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A B S T R A C T

The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates,
which, in turn, drive various biological and ecological processes. Although there have been numerous seminal
studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate re-
sponds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we
measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with
body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine
temperature levels ranging from 12 to 30.2 ◦C. These temperatures match seasonal temperature norms, with an
incremental increase of 0.6–1.2 ◦C above each seasonal baseline, as projected for the years 2040 and 2100 under
the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies
with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less
sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an
average of 14% ◦C− 1, with increases of 18.4% ◦C− 1 in smaller individuals and 11.4% ◦C− 1 in larger ones. The
SMR of smaller individuals peaked at a 0.6 ◦C increase from the current summer baseline (15.08% ◦C− 1, Q10 =

4.2), while in larger ones it peaked with a 1.2 ◦C increase beyond autumn temperatures (14.9% ◦C− 1, Q10 = 3.9).
However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger in-
dividuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-
sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will
become increasingly constrained at summer temperatures as those summer temperatures become hotter.

1. Introduction

Climate change is causing substantial alterations from individual
organism to ecosystem, posing a threat to biodiversity (Bruno et al.,
2015). Warming has already left a global footprint on animal pop-
ulations, with its effects being more pronounced on aquatic ones, among
others, evidenced by alterations in life cycle events (Poloczanska et al.,
2013), body size (Forster et al., 2012) and geographical distribution
(Angilletta, 2009). These shifts are expected to continue in response to
ongoing climate warming which are largely mediated by fundamental
ecological and metabolic rules (Sheridan and Bickford, 2011). Climate
change, with a mean temperature increase of ~1 ◦C over the last four
decades, has already resulted in increases in metabolic rate of up to 20%

in ectotherms (Dillon et al., 2010; Seebacher et al., 2015).
Metabolic rate, that is, the rate at which energy is expended, stands

as one of the primary and central traits of organisms that respond to
climate change, given its temperature dependency (Brown et al., 2004).
It is considered a fundamental variable in ecology and physiology,
connecting individual to ecosystem-level processes via the currency of
energy (Brandl et al., 2022). In this context, the Metabolic Theory of
Ecology offers an approach to mechanistically estimate this central trait
of individual energy requirements, underscoring body mass and tem-
perature as the chief components of metabolic rate (Brown et al., 2004).
Accordingly, whole-organism metabolic rate is predicted to scale with
body mass according to a power law, specifically raised to the
three-quarter power, and exponentially with temperature from 0 to
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40 ◦C, due to its influence on the kinetic energy of cellular components
(Arrhenius, 1889; Gillooly et al., 2001). However, the interaction be-
tween metabolic rates and temperature is more complex than a uniform
exponential increase, as it can be influenced by thermal acclimation,
vary across seasonal temperature ranges, and be constrained by an
upper thermal limit (Norin and Metcalfe, 2019; Schulte, 2015; Sinclair
et al., 2016).

Thermal acclimation often leads organisms to adjust their metabolic
rates, in response to sustained increases in ambient temperature. This
compensates for direct thermodynamic effects and thus deviates from a
simple exponential relationship (Sandblom et al., 2014). Additionally,
the response of metabolic rate to temperature often depends on the
thermal physiology of an organism, subject to influences from factors
like body size, life stage, latitude and local climate (Leiva et al., 2018;
Padilla et al., 2024; Shokri et al., 2022; Terblanche and Chown, 2006).
The optimal physiological responses of ectotherms are seen within the
temperature range they experience locally (Pörtner and Knust, 2007).
Beyond this range organism performance and fitness likely decline
(Angilletta, 2009; Vasseur et al., 2014), which can potentially alter the
long-term prospect of the species regarding distributional range (Usui
et al., 2023), body size (Audzijonyte et al., 2020), and even survival
(Hochachka and Somero, 2002). Furthermore, in aquatic ecosystems,
the rise in metabolic rate due to temperature increases will be accom-
panied by a decrease in oxygen availability, potentially constraining the
aerobic capacities (Deutsch et al., 2015; Jermacz et al., 2020). These
combined effects could influence the relationship between temperature
and aerobic metabolism, as well as how metabolic rates scale with size
(Rubalcaba et al., 2020). With warming, the oxygen supply may no
longer meet the increase in oxygen requirement, leading the metabolic
rate to reach its ceiling or boundary (Schulte, 2015). This could be
particularly pronounced in larger conspecifics, which have higher ab-
solute oxygen demands and a lower surface-area-to- volume ratio, hin-
dering their ability to uptake oxygen from the water and transport it to
metabolically active tissues (Rubalcaba et al., 2020; Shokri et al., 2022).

In light of this, it is important not only to comprehend the adaptive
capacities of individual populations in the face of warming, but also to
empirically quantify the extent of their metabolic responses. Such in-
sights are essential for laying the groundwork for a more realistic esti-
mation of the broader ecological impacts of climate change, as metabolic
rate is intimately linked to both an organism’s biology and behaviour,
profoundly shaping its ecological interactions (Auer et al., 2020; Met-
calfe et al., 2016; Shokri et al., 2024a, 2024b). While foundational
research has offered substantial understanding of how ectotherm pop-
ulations respond ecologically to variations in temperature e.g. (Angil-
letta, 2009; Clarke and Fraser, 2004; Schulte, 2015), few studies have
examined the impacts of realistic IPCC climate change projections across
seasonal temperature ranges on individual metabolic rates (but see
(Bestion et al., 2015)).

This study aimed to expand this body of knowledge by empirically
evaluating the responses of standard metabolic rate (SMR) i.e. the
maintenance metabolism, in aquatic amphipods to current seasonal
temperature variations and to temperatures above these as projected
under the most conservative climate change scenario, RCP2.6 (IPCC:
Pachauri et al., 2014). As global warming is expected to result in warmer
temperatures across all seasons, we sought to understand how these
projected increases would affect SMR on a seasonal basis. We measured
the SMR of the subject species, Gammarus insensibilis, over a temperature
range that matches the seasonal variations locally experienced by this
species, from winter to summer. Additionally, for each seasonal baseline
temperature, we evaluated the response of SMR to narrow incremental
increases of 0.6 ◦C and 1.2 ◦C to determine the impact of temperature
increases projected for 2040 and 2100 under the RCP2.6 IPCC scenario
(IPCC, 2014).

2. Materials and methods

2.1. The study organism

Gammarus insensibilis (Stock, 1966), an ectothermic crustacean
amphipod, inhabits the coastal waters of the Atlantic-Mediterranean
region (Costello et al., 2001). They play a crucial role in the trophic
webs of aquatic ecosystems, feeding mainly on leaf litter and detritus,
and providing resources for secondary consumers (Nelson, 2011). After
hatching, juveniles of Gammarus sp. are released from the marsupium
with a body length of approximately 1 mm, mature at ~4 mm, can grow
to amaximum length of about 20mm (Longo andMancinelli, 2014), and
have a lifespan of up to one year (Gerhardt et al., 2011; Węsławski et al.,
2020). Their distribution reaches as far north as 53.9◦ N and extends
southward to 37.4◦ N, being their southernmost latitudinal limit (Tillin
and White, 2017).

2.2. Experimental design

The experiment was designed to investigate the response of the
standard metabolic rate (SMR) in specimens of the tested species to both
current annual climate variations and projected temperature increases.
Temperatures were selected to match both the seasonal temperature
range currently experienced by the population in its local climate and
the predicted increase in temperature due to climate warming. To match
the current climate experienced by the tested population, the assessment
temperature levels were the winter temperature, which was 12 ◦C,
determined by calculating the average of the coldest temperatures
recorded from 2015 to 2019; the autumn temperature set at 18 ◦C, also
closely approximated the average annual temperature in this water
body, and the maximum summer temperature, which was 29 ◦C,
determined as the mean warmest temperature from 2015 to 2019. The
water temperature data for the collection site were obtained from the
Copernicus Marine Environment Monitoring Service (CMEMS: Buon-
giorno Nardelli et al., 2013). The projected temperature levels were
selected based on the most conservative climate change emission sce-
narios i.e. RCP 2.6 (IPCC, 2014), which forecasts an average global in-
crease in water temperature of 0.6 ◦C by 2040 and 1.2 ◦C by 2100 (IPCC,
2014; Genner et al., 2017). Accordingly, we extended the experimental
temperature gradient by introducing two increments of 0.6 ◦C and 1.2 ◦C
above the mean seasonal temperatures, to estimate metabolic responses
to a relatively minor expected increase in temperature beyond what the
animals typically encounter during each respective season.

2.3. Collection and acclimation of specimens

The specimens of varying body sizes were collected in autumn from a
transitional water ecosystem along the southwestern coast of the Adri-
atic Sea (40.444 N, 18.238 E). After collection, the specimens were
moved to the laboratory in thermally insulated containers that were
filled with water from the collection sites and aerated throughout
transport. The specimens were kept in laboratory aquaria with a salinity
level that matched that of their natural habitats i.e. 21 g L− 1. Thermal
acclimation to both above and below the collection temperature was
gradually achieved, ±0.6 ◦C per day, in aquaria located within climate-
controlled environments (KW apparecchi scientifici). The specimens
were acclimated to the assessment temperatures for two weeks, a period
considered sufficient to mitigate any risk of thermal stress that could
potentially alter the metabolic rates of the specimens (Semsar-kazerouni
and Verberk, 2018). The temperature treatments were evenly spaced
throughout the experimental period.

Throughout the acclimation phase in the aquaria, specimens were
provided with conditioned and decomposing leaves of Phragmites aus-
tralis, ad libitum. Conditioned P. australis provides their primary
resource, which is the colonizing microfungi (Able and Hagan, 2000).
The experiment was conducted exclusively on males, as egg
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development in females might lead to non-size-related variations in
energy demands (Shokri et al., 2021).

2.4. SMR measurements

Each temperature treatment involved 24 individuals, totaling 212
males measured after excluding four due to moulting during the
experimental trial. On each experimental day (09:00–17:00), we
measured 24 individuals sequentially, completing all measurements for
one temperature treatment whose acclimation period had been
completed before moving on to the next. The Standard Metabolic Rate
(SMR, J day− 1) was measured individually as oxygen consumption
(VO2) using open-flow system respirometry (Glazier and Sparks, 1997;
Shokri et al., 2019, 2022; Vignes et al., 2012).

The animals were individually placed in plastic beakers and were not
fed for 24 h prior to the SMR experimental trial at the assessment tem-
peratures. To measure SMR, animals were individually placed in
chambers, organized into two racks, each consisting of 12 chambers
(Fig. S1). Each rack was associated with a 1-litre glass water tank filled
with water having characteristics similar to those set in the acclimation
aquaria. The water in the glass tanks was stirred magnetically at 200
rpm and supplemented with air bubbling, which together maintained
the water oxygen-saturated throughout the experimental trial. A con-
stant flow of water, at a rate of 6 ml h− 1, was maintained in the respi-
rometer chambers (6 ml, 90 mm) by a peristaltic pump (Watson-Marlow
205U) for each rack, which was regulated to ensure that the oxygen
levels in the chambers always remained above 80% saturation. Typi-
cally, like most benthic invertebrates, Gammarus sp. settled calmly at the
bottom of the vertically positioned chamber. In each respirometer
chamber, a 0.3 mm nylon mesh was installed to further restrict the
spontaneous movement of the individuals. The nylon mesh was posi-
tioned a few centimetres down from the open end of the chamber, after it
was filled with water, before introducing the animal. A 3-h equilibration
period was set as the time needed to achieve a steady concentration of
dissolved oxygen and to allow the specimen to settle in the chamber
before readings began. As the water flowed out from the chambers, it
was channelled to the Clark-type microelectrodes (SI1302 Strathkelvin
oxygen electrodes), where an oximeter continuously read the oxygen
concentration, with the data being recorded by the Strathkelvin soft-
ware. After the 3-h equilibration period, the partial pressure of dissolved
oxygen (Δtorr) was measured for each individual through two phases:
first, a 15-min recording of the oxygen concentration curve with a
specimen present (ppin), followed by a 15-min period for the blank
measurement without any specimens (ppout). The blank ppout was
obtained by disconnecting the input tube from the chamber containing
the specimen and connecting it directly to the microelectrode. This
procedure (measuring the ppin and ppout) was conducted uniquely for
each specimen, ensuring that both ppin and ppout measurements were
specific to each specimen. In our experimental setup, a total of six mi-
croelectrodes were available. Measurements were conducted in rounds;
each round involved connecting six microelectrodes to six chambers.
After completing measurements in one set of six chambers, the micro-
electrodes were connected to the next set for subsequent readings. This
cycling was repeated to systematically assess all chambers. The Oxygen
microelectrodes were calibrated using aerated water before each
experimental trial. After each experimental trial, parts of the respi-
rometer system were cleaned using bleach and sterilised using an
autoclave (Hiclave HV) to prevent microbial growth. Furthermore, to
ensure minimal background respiration and consistency of the measured
blanks (ppout), we intermittently measured the dissolved oxygen partial
pressure in a chamber that did not contain any specimens, using one of
the six electrodes and found no detectable background respiration.

The oxygen consumption for each individual, expressed in (μmol O2
h− 1), was calculated based on the difference in the partial pressure of
dissolved oxygen between the outflow water of the blank and the partial
pressure of dissolved oxygen in the respirometer chamber containing a

specimen (torr). This difference was then multiplied by flow rate (l h− 1)
and adjusted by multiplying it with the dissolved oxygen solubility co-
efficient (μmol l− 1 torr− 1) for each temperature. The oxygen consump-
tion rate was transformed into metabolic rate (J day− 1) by applying an
oxyjoule conversion factor (Gnaiger, 1983), and multiplying the result
by 24 h.

The body length of the tested specimens, defined as the distance from
the base of the first antenna to the base of the telson (Asochakov, 1994),
was measured using image-based analysis with a Nikon SMZ1270 ste-
reomicroscope. The specimens were then individually dried at 60 ◦C for
three days and then weighed using a microbalance with an accuracy of
±0.001 mg (Sartorius MC5). After weighing, the specimens were ashed
at 450 ◦C for 6 h to determine their ash weight. The obtained ash weight
was then subtracted from the dry weight to calculate the ash-free dry
weight of each individual (M, mg AFDW). This allowed us to remove the
inorganic tissue from the body of the specimen.

2.5. Statistical analyses

One-way ANOVA was used to analyse the differences in body mass
(M, mg AFDW) across temperature levels. The scaling of individual
standard metabolic rate (SMR, j day− 1) with body mass (M, mg AFDW)
and temperature (T) was assessed via multiple linear regression. The
response variable individual SMR and the explanatory variable M were
log-transformed to fit the size-scaling relationship as a power law, and
the temperature was inverse transformed (Brown et al., 2004):

log(SMR) ∼ log(M) × (− TA) (Eq. 1)

TA =

(
1

kB Te
−

1
kB T0

)

(Eq. 2)

TA is a standardised inverse temperature, kB is the Boltzman constant
(8.618 × 10− 5 ev/k), Te is the assessment temperature, and T0 sets the
intercept at 286.15 K, corresponding to the lowest temperature level (i.
e.,12 ◦C in this study). The R2 partitioned of the explanatory variables, M
and T, was then determined by the LMG metric (Lindeman et al., 1980).

Furthermore, we determined the temperature sensitivity (Q10) of the
SMR for each temperature against the baseline seasonal temperatures.
The temperature coefficient (Q10) quantifies the fractional change in
the SMR in response to temperature, commonly used to estimate vari-
ations in an organism’s metabolic rate due to temperature changes
(Arrhenius, 1889). The temperature sensitivity coefficient is calculated
as:

(
SMR2

SMR1

) 10
T2− T1

(Eq. 3)

Where SMR1 is the standard metabolic rate at T1 (◦C), SMR2 is the
standard metabolic rate at a higher temperature T2 (◦C). To account for
size dependence, we quantified the temperature sensitivity of the SMR
following Eq. (3) across individuals of varying sizes. We categorised the
individuals into two classes based on their body mass, using distribution
quantiles of 0.5 and 1 for each temperature. These classes comprise
small-sized individuals (mean ± s.d. = 1.03 ± 0.66 mg AFDW) and
large-sized ones (mean ± s.d. = 4.25 ± 1.44 mg AFDW). The analyses
were performed in R free software environment (R Core Team, 2024),
using dplyr (Wickham et al., 2023) packages.

3. Results

Overall, we analysed 212 male individuals of G. insensibilis ranging
between 4.12 and 20.01 mm in body length (10.77 [±3.17 SD] on
average) and from 0.20 to 7.74 mg AFDW in body mass (2.59 [±1.95
SD] on average). The distribution of body mass (M, mg AFDW) did not
significantly differ across the nine-temperature levels tested (ANOVA;
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F8, 203 = 0.51, p > 0.05).
Individual SMR ranged from 0.2 to 7.72 J day− 1, averaging 2.71

[±1.82 s.d.]. The individual SMR was significantly influenced by both
body mass and temperature (Table 1). It scaled with body mass with a
scaling exponent of 0.71 [0.64–0.76 95% CI], and with temperature
with a scaling of 0.62 [0.59–0.67 95% CI] (Table 1, Fig. 1). Overall,
79.6% of the variance in individual SMR was explained by the consid-
ered sources of variation and their interactions (Table 1, Fig. 1). 39.1%
of the variance was related to individual body mass (p < 0.001), and
38.5% was due to the influence of temperature (p < 0.001) (Table 1,
Fig. 1). The remaining 1.9% of the variance was explained by the
negative body mass-temperature interaction (p < 0.001) (Table 1,
Fig. 1). This negative body mass-temperature interaction indicates that
the relationship between temperature and SMR is dependent on body
mass: the SMR of small-sized individuals continued to increase with
temperature across the full temperature range, whereas the SMR of large
individuals did not at high temperatures (Table 1, Fig. 1).

3.1. Thermal sensitivity of the SMR across sizes in current seasonal and
forecast climates

From winter to autumn, we observed an increase in SMR, with a Q10
value of 2.39 (an 11.51% ◦C− 1 increase in SMR) in small-sized in-
dividuals and a Q10 of 2.34 (an 11.11% ◦C− 1 increase in SMR) in large-
sized individuals (Fig. 2). When transitioning from autumn to summer
temperatures, the SMR of small-sized individuals continued to increase,
with a Q10 of 2.25 (a 13.1% ◦C− 1 increase in SMR) (Fig. 2). In larger
individuals, SMR continued to increase from autumn to summer with a
Q10 value of 1.67, corresponding to a 6.9% ◦C− 1 increase in SMR,
although this was at a slower rate compared to the winter to autumn
period (Fig. 2).

With a temperature increase of 0.6 ◦C from the current winter
baseline of 12 ◦C, the Q10 value was 1.9 for small-sized individuals (a
3.95% increase in SMR) and 2.5 for large-sized individuals (a 5.64%
increase in SMR) (Fig. 2). An increase of 1.2 ◦C relative to the average
winter baseline resulted in a Q10 of 2.1 (a 9.51% increase in SMR) for
small-sized and a Q10 of 3.3 (a 15.45% increase in SMR) for large-sized
individuals (Fig. 2).

When the autumn temperature of 18 ◦C was increased by 0.6 ◦C, the
observed Q10 was 2.75 (a 6.26% increase in SMR) for small-sized in-
dividuals and 3.83 (a 8.39% increase in SMR) for large-sized individuals
(Fig. 2). An increase of 1.2 ◦C from the autumn baseline led to a Q10 of
3.31 (a 15.48% increase in SMR) for small-sized individuals and 3.95 (a
17.92% increase in SMR) for large-sized ones (Fig. 2).

Above the summer temperature baseline of 29 ◦C, the Q10 for small-
sized individuals reached 4.23, corresponding to a 9.04% increase in
SMR (Fig. 2). With an additional increase of 1.2 ◦C, the Q10 for these
small-sized individuals continued to rise, with a Q10 of 3.25 (a 15.22%
increase in SMR). In contrast, for large-sized individuals, the Q10 values
decreased with temperatures above the summer baseline, falling to less
than 1 (Fig. 2).

4. Discussions

Metabolic rate, being one of the first organismal traits affected by
global warming, triggers far-reaching consequences for higher order
ecological processes (Bruno et al., 2015). In this era of climate change,
despite its importance in forecasting ecosystem functioning, most pre-
dictions about metabolic-related processes rely on the expected thermal
sensitivity of MTE. Here, we have empirically tested the metabolic rate
in response to IPCC-RCP2.6 scenarios within seasonal temperatures.

We observed that individual SMR increased with body mass and
temperature, which accords with general expectations of the metabolic
theory of ecology (Brown et al., 2004). However, our results further
showed that the scaling of SMR with body mass tends to decrease across
the full range of temperatures, as indicated by the negative
size-temperature interaction. This implies that larger individuals have a
lesser sensitivity of their SMR to temperature than smaller ones. The
observed decrease in the mass scaling exponents of SMR with temper-
ature aligns with the Metabolic-Level Boundaries hypothesis (sensu
Glazier (2020; 2005)) and with several recent experimental research e.g.
Hoefnagel and Verberk (2015) and Shokri et al. (2022). Accordingly,
volume-related tissue demand is expected to predominantly affect SMR
at low metabolic levels, whereas surface-related resource supply and
waste removal are likely to be the main influences on SMR at higher
metabolic levels (Glazier, 2020). Cold temperatures in winter have also
been suggested to increase the viscosity of the water and the boundary
layer thickness surrounding the respiratory surfaces of ectotherms,
potentially leading to lower metabolic rates (Verberk and Atkinson,
2013). This effect is expected to be more pronounced in smaller in-
dividuals, who are more susceptible to increased viscosity and face
greater challenges in ventilating at low temperatures, compared to their
larger counterparts (Verberk and Atkinson, 2013).

Furthermore, our results showed that the thermal sensitivity of SMR
is season-dependent and varies with body mass. The highest thermal
sensitivity in large-sized individuals was observed at temperatures
reflecting global warming conditions, when autumn norms increase by
1.2 ◦C. However, at forecasted temperature increases above summer
levels, the SMR of larger-sized individuals levelled off. In contrast, the
thermal sensitivity of small-sized individuals continued to increase
throughout the full temperature range, with the most notable increase
observed at 0.6 ◦C above summer temperatures.

Larger individuals are likely to be already close to their upper ther-
mal tolerance barrier at summer temperatures, where the capacity to
further increase their metabolic rate is constrained (Carter et al., 2023;
Schulte, 2015; Thyrring et al., 2020). Several empirical studies have

Table 1
Output of linear mixed model with standard metabolic rate (SMR) as the
response variable and body mass (M) and temperature (T) as the predictors.

Predictors log (SMR)

Estimates CI p

(Intercept) − 0.29 − 0.36–− 0.23 <0.001
log (M) 0.71 0.64–0.76 <0.001
T 0.62 0.59–0.67 <0.001
log (M) × T − 0.12 − 0.18–− 0.08 <0.001
Observations 212
R2/R2 adjusted 0.796/0.791

Fig. 1. Standard Metabolic Rate (SMR) in relation to body mass (M) across
different temperature levels, log-log plotted.
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shown that aquatic ectotherms use compensation mechanisms in their
metabolic rates when exposed to temperature variations that exceed
their usual environmental conditions (Coggins et al., 2021; Precht et al.,
1973; Shokri et al., 2022). This leads to a degree of cellular-level ho-
meostasis in organisms, allowing them to sustain their performance
despite temperature change (Precht et al., 1973). The compensation
mechanism is likely to emerge when crucial metabolic substances could
become limited if metabolic rates were to increase with temperature
(Precht et al., 1973; Young, 1979). It is known that in aquatic ecto-
therms, oxygen availability is the constraining limiting factor for both
metabolic rate and upper thermal limits (Precht et al., 1973; Verberk
et al., 2016). This is because respiratory demands increase with tem-
perature, but the availability of oxygen and the efficiency of its transport
in water fall (Boardman and Terblanche, 2015; Verberk et al., 2016). As
temperature rise, the oxygen supply may become insufficient to meet the
increasing oxygen requirements of aquatic ectotherms, leading a point
where the metabolic rate reaches a ceiling, subsequently reducing its
thermal sensitivity (Rubalcaba et al., 2020). Among these, larger-sized
conspecifics are expected to face more significant oxygen limitations
with warming due to their higher absolute oxygen demands and their
lower surface-area-to-volume ratio, which jointly narrow their aerobic
scope (Atkinson et al., 2006; Lindmark et al., 2018; Verberk et al., 2022).
This suggests that scenarios of global warming more extreme than those
projected by conservative climate change forecasts, or the occurrence of
heatwaves, could pose challenges to the survival of large-sized speci-
mens, particularly during the summer.

To our knowledge, this is one of the first studies to empirically assess
the effects of a modest predicted temperature increase of climate change
on SMR within seasonal temperature ranges (see also Bestion et al.
(2015). Although empirical estimates of metabolic rates in response to
projected global warming are crucial, further experimental studies
should be extended over longer periods to reflect the adaptation of or-
ganisms in the face of climate change. As populations are exposed to
increasing temperatures across generations, they may also genetically
adapt, potentially leading to reduced metabolic rates (see Pettersen et al.
(2024); Pilakouta et al. (2020)). It should also be noted that the findings
of this study likely underestimate changes in SMR in the context of
upcoming climate change, as the latest conservative scenario of the IPCC

has already projected a greater temperature increase of 1.5 ◦C by 2100
(IPCC: Lee et al., 2023).

In summary, our findings showed that the influence of temperature
on SMR is size dependent, with larger conspecifics having a lesser
sensitivity to temperature than smaller ones. We further demonstrated
that smaller individuals possess a broader thermal window for SMR
performance, while the SMR of larger individuals will become increas-
ingly constrained as summer temperatures become warmer. Therefore, a
small increment in temperature above seasonal norms, as predicted
under climate change scenarios, impacts individuals’ SMR. Conse-
quently, even the least severe IPCC scenarios appear likely to affect
higher-order ecological processes.
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