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Abstract Starting from a complete set of relativistic nucleon–nucleon contact operators up to order O(p4)
of the expansion in the soft (relative or nucleon) momentum p, we show that non-relativistic expansions
of relativistic operators involve twenty-six independent combinations, two starting at O(p0), seven at order
O(p2) and seventeen at order O(p4). This demonstrates the existence of two low-energy free constants that
parameterize interactions dependent on the total momentum of the pair of nucleons P . The latter, through
the use of a unitary transformation, can be removed in the two-nucleon fourth-order contact interaction of
the Chiral Effective Field Theory, generating a three-nucleon interaction at the same order. Within a hybrid
approach in which this interaction is considered together with the phenomenological potential AV18, we show
that the LECs involved can be used to fit very accurate data on the polarization observables of the low-energy
p − d scattering, in particular the Ay asymmetry.

1 Introduction

Effective Field Theories (EFTs) [1–7] have established themselves as the preferred systematic approach for
tackling the complex problem of nuclear interactions. This approach rests on several fundamental principles.
It starts with the identification of the most general effective Lagrangian, respecting all pertinent symmetries,
including the approximate chiral symmetry of Quantum Chromodynamics (QCD). The ordering of interactions
is accomplished through a power-counting scheme. Consequently, this framework yields a predictive context in
which physical observables, at each stage of the low-energy expansion, are expressed in terms of a finite set of
low-energy constants (LECs). These LECs serve as fitting parameters and are determined through experimental
data.

One essential task is the precise determination of the required number of parameters, both necessary
and sufficient, at each stage of the expansion. This task not only rigorously scrutinizes the theory but also
aids in estimating the theoretical uncertainty arising from unaccounted higher-order interactions [8–11]. In
the realm of nuclear forces, these fitting parameters pertain to LECs associated with contact interactions
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Table 1 Transformation proprieties of the different elements of the Clifford algebra, metric tensor, Levi-Civita tensor and derivative
operators under parity (P), charge conjugation (C) and Hermitian conjugation (h.c.)

1 γ5 γμ γμγ5 σμν gμν εμνρσ
←→
∂ μ ∂μ τ a

P + − + − + + − + + +
C + + − + − + + − + (−1)a+1

h.c. + − + + + + + − + +

between nucleons, which are not constrained by chiral symmetry. However, they are subject to constraints
imposed by Poincaré symmetry [12,13]. Despite the common non-relativistic quantum-mechanical framework
used in nuclear physics, Poincaré symmetry must ultimately be respected. This requires the reconciliation of
various relativistic effects arising from different sources, such as recoil corrections in energy denominators
and vertex corrections from the heavy baryon expansion. Given that relativistic effects scale with the soft
nucleon momenta, they can be systematically examined in the low-energy expansion, and the constraints on
interactions can be imposed algebraically.

In the present work, starting from a manifestly Lorentz-invariant two-nucleon (2N ) contact Lagrangian
density and performing non-relativistic reductions up to the order 1/m4, where m represents the mass of the
nucleon we retrace the results already obtained in Refs. [14,15].

Furthermore, we underline the importance of two additional 2N contact LECs at N3LO, which characterize
momentum-dependent interactions allowed by Poincaré symmetry. These LECs can be transformed into a three-
nucleon (3N ) interaction through a unitary transformation. This finding may explain the challenges faced when
attempting to enhance accuracy in 3N systems, particularly in the context of scattering observables, during
the transition from N2LO to N3LO [16].

The inclusion of the N4LO 3N contact interaction has proven to be of significant importance in reducing
existing discrepancies between theoretical predictions and experimental data [17].

This paper offers quantitative evidence that the additional two LECs D16 and D17 at N3LO introduce
the necessary flexibility to substantially enhance the description of low-energy p − d scattering polarization
observables, with a particular focus on the Ay asymmetry. This aspect has long posed challenges for most
nuclear interaction models.

Our approach is hybrid in nature, involving the consideration of the 3N force induced by D16 and D17
potential terms in conjunction with the phenomenological AV18 2N potential. A more comprehensive calcu-
lation in Chiral Effective Field Theory (ChEFT) is deferred to future research.

The structure of the paper is as follows. In Sect. 2 we show the basic steps of non-relativistic reduction to
order p4 of a covariant 2N Lagrangian, emphasizing the existence of two interactions dependent by the total
momentum P accompanied by two free LECs D16 and D17. In Sect. 3 we explain how these two off-shell
interactions are related by unitary transformation to a three-body force and how they can be used for a fit of
p − d polarization observables. In Sect. 4 we show the fit results and in Sect. 5 final conclusions are drawn.

2 Two Extra Interactions from the non Relativistic Reduction of 2N Contact Lagrangian up to N3LO

The general expression of the relativistic 2N contact Lagrangian is derived following the approach of Ref.
[14,15,18,19]. It consists of products of fermion bilinears, such as

(ψ̄
←→
∂ μ1 · · · ←→∂ μi
Aψ)∂λ1 · · · ∂λk (ψ̄

←→
∂ ν1 · · · ←→∂ ν j
Bψ), (1)

where ψ indicates the relativistic nucleon field, a doublet in isospin space, and 
A,B are generic elements of
the Clifford algebra.

To construct the covariant Lagrangian, various symmetries must be satisfied, including Lorentz invariance,
isospin, parity, charge conjugation, and time reversal symmetry. According to the CPT theorem, time reversal
symmetry is automatically satisfied if charge conjugation and parity symmetries are fulfilled.

Table 1 lists the transformation properties of different elements of the Clifford algebra, metric tensor, Levi-
Civita tensor, and derivative operators under parity (P), charge conjugation (C), and Hermitian conjugation
(h.c.). These properties play a crucial role in the construction of the Lagrangian.

Regarding the isospin degrees of freedom, both flavor structures 1 ⊗ 1 and τ a ⊗ τ a are allowed, but the
latter can be disregarded thanks to Fierz identities. To specify the chiral order of each building block, it is
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necessary to identify the powers of the soft relative momentum p. The derivatives ∂ acting on the entire bilinear
are of order p, while the derivative

←→
∂ acting inside a bilinear is of order p0 due to the presence of the heavy

fermion mass scale. The fields equations of motion can be used to reduce the number of cosidered terms.
Further criteria in specifying the power counting of the operators regard the Dirac matrix γ5, which can be
thought of as O(p) since it mixes the large and small components of the Dirac spinor, and the Levi-Civita
tensor εμνρσ , which raises the chiral order by n−1, when contracted with n derivatives acting inside a bilinear.

These guidelines lead to the complete set of relativistic contact operators displayed in Table 2 of Ref. [15].
The last column contains, for each one of the Dirac structures, the additional combination of four-gradients
arising up to O(p4). This construction differs from the one conducted in Ref. [14], due to a different choice
of operators reduced by the equations of motion.

The next step is the non-relativistic reduction of these operators in terms of a minimal basis of non-relativistic
2N contact operators, involving up to 4 powers of three-gradients in terms of non-relativistic nucleon fields.
It is important to note that the 2N contact Hamiltonian density takes the form of H2N = H(0) +H(2) +H(4),
with H(0), H(2), and H(4) defined with the corresponding LECs.

Table 3 of Ref. [15] provides a complete basis of non-relativistic operators computed between states of
two nucleons with initial and final momenta. It includes both LECs and operators for O(p4). Notably, this
basis accounts for the general reference frame, and indeed some of the operators are P-dependent, where P
denotes the overall momentum of the nucleon pairs.

The operators related to the constants D16 and D17 are introduced in this basis, representing new LECs
that parametrize the P-dependent 2N interaction in the general reference frame. These LECs do not contribute
in the center-of-mass frame.

3 Influence of Two-Body Off-Shell Forces on the Ay Puzzle

The N3LO 2N contact potential was originally considered in Refs. [20,21] as consisting of 15 LECs. After
careful scrutiny of the constraints imposed by relativity, two further LECs emerge, leading to the following
expression in the general reference frame,

V (4)
2N =D1k

4 + D2Q
4 + D3k

2Q2 + D4(k × Q)2 + [
D5k

4

+D6Q
4 + D7k

2Q2 + D8(k × Q)2] (σ1 · σ2)

+ i

2

(
D9k

2 + D10Q
2) (σ1 + σ2) · (Q × k)

+ (
D11k

2 + D12Q
2) (σ1 · k) (σ2 · k)

+ (
D13k

2 + D14Q
2) (σ1 · Q) (σ2 · Q)

+ D15 σ1 · (k × Q) σ2 · (k × Q)

+ i D16 k · Q Q × P · (σ1 − σ2)

+ D17 k · Q (k × P) · (σ1 × σ2) (2)

with k = p′ − p and Q = p′+ p
2 , p and p′ being the initial and final relative momenta, and P = p1 + p2 the

total pair momentum. However, as it was pointed out in Ref. [22], only 12 independent LECs survive on shell
and can thus be determined from 2N scattering data. This redundancy amounts to a unitary ambiguity, i.e. to
the possibility of generating shifts of the LECs by unitary transforming the one-body kinetic energy operator
H0 as

H0 → U †H0U. (3)

Here U is the most general unitary 2-body contact transformation depending on 5 arbitrary parameters αi ,

U = exp

[
5∑

i=1

αi Ti

]

, (4)
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and the independent generators Ti , which are given explicitly in Ref. [17,23], induce a shift in the N3LO
contact LECs, Di → Di + δDi . Specifically, the induced shifts for D16 and D17 are given by:

δD16 = − 2

m
α4, (5)

δD17 = − 4

m
α3 − 2

m
α5. (6)

At the same time, the unitary transformation, when applied to the LO 2N contact Hamiltonian, induces a
shift of the LECs parametrizing the subleading three-body interaction Ei , as

V (2)
3N ,� =

∑

i jk

[
E1 + E2τi · τ j + (

E3 + E4τi · τ j
)
σi · σ j

]

×
[
Z ′′

�(ri j ) + 2
Z ′

�(ri j )

ri j

]
Z�(rik)

+(E5 + E6τi · τ j )Si j

[
Z ′′

�(ri j ) − Z ′
�(ri j )

ri j

]
Z�(rik)

+(E7 + E8τi · τk)

{
(L · S)i j ,

Z ′
�(ri j )

ri j
Z�(rik)

}

+ [
(E9 + E10τ j · τk)σ j · r̂i jσk · r̂ik

+ (E11 + E12τ j · τk + E13τi · τ j )σk · r̂i jσ j · r̂ik
]

×Z ′
�(ri j )Z

′
�(rik), (7)

where Si j and (L · S)i j are respectively the tensor and spin-orbit operators for particles i and j , and the profile
functions

Z�(r) =
∫

dp
(2π)3 eip·rF(p2; �), (8)

representing the cutoff in coordinate space, chosen as

F(p2, �) = exp

[

−
(

p2

�2

)2
]

. (9)

In the following the value � = 500 MeV will be used. The explicit expression for the N4LO LECs shift δEi of
the three-body force can be found in Ref. [17] (see Eqs. (39)-(51)). The induced contributions δEi are enhanced
as compared to the genuine ones Ei , due to the presence of the nucleon mass factor, scaling as m ∼ O(�2

χ/p)
(being �χ hard or breakdown scale of the theory) in the Weinberg counting [2], which effectively promotes
them to N3LO. In this work, the LECs Ei will be thought of as constituted only of the induced contributions
of the P-dependent D16 and D17. Thus, at N3LO the 3N contact interaction depends on two combinations of
the 2N LECs Di , appearing in Eqs. (5), (6), which cannot be determined from 2N scattering data, but have to
be fitted to experimental observables in A > 2 systems.

We investigate the sensitivity of polarization observables in low-energy N − d scattering to the two
P-dependent N3LO LECs. The AV18 potential is used as a representative 2N interaction, and the meaning of
the LECs CS and CT in this framework is found treating the LO contact pionless potential as a very low-energy
representation of the AV18 potential, with a local cutoff introduced. The values of CS and CT are thus taken
from a fit of the LO 2N contact interaction

V (0)
2N ,� = [CS + CT σ1 · σ2] Z�(r) (10)

to the singlet and triplet n − p scattering lengths as predicted by the AV18 potential. In the above expression
a local cutoff has been introduced as in Eq. (8). From this procedure we get

CS = −66.53 GeV−2, CT = −3.47 GeV−2. (11)
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The 3-body Schrödinger equation is solved as in Ref. [17] employing the Hyperspherical Harmonic (HH)
method. Below the deuteron breakup threshold, the N − d scattering wave function is expressed as the sum of
an internal �C and an asymptotic part �A

�LSJ Jz = �C + �A, (12)

where the internal part �C is expanded on the HH basis as

�C =
∑

μ

cμ�μ. (13)

Here μ denotes all the quantum numbers required to define the basis element.
The asymptotic part describes the relative motion between the nucleon and the deuteron at large distances,

involving regular (R) and irregular (I) solutions.
Denoting these solution �λ

L S J J z, with λ = R, I respectively, and defining

�±
LSJ Jz

= i�R
LSJ Jz ± �I

LS J Jz , (14)

we have

�A = �−
LSJ Jz

+
∑

L ′S′
S J
LS,L ′S′(q)�+

L ′S′ J J Jz . (15)

Here S J
LS,L ′S′ are the S-matrix elements and q is defined as the modulus of the N−d relative momentum. From

the S-matrix it is possible to compute phase shifts and mixing angles, from which the scattering observables
are calculated. The S-matrix in Eq. (15) and the coefficients cμ in Eq. (13) are determined by the complex
formulation of the Kohn variational principle [24]. This principle demands that a certain functional be stationary
under variations of trial parameters, leading to a linear system whose solution provides the weights and
coefficients.

The Hamiltonian is decomposed into H2N (kinetic energy plus AV18 2N interaction with Coulomb poten-
tial) and V (2)

3N ,� (containing 3N interaction induced by D16 and D17 terms). The linear system for coefficients
involves the computation of matrix elements between HH basis elements and asymptotic functions.

A specific set of LECs allows the computation of the associated S-matrix for each Jπ state using the Kohn
variational principle, providing observables at a specific energy.

4 Fit Results

The observables used in the fitting procedure include the p − d differential cross section, the two vector
analyzing powers Ay and iT11, the three tensor analyzing powers T20, T21, T22 and the doublet and quartet
n − d scattering lengths, with the experimental values 2and = (0.645 ± 0.003 ± 0.007) fm [25] and 4and =
(6.35±0.02) fm [26]. In particular we fit the experimental doublet and quartet n−d scattering lengths and the
six p− d scattering observables at center-of-mass energy Ecm = 2 MeV [27], amounting to 282 experimental
data. In addition we also fix the 3H binding energy to 8.469 MeV. This value takes into account the contribution
of the neutron-proton mass difference, which is not described in the HH method, amounting to ∼ 7 keV, and
additional amount of ∼ 6 keV from the truncation of the HH expansion.

In the case of the differential cross section, we introduce an overall normalization factor Z in the definition
of χ2. Specifically,

χ2 =
∑

i

(
dexp
i /Z − d th

i

)2

(
σ

exp
i /Z

)2 , (16)

where Z is determined from the minimization condition:

Z =
∑

i d
exp
i d th

i /
(
σ

exp
i

)2

∑
i

(
d th
i

)2
/
(
σ

exp
i

)2 . (17)
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Table 2 Results of the 2-parameters and 3-parameters fits, the latter one obtained including the leading order 3N contact interaction

Fitting procedure 2-param. 3-param.

χ2/d.o.f. 2.1 1.9
e0 – 0.459
α̃4CS 1.751 1.894
α̃5CS − 0.495 − 1.175
2and (fm) 0.573 0.599

Here the fitted parameters αi and the corresponding values of the LO 3N contact LEC E0 are dimensionless, i.e. e0 =
E0F4

π�, α̃i = αi F4
π�3 with Fπ = 92.4 MeV. In the last row we report the value obtained for the n − d doublet scatter-

ing length 2and , which should be compared with the experimental value 2and = (0.645 ± 0.003 ± 0.007) fm [25]

Here, dexp /th
i represents the experimental data points and their theoretical predictions, respectively, while σ

exp
i

is the experimental error. For other observables, we treat the normalization Z = 1.00 ± 0.01 as an additional
experimental datum, considering the systematic uncertainty estimated as 1% according to Ref. [27].

The fitting procedure involves a global 2-parameter fit including only the P-dependent 2N interaction. We
also perform 3-parameter fits including the LO 3N contact interaction,

V (0)
3N ,� = E0

∑

i jk

Z�(ri j )Z�(rik), (18)

where the LEC E0 introduces further flexibility to the fit and it is mainly determined by the 3H binding energy.
We start the iterative minimization procedure by solving the scattering problem for an initial random set of

α4 and α5 parameters, calculating the corresponding observables. Employing the POUNDerS algorithm [28],
we repeat the process with different initial random αi values, aiming to converge to the deepest minimum. The
resulting χ2/d.o.f. is ∼ 2.1(1.9) for the two(three)-parameter fits. The fitted parameters E0, α4 and α5 can be
read from the first column of Table 2.

Figure 1 shows the best fit curves for various analyzing powers and observables, compared to predictions
from the 2N AV18 potential and the addition of the 3N Urbana IX interaction. The effective N3LO 3N contact
interaction induced by the D16 and D17 terms successfully addresses the Ay problem, and the description of
the vector analyzing power iT11 is significantly improved. We also conclude by saying that the introduction
into the fit of the LEC E0 corresponding to the three-body contact force at leading order does not substantially
change the description of the experimental data, except for the observable Ay , as can be seen in Fig. 1.

5 Conclusions

In this analysis, we have explored the relativistic constraints on the O(p4) 2N contact Lagrangian bringing
out two P-dependent terms in the potential accompanied by two unconstrained LECs D16 and D17. It should
be emphasized that the above terms are not to be understood as relativistic corrections but for all intents are
within the N3LO 2N contact potential. These LECs, whose effect vanishes in the 2N center-of-mass frame,
can play a crucial role in larger nuclear systems. The unitary equivalence to 3N contact operators implies
a connection between these LECs and off-shell effects. Using an hybrid approach where the three-nucleon
interaction, parametrized by D16 and D17 LECs, is considered alongside the phenomenological AV18 2N
potential, we fit experimental data on polarization observables in low-energy p − d scattering, specifically
focusing on the Ay asymmetry. The results indicate that the inclusion of terms represented by D16 and D17
in the three-nucleon interaction is crucial for accurately reproducing experimental data, in low-energy proton-
deuteron scattering. This implies that these LECs can be resolutive for the long-standing Ay puzzle. The D16
and D17 LECs on systems with A > 2 should be further quantified in future investigations. Of course it will
be undoubtedly intriguing to conduct a thorough reexamination of the aforementioned analysis within a fully
consistent framework of ChEFT.
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Fig. 1 Proton and deuteron analyzing power and differential cross-section at Ecm = 2 MeV. The red lines result from a global
2-parameter fit, the black lines represent the 3-parameters fit including the E0 term, the blue lines are the predictions from the
2N AV18 potential, while the green lines are the predictions including also the 3N Urbana IX interaction. Experimental data are
from Ref. [27]
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