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Abstract
We study algebraic and projective geometric properties of Hamiltonian trios
determined by a constant coefficient second-order operator and two first-order
localizable operators of Ferapontov–Pavlov type. We show that first-order
operators are determined by Monge metrics, and define a structure of cyc-
lic Frobenius algebra. Examples include the AKNS system, a 2-component
generalization of Camassa–Holm equation and the Kaup–Broer system. In
dimension 2 the trio is completely determined by two conics of rank at least 2.
We provide a partial classification in dimension 4.
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1. Introduction

It was observed in [30] that many important bi-Hamiltonian structures of integrable (systems
of) PDEs have the form(

P1,Q1 + εkRk+1
)
, (1.1)

(no sum over k) where P1 andQ1 are first-order compatible homogeneous Hamiltonian operat-
ors (Hamiltonian operators of hydrodynamic type) and Rk+1 is a single (k+ 1)th-order homo-
geneous Hamiltonian operator compatible with P1 and Q1. Here, the homogeneity is defined
with respect to the grading deg∂x = 1.

Denoting with the square bracket the Schouten bracket we have

[P1,Q1] = [P1,Rk+1] = [Q1,Rk+1] = 0.

In other words the building blocks of the pair (1.1) (P1,Q1,Rk+1) define a trio of Hamiltonian
structures. The above structure can be thought as a deformation of the bi-Hamiltonian struc-
ture of hydrodynamic type (P1,Q1). Due to the general theory of deformations the most inter-
esting cases are k= 1 and k= 2 since for k> 2 the deformation Rk+1 can be always elimin-
ated by Miura type transformations [22]. The most famous example of such structures is the
Hamiltonian trio

P= P1 = ∂x, Q= Q1 +R3, Q1 = 2u∂x+ ux, R3 = ∂3
x . (1.2)

Coupling Q1 and R3 one obtains the bi-Hamiltonian structure of the KdV hierarchy(
∂x,2u∂x+ ux+ ε2∂3

x

)
(1.3)

discovered byMagri in [29], while couplingP1 andR3 one obtains the bi-Hamiltonian structure
of the Camassa–Holm hierarchy(

2u∂x+ ux,∂x+ ε2∂3
x

)
. (1.4)

Bi-Hamiltonian structures (1.1) obtained in this way have been introduced in [30] and have
been called in [25] bi-Hamiltonian structures of KdV type. Another example (from [10, 22])
is the trio:

P1 =

(
0 ∂x
∂x 0

)
, Q1 =

(
2u∂x+ ux v∂x

∂xv −2∂x

)
, R2 =

(
0 −∂2

x
∂2
x 0

)
(1.5)

In this case one coupling yields the bi-Hamiltonian structure of the the so-called AKNS hier-
archy, and the other one yields the bi-Hamiltonian structure of the two component Camassa–
Holm hierarchy [10, 22].

In order to classify this kind of bi-Hamiltonian structures (with k= 1,2) one can use the
following strategy:

1. Use canonical forms of Rk+1 under some natural groups of transformations preserving the
form of (P1,Q1,Rk+1).

2. Compute compatibility conditions [P1,Rk+1] = 0.
3. Use compatibility conditions to obtain trios of Hamiltonian operators.

2



J. Phys. A: Math. Theor. 57 (2024) 485202 P Lorenzoni and R Vitolo

The above strategy is motivated by the fact that there exist classifications of canonical forms
of operators Rk+1 under the action of various transformation groups, while trying to work with
canonical forms of P1 or Q1 does not lead to manageable forms of the corresponding Rk+1, in
view of the greater complexity of the latter.

There are two natural choices of the group of transformations to deal with: the group of dif-
feomorphisms of the dependent variables and the groups of reciprocal projective transforma-
tions of the independent variables. The latter group has been introduced in [14] as the group of
projective transformations of the dependent variables coupled with a nonlocal transformation
of the independent variable x of the type

dx̃=∆dx, ũi =
Tiju

j+Ti0
∆

, (1.6)

where ∆= T0i u
i +T00 and T’s are constants. Depending on the choice of the group the prob-

lem admits a slightly different formulation. In the first case, since the group of diffeomorph-
isms preserves the locality of Hamiltonian operators it is possible to restrict the attention only
to local first-order Hamiltonian operators (also known as Dubrovin–Novikov Hamiltonian
operators)

Pij1 = gij∂x+Γijku
k
x. (1.7)

In the second case, we can use the group of transformations of dependent variables to reduce
the operator Rk+1 to Doyle–Potemin canonical form: (see [26] and references therein)

Rk+1 = ∂x ◦Rk−1 ◦ ∂x, (1.8)

where Rk−1 is a homogeneous operator of order k− 1. Reciprocal projective transformations
preserve this form [26]; however, they do not preserve locality of P1, so that one is obliged
to consider first-order Hamiltonian operators of localizable shape (or simply localizable), first
introduced by Ferapontov and Pavlov in [13]:

Pij1 = gij∂x+Γijku
k
x+wiku

k
x∂

−1
x ujx+ uix∂

−1
x wjku

k
x. (1.9)

The first approach has been pursued in [25] using the results of [8, 16] for second-order oper-
ators R2 and the results of [8, 14, 15, 17, 18] for third-order operators R3. For instance, in the
2-component case the canonical forms are

R2 =

(
0 1
−1 0

)
∂2
x , (1.10)

R(1)
3 =

(
0 1
1 0

)
∂3
x , (1.11)

R(2)
3 = ∂x

(
0 ∂x

1
u1

1
u1 ∂x

u2

(u1)2
∂x+ ∂x

u2

(u1)2

)
∂x, (1.12)

R(3)
3 = ∂x

 ∂x ∂x
u2

u1

u2

u1 ∂x
(u2)

2
+1

2(u1)2
∂x+ ∂x

(u2)
2
+1

2(u1)2

∂x. (1.13)

And the corresponding compatible first-order operators are given in the following theorem.
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Theorem: affine classification [25]. P1 is a Hamiltonian operator compatible with R2 if and
only if

g11 = c1u
1 + c2, (1.14a)

g12 =
1
2
c3u

1 +
1
2
c1u

2 + c5 (1.14b)

g22 = c3u
2 + c4. (1.14c)

P1 is a Hamiltonian operator compatible with R
(1)
3 if and only if

g11 =c1u
1 + c2u

2 + c3, (1.15a)

g12 =c4u
1 + c1u

2 + c5 (1.15b)

g22 =c6u
1 + c4u

2 + c7 (1.15c)

together with the algebraic conditions

c1c4 − c2c6 = 0, c3c4 − c7c2 = 0, c3c6 − c1c7 = 0. (1.16)

P1 is a Hamiltonian operator compatible with R
(2)
3 if and only if

g11 = c1u
1 + c2u

2, (1.17a)

g12 = c4u
1 +

c3
u1

+
c2
(
u2
)2

2u1
, (1.17b)

g22 = 2c4u
2 +

c6
u1

−
c1
(
u2
)2

u1
+ c5, (1.17c)

together with the algebraic conditions

c2c6 + 2c1c3 = 0, c2c5 = 0, c1c5 = 0. (1.18)

P1 is a Hamiltonian operator compatible with R
(3)
3 if and only if

g11 = c1u
1 + c2u

2 + c3, (1.19a)

g12 = c4u
1 − c2

2u1
+
c3u2

u1
+
c2
(
u2
)2

2u1
, (1.19b)

g22 = 2c4u
2 +

c1
u1

+
c5u2

u1
−
c1
(
u2
)2

u1
+ c6, (1.19c)

together with the algebraic conditions

c2c5 + 2c1c3 = 0, c2c6 − 2c3c4 = 0, c1c6 + c4c5 = 0. (1.20)

The family of contravariant metrics (1.14) depends linearly on the parameters and thus any
pair of metrics belonging to these families defines a bi-Hamiltonian structure of hydrodynamic
type compatible with the second/third-order operator. Other families are defined by nonlinar
constraints and the previous argument fail; see [25] for a complete list of compatible pairs
within the families.

The second approach has been pursued in [27] in the case Rij3 = ηij∂3
x where (η

ij) is a sym-
metric constant non-degenerate matrix (det(ηij) ̸= 0). The operator R3 generates the simplest
orbit of third-order operators under the action of the projective reciprocal transformation group.
The study of compatibility conditions leads to the following results:
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• the Christoffel symbols Γijk define a Frobenius algebra structure on the cotangent bundle of
the manifold of dependent variables (ui);

• the operator P= L+N splits into its local part L and its nonlocal part N, and they are inde-
pendently Hamiltonian operators;

• for n≥ 3, N= 0, and the operator becomes purely local.

The local trios that we got for n> 2 are known in the literature. They can be obtained as special
cases of the results of [34] and also were studied in [2] in terms of Frobenius pencils. However
we point out that the locality (for n> 2) is not an a priori assumption but the result of non
trivial computations.

The aim of the present paper is to study the case Rij2 = ηij∂2
x where (η

ij) is a skew-symmetric
constant non-degenerate matrix (det(ηij) ̸= 0). The operator R2 generates the simplest orbit of
second-order operators under the action of the projective reciprocal transformation group. The
role of Frobenius algebra in this setting is played by a new type of algebra recently introduced
by Buchstaber and Mikhailov and called cyclic Frobenius algebra.

Definition 1.1. [3]. Let V be some C-linear space (dim(V ⩾ 1). A cyclic Frobenius algebra
(CF-algebra) A is an associative algebra A with unity 1 equipped with a C-bilinear skew-
symmetric form η(·, ·) :A⊗C A→V such that

η (A,B ◦C)+ η (B,C ◦A)+ η (C,A ◦B) = 0 (1.21)

where A,B,C ∈ A and ◦ is the product in the algebra.

Let V = C. Denoting by Γijk the structure constants of the product we have

ηijAi (B ◦C)j+ ηijBi (C ◦A)j+ ηijCi (A ◦B)j
=
(
ηijΓlkj + ηljΓkij + ηkjΓilj

)
AiBlCk = 0

or, taking into account that A,B,C are arbitrary,

Γkij η
jl+Γilj η

jk+Γlkj η
ji = 0. (1.22)

The main results of the paper concerning the compatibility of Hamiltonian operators can
be summarized as follows.

Compatibility Theorem. The Hamiltonian operators P, R are compatible if and only if

• wij =Wi
j where W is a constant matrix that is symmetric with respect to η:

η (AW,B) = η (A,BW) ; (1.23)

• the contravariant Christoffel symbols are linear functions of the form

Γijk = ∂k
(
−Wj

su
sui+ bijs u

s
)
=−Wj

ku
i −Wj

su
sδik+ bijk (1.24)

for arbitrary constants bijk .
• the product with structure constants Γijk

(A ◦B)k = ΓijkAiBj

5
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endows the cotangent space T∗M of the manifold M of dependent variables with a structure
of cyclic Frobenius algebra (without unity) and satisfy the conditions:

η (A ◦B,C) = η (A,C ◦B) . (1.25)

The Theorem is stated and proved as theorem 3.1.
Notice that the condition (1.25) can be also written as

Γijl η
lk+Γkjl η

li = 0. (1.26)

Indeed, relabelling the indices the condition

ηij (A ◦B)i = ηijAi (C ◦B)j

reads (
Γlki η

ij+Γjki η
il
)
AlBkCj = 0.

Conditions (1.21) and (1.25) appear in the paper [34] as cocycle conditions arising from the
compatibility between a local first-order Hamiltonian operator of hydrodynamic type defined
by a flat linear metric and a second-order constant Hamiltonian operator defined by a skew-
symmetric matrix. In this setting the contravariant Christoffel symbols of the linear metric are
constant and define the structure constants of a Balinsky–Novikov algebra.

A corollary of the above theorem is that the nondegenerate symmetric bilinear form
obtained from the the contravariant metric defining P1 ‘lowering’ the indices with η:

ḡab = ηjbηiag
ij (1.27)

is the Monge metric of a quadratic line complex, an algebraic variety that is defined in the
Plücker embedding of the projective spacewith homogeneous coordinates [v1, . . . ,vn+1], where
ui = vi/vn+1, i = 1, . . . ,n, vn+1 ̸= 0. See [14, 15] for more details on this construction. The
equation that characterizes Monge metrics is

ḡij,k+ ḡki,j+ ḡjk,i = 0 (1.28)

can be obtained from the cyclic Frobenius algebra condition. In 2-component case there are
no additional conditions and the general solution of compatibility conditions can be obtained
starting from arbitrary Monge metric

ḡ11 = c0(u
2)2 + c3u

2 + c4,

ḡ12 =−c0u1u2 −
1
2
c3u

1 − 1
2
c1u

2 + c5,

ḡ22 = c0(u
1)2 + c1u

1 + c2.

The above metric yields a flat contravariant metric gij, by means of (1.27), if and only if the
coefficient c0 vanishes. Notice that in the flat case we recover the metric of the above affine
classification theorem.

It is known [36] that Plücker embedding provides an identification of the leading coeffi-
cient matrix of a second-order homogeneous Hamiltonian operator with an algebraic variety,
more precisely, a linear line congruence. Such a variety is defined by a system of n+ 1 linear
equations in P(∧2V) and its intersection with Plücker variety.

6
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It is then clear that there is a correspondence between trios of Hamiltonian operators P1,
Q1 of the form (1.9) and R2 of the form (1.8) and trios of algebraic varieties. In the case n= 2
that is summarized by the following theorem.

Projective Correspondence Theorem. If n= 2, then there is a bijective correspondence
between trios of mutually compatible Hamiltonian operators P1, Q1 of the form (1.9) and
R2 =

(
0 1
−1 0

)
∂2
x and pairs of conics C1, C2 of rank at least 2.

Note that the linear line congruence corresponding to R2 degenerates to 0 in this case. The
theorem is stated and proved as theorem 4.1.

In higher dimension the compatibility conditions include Monge’s condition on the metric,
but are not reduced to that condition only. In particular, the geometric interpretation of the
further conditions as conditions on the trio of algebraic varieties underlying the compatible
trio of Hamiltonian operators is still missing. However, it easy to realize that there are plenty
of Hamiltonian trios in any dimension.

In particular, using the solver CRACK [39, 40], a package working within the computer
algebra system Reduce [19], we obtain the general solution P1 of the compatibility conditions
[P1,R2] = 0 (withRij2 = ηij∂2

x ) for n= 4. It turns out that there are 288 subcases, each depending
on several parameters. This calculation has been performed on a compute server of the INFN,
and it took 33GB of RAM and about 15min of time.

Then, for each subcase one should find all compatible Q1 in the same list. We did this
computation for one selected P1, generalizing the Kaup–Broer and AKNS bi-Hamiltonian
pairs, and obtained a list of 64 subcases, again each of them depending on several parameters.

Both lists of solutions are available at the webpage of one of us [28] and also in the article’s
supplementary information. Here, we just wrote two examples of bi-Hamiltonian trios, a local
one and a nonlocal one.

The paper is organized as follows: in section 2 we briefly recall the canonical form of
second and third-order homogeneous operators under projective reciprocal transformations;
in section 3 we compute the compatibility conditions between the simplest canonical form of
a second-order homogeneous operator and a first-order operator of localizable shape; using
these results in section 4 we study trios of such operators and we provide the classification in
the case n= 2 and the computational scheme by which we computed the classification in the
case n= 4, as well as some examples.

2. Hamiltonian operators and projective reciprocal transformations

First-order Hamiltonian operators are operators of the form

Pij1 = gij (u)∂x+Γijk (u)u
k
x, (2.1)

formally skew-adjoint and satisfying the Schouten bracket condition [P1,P1] = 0. In the non-
degenerate case (det(gij) ̸= 0) Dubrovin and Novikov proved thatP1 is Hamiltonian if and only
if gij is a flat contravariant pseudo-Riemannian metric and Γjhk =−ghiΓijk are the Christoffel
symbols of the associated Levi–Civita connection.

Higher-order Dubrovin–Novikov operators have a muchmore complicated form, see [9] for
details. However, it was proved [1, 8, 18, 31] that if the order is 2 or 3, they admit, respectively,
the canonical forms

Rij2 = ∂x ◦ fij ◦ ∂x, Rij3 = ∂x ◦
(
`ij∂x+ cijku

k
x

)
◦ ∂x. (2.2)

7
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The above canonical forms are invariant with respect to projective reciprocal transformations
of the type (1.6) (see [14, 26, 36]). The result of such transformations on a first-order Dubrovin–
Novikov Hamiltonian operator is a nonlocal Hamiltonian operator of localizable shape

Pij1 = gij (u)∂x+Γijk (u)u
k
x+wik (u)u

k
x∂

−1
x ujx+ uix∂

−1
x wjk (u)u

k
x. (2.3)

Operators of this form have been studied in [11, 13] and naturally appear in the study and
classification of integrable systems of PDEs (see for instance [23, 26]). Skew-adjointness and
vanishing of the Schouten bracket in this case lead to the following list of conditions:

1. gij is a contravariant pseudo-Riemannian metric and Γijk are the contravariant Christoffel
symbols of its Levi–Civita connection; equivalently, the following conditions hold:

gisΓjks = gjsΓiks , (2.4)

∂kg
ij = Γijk +Γjik ; (2.5)

2. the following equations hold:

giswjs = gjswis, (2.6)

∇iw
j
k =∇kw

j
i, (2.7)

Rijkh = wikδ
j
h−wjkδ

i
h−wihδ

j
k+wjhδ

i
k, (2.8)

where ∇ is the Levi–Civita connection of gij and

Rjksl = gjpRkpsl =
∂Γjks
∂ul

−
∂Γjkl
∂us

+ gst
(
ΓtjmΓ

mk
l −ΓtkmΓ

mj
l

)
(2.9)

is the Riemannian curvature tensor of gij.

Canonical forms of operators (2.2) under the action of projective reciprocal transformations
have been found in [36] in the case of second-order operators and in [14] and [15] for third-
order operators. The simplest canonical form of second-order operators (2.2) is Rij2 = ηij∂2

x
where ηij are the entries of a constant skew-symmetric matrix.

3. Conditions of compatibility

In this section we calculate the conditions that are equivalent to the compatibility of P and R,
i.e. the vanishing of the Schouten bracket [P,R] = 0, for a pair of Hamiltonian operators, where
P= P1 is a nonlocal localizable first-order homogeneous Hamiltonian operator as in (2.3) and
Rij = Rij2 = ηij∂2

x , with (ηij) a constant skew-symmetric non-degenerate matrix.

Theorem 3.1. The Hamiltonian operators P, R are compatible if and only if

• the functions wij are constant and satisfy the condition

wilη
lk+wkl η

li = 0; (3.1)

8
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• the contravariant Christoffel symbols Γijk satisfy the conditions:

Γijl η
lk+Γkjl η

li = 0, (3.2)

Γkil η
lj+Γijl η

lk+Γjkl η
li = 0, (3.3)

ΓsjpΓ
ir
s −Γsrp Γ

ij
s = 0, (3.4)

∂Γkjl
∂us

=−δjsw
k
l −wjsδ

k
l . (3.5)

Proof. We will write differential operators by means of distributions as

Pijxy = gijδ ′ (x− y)+Γijs u
s
xδ (x− y)+ uixν (x− y)wjsu

s
y+wisu

s
xν (x− y)ujy (3.6)

and

Rijxy = ηijδ ′ ′ (x− y) . (3.7)

We use Dubrovin–Zhang formula for the Schouten bracket:

[P,R]ijkx,y,z =
∂Pijx,y
∂ul (x)

Rlkx,z+
∂Pijx,y
∂ul (y)

Rlky,z+
∂Pkiz,x
∂ul (z)

Rljz,y+
∂Pkiz,x
∂ul (x)

Rljx,y

+
∂Pjky,z
∂ul (y)

Rliy,x+
∂Pjky,z
∂ul (z)

Rliz,x+
∂Pijx,y
∂ulx

∂xR
lk
x,z+

∂Pijx,y
∂uly

∂yR
lk
y,z

+
∂Pkiz,x
∂ulz

∂zR
lj
z,y+

∂Pkiz,x
∂ulx

∂xR
lj
x,y+

∂Pjky,z
∂uly

∂yR
li
y,x+

∂Pjky,z
∂ulz

∂zR
li
z,x.

The vanishing of the distribution [P,R]ijkx,y,z means that for any choice of the test functions
pi(x),qj(y),rk(z) the triple integral

˚
[P,R]ijkx,y,z pi (x)qj (y)rk (z) dxdydz (3.8)

should vanish.
Following [6, 24], we apply a procedure to collect together all terms which are related by a

distributional identity. The procedure is the following

1. Using identities like

ν (z− y)δ (z− x) = ν(x− y)δ(x− z) (3.9)

together with their differential consequences, we can eliminate all terms containing ν(z−
y)δ(n)(z− x), ν(y− x)δ(n)(y− z), ν(x− z)δ(n)(x− y) producing nonlocal terms containing
ν(x− y)δ(n)(x− z), ν(z− x)δ(n)(z− y), ν(y− z)δ(n)(y− x) and additional local terms.

9
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2. Using the identity

f(z)δ(n) (x− z) =
n∑

k=0

(
n
k

)
f(n−k) (x)δ(n−k) (x− z) , (3.10)

we can eliminate the dependence on z in the coefficients of ν(x− y)δ(n)(x− z), the depend-
ence on y in the coefficients of ν(z− x)δ(n)(z− y) and the dependence on x in the coeffi-
cients of ν(y− z)δ(n)(y− x). After the first two steps the nonlocal part of [P,R]ijkx,y,z has the
form

a1 (x,y,z)ν (x− y)ν (x− z)+ cyclic(x,y,z)

+
∑
n⩾0

bn (x,y)ν (x− y)δ(n) (x− z)+ cyclic(x,y,z) . (3.11)

3. The local part of [P,R]ijkx,y,z can be reduced to the form∑
m,n

emn (x)δ
(m) (x− y)δ(n) (x− z) (3.12)

using the identities (and their differential consequences)

δ (z− x)δ (z− y) = δ (y− x)δ (y− z) = δ(x− y)δ(x− z) (3.13)

and the identities (3.10).

The fulfillment of the Jacobi identity turns out to be equivalent to the vanishing of each
coefficient in the reduced form. Below a list of relevant coefficients in our case.

The vanishing of the coefficient of δ(x− y)δ ′ ′ ′(x− z) provides the condition (3.2):

∂gjk

∂ul
ηli+Γijl η

lk−Γjkl η
li = Γijl η

lk+Γkjl η
li = 0. (3.14)

The same condition is provided by the vanishing of the coefficient δ ′ ′ ′(x− y)δ(x− z).
The vanishing of coefficient of δ ′(x− y)δ ′ ′(x− z) provides the condition

∂gij

∂ul
ηlk+ 2

∂gjk

∂ul
ηli− 3Γjkl η

li = Γjil η
lk+Γkjl η

li−Γjkl η
li = 0, (3.15)

and the vanishing of coefficient of δ ′ ′(x− y)δ ′(x− z) provides the condition

−∂gki

∂ul
ηlj+

∂gjk

∂ul
ηli− 3Γjkl η

li =−Γkil η
lj+Γkjl η

li−Γjkl η
li = 0. (3.16)

The difference between (3.15) and (3.16) is equivalent to condition (3.2), while their sum
provides (3.3):

Γkil η
lj+Γijl η

lk+Γjkl η
li = 0. (3.17)

The coefficient of ν(x− y)δ ′ ′ ′(x− z) is

w j
su
s
yη

ik+wil(x)u
j
yη

lk+ u jyw
k
l (x)η

li+w j
su
s
yη

ki =
(
wil(x)ηlk+wkl(x)ηli

)
u jy; (3.18)

10
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its vanishing is (3.1). The same condition is obtained by the coefficients of ν(z− x)δ ′ ′ ′(z− y)
and ν(y− z)δ ′ ′ ′(y− x).

The coefficient of usxxxδ(x− y)δ(x− z) is(
∂Γjks
∂ul

−
∂Γjkl
∂us

)
ηli+wilη

ljδks +wksη
ij+wjsη

ki+ δjsw
k
l η

li. (3.19)

Replacing the condition (2.8) in the previous expression and requiring its vanishing we get
condition (3.4):

ΓtjmΓ
mk
l −ΓtkmΓ

mj
l = 0, (3.20)

and the equivalent condition

∂Γjks
∂ul

−
∂Γjkl
∂us

= wjlδ
k
s + δjlw

k
s −wjsδ

k
l − δjsw

k
l . (3.21)

The coefficient of δ(x− y)δ ′ ′(x− z) is

∂Γijs
∂ul

usxη
lk+ 2∂x

(
∂gjk

∂ul

)
ηli+

∂Γjks
∂ul

usxη
li+ uixw

j
lη
lk+wisu

s
xη

jk+ ukxw
i
lη
lj

+wksu
s
xη

ij− 3∂x
(
Γjkl

)
ηli+ 3ujxw

k
l η

li+ 3wjsu
s
xη

ki. (3.22)

Using (2.5) in order to eliminate the derivative of gjk, the above coefficient can be rewritten as

(
∂Γkjl
∂us

+ δjsw
k
l +wjsδ

k
l

)
usxη

li. (3.23)

Thus the vanishing of this coefficient provides condition (3.5). The same condition is provided
by the vanishing of the coefficient of δ ′ ′

xyδxz.
The coefficient of δ ′(x− y)δ ′(x− z) is

2∂x

(
∂gjk

∂ul

)
ηli+ 2

∂Γjks
∂ul

usxη
li− uixw

j
lη
lk−wisu

s
xη

jk

+ 3ukxw
i
lη
lj+ 3wksu

s
xη

ij− 6∂x
(
Γjkl

)
ηli+ 3ujxw

k
l η

li+ 3wjsu
s
xη

ki. (3.24)

It can be proved that the above expression is equal to

∂

∂us

(
Γkjl η

li+Γikl η
lj+Γjil η

lk
)
, (3.25)

and thus vanishes due to condition (3.3).
The coefficient of ν(x− y)δ ′ ′(x− z) is

ujyu
s
x

(
∂wis
∂ul

ηlk− ∂wks
∂ul

ηli+ 3
∂wkl
∂us

ηli
)
, (3.26)

which is the same as the coefficients of νzxδ ′ ′
zy and νyzδ

′ ′
yx up to renaming indices and variables.

11
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The coefficient of ν(x− y)δ ′(x− z) is

−2ujy∂x

(
∂wks
∂ul

usx

)
ηli+ 3ujy∂

2
x

(
wkl
)
ηli, (3.27)

and the same expression, up to renaming indices and variables, holds for the coefficients of
νzxδ

′
zy and νyzδ

′
yx. In the expression (3.27), the coefficient of u

s
xxu

i
y is

−2
∂wks
∂ul

ηli+ 3
∂wkl
∂us

ηli. (3.28)

The coefficient of ν(x− y)δ(x− z) is

−ujy∂2
x

(
∂wks
∂ul

usx

)
ηli+ ujy∂

3
x

(
wkl
)
ηli, (3.29)

and the same expression holds for the coefficients of νzxδzy and νyzδyx up to renaming indices
and variables. In the expression (3.29) the vanishing of the coefficient of ujju

s
xxx provides the

closure condition(
−∂wks

∂ul
+

∂wkl
∂us

)
ηli = 0.

Replacing this condition in (3.28) we obtain that the functions wij are constant. In particular
this tells us that

Γkjl =−wkl uj−wjsu
sδkl + bkjl (3.30)

where bkjl are constant.
Taking into account this fact the coefficient of δ(x− y)δ ′(x− z) is

∂2
x

(
∂gjk

∂ul

)
ηli+ 2∂x

(
∂Γjks
∂ul

usx

)
ηli+ 2ukxxw

i
lη
lj

+ 2∂x
(
wksu

s
x

)
ηij− 3∂2

x

(
Γjkl

)
ηli+ 3ujxxw

k
l η

li+ 3∂x
(
wjsu

s
x

)
ηki. (3.31)

This coefficient vanishes due to previous conditions. Indeed:

∂Γkjl
∂us

ηli+ 2

(
∂Γjks
∂ul

−
∂Γjkl
∂us

)
ηli+ 2δksw

i
lη
lj+ 2wksη

ij+ 3δjsw
k
l η

li+ 3wjsη
ki

=
(
−δjsw

k
l −wjsδ

k
l

)
ηli+ 2

(
wjlδ

k
s + δjlw

k
s −wjsδ

k
l − δjsw

k
l

)
ηli

+ 2δksw
i
lη
lj+ 2wksη

ij+ 3δjsw
k
l η

li+ 3wjsη
ki = 0. (3.32)

The coefficient of δ ′(x− y)δ(x− z) is

2∂x

(
∂Γjks
∂ul

usx

)
ηli+ 2uix∂x

(
wjl

)
ηlk+ 3ukxxw

i
lη
lj

+ 3∂x
(
wksu

s
x

)
ηij− 3∂2

x

(
Γjkl

)
ηli+ 2ujxxw

k
l η

li+ 2∂x
(
wjsu

s
x

)
ηki. (3.33)

It vanishes due to previous conditions; the calculation is similar to that of (3.32).

12
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Finally, the coefficient of δ(x− y)δ(x− z) is

∂2
x

(
∂Γjks
∂ul

usx

)
ηli+ ukxxxw

i
lη
lj+ ∂2

x

(
wksu

s
x

)
ηij− ∂3

x

(
Γjkl

)
ηli

+ ujxxxw
k
l η

li+ ∂2
x

(
wjsu

s
x

)
ηki. (3.34)

Again, this coefficient vanishes due to previous conditions.

There are very interesting geometric and algebraic consequences of theorem 1. First of all,
very recently a new algebraic structure has been introduced in the theory of Integrable Systems,
namely cyclic Frobenius algebra [3], in a framework which is different from ours. It turns out
that it also arises in our context.

Corollary 3.2. The Christoffel symbols Γijk endow the cotangent space T
∗M of the manifold M

of dependent variables (ui) with a structure of cyclic Frobenius algebra.

Proof. The conditions that should be satisfied are exactly (3.2)–(3.4).

An even more surprising fact is the interpretation as an algebraic variety of the leading
coefficient of any first-order nonlocal homogeneous Hamiltonian operator P that is compatible
with our constant-coefficient second-order Hamiltonian operator R (3.7).

Corollary 3.3. Let us introduce the nondegenerate symmetric bilinear form

ḡab = ηjbηiag
ij. (3.35)

Then, ḡab is the Monge metric of a quadratic line complex.

Proof. Summing the condition (3.3) with the same condition with the indices i, k swapped we
obtain the condition

gki,lη
lj+ gij,lη

lk+ gjk,lη
li = 0, (3.36)

where gki,l = ∂gki/∂ul. The above condition can be rewritten in lower indices by multiplication
by ηkbηicηja, yielding

ḡbc,a+ ḡca,b+ ḡab,c = 0. (3.37)

The above condition is equivalent to the fact that ḡab is a Monge metric, which is S. Lie’s
representation of quadratic line complexes (see [14, 15]). This proves the Corollary.

Remark 3.4. It is known [14] that under projective reciprocal transformations (1.6) a Monge
metric transforms as (ḡij(ũ)) = (ḡhk(u))/∆4. Moreover, it has been proved in [36] that the
leading coefficient matrix of a second-order homogeneous Hamiltonian operator in Doyle–
Potëmin canonical form transforms as (ηij(ũ)) = (ηhk(u))/∆3.

That implies that the leading coefficient matrix (gij) of a first-order operator (1.9) that
is compatible with a second-order operator Rij2 = ηij∂2

x transforms as (gij(ũ)) = (ghk(u))∆2,
which is how the metric of the first-order operator transforms under a generic reciprocal trans-
formations according with [13].

13
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4. Classification of bi-Hamiltonian trios

The general problem of the classification of local bi-Hamiltonian trios can be formulated as
follows: classify the bi-Hamiltonian trios of operators of the form

A1 = P1 +R2, A2 = Q1, (4.1)

where

• P1, Q1 are local homogeneous first-order Hamiltonian operators;
• R2 is a local homogeneous second-order Hamiltonian operator;
• the three operators are mutually compatible:

[P1,Q1] = [R2,P1] = [R2,Q2] = 0. (4.2)

Of course, in view of the complexity of the general form ofR2, the problem can be reformulated
when R2 is written in the canonical form (2.2). This can always be done by means of a point
transformation of the dependent variables, without changing the shape of the three operators.

Then, we can use the projective classification of (non-degenerate) second-order homogen-
eous operators [36] at the price of allowing P1 and Q1 to have localizable shape (see [26]).
Indeed, the projective classification makes use of projective reciprocal transformations which
transform local operators into nonlocal ones.

In this paper, we will just consider the orbit of R2 under the action of projective reciprocal
transformations that contains the constant operator Rij2 = ηij∂2

x , so to apply the results from the
previous Section.

For this reason, we reformulate and restrict the above problem to: classify the bi-
Hamiltonian trios of operators of the form

A1 = P1 +R2, A2 = Q1, (4.3)

where

• P1, Q1 are nonlocal homogeneous first-order Hamiltonian operators that are localizable (by
means of the same projective reciprocal transformation);

• Rij2 = ηij∂2
x is a constant-coefficient local homogeneous second-order Hamiltonian operator;

• the three operators are mutually compatible:

[P1,Q1] = [R2,P1] = [R2,Q2] = 0. (4.4)

We will be able to give a complete answer in the case n= 2 and a partial answer in the case
n= 4, due to the complex structure of the space of solutions.

We observe that solutions the above version of the problem contain trios of local operators
as a particular case, but they also contain trios where the two first-order operators cannot be
simultaneously localized; hence, we obtain solutions with non-removable nonlocal terms.

The Hamiltonian operators of our trios are uniquely identified by algebraic varieties. We
now give a brief description of the procedure that allows us to make the above identification,
which, in essence, boils down to Plücker embedding.

We assume that (ui) are affine coordinates of an n-dimensional projective spaceP(V), where
V is a vector space with dimV= n+ 1 and coordinates (vi). Homogeneous coordinates on
P(V) are denoted by [v1, . . . ,vn+1], in such a way that ui = vi/vn+1. We recall that Plücker

14
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embedding (of lines) is the natural injective map Gr(2,V) ↪→ P(∧2V), where Gr(2,V) is the
Grassmanniann of planes in V, which can be identified as the space of projective lines in P(V).

Elements of P(∧2V) can be represented as [pij], where pij are coordinates with respect to the
basis ei ∧ ej, i< j, of ∧2V, (ei) being a basis of V. The coordinates pij are Plücker coordinates.

The image of Plücker embedding can be characterized as the space of of decomposable
forms in ∧2V; it is an algebraic variety described by a system of homogeneous quadratic
relations between Plücker coordinates: pijpkh− pikpjh+ pihpjk = 0, where i < j < k< h. The
system is empty if n= 2, consists of one quadric only if n= 3, 5 quadrics if n= 4, etc.

A single, additional quadratic equation XTQX= 0, where X= (pij) and Q is a symmetric
matrix of order dim∧2V=

(n+1
2

)
, together with the equations that define Plücker variety is a

quadratic line complex.
The lines of the quadratic line complex passing through a single point x in the projective

space form a quadratic cone. This x-dependent family of cones endows the projective space
with a conformal structure, the Monge metric. The Monge metric is obtained by considering
lines through two infinitesimally close points P, with coordinates [v1, . . . ,vn+1], and P+ dP,
with coordinates [v1 + dv1, . . . ,vn+1 + dvn+1]. Then, the Plücker coordinates are the minors
pij = vidvj− vjdvi, with i, j = 1, . . . ,n+ 1, i< j, of the matrix(

v1 · · · vn+1

v1 + dv1 · · · vn+1 + dvn+1

)
. (4.5)

In affine coordinates, upon substituting vn+1 = 1, dvn+1 = 0, the Monge metric is a quadratic
form with respect to the one-forms

uiduj− ujdui, i < j, dui (4.6)

(modulo Plücker variety); its coefficients are quadratic polynomials (but such a condition is not
enough to characterize Monge metrics). The above geometric construction has been exploited
by many geometers in the past, like A. Clebsch, S. Lie and C. Segre, but has been forgotten
until recently (see [14, 15] and references therein, and the history paper [33]).

From the above discussion, it is easy to generate an ansatz for a first-order operator P1 that
is compatible with a constant-coefficient second-order operator R2, using the formula (3.35)
and a generic Monge metric ḡij.

We remark that also R2 defines a projective variety in the same space as the above quadratic
line complex, according with the identification in [36]. More precisely, the two-form ηijdui ∧
duj can be made into a three-form ηij n+1dvi ∧ dvj ∧ dvn+1, where ηij n+1 = ηij, and this yields an
algebraic variety inP(∧2V) defined by the equations ηijkpjk = 0 and Plücker’s variety equations
(here ηijk is obtained from ηij n+1 = ηij by skew-symmetrization). Such a variety is a linear line
congruence. We will discuss it in the case n= 4.

4.1. Casen=2: classification

Theorem 4.1. Let R2 and P1 be Hamiltonian operators of the following shape:

R2 =

(
0 1
−1 0

)
, Pij1 = gij∂x+Γijku

k
x+wiku

k
x∂

−1
x ujx+ uix∂

−1
x wjhu

h
x . (4.7)

Then, the following conditions are equivalent:

• [R2,P1] = 0;
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• The local part of P1 is determined by an arbitrary non-degenerate Monge metric (ḡab)
through the formula (3.35). More explicitely, we have

g11 = c0(u
1)2 + c1u

1 + c2,

g12 = c0u
1u2 +

1
2
c3u

1 +
1
2
c1u

2 + c5,

g22 = c0(u
2)2 + c3u

2 + c4, (4.8)

where c0, c1, c2, c3, c4, c5 are arbitrary parameters. The nonlocal part of P1 is given by
(wij) =−1/2c0 Id, hence the operator is of Mokhov–Ferapontov type [12] and has the form

Pij1 = gij∂x+Γijku
k
x− c0u

i
x∂

−1
x ujx. (4.9)

Proof. The unknown metric gij can be reconstructed from a Monge metric using (3.35). In
this way, (3.3) will be solved by construction. Then, a simple calculation proves that the
equations (3.2) and (3.4) are verified.

From (3.1) we easily obtain w1
2 = w2

1 = 0 and w1
1 = w2

2. If we use such conditions, all other
equations are identically verified, with the exception of (3.5) that yields the equation

c0 =−2w1
1 =−2w2

2. (4.10)

Concerning the Hamiltonian conditions on P1, we see that (2.7) is verified by the contravari-
ant metric (4.8) and wij =−1/2c0δij . Moreover, it is easy to calculate that the only nonzero
component of the curvature (gij) is R12

12 =−c0; using the condition (4.10), we immediately see
that (2.8) is verified.

The Monge metric of the operator P1 is

ḡ11 = c0(u
2)2 + c3u

2 + c4,

ḡ12 =−c0u1u2 −
1
2
c3u

1 − 1
2
c1u

2 + c5,

ḡ22 = c0(u
1)2 + c1u

1 + c2.

It is easy to prove that the (symmetric) matrixQ of the corresponding quadratic line complex is
generic (up to the non-degeneracy requirement): if we fix Lie’s form of Plücker’s coordinates

XT =
(
u1du2 − u2du1,du1,du2

)
(4.11)

the Monge metric ḡ is the quadratic expression ḡ= XTQX where

Q=

 c0 − 1
2c3

1
2c1

− 1
2c3 c4 c5

1
2c1 c5 c2

 (4.12)

This is a generic conic in P(V) (up to the non-degeneracy requirement on (gij)).

Corollary 4.2. The Hamiltonian operator P1 is local if and only if c0= 0; in this case, the
operator coincides with the class that has been found in [25].

Note that locality is not preserved by projective reciprocal transformations.
We are ready to state the Projective Correspondence Theorem.
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Theorem 4.3 (Projective Correspondence Theorem). Let n= 2. Then, a trio of mutually
compatible Hamiltonian operators P1, Q1, R2 of the form (4.3) is equivalently given by any
two conics C1, C2 in P(V), each of rank at least 2.

Proof. We observe that the action of projective reciprocal transformations on R2 yields R2

multiplied by the determinant of the projective transformation, so R2 is invariant under the
action of SL(V).

Then, the action of SL(V) on V induces an action on ∧2V that, in the case n= 2, is bijective
on SL(∧2V). This means that conics in P(∧2V) can be classified by their rank (provided we
regard V as a complex vector space).

The rank of the quadratic line complex corresponding to a non-degenerate Monge metric
must be at least 2; a rank 1 quadratic line complex yields a degenerate Monge metric.

Finally, we observe that any pencil P1 +λQ1 of operators of the type (4.8) is of operators
of the same type, due to the linearity of the coefficients. That implies that any two operators
whose metric is defined by (4.8) are compatible.

Remark 4.4. When n= 2 the Plücker variety is empty. Moreover, it is immediate to prove
that the algebraic variety defined by R2, a linear line complex, degenerates to 0. So, no other
algebraic variety else than the two conics of the above statements come into play when n= 2.

A first projective classification of bi-Hamiltonian trios of the shape of theorem 4.1 can be
made in the following way.

Proposition 4.5. With respect to the action of projective reciprocal transformations, there are
two inequivalent classes of trios R2, P1, Q1 that are mutually compatible and of the type (4.7).
They are described by

1. R2, P1,2, Q1, where the quadratic line complex corresponding to P1,2 has rank 2 and Q1 is
arbitrary, and

2. R2, P1,3, Q1, where the quadratic line complex corresponding to P1,3 has rank 3 and Q1 is
arbitrary.

The classification is far from being complete; indeed, finding the invariants of a pair of
quadratic forms is a well-known problem. Let us consider the pencil of conics C1 −λC2 in
P2(C). The group SL(3,C) acts on the pencil in a natural way. The characteristic polynomial
of the pencil det(C1 −λC2) is multiplied by a constant after the action of a group element,
hence its roots are invariants of the pencil.

Proposition 4.6. Let rk(C1) = 3, and assume that the three roots of the characteristic polyno-
mial of the pencil det(C1 −λC2) are distinct; denote them by λi, i= 1, 2, 3. Then, there exists
a basis of C3 such that C1 = Id and C2 = diag(λi).

Proof. There exists a basis in which the pencil can be rewritten as Id−λC2. The group of
stabilizers of Id is SO(3,C). It is easy to prove that the characteristic vectors are independent:
indeed, they are eigenvectors of C−1

1 C2. Such vectors provide the basis in which the canonical
form of the statement is achieved.

Historically, in the case when one of C1, C2 is non-degenerate the problem was solved by
Weierstrass [37, 38], while in the degenerate case a solution was provided by Kronecker [20]
and Dickson [7]. See [35] for a modern treatment of the problem and related references.
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4.2. Casen=2: examples

We will consider, as the simplest example in n= 2 components, the Poisson pencil of the
Kaup–Broer system (first obtained in [21]). The trio is defined by

P1 =

(
0 ∂x
∂x 0

)
, P2 =

(
2∂x ∂xu1 − ∂2

x
u1∂x+ ∂2

x u2∂x+ ∂xu2

)
, (4.13)

R=

(
0 −1
1 0

)
∂2
x . (4.14)

The first-order operators have the leading coefficient matrices(
gij1

)
=

(
0 1
1 0

)
,

(
gij2

)
=

(
2 u1

u1 2u2

)
. (4.15)

The corresponding Monge metrics are

(ḡ1,ab) =

(
0 −1
1 0

)T(
0 1
1 0

)(
0 −1
1 0

)
=

(
0 −1
−1 0

)
(4.16)

and

(ḡ2,ab) =

(
0 −1
1 0

)T(
2 u1

u1 2u2

)(
0 −1
1 0

)
=

(
2u2 −u1
−u1 2

)
. (4.17)

We recall that Plücker’s coordinates in Monge form are

u1du2 − u2du1, du1, du2. (4.18)

With respect to the above coordinates, the matrices of the quadratic line complexes take the
form

Q1 =

0 0 0
0 0 1
0 1 0

 , Q2 =

 0 −1 0
−1 0 0
0 0 2

 . (4.19)

Indeed, it is easy to realize that

ḡ2,abdu
adub =−2

(
u1du2 − u2du1

)
du1 + 2du2du2, (4.20)

and similarly for the other Monge metric. We observe that Plücker variety is empty for the
Plücker embedding of P2, so the above quadratic forms provide the only defining equations
for the corresponding quadratic line complexes.

Remark 4.7. Note that rk(Q1) = 2 and rk(Q2) = 3. That means that, while Q1 defines a third-
order homogeneous Hamiltonian operator according with [14], Q2 does not define a local
third-order HHO (but see [4], as it could be nonlocal!).

Remark 4.8. Another remarkable example is the AKNS Hamiltonian trio (see [25] and refer-
ences therein); we will not calculate the corresponding quadratic line complexes here as they
can be found as in the above Example; however, both first-order operators are defined by a
Monge metric whose matrix Q has rank 2: Q1 is the same as in the previous example and the
other is

Q2 =

0 1 0
1 2 0
0 0 0

 . (4.21)

18



J. Phys. A: Math. Theor. 57 (2024) 485202 P Lorenzoni and R Vitolo

4.3. Casen=4: classification

When n= 4, we have been able to find a complete solution of the problem. We used the fol-
lowing algorithm.

First of all, we fix a second-order operator, for example

R2 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

∂2
x . (4.22)

We observe that the corresponding 3-form is

η =−2dv1 ∧ dv4 ∧ dv5 − 2dv2 ∧ dv3 ∧ dv5.

The equations of the corresponding linear line congruence are ηijkpjk = 0, which translate into
the system

p14 + p23 = 0, pi5 = 0, i < 5, (4.23)

which yield a linear line congruence upon intersection with Gr(2,V).
Reciprocal projective transformations act non-trivially onR2, but wewill know all canonical

forms of the trios if we compute P1 as the nonlocal and localizable first-order homogeneous
operators that are compatible with R2: [R2,P2] = 0. In this subspace of operators we must then
compute all pairs P1, Q1 of operators that are compatible: [P1,Q1] = 0 to form trios (see (4.3)
and thereafter).

We brought to an end the first part of the above programme: we computed all P1 that are
compatible with R2 and have the above form. The results are available at the link [28] and also
in the article’s supplementary information. The calculation was nontrivial and was performed
on a compute server of the Istituto Nazionale di Fisica Nucleare (INFN—Italian National
Institute of Nuclear Physics), using Reduce [19, 32] and about 64GB of RAM for 1 h.

It is worth to describe the algorithm that we used.

1. First of all, since we know that the metric of the first-order operator is a Monge metric, we
calculate the most general Monge metric in the case n= 4. It is parametrized by a finite
number of constants.

2. We also know that wij are constants, and we use this information in the setup of the
computation.

3. Christoffel symbols Γijk are determined by the formula (3.30) in terms of wij and of new

unknown constants bijk . Summarizing, the unknowns are constants, and are: the coefficients
in the Monge metric, the coefficients in the ‘tail’ wij and the coefficients b

ij
k that make up Γijk .

4. Then, compatibility equations are solved. There are 2 groups of linear equations in the above
unknowns: (3.1) and (3.2). The conditions (3.3) and (3.5) are automatically satisfied. The
nonlinear condition is the associativity condition (3.4).
The Hamiltonian operator conditions on P1 are (2.5) (which is linear with respect to the
unknowns), (2.4), (2.6) and (2.7) (which are nonlinear). Note that the equations (2.8) are
automatically fulfilled.

5. The overdetermined system solver CRACK [39, 40], a package working in Reduce, was
used to solve the above nonlinear algebraic equations. The solution obtained in this way is
too involved to be printed out here, since it consists of 288 subcases. The full list can be
found in a compressed folder available at the link [28] and also in the article’s supplementary
information.
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6. It is excessively complicated to write down all solutions of the compatibility conditions
from [P1,Q1] = 0, where P1 and Q1 are two solutions of the above equations (think of each
of the 288 subcases to be used in a compatibility computation with another operator from
each of the 288 subcases). However, the solutions are computable in reasonable time with
modern computers, see below.

We observe that the results obtained are not exactly a classification of the trios with the
given R2; indeed, the reciprocal transformations act on R2 with a stabilizer, that might be used
to reduce the number of constants in P1. At the moment, we do not consider this problem.

4.4. Casen=4: a subclass

In view of the complexity of the compatibility calculation of the operators in the full set of solu-
tions of [R2,P1] = 0, we can present here the results for a subset of all possible trios: namely,
those that are a direct generalization of the Kaup–Broer and the AKNS trios in section 4.2.

Indeed, we can observe that in those examples P1 has always constant form (in particular,
its matrix is the ‘antidiagonal identity’). We can therefore postulate the form of P1 (besides
the form of R2) as

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

∂x (4.24)

and then find, in the set of solutions of [R2,Q1] = 0 with the given ansatz of Q1, those that are
compatible with P1: [P1,Q1] = 0.

We obtain 64 cases of first-order operators Q1 as above. The computation is shorter than
that of [R2,Q2] = 0 only, and can be done on a modern laptop. It makes use of the packages
developed in [5] in order to calculate the conditions [P1,Q1] = 0. Here, we will just show two
cases, one is local and the other is nonlocal.

4.4.1. Local case. The metric of the first-order operator is

(
gij
)
=


2b112 u

2 + c55 c54 b112 u
4 + b131 u

1 − c49 b131 u
2 − c34

c54 0 b131 u
2 − c34 0

b112 u
4 + b131 u

1 − c49 b131 u
2 − c34 2b131 u

3 + c46 2b131 u
4 + c31

b131 u
2 − c34 0 2b131 u

4 + c31 0

 (4.25)

The free parameters are

b112 ,b131 ,c31,c34,c46,c49,c54,c55. (4.26)

Nonzero coefficients in the Christoffel symbols are determined by the only nonzero constants
bijk , which are

b142 = b131 , b232 = b131 , b314 = b112 ,

b333 = b131 , b344 = b131 , b434 = b131 .

It turns out that nonzero Christoffel symbols (in upper indices) are

Γ11
2 = b112 , Γ13

1 = b131 , Γ14
2 = b131 , Γ23

2 = b131 ,

Γ31
4 = b112 , Γ33

3 = b131 , Γ34
4 = b131 , Γ43

4 = b131 .
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4.4.2. Nonlocal case. The metric of the first-order operator is

(gij) =


0 c54 − (u1)2w2

1
c54 − (u1)2w2

1 2b221 u
1 + c53 − 2u1u2w2

1
0 −(c34 + u1u3w2

1)
−(c34 + u1u3w2

1) b221 u
3 − c33 − u1u4w2

1 − u2u3w2
1

0 −(c34 + u1u3w2
1)

−(c34 + u1u3w2
1) b221 u

3 − c33 − u1u4w2
1 − u2u3w2

1
0 c31 − (u3)2w2

1
c31 − (u3)2w2

1 c28 − 2u3u4w2
1

 (4.27)

The nonlocal part is defined by the free parameter w2
1 (with the requirement w2

1 ̸= 0) and the
equations

w4
3 = w2

1, wij = 0 otherwise. (4.28)

The free parameters are

b221 ,w21,c28,c31,c33,c34,c53,c54 (4.29)

The only nonzero constants bijk are

b221 , b423 = b221 . (4.30)

The nonzero Christoffel symbols are

Γ12
1 =−u1w2

1, Γ14
1 =−u3w2

1, Γ21
1 =−u1w2

1, Γ22
1 = b221 − u2w2

1,

Γ22
2 =−u1w2

1, Γ23
1 =−u3w2

1 Γ24
1 =−u4w2

1, Γ24
2 =−u3w2

1,

Γ32
3 =−u1w2

1, Γ34
3 =−u3w2

1, Γ41
3 =−u1w2

1, Γ42
3 = b221 − u2w2

1

Γ42
4 =−u1w2

1, Γ43
3 =−u3w2

1, Γ44
3 =−u4w2

1, Γ44
4 =−u3w2

1.
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Milano-Bicocca, Department of Mathematics and Physics ‘E De Giorgi’ of the Università del
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