋃

n∈N �(qn+) with pn ↑ p and qn ↑ q
respectively, then by Lemma 6 for each n ∈ N there exists m(n) ∈ N such that
�(pn+) ⊆ �(qm(n)+) with continuous inclusion. But, for any n ∈ N, �(pn+) ⊆
�(qm(n)+)with continuous inclusion if, and only if, pn ≤ qm(n) < q. Letting n → ∞,
it follows that p ≤ q. ��

For analogous inclusions in the (PLB)-spaces considered, we state a characteriza-
tion for the continuity in (PLB)-spaces given in [9, Proposition 2] (cf. [22, Lemma
4]).

Lemma 8 Let X = projn Xn and let Y = projn Yn be (PLB)-spaces such that X ⊆ Xn

has dense range for all n ∈ N, and each Yn is a complete (LB)-space. Let T : X → Y
be a linear operator. We have that T ∈ L(X ,Y ) if and only if for all n ∈ N there exists
m ∈ N such that T admits a unique continuous extension T : Xm → Yn.

Proposition 9 We have L(p+) ⊆ L(q+), C(p+) ⊆ C(q+), D(p+) ⊆ D(q+),
L(p+) ⊆ C(q+), D(p+) ⊆ L(q+), and D(p+) ⊆ C(q+) with continuous inclu-
sions if, and only if, 1 ≤ p ≤ q < ∞.

Proof The proof is similar to the one of Proposition 7. Actually, it suffices to apply
Lemma 8, after having observed that each (LB)-space in (1.4) is complete and that
each (PLB)-space is dense in its steps as it contains the set {en}n∈N0 . ��

4 Spectra of generalized Cesàro operators in (LF) and (PLB)-spaces

Let X be a lcHs and T ∈ L(X). The resolvent set ρ(T ; X) of T consists of all λ ∈ C

such that R(λ, T ) := (λI − T )−1 exists in L(X). The spectrum of T is defined by
σ(T ; X) := C \ ρ(T ; X). The point spectrum σpt (T ; X) ⊆ σ(T ; X) consists of
all λ ∈ C such that (λI − T ) is not injective. The elements in σpt (T ; X) are called
eigenvalues. An eigenvalueλ ∈ C is called simple if dimker(λI−T ) = 1.Waelbroeck
[42] considered the set ρ∗(T ; X)(⊆ ρ(T ; X)) consisting of all λ ∈ C for which there
exists δ > 0 such that the open disk B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T ; X) and
{R(μ; T ) : μ ∈ B(λ, δ)} is an equicontinuous subset in L(X). Then σ ∗(T ; X) :=
C \ ρ∗(T ; X) is a closed set in C, and satisfies σ(T ; X) ⊆ σ ∗(T ; X). Note that if X
is a Banach space, then σ(T ; X) coincides with σ ∗(T ; X). For the classical spectral
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theory of compact operators in lcHs, we refer to [23, 27]. We know (see for example
[8, Corollary 2.2]) that if X is a complete and barrelled lcHs and T ∈ L(X), then

ρ(T ; X) = ρ(T ′; X ′
β), σ (T ; X) = σ(T ′; X ′

β), σ ∗(T ′; X ′
β) ⊆ σ ∗(T ; X).

(4.1)

The proof of this result is along the lines of that for (LB)-spaces given in [3, Lemma
5.2]:

Lemma 10 Let X = indn Xn be an (LF)-space. Let T ∈ L(X) satisfy the following
condition:

(A) For each n ∈ N, the restriction Tn of T to Xn maps Xn into itself and Tn ∈ L(Xn).

Then, the following properties are satisfied:

(i) σpt (T ; X) =
⋃∞

n=1
σpt (Tn; Xn).

(ii) σ(T ; X) ⊆
⋂

m∈N
( ⋃∞

n=m
σ(Tn; Xn)

)
.

(iii) If
⋃∞

n=m
σ(Tn; Xn) ⊆ σ(T ; X) for some m ∈ N, then σ ∗(T ; X) = σ(T ; X).

Observe that in the proof it is used the openmapping theorem (see for example [34])
which is valid in the setting of (LF)-spaces as they have aweb and are ultrabornological.

Results regarding the spectra of (PLB)-spaces are stated and shown below (compare
them with Lemma 10). To that aim, we need some preparation.

Lemma 11 Let X be a lcHs, T ∈ L(X) and λ ∈ ρ∗(T ; X). If B(λ, ε) ⊂ ρ∗(T ; X) for
some ε > 0, then the set {R(z, T ) : z ∈ B(λ, ε)} is equicontinuous.
Proof Since B(λ, ε) ⊂ ρ∗(T ; X), for every μ ∈ B(λ, ε), there exists ε(μ) > 0 such
that B(μ, ε(μ)) ⊂ ρ(T ; X) and the set {R(z, T ) : z ∈ B(μ, ε(μ))} is equicontinuous.
Therefore,

B(λ, ε) ⊂
⋃

μ∈B(λ,ε)

B(μ, ε(μ)).

Since B(λ, ε) is a compact subset of C, there exist μ1, . . . , μk ∈ B(λ, ε) such that

B(λ, ε) ⊂
k⋃

i=1

B(μi , εi ), (4.2)

with εi := ε(μi ) for 1 ≤ i ≤ k.
Since the set {R(z, T ) : z ∈ B(μi , εi )} is equicontinuous for every 1 ≤ i ≤ k,

fixed p ∈ �X , for each i = 1, . . . , k there exist qi ∈ �X and Mi > 0 such that

p(R(z, T )x) ≤ Miqi (x), z ∈ B(μi , εi ), x ∈ X .
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Now, there exists q ∈ �X such that max{qi (x) : i = 1, . . . , k} ≤ q(x) for all x ∈ X .
So, set M := max{Mi : i = 1, . . . , k}, it follows that

p(R(z, T )x) ≤ Mq(x), z ∈
k⋃

i=1

B(μi , εi ), x ∈ X .

In view of (4.2), this shows that {R(z, T ) : z ∈ B(λ, ε)} is equicontinuous. ��
We show the following result (cf. [2, Lemma 2.1] for Fréchet spaces):

Lemma 12 Let X = ⋂∞
n=1 Xn be a barrelled (PLB)-space. Let T ∈ L(X) satisfy the

following property:

(A’) For every n ∈ N there exists Tn ∈ L(Xn) such that Tn|X = T and Tn|Xn+1 =
Tn+1.

Then:

(i) σ(T ; X) ⊆ ⋃∞
n=1 σ(Tn; Xn) and σpt (T ; X) ⊆ ⋂

n∈N σpt (Tn; Xn).
(ii) For all λ ∈ ⋂∞

n=1 ρ(Tn; Xn) the resolvent R(λ, T ) of T coincides with the
restriction of R(λ, Tn) of Tn to X for each n ∈ N.

(iii) If
⋃∞

n=1 σ ∗(Tn; Xn) ⊆ σ(T ; X), then σ ∗(T ; X) = σ(T ; X).
(iv) If dimker(λI − Tm) = 1 for each λ ∈ ⋂

n∈N σpt (Tn; Xn) and for each m ∈ N,
then σpt (T ; X) = ⋂

n∈N σpt (Tn; Xn).

Proof The proof of points (i) and (ii) is along the lines of [2, Lemma 2.1]. Indeed,
we take λ ∈ ⋂∞

n=1 ρ(Tn; Xn) and we show that λ ∈ ρ(T ; X). We see that λI − T :
X → X is injective: if (λI − T )x = 0 for some x ∈ X , then by (A’) we have
(λI − T1)x = 0 in X1. Since λ ∈ ρ(T1; X1), we have x = 0. To show that λI − T is
surjective, we fix y ∈ X . Since λI − Tn is surjective for each n ∈ N, it follows that
for every n ∈ N there exists xn ∈ Xn satisfying (λI − Tn)xn = y in Xn for every
n ∈ N. By condition (A’) we have that Tn|Xn+1 = Tn+1. Hence, y = (λI − Tn)xn =
(λI − Tn+1)xn+1 = (λI − Tn)xn+1 in Xn+1 ⊆ Xn . Since λ ∈ ρ(Tn; Xn), we obtain
xn = xn+1 for every n ∈ N. So, x1 ∈ X and y = (λI − T )x1. Hence, there exists the
inverse operator (λI − T )−1 : X → X . It remains to show that (λI − T )−1 ∈ L(X),
thereby implying that R(λ, T ) = (λI − T )−1. So, we observe that the proof above
implies that the resolvent R(λ, T ) of T coincides with the restriction of R(λ, Tn)
to X for each n ∈ N. Since R(λ, Tn) ∈ L(Xn) for each n ∈ N, by Lemma 8 it
then follows that R(λ, T ) ∈ L(X). Accordingly, λ ∈ ρ(T ; X) as desired. Since
λ ∈ ⋂∞

n=1 ρ(Tn; Xn) is arbitrary, we conclude that
⋂∞

n=1 ρ(Tn; Xn) ⊆ ρ(T ; X) and
hence, σ(T ; X) ⊆ ⋃∞

n=1 σ(Tn; Xn).
Finally, the proof of σpt (T ; X) ⊆ ⋂

n∈N σpt (Tn; Xn) is similar to that in [8, Lemma
2.5].

(iii) We have that σ(T ; X) ⊆ σ ∗(T ; X). If σ(T ; X) = C, then there is nothing
to prove. So, we suppose C\σ(T ; X) 
= ∅ and we take λ ∈ C\σ(T ; X). Then, there
exists ε > 0 such that B(λ, ε) ∩ σ(T ; X) = ∅. By assumption, we have B(λ, ε) ∩
σ ∗(Tn; Xn) = ∅ for every n ∈ N, that is, B(λ, ε) ⊆ ρ∗(Tn; Xn) for every n ∈ N. By
Lemma 11, we have that {R(μ, Tn) : μ ∈ B(λ, ε)} is equicontinuous in Ls(Xn) for
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every n ∈ N.We claim that λ ∈ ρ∗(T ; X). Sincewe know that B(λ, ε)∩σ(T , X) = ∅,
we have B(λ, ε) ⊆ B(λ, ε) ⊆ ρ(T ; X). So, to show the claim, it is enough to see
that {R(μ, T )x : μ ∈ B(λ, ε)} is bounded for every x ∈ X , as X is barrelled. By
contradiction, we assume there exists x ∈ X such that {R(μ, T )x : μ ∈ B(λ, ε)} is
an unbounded subset of X . Then, there is n0 ∈ N such that the set {R(μ, Tn0)x : μ ∈
B(λ, ε)} is unbounded in Xn0 . This contradicts the fact that {R(μ, Tn0) : μ ∈ B(λ, ε)}
is equicontinuous in Ls(Xn0) by Lemma 11.

The proof of point (iv) follows as in [8, Lemma 2.5]. ��

4.1 Spectra of generalized Cesàro operators Ct (0 ≤ t < 1)

The aim of this subsection is to study the spectra of the generalized Cesàro operators
Ct , for 0 ≤ t < 1, acting in the (LF)-spaces L(p−),C(p−), and D(p−) (1 < p ≤ ∞)
and in the (PLB)-spaces L(p+), C(p+), and D(p+) (1 ≤ p < ∞). In order to do
this, we first observe that

Proposition 13 Let 0 ≤ t < 1 and let X belong to {L(p−),C(p−), D(p−); 1 <

p ≤ ∞} or to {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then, Ct ∈ L(X).

Proof We first consider the case X ∈ {L(p−),C(p−), D(p−)}, with 1 < p ≤ ∞.
So, we take a strictly increasing sequence {pk}k∈N such that 1 < pk ↑ p and set
Xk := �(pk+) if X = L(p−) or Xk := ces(pk+) (Xk := d(pk+)) if X = C(p−)

(if X = D(p−)), for any k ∈ N. Then by [8, Proposition 4.4] we have Ct ∈ L(Xk)

for every k ∈ N. By Lemma 6 it necessarily follows that Ct ∈ L(X).
We now pass to consider the case that X ∈ {L(p+),C(p+), D(p+)}, with 1 ≤

p < ∞. So, we take a strictly decreasing sequence {pk}k∈N such that 1 < pk ↓ p and
set Xk := �(pk−) if X = L(p+) or Xk := ces(pk−) (Xk := d(pk−)) if X = C(p+)

(if X = D(p+)), for any k ∈ N. Then by [8, Proposition 5.2] we have Ct ∈ L(Xk)

for every k ∈ N. By Lemma 8 it necessarily follows that Ct ∈ L(X). ��
We now turn our attention to the study of the spectra of Ct .

Lemma 14 Let 0 ≤ t < 1 and let X belong to {L(p−),C(p−), D(p−); 1 < p ≤ ∞}
or to {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then 0 ∈ σ(Ct ; X).

Proof Let 0 ≤ t < 1 be fixed. By [8, Proposition 3.2] there exists the inverse operator
C−1
t : ω → ω and is given (see formula (3.5) in [8]) by

C−1
t (x) = (

x0,
(
(n + 1)xn − ntxn−1

)
n∈N

)
, x = (x0, x1, . . .) ∈ ω. (4.3)

Since X ⊆ ω with continuous inclusion, to show that 0 ∈ σ(Ct ; X) it suffices to
establish that C−1

t (X) does not contain X .
We first consider the case that X ∈ {L(p−),C(p−), D(p−)}, with 1 < p ≤ ∞

fixed. So, we take a strictly increasing sequence {pk}k∈N such that 1 < pk ↑ p and
strictly decreasing sequences {pk,l}l∈N such that pk < pk,l < pk+1, for k, l ∈ N, and
pk,l ↓ pk . Now, we observe that the sequence

ϕ = (ϕn)n∈N0 =
( 1

n + 1

)
n∈N0
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belongs to L(p−). Indeed, for every k, l ∈ N we have

‖ϕ‖pk,l =
∞∑
n=0

( 1

n + 1

)pk,l
< ∞,

and hence, ϕ ∈ �(pk+) ⊆ L(p−). However, from (4.3) it follows that

C−1
t (ϕ) =

(
ϕ0,

(n + 1

n + 1
− nt

n

)
n∈N

)
= (1, 1 − t, 1 − t, . . .). (4.4)

Accordingly, for every k, l ∈ N we have

∞∑
n=0

|(C−1
t (ϕ))n|pk,l = 1 +

∞∑
n=1

(1 − t)pk,l = +∞,

which implies that C−1
t (ϕ) /∈ L(p−).

Since ϕ and C−1
t (ϕ) are decreasing sequences, we have that ϕ̂ = ϕ and ̂C−1

t (ϕ) =
C−1
t (ϕ). So, the same argument shows that ϕ ∈ d(pk+) ⊆ D(p−) (for every k ∈ N),

but, C−1
t (ϕ) /∈ D(p−).

Since D(p−) ⊆ C(p−) (see Proposition 7) and ϕ ∈ D(p−), we also have that
ϕ ∈ C(p−). On the other hand, from (4.4) it follows that

C1(C
−1
t (ϕ)) =

(
1,

(
1 − n

n + 1
t
)
n∈N

)
=

(
1, 1 − 1

2
t, 1 − 2

3
t, . . .

)

and hence,

∞∑
n=0

|(C1(C
−1
t (ϕ)))n|pk,l =

∞∑
n=0

(
1 − n

n + 1
t
)pk,l = ∞,

as
(
1 − n

n+1 t
)pk,l → (1 − t)pk,l 
= 0. This means that C−1

t (ϕ) /∈ C(p−).

We now pass to consider the case that X ∈ {L(p+),C(p+), D(p+)}, with 1 ≤
p < ∞ fixed. So, we take a strictly decreasing sequence {pk}k∈N such that pk ↓ p
and strictly increasing sequences {pk,l}l∈N such that pk+1 < pk,l < pk , for k, l ∈ N,
and pk,l ↑ pk . Arguing as above, we obtain that ϕ ∈ X , but C−1

t (ϕ) /∈ X . ��
We denote

� :=
{ 1

n + 1
n ∈ N0

}
and �0 := � ∪ {0}.

Theorem 15 Let 0 ≤ t < 1 and let X belong to {L(p−),C(p−), D(p−); 1 < p ≤
∞} or {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then

σpt (Ct ; X) = � and σ(Ct ; X) = σ ∗(Ct ; X) = �0.
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Moreover, every λ ∈ � is a simple eigenvalue.

Proof Let X ∈ {L(p−),C(p−), D(p−)} be fixed, with 1 < p ≤ ∞. Then, for every
k ∈ Nwedenote by Xk theFréchet space �(pk+) if X = L(p−)or ces(pk+) (d(pk+))
if X = C(p−) (if D(p−)), where {pk}k∈N is any strictly increasing sequence satis-
fying pk ↑ p. By [8, Theorem 4.5] we have that

σpt (Ct ; Xk) = � and σ(Ct ; Xk) = σ ∗(Ct ; Xk) = �0. (4.5)

Since the restriction of Ct to Xk maps Xk into itself for every k ∈ N, we can apply
Lemma 10(i)–(ii) to obtain that

� = σpt (Ct ; X) ⊆ σ(Ct ; X) ⊆ �0.

On the other hand, by Lemma 14 we have that 0 ∈ σ(Ct ; X). Therefore, it follows that
σ(Ct ; X) = �0. Moreover, the assumption in Lemma 10(iii) is fulfilled, and hence

σ ∗(Ct ; X) = σ(Ct ; X) = �0.

If λ ∈ σpt (Ct ; X), then {0} 
= ker(λI − Ct ) ⊆ ker(λI − Cω
t ) (here, Cω

t denotes
the operator Ct acting in ω), as X ⊆ ω. Accordingly, 0 < dimker(λI − Ct ) ≤
dimker(λI −Cω

t ) = 1 (see [8, Lemma 3.4(i)]). It follows that dimker(λI −Ct ) = 1,
i.e., λ is a simple eigenvalue.

Now, we suppose X ∈ {L(p+),C(p+), D(p+)}, with 1 ≤ p < ∞. Then for
every k ∈ N we denote by Xk the (LB)-space �(pk−) if X = L(p+) or ces(pk−)

(d(pk−)) if X = C(p+) (if X = D(p+)), where {pk}k∈N is any strictly decreasing
sequence satisfying pk ↓ p. By [8, Theorem 5.3] we have that (4.5) is valid also in
this case. Moreover, by [8, Theorem 5.3] we also know that dimker( 1

n+1 I − Ct ) = 1
in Xk , for each k ∈ N and n ∈ N0. Since Ct maps Xk into itself for every k ∈ N, we
can apply Lemma 12(iv) to conclude that

σpt (Ct ; X) =
⋂
k∈N

σpt (Ct ; Xk) = �.

By Lemma 12(i) we also obtain that

σpt (Ct ; X) ⊆ σ(Ct ; X) ⊆
∞⋃
k=1

σ(Ct ; Xk) = �0.

Since by Lemma 14 we have that 0 ∈ σ(Ct ; X), it then follows that σ(Ct ; X) = �0.
Finally, by Lemma 12(ii)–(iii) we conclude that

σ ∗(Ct ; X) = σ(Ct ; X) = �0.

The proof that every λ ∈ σpt (Ct ; X) is a simple eigenvalue follows as in the case
of (LF)-spaces. ��
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4.2 Spectra of the Cesàro operator

We are now concerned about the study of the operator C1 and of its spectra. To do
this, we first observe that

Proposition 16 Let X be one of the spaces in {L(p−),C(p−), D(p−); 1 < p ≤ ∞}
or in {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then C1 ∈ L(X).

Proof The proof is along the lines of the proof of Proposition 13, after having observed
that the operator C1 acts continuously in the Fréchet and (LB)-spaces considered in
this paper, see [2, Sect. 2] for �(p+), [4] for ces(p+), [6, Proposition 5.3] for �(p−)

and ces(p−), and [15, Proposition 4.9] for d(p+) and d(p−). ��
In the literature, the spectra of C1 are analyzed, among others, when C1 acts in the

Fréchet and (LB)-spaces defined in (1.3) and (1.4). We state and refer to these results
below. For 1 ≤ p < ∞, we write

B(p/2, p/2) =
{
z ∈ C

∣∣∣z − p

2

∣∣∣ <
p

2

}
.

Lemma 17 Let X belong to {�(p+), ces(p+), d(p+); 1 ≤ p < ∞}. If 1 < p < ∞,
then

σpt (C1; X) = ∅ and B(p′/2, p′/2) ⊆ σpt (C
′
1, X

′
β);

σ(C1; X) = B(p′/2, p′/2) ∪ {0};
σ ∗(C1; X) = σ(C1; X) = B(p′/2, p′/2),

where 1 < p′ < ∞ satisfies 1/p + 1/p′ = 1. On the other hand, if p = 1, then

σpt (C1; X) = ∅ and {z ∈ C : Rez > 0} ⊆ σpt (C
′
1; X ′

β);
σ(C1; X) = {z ∈ C : Rez > 0} ∪ {0};

σ ∗(C1; X) = σ(C1; X) = {z ∈ C : Rez ≥ 0}.

Moreover, every 0 
= λ ∈ σ(C1; X) is a simple eigenvalue for C ′
1 acting in X ′

β .

For the proof of the results in Lemma 17, we refer the reader to [2, Theorem 2.2]
for �(p+) (1 < p < ∞), to [2, Theorem 2.4] for �(1+), to [7, Theorem 2.3 and
Proposition 2.4] for ces(p+) (1 ≤ p < ∞), and to [16, Theorem 3.2 and Proposition
3.3] for d(p+) (1 ≤ p < ∞).

Lemma 18 Let X belong to {�(p−), ces(p−), d(p−); 1 < p ≤ ∞}. Then

σpt (C1; X) = ∅ and B(p′/2, p′/2) ⊆ σpt (C
′
1; X ′

β);
B(p′/2, p′/2) ∪ {0} ⊆ σ(C1; X) ⊆ B(p′/2, p′/2);
σ ∗(C1; X) = σ(C1; X) = B(p′/2, p′/2).

where 1 ≤ p′ < ∞ satisfies 1/p + 1/p′ = 1.
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The proof of Lemma 18 for �(p−) is given in [8, Proposition 5.5], for ces(p−) is
given in [6, Propositions 3.1, 3.2, 3.3], and for d(p−) in [16, Theorem 3.6].

Let us begin the study of the spectra by considering X ∈ {L(p−),C(p−), D(p−)},
with 1 < p ≤ ∞.

Lemma 19 Let X belong to {L(p−),C(p−), D(p−); 1 < p ≤ ∞}. Then 0 ∈
σ(C1; X).

Proof The formula in (4.3) is valid also for t = 1, i.e., the inverse operatorC−1
1 : ω →

ω exists in L(ω) and it is given by

C−1
1 (x) = (

x0,
(
(n + 1)xn − nxn−1

)
n∈N

)
, x = (xn)n ∈ ω.

We consider the following sequence as in the proof of [6, Proposition 3.2]:

x = (xn)n =
(1 − (−1)n+1

2(n + 1)

)
n∈N0

= (1, 0, 1/3, 0, 1/5, . . .). (4.6)

Therefore,

x̂ = (1, 1/3, 1/3, 1/5, 1/5, . . .). (4.7)

Now, let X ∈ {L(p−),C(p−), D(p−)} be fixed, with 1 < p ≤ ∞, and let {pk}k∈N
be a strictly increasing sequence satisfying 1 < pk ↑ p. Then for every k ∈ N

we denote by Xk the k-th step of the inductive spectrum defining X as done in the
previous subsection (i.e., Xk is one of the Fréchet spaces �(pk+), ces(pk+), d(pk+)).
So, for every k ∈ N we have the sequence x defined in (4.6) satisfies x ∈ d(pk+) ⊆
�(pk+) ⊆ ces(pk+) (see (4.7)) and hence, x ∈ Xk ⊆ X . However, the n-th entry, for
n ∈ N, of C−1

1 (x) is given by

(n + 1)
(1 − (−1)n+1)

2(n + 1)
− n

(1 − (−1)n)

2n
= (−1)n + (−1)n

2
= (−1)n .

Since x0 = 1, we get that C−1
1 (|x |) = (|(−1)n|)n∈N0 , which does not belong to

ces(pk+) for all k ∈ N, as C1(|C−1
1 (x)|) = (1, 1, 1, 1, 1, . . .). Accordingly, C−1

1 (|x |)
does not belong to either d(pk+) or to �(pk+) for all k ∈ N. Therefore,C−1

1 (|x |) /∈ X .
Thus, we obtain 0 ∈ σ(C1; X) as we wanted. ��

In the following result, we see that the behaviour of the spectra of C1 in the
(LF)-spaces considered in this paper is similar to that in the (LB)-spaces in (1.4)
(cf. Lemma 18):

Theorem 20 Let X belong to {L(p−),C(p−), D(p−); 1 < p ≤ ∞}. Then

σpt (C1; X) = ∅ and B(p′/2, p′/2) ⊆ σpt (C
′
1; X ′

β);
B(p′/2, p′/2) ∪ {0} ⊆ σ(C1; X) ⊆ B(p′/2, p′/2);
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σ ∗(C1; X) = σ(C1; X) = B(p′/2, p′/2),

where 1 ≤ p′ < ∞ satisfies 1/p + 1/p′ = 1.

Proof Let X ∈ {L(p−),C(p−), D(p−)} be fixed, with 1 < p ≤ ∞. So, let {pk}k∈N
be a strictly increasing sequence satisying 1 < pk ↑ p. Then for every k ∈ N

we denote by Xk the k-th step of the inductive spectrum defining X as done in the
previous subsection (i.e., Xk is one of the Fréchet spaces �(pk+), ces(pk+), d(pk+)).
We observe that the conjugate exponents p′

k form a strictly decreasing sequence such
that p′

k ↓ p′, where 1 ≤ p′ < ∞ satisfies 1/p + 1/p′ = 1. We point out that also in
the case p = ∞, we have 1 < pk < ∞ for every k ∈ N. Since the assumptions in
Lemma 10 are satisfied, we can apply Lemma 10(i)–(ii) combined with Lemma 17 to
deduce that σpt (C1; X) = ∅ and

σ(C1; X) ⊆
⋂
m∈N

( ∞⋃
k=m

σ(C1; Xk)
)

=
⋂
m∈N

(
B(p′

m/2, p′
m/2) ∪ {0})

= B(p′/2, p′/2). (4.8)

Accordingly,

σ(C1; X) ⊆ B(p′/2, p′/2).

We now show that B(p′/2, p′/2) ⊆ σpt (C ′
1; X ′

β). To this end, we recall that by
Corollaries 3 and 5 we have that the strong dual X ′

β of X is reflexive (hence bar-
relled) and it is given by X ′

β = ⋂
k∈N(Xk)

′
β , where each (Xk)

′
β is one of the

(LB)-spaces �(p′
k−), ces(p′

k−) or d(p′
k−). On the other hand, by Lemma 17 we

have that B(p′
k/2, p

′
k/2) ⊆ σpt (C ′

1; (Xk)
′
β) for every k ∈ N. Since the assumptions

in Lemma 12 are clearly satisfied with T = C ′
1 and every element in B(p′/2, p′/2)

is a simple eigenvalue for C ′
1, we can apply Lemma 12(iv) to deduce that

B(p′/2, p′/2) ⊆
⋂
k∈N

B(p′
k/2, p

′
k/2) ⊆

⋂
k∈N

σpt (C
′
1; (Xk)

′
β) = σpt (C

′
1; X ′

β).

So, it follows via (4.1) that

B(p′/2, p′/2) ⊆ σpt (C
′
1; X ′

β) ⊆ σ(C ′
1; X ′

β) = σ(C1; X).

Since 0 ∈ σ(C1; X) by Lemma 19, it follows by (4.8) that

B(p′/2, p′/2) ∪ {0} ⊆ σ(C1; X) ⊆ B(p′/2, p′/2).

Since σ(C1; X) ⊆ B(p′/2, p′/2) and σ(C1; X) ⊆ σ ∗(C1; X), we can argue as the
proof of [6, Proposition 3.3] to conclude that
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σ ∗(C1; X) = σ(C1; X) = B(p′/2, p′/2).

��
We now pass to study the spectra of C1 acting in the (PLB)-spaces L(p+), C(p+),

and D(p+), for 1 ≤ p < ∞. We first show that the analogous of Lemma 19 holds
also in this case. The argument is similar.

Lemma 21 Let X belong to {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then 0 ∈
σ(C1; X).

Proof Let X ∈ {L(p+),C(p+), D(p+)} be fixed, with 1 ≤ p < ∞ and let {pk}k∈N
be a strictly decreasing sequence satisfying p < pk ↓ p. Then for every k ∈ N

we denote by Xk the k-th step of the projective spectrum defining X as done in the
previous subsection (i.e., Xk is one of the (LB)-spaces �(pk−), ces(pk−), d(pk−)

with pk > p ≥ 1).
We now observe that the sequence x defined in (4.6) satisfies x ∈ d(pk−) ⊆

�(pk−) ⊆ ces(pk−) (see (4.7)) for all k ∈ N, as each pk > 1, and hence, x ∈ Xk for all
k ∈ N. Accordingly, x ∈ X . But,C−1

1 (|x |) = (1)n∈N0 (see the proof of Lemma 19) and
so, C−1

1 (|x |) does not belong to ces(pk−) for all k ∈ N, as C1(|C−1
1 (x)|) = (1)n∈N.

This implies that C−1
1 (x) /∈ X . Therefore, we deduce that 0 ∈ σ(C1, X). ��

We are ready to study the spectra of C1 in the (PLB) sequence spaces considered.

Theorem 22 Let X belong to {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. If 1 < p < ∞,
then

σpt (C1; X) = ∅ and B(p′/2, p′/2) ⊆ σpt (C
′
1; X ′

β);
B(p′/2, p′/2) ∪ {0} ⊆ σ(C1; X) ⊆ B(p′/2, p′/2);
σ ∗(C1; X) = σ(C1; X) = B(p′/2, p′/2),

where 1 < p′ < ∞ satisfies 1/p + 1/p′ = 1. On the other hand, if p = 1, then

σpt (C1; X) = ∅ and {z ∈ C : Rez > 0} ⊆ σpt (C
′
1; X ′

β);
{z ∈ C : Rez > 0} ∪ {0} ⊆ σ(C1; X) ⊆ {z ∈ C : Rez ≥ 0};
σ ∗(C1; X) = σ(C1; X) = {z ∈ C : Rez ≥ 0}.

Proof Let X ∈ {L(p+),C(p+), D(p+)} be fixed, with 1 ≤ p < ∞ and let {pk}k∈N
be a strictly decreasing sequence satisfying pk ↓ p, with p < pk for every k ∈ N. Then
for every k ∈ Nwe denote by Xk the k-th step of the projective spectrum defining X as
done in the previous subsection (i.e., Xk is one of the (LB)-spaces �(pk−), ces(pk−),
d(pk−)with pk > p ≥ 1).We observe that the conjugate exponent p′

k forms a strictly
increasing sequence such that p′

k ↑ p′ with 1 < p′
k < p′, where 1 < p′ ≤ ∞.

Fix p 
= 1. Since the assumptions in Lemma 12 are clearly satisfied, we can apply
Lemma 12(i) combined with Lemma 18 to deduce that

σpt (C1; X) =
⋂
k∈N

σpt (C1; Xk) = ∅
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and that

σ(C1; X) ⊆
⋃
k∈N

σ(C1; Xk) ⊆
⋃
k∈N

B(p′
k/2, p

′
k/2) ⊆ B(p′/2, p′/2).

We now show that B(p′/2, p′/2) ⊆ σpt (C ′
1; X ′

β). To this end, we recall that by
Proposition 4 and Corollary 5, the (PLB)-space X is reflexive and its strong dual X ′

β is
given by X ′

β = ⋃
k∈N(Xk)

′
β , where each (Xk)

′
β is one of the Fréchet spaces �(p′

k+),
ces(p′

k+) or d(p′
k+). On the other hand, by Lemma 18we have that B(p′

k/2, p
′
k/2) ⊆

σpt (C ′
1; (Xk)

′
β) for every k ∈ N. Since the assumption in Lemma 10 is clearly satisfied

with T = C ′
1, we can apply Lemma 10(i) to deduce that

B(p′/2, p′/2) =
⋃
k∈N

B(p′
k/2, p

′
k/2) ⊆

⋃
k∈N

σpt (C
′
1; (Xk)

′
β) = σpt (C

′
1; X ′

β).

So, it follows by (4.1) that

B(p′/2, p′/2) ⊆ σpt (C
′
1; X ′

β) ⊆ σ(C ′
1; X ′

β) = σ(C1; X).

Since 0 ∈ σ(C1; X) by Lemma 21, we conclude that

B(p′/2, p′/2) ∪ {0} ⊆ σ(C1; X) ⊆ B(p′/2, p′/2)

and hence,

σ(C1; X) = B(p′/2, p′/2).

Since by Lemma 18we have σ ∗(C1; Xk) = B(p′
k/2, p

′
k/2) for every k ∈ N, it follows

that

⋃
k∈N

σ ∗(C1; Xk) =
⋃
k∈N

B(p′
k/2, p

′
k/2) ⊆ B(p′/2, p′/2) = σ(C1; X).

We can then apply Lemma 12(iii) to conclude that σ ∗(C1; X) = σ(C1; X) =
B(p′/2, p′/2).

Now, consider p = 1. In such a case, the result follows by arguing as above and
observing that

⋃
k∈N

B(p′
k/2, p

′
k/2) = {z ∈ C : Rez > 0},

as p′
k → ∞. ��
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5 Dynamics of generalized Cesàro operators in (LF) and (PLB)-spaces

Let X be a lcHs. For T ∈ L(X) and n ∈ N, we write T n = T ◦ · · · ◦ T . The Cesàro
means of T are denoted by

T[n] = 1

n

n∑
m=1

Tm .

We say that T is

(1) power bounded if {T n}n∈N is equicontinuous in L(X);
(2) (uniformly) mean ergodic if {T[n]}n∈N converges in Ls(X) (in Lb(X)).

For a separable lcHs X , we say that T is

(3) hypercyclic if there exists x ∈ X whose orbit {T nx n ∈ N0} is dense in X ;
(4) supercyclic if there exists x ∈ X such that the projective orbit {λT nx λ ∈ C, n ∈

N0} is dense in X .

We refer the reader to [11, 26] for general textbooks.

5.1 Dynamics of generalized Cesàro operators Ct (0 ≤ t < 1)

Proposition 23 Let 0 ≤ t < 1 and let X belong to {L(p−),C(p−), D(p−); 1 <

p ≤ ∞} or to {L(p+),C(p+), D(p+); 1 ≤ p < ∞}. Then the generalized Cesàro
operator Ct is not supercyclic in X.

Proof Since the operator Ct is not supercyclic in ω by [8, Theorem 6.1(iii)], it follows
that Ct cannot be supercyclic in X , as Ct continuously maps X into itself and X is
dense in ω. ��

To study the power boundedness and the mean ergodicity of Ct acting in the (LF)-
spaces (in the (PLB)-spaces) considered in this paper, we first establish some results
on continuous linear operators to compare their ergodic properties with the ones of
their inductive spectrum (projective spectrum).

We first consider the case of operators acting in (LF)-spaces.

Theorem 24 Let X = indk Xk = ⋃
k∈N Xk be an (LF)-space such that the inclusion

Xk ⊆ Xk+1 is continuous, for k ∈ N, and let T ∈ L(X) satisfy assumption (A) of
Lemma 10. Then the following properties are satisfied.

(i) If Tk := T |Xk is power bounded in Xk for every k ∈ N, then T is power bounded
in X.

(ii) If Tk is mean ergodic in Xk for every k ∈ N, then T is mean ergodic in X.
(iii) If Tk is uniformly mean ergodic in Xk for every k ∈ N and X is regular, then T

is uniformly mean ergodic in X.

Proof (i) Let x ∈ X be fixed. Then there exists k ∈ N so that x ∈ Xk . Since
T (Xk) = Tk(Xk) ⊆ Xk , we have that T nx ∈ Xk for every n ∈ N. But, T = Tk

123



   40 Page 22 of 26 A. A. Albanese, V. Asensio

is power bounded in Xk . So, we have that {T nx : n ∈ N} is bounded in Xk , and
hence, it is in X . Since x ∈ X is arbitrary, and X is barrelled, we conclude that
{T n}n∈N is equicontinuous, i.e., T is power bounded in X .

(ii) Let x ∈ X be fixed. Then there exists k ∈ N such that x ∈ Xk . Since T =
Tk : Xk → Xk is mean ergodic, we have that {T[n]x} is convergent in Xk and
hence, {T[n]x} is also convergent in X , as the inclusion Xk ⊆ X is continuous.
Since x ∈ X is arbitrary, we can conclude that T is mean ergodic in X .

(iii) We assume that X is regular and Tk = T |Xk is uniformly mean ergodic in each
Xk . By (ii), we have that T[n] converges to some P ∈ L(X) in Ls(X). We
fix B ∈ B(X). Then, there is k ∈ N so that B ∈ B(Xk). By assumption on
T ∈ L(Xk), we have that for every s ∈ �k = �Xk ,

sup
x∈B

s(T[n]x − Px) → 0 as n → ∞.

Now, we take r ∈ �X . Since Xk ⊆ X with continuous inclusion, there exists
C > 0 and s ∈ �k = �Xk so that

r(x) ≤ Cs(x), x ∈ Xk .

Therefore,

sup
x∈B

r(T[n]x − Px) ≤ C sup
x∈B

s(T[n] − Px),

from which it follows

sup
x∈B

r(T[n]x − Px) → 0, as n → ∞.

This completes the proof of point (iii). ��
Corollary 25 Let 0 ≤ t < 1 and let X belong to {L(p−),C(p−), D(p−); 1 < p ≤
∞}. Then the generalized Cesàro operator Ct is power bounded and uniformly mean
ergodic in X.

Proof The result follows by Theorem 24 and [8, Theorem 6.6]. ��
We now pass to the case of operators acting in (PLB)-spaces.

Theorem 26 Let X = projk Xk = ⋂
k∈N Xk be a (PLB)-space and let T ∈ L(X)

satisfy the assumption (A’) in Lemma 12, i.e., for every k ∈ N there exists Tk ∈ L(Xk)

such that Tk |X = T and Tk |Xk+1 = Tk+1. If Tk is power bounded ((uniformly) mean
ergodic) in Xk for every k ∈ N, then T is power bounded ((uniformly) mean ergodic)
in X.

Proof Let us first prove the power boundedness. We write �k to denote a fundamental
system of seminorms in Xk , for k ∈ N, and we set

� :=
{

max
i=1,...,k

ri : k ∈ N, ri ∈ �i , i = 1, . . . , k
}
.
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Then � is a fundamental system of seminorms in X .
Fixed r ∈ �, there exist k ∈ N and ri ∈ �i for i = 1, . . . , k such that r =

maxi=1,...,k ri . Since Ti is power bounded in Xi , for i = 1, . . . , k, we have that for
every i = 1, . . . , k, there exist Ci > 0 and si ∈ �i such that

ri (T
n
i x) ≤ Cisi (x), x ∈ Xi , n ∈ N.

Thus, for C := maxi=1,...,k Ci , we have

r(T nx) = max
i=1,...,k

ri (T
n
i x) ≤ max

i=1,...,k
Ci si (x) ≤ C max

i=1,...,k
si (x)

for every x ∈ X and n ∈ N, as Ti |X = T for i = 1, . . . , k. Therefore, T is power
bounded in X .

We now pass to consider the mean ergodicity. So, we fix x ∈ X . Then, x ∈ Xk for
every k ∈ N. Since Tk : Xk → Xk is mean ergodic for every k ∈ N, (Tk)[n]x converges
to some yk in Xk for every k ∈ N. For k = 2, we have that (T2)[n]x converges to y2 in
X2, and also in X1, as X2 ⊆ X1 with continuous inclusion. But, (T2)[n]x = (T1)[n]x
(as x ∈ X ⊆ Xk for every k) converges to y1 in X1. Thus y2 = y1. Proceeding
inductively, we can see that all the yk coincide, and denoting it by y, we have that
y ∈ X and T[n]x converges to y in X .

Finally, we consider the uniformly mean ergodicity. So, we fix B ∈ B(X). Then
B ∈ B(Xk) for every k ∈ N. Since Tk : Xk → Xk is uniformly mean ergodic for every
k ∈ N, there exists Pk ∈ L(Xk) such that for every rk ∈ �k we have (for every k ∈ N

we have T = Tk on B as B ⊆ X )

sup
x∈B

rk(T[n]x − Pkx) = sup
x∈B

rk((Tk)[n]x − Pkx) → 0.

This yields that T : X → X is uniformly mean ergodic in X and Pk |X = Pk+1|X for
every k ∈ N. In particular, the operator P : X → X defined by Px := P1x for x ∈ X
belongs to L(X) and T[n] → P in Lb(X) as n → ∞. ��
Corollary 27 Let 0 ≤ t < 1 and let X belong to {L(p+),C(p+), D(p+); 1 ≤ p <

∞}. Then the generalized Cesàro operator Ct is power bounded and uniformly mean
ergodic in X.

Proof The result follows as an immediate application of Theorem 26 and [8, Theorem
6.6]. ��

5.2 Dynamics of the Cesàro operator

It is known that the Cesàro operator C1 is neither power bounded nor mean ergodic
in �p (1 < p < ∞) (see [1, Proposition 4.2]), and it cannot be supercyclic since
σpt (C ′

1; �p′) contains too many elements (see [11, Proposition 1.26]). Furthermore,
the same characteristics hold for ces(p) (1 < p < ∞) (see [5, Proposition 3.7(ii)])
and for d(p) (1 < p < ∞) (see [14, Propositions 3.10 and 3.11]).
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For the Fréchet spaces and (LB)-spaces defined in (1.3) and (1.4), we have that
C1 is not mean ergodic nor power bounded nor supercyclic in �(p+) (1 ≤ p < ∞)
[2, Theorems 2.3 and 2.5], in ces(p+) (1 ≤ p < ∞) [7, Proposition 5], in d(p+)

(1 ≤ p < ∞) [16, Proposition 3.5], in �(p−) (1 < p ≤ ∞) [8, Proposition 6.10], in
ces(p−) (1 < p ≤ ∞) [6, Propositions 3.4, 3.5], and in d(p−) (1 < p ≤ ∞) [16,
Proposition 3.8].

On the other hand, the dynamics of C1 in ω are the same as the ones for Ct (0 ≤
t < 1) in ω. Indeed, by [7, Theorem 6.1] and [2, Proposition 4.3], we have that C1 is
power bounded, mean ergodic, and not supercyclic in ω.

The proof of the following result is similar to the ones from the references above.

Proposition 28 Let X belong to {L(p−),C(p−), D(p−), L(q+),C(q+), D(q+); 1
< p ≤ ∞, 1 ≤ q < ∞}. Then C1 is neither power bounded nor mean ergodic nor
supercyclic in X.

Proof By Theorems 20 and 22 we have that B(p′/2, p′/2), for 1 < p ≤ ∞
(B(q ′/2, q ′/2), for 1 < q < ∞ and {z ∈ C Rez > 0} for q = 1) are included
in σpt (C ′

1; X ′
β). So, by [11, Proposition 1.26] we conclude that C1 cannot be super-

cyclic in X . Furthermore, for p, q < ∞,

σpt (C
′
1; X ′

β) ∩ {λ ∈ C : |λ| > 1} 
= ∅.

Thus, by [6, Lemma 3.2], C1 is neither power bounded nor mean ergodic. The proof
for p = ∞ is the same as in [6, Proposition 3.4]. ��
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