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1 Introduction

The Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations are an overdetermined system
of Partial Differential Equations (PDEs) that originated in two-dimensional topological
field theory [17, 68]. Since then, they have been a central subject in Theoretical Physics,
with applications ranging from supersymmetric quantum mechanics [5, 37, 46], topological
quantum field theory [39], string theory [10, 18] and supersymmetric gauge theory [40].

In nearly all the above research subjects, WDVV equations are associated with in-
tegrable systems. The deep connections between these two fields were first described in
the seminal work of B.A. Dubrovin [24]. Since then, WDVV equations continue to attract
the attention of Mathematicians. Few recent works show the depth and breadth of their
investigation [9, 12, 16, 36, 59–62, 69].

The aim of this paper is to present new results on the Hamiltonian formalism for
WDVV equations and related geometric properties, and eventually stimulate further re-
search along this direction in the field.

The Hamiltonian formalism for PDEs has been developed for more than 50 years with
the idea to reproduce geometric structures and mathematical results analogous to those of
integrable systems in Hamiltonian mechanics (see, e.g., [52]).

The main difficulty in bringing the Hamiltonian formalism to the WDVV equations is
that the Hamiltonian formalism was developed for evolution PDEs, while WDVV equations

– 1 –



J
H
E
P
0
8
(
2
0
2
1
)
1
2
9

are an overdetermined system of PDEs in a single unknown function. More precisely, an
evolutionary system of PDEs of the form

uit = f i(uj , ujx, ujxx, . . .), i = 1, . . . , n (1.1)

in n unknown functions of two independent variables ui = ui(t, x) is said to be Hamiltonian
if there exists a linear differential operator A = Aijσ∂σ, where Aijσ = Aijσ(uk, ukx, ukxx, . . .)
and ∂σ = ∂x ◦ · · · ◦ ∂x (σ-times), and a density H =

∫
h dx, where h = h(uk, ukx, ukxx, . . .)

such that
uit = f i(uj , ujx, ujxx, . . .) = Aijσ∂σ

δH

δuj
. (1.2)

H is said to be a Hamiltonian density. The operator A is required to define a Poisson
bracket between conserved densities F , G of the PDE:

{F,G}A =
∫
δF

δui
Aijσ∂σ

δG

δuj
dx. (1.3)

The skew-symmetry of the Poisson bracket is equivalent to the skew-adjointness of the
operator: A∗ = −A, and the Jacobi identity is equivalent to the vanishing of the Schouten
bracket of the operator: [A,A] = 0 (see, e.g. [19, 38, 47, 49]). An operator A fulfilling the
above properties is said to be a Hamiltonian operator.

A bi-Hamiltonian system of PDEs is just a system of PDEs that is Hamiltonian with
respect to two operators A1, A2 (and the respective Hamiltonian densities). The operators
are required to be compatible: their Schouten bracket vanishes [A1, A2] = 0, or the pencil
A1 + λA2 is a Hamiltonian operator for every λ ∈ R. In this case, Magri’s Theorem [48]
yields an infinite sequence of commuting conserved quantities or symmetries, which is
usually identified with integrability.

In order to see how to transform the WDVV system into an evolutionary system, we
shall first recall the basic notions. We will follow [25]. The mathematical problem is: in
RN find a function F = F (t1, . . . , tN ) such that

1. ∂3F

∂t1∂tα∂tβ
= ηαβ is a constant symmetric nondegenerate matrix;

2. cγαβ = ηγε
∂3F

∂tε∂tα∂tβ
are the structure constants of an associative algebra;

3. F is quasihomogeneous: F (cd1t1, . . . , cdN tN ) = cdFF (t1, . . . , tN ).

If e1,. . . , eN is the basis of RN then the algebra operation is eα · eβ = cγαβ(t)eγ with unity
e1. The WDVV, or associativity, system of PDEs takes the form

ηµλ
∂3F

∂tλ∂tα∂tβ
∂3F

∂tν∂tµ∂tγ
= ηµλ

∂3F

∂tν∂tα∂tµ
∂3F

∂tλ∂tβ∂tγ
. (1.4)

The unknown of the system is not exactly F , as the above requirements completely specify
the functional dependence from t1 (up to a second degree polynomial, see [25]):

F = 1
6η11(t1)3 + 1

2
∑
k>1

η1kt
k(t1)2 + 1

2
∑
k,s>1

ηskt
stkt1 + f(t2, . . . , tN ). (1.5)
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This implies that the WDVV system is an overdetermined system in one unknown function
f of N − 1 independent variables. Just as an example, in the case N = 3 we have a single
equation on f = f(t2, t3) = f(x, t). It was proved in [24] that, when η11 = 0, the matrix
ηαβ can be transformed by a linear change of coordinates that preserves ∂/∂t1 to

ηαβ = δα+β,N+1 =

0 0 1
0 1 0
1 0 0

 , (1.6)

and the WDVV equation becomes

fttt = f2
xxt − fxxxfxtt. (1.7)

A technique was developed by O. Mokhov [50] in order to rewrite the WDVV equation
in the case N = 3 as a first-order quasilinear system, or hydrodynamic-type system, of
PDEs. Namely, if we introduce coordinates a = fxxx, b = fxxt, c = fxtt then for (1.7) we
have the compatibility conditions 

at = bx,

bt = cx,

ct = (b2 − ac)x
(1.8)

We will say that the above system is a first-order WDVV system. The above system is of
the general conservative first-order quasilinear form

uit = (V i(u))x = ∂V i

∂uj
ujx, (1.9)

where ui = ui(t, x) are field variables, i = 1, . . . , n. The above representation allowed to
find a bi-Hamiltonian formalism for the equation (1.7) [29]:

uit = Aij1
δH2
δuj

= Aij2
δH1
δuj

. (1.10)

with respect to two compatible local Hamiltonian operators A1 and A2, with expressions

A1 =

−
3
2∂x

1
2∂xa ∂xb

1
2a∂x

1
2(∂xb+ b∂x) 3

2c∂x + cx
b∂x

3
2∂xc− cx (b2 − ac)∂x + ∂x(b2 − ac)

 , (1.11a)

A2 =

 0 0 ∂3
x

0 ∂3
x −∂2

xa∂x
∂3
x −∂xa∂2

x ∂
2
xb∂x + ∂xb∂

2
x + ∂xa∂xa∂x

 . (1.11b)

The above Hamiltonian operators are homogeneous with respect to the grading deg ∂x =
1. The Hamiltonian densities are H2 =

∫
c dx (for A1) and H1 =

∫
[−(1/2)a(∂−1

x b)2 −
(∂−1
x b)(∂−1

x c)] dx (for A2; this one is nonlocal). It should be remarked that B. Dubrovin
proved that WDVV equations are integrable by providing a Lax pair for arbitrary N [24].
Nonetheless, knowing the bi-Hamiltonian formalism for a system of PDEs is an additional
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source of information. In the WDVV case, it will be shown here that the additional
information is provided by the invariance properties of the bi-Hamiltonian structure.

First-order homogeneous Hamiltonian operators (HHOs) were introduced in [26]. They
have the form

Aij1 = gij∂x + Γijk u
k
x, (1.12)

where gij = gij(u) transforms as a symmetric contravariant tensor (we will always assume
that det(gij) 6= 0) whose inverse gij is a flat pseudo-Riemannian metric with Christoffel
symbols Γijk = −gjsΓsik .

It should be stressed that solutions of WDVV equations yield Frobenius manifolds, or
integrable hierarchies of PDEs defined by bi-Hamiltonian pairs of first-order HHOs (see,
e.g., [21, 22, 24]). However, the above quasilinear system of first-order PDEs (1.8) is
exceptional with respect to the theory of Frobenius manifolds as it is bi-Hamiltonian with
respect to a pair of a first-order HHO and a third-order HHO. Higher order homogeneous
Hamiltonian operators were introduced in [23], and have a considerably more complicated
structure than (1.12). Third-order HHOs can always be transformed to the canonical form

A2 = ∂x(hij∂x + cijk u
k
x)∂x, (1.13)

(again, we require that the leading coefficient is non-degenerate: det(hij) 6= 0) [7, 20, 57, 58]
which is invariant with respect to the action of projective reciprocal transformations [33, 34]
(see section 2 for more details).

In further papers it was shown that a bi-Hamiltonian formulation as above exists for
a different choice of the matrix ηij (in the case N = 3) [41] or after the exchange of t
and x in (1.7) [42], and much more recently, in the case N = 4 for η(1) (1.14) [55]. In
a new interesting paper [51], the classification of N = 3 WDVV equations admitting a
Hamiltonian formalism with a local first-order HHO as in (1.11) was given.

It was natural to try to prove that WDVV equations admit a bi-Hamiltonian formu-
lation by means of a compatible pair of a first-order HHO and a third-order HHO for any
choice of η. The idea for the proof is first to prove that the invariance group of WDVV equa-
tions, i.e. linear transformations in the space (t1, . . . , tN ) that leave ∂/∂t1 invariant [25],
do not change the form of a bi-Hamiltonian pair as above. Then, it is enough to prove the
statement only on normal forms with respect to the invariance group.

Indeed, using the invariance group of the problem, one can reduce the matrix ηij to
two canonical forms if the quasihomogeneity weights are distinct:

η11 = 0: the canonical form is η(1) = (η(1)
αβ ) with

η
(1)
αβ = δα+β,N+1 =


0 1

. .
.

1 0

 (1.14)

where F = 1
2(t1)2tN + 1

2 t
1∑N−1

α=2 t
αtN−α+1 + f(t2, . . . , tN );
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η11 6= 0: this case can only happen if dF = 3, and the canonical form is η(2) = (η(2)
αβ ) with

η
(2)
αβ = δα+β,N+1 =


µ 1

. .
.

1 0

 (1.15)

where µ 6= 0 and F = µ
6 (t1)3 + 1

2 t
1∑N

α=2(tα)2 + f(t2, . . . , tN ).

If one drops the quasihomogeneity request on F , a smaller group of linear transformations
can be used to show that if N = 3 then there are 4 distinct canonical forms [51]. The
results in [51] also suggested that we should consider a wider class of first-order HHOs,
namely the non-local Ferapontov operators (see e.g. [27]). It should be stressed that the
necessary theoretical background and software for computations with nonlocal operators
was not available until recently [14, 15].

That led to the first part of the results in this paper. Namely, in the case N = 3
we have:

• for any choice of the matrix η the first-order WDVV systems admit a third-order
homogeneous Hamiltonian operator in canonical form

A2 = ∂x(hij∂x + cijk u
k
x)∂x; (1.16)

• the first-order WDVV systems defined by matrices η in the orbit of η(1) admit a
first-order local homogeneous Hamiltonian operator of the type

Aij1 = gij∂x + Γijk u
k
x; (1.17)

• the first-order WDVV systems defined by matrices η in the orbit of η(2) admit a
first-order non-local homogeneous Hamiltonian operator of Ferapontov type

Aij1 = gij∂x + Γijk u
k
x + αV i

q u
q
x∂

−1
x V j

p u
p
x

+ β
(
V i
q u

q
x∂

−1
x ujx + uix∂

−1
x V j

q u
q
x

)
+ γuix∂

−1
x ujx, (1.18)

where V i
j = ∂V i/∂uj is the matrix of velocities of the first-order WDVV system (1.9)

and α, β, γ are three constants;

• finally, first-order WDVV systems are bi-Hamiltonian: the Schouten bracket of the
two operators vanishes, [A1, A2] = 0, or the pencil A1+λA2 is a Hamiltonian operator
for every λ ∈ R.

• We also realized that the quasihomogeneity of F in the assumptions on the WDVV
problem (item 3 on page 2) can be dropped without changing all our results in the
above items. Indeed, in a recent paper [51] Mokhov and Pavlenko classified the
WDVV equations without the requirement of quasihomogeneity of the solutions, and
obtained 4 canonical forms. For all of them we recover the bi-Hamiltonian pair, as
we will show in section 4.2.

– 5 –



J
H
E
P
0
8
(
2
0
2
1
)
1
2
9

The above results imply that in the case N = 3 the WDVV quasilinear first-order
systems are linearly degenerate, non diagonalizable and in the Temple class, as it follows
from the main results in [35]. Indeed, the presence of third-order operators yields many
interesting properties of the underlying first-order quasilinear system of PDEs.

In higher dimensions proving a general invariance theorem is more difficult, and will
be considered in the future. However, if N = 4 and η = η(1) it was already known that the
first-order WDVV system had a first-order local HHO [31] and a compatible third-order
HHO [55]. In this paper we prove that

• if N = 4 and η = η(2) then the first-order WDVV system admits a third-order HHO
of the form (1.13);

• if N = 5 and η = η(1) or η = η(2) (with µ = 1, as the case with an arbitrary µ 6= 0 was
beyond the capabilities of our servers), then the first-order WDVV systems admit a
third-order HHO of the form (1.13).

We did not try to find the first-order operator in the case N = 4 and η = η(2) or when
N = 5: indeed, the results in [11] that we used to find the first-order operators in the case
N = 3 do not hold when N ≥ 4.

Even if invariance is fully stated only in the case N = 3, the presence of first-order
and third-order HHOs in higher dimensions is enough to support the following conjecture.

Conjecture. The WDVV equations in the form of quasilinear systems of first-order PDEs
are bi-Hamiltonian with respect to a pair of a third-order HHO in canonical form (1.13)
and a first-order HHO, which can either be local (1.12) in the case η = η(1), or nonlocal of
general Ferapontov type

Aij1 = gij(u)∂x + Γijk (u)ukx +
∑
α

cαβwiαk(u)ukx∂−1
x wjβh(u)uhx, (1.19)

where cαβ is a constant symmetric matrix, in the case η = η(2).

There are interesting implications of the conjecture. Indeed, it was proved in [33, 35]
that third-order HHOs can be regarded as distinguished projective varieties, namely,
quadratic line complexes. They determine families of varieties, linear line congruences,
that correspond to first-order quasilinear systems of PDEs (first-order WDVV being one
such systems in all known cases).

As the above correspondence between integrable systems and projective varieties is
non-standard, it is instructive to show it in the simplest example of WDVV equation (1.7).
We will use the form (1.8). The leading coefficient ḡ = (gij) of A2 in (1.11b):

(gij) =

0 0 1
0 1 −a
1 −a 2b+ a2

 (1.20)

has the inverse matrix g = ḡ(−1) that is a Monge metric. It can be written in the form

g = −2bda2 + 2a da db+ 2 da dc+ db2. (1.21)
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Now, it is easy to realize that the above metric represents the equation of a quadratic
line complex in the space of lines of the projective space P3. Indeed, considering two
infinitesimally close points in a 4-dimensional projective space P = [u0, u1, u2, u3] and
P + dP = (u0 + du0, u1 + du1, u2 + du2, u3 + du3), the minors of the matrix (P, P + dP )
turn out to be of the form pij = uiduj−ujdui (note that u0 = 1 and du0 = 0 when passing
to the affine coordinates a = u1, b = u2, c = u3). Such forms are the Lie form of Plücker
coordinates. We recall that the Plücker coordinates characterize lines in P3 modulo the
further Plücker relations pijphk + pihpkj + pikpjh = 0. We can rewrite g as

g = 2(a db− b da) da+ 2da dc+ db2. (1.22)

The above metric turns out to be a quadratic expression in the Lie form of Plücker coor-
dinates; the corresponding quadratic line complex is given by the system

2p12p01 + 2p01p03 + (p02)2 = 0, p01p23 + p02p31 + p03p12 = 0. (1.23)

The line congruence corresponding to the system (1.8) is an n-parameter family of lines
in Pn+1. In homogeneous coordinates [y1, . . . , yn+2] it has the general form yi = uiyn+1 +
V iyn+2 [3, 4]. The lines of the congruence pass through the points yi = ui, yn+1 = 1,
yn+2 = 0 and yi = V i, yn+1 = 0, yn+2 = 1, respectively. The corresponding Plücker
coordinates are the minors of the matrix(

u1 · · · un 1 0
V 1 · · · V n 1 0

)
(1.24)

The line congruence is linear if there are n linear relations between the Plücker coordinates;
these are n linear line complexes. As it was proved in [35], every first-order quasilinear
system of PDEs admitting a third-order HHO is associated with a linear line congruence.
In the WDVV example (1.8) the linear line congruence takes the form

y1 = ay4 + by5, y2 = by4 + cy5, y3 = cy4 + (b2 − ac)y5 (1.25)

The above constructions have a general validity: each time that a third-order HHO in
the form (1.13) is found for a system of conservation laws (as we will do many times in the
paper) then one can construct the corresponding algebraic varieties.

Then, it turns out that the bi-Hamiltonian pairs and the systems of first-order PDEs
are invariant with respect to projective reciprocal transformations. These are non-local (or
non-holonomic) transformations of the independent variables of the form

dx̃ = (aiui + a)dx+ (aiV i + b)dt,
dt̃ = (biui + c)dx+ (biV i + d)dt, (1.26)

which, together with the affine transformation of dependent variables, generate the projec-
tive action on the linear line congruence and the quadratic line complex. More in detail,
the above transformation can be factorized in a sequence of transformations R1 ◦ E ◦ R2
where E is just the exchange of t and x and Ri are transformations of the form

dx̃ = (aiui + a)dx+ (aiV i + b)dt, dt̃ = dt, (1.27)

where the dependent variables undergo a projective transformation ũi = (Aijui+Ai0)/(aiui+
a) (see [35] for the definition). Hence, the whole bi-Hamiltonian WDVV hierarchy becomes
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a projective-geometric object (in known cases). The above conjecture can be rephrased
as follows:

Conjecture. To every WDVV system there are associated a quadratic line complex and a
linear line congruence.

This fact might have an (at the moment unpredictable) impact in the applications of
WDVV equations. The projective group, in its realization as a group of distinguished recip-
rocal transformations, is larger than the invariance group of WDVV equations (which is the
group of linear transformations leaving ∂/∂t1 invariant, see section 3) and its implications
in the search for solutions of WDVV equations is still to be understood. Consequences in
projective and enumerative geometry are not unlikely. See section 6 for details.

The paper is structured as follows. Section 2 describes the pre-requisites on homo-
geneous Hamiltonian operators. In section 3 the invariance of bi-Hamiltonian pairs with
respect to invariance transformations of WDVV equations is proved. In section 4 bi-
Hamiltonian formalism for all normal forms of WDVV equations in the case N = 3 is
provided. Section 5 considers the problem of finding Hamiltonian structures for WDVV in
higher dimensions. The concluding section 6 discusses the projective-geometric aspects of
the results obtained so far.

The calculations have been done by means of computer algebra systems. In partic-
ular, Schouten brackets involving nonlocal operators have been calculated by the Reduce
package CDE, and checked by the Maple package jacobi.mpl; both packages are de-
scribed in [14, 67] (see also [47]). Further calculations have been done in Reduce (finding
first-order nonlocal operators when N = 3, and finding third-order operators in the cases
N = 3, N = 4) and in Maple, also using the package Jets [8] (finding third-order operators
in the case N = 5). The programs are available at a GitHub repository [65].

2 Preliminaries: Hamiltonian operators

In this paper we will look for Hamiltonian operators for quasilinear systems of first-order
PDEs that are generated by WDVV equations. Known examples suggest that these can be
homogeneous operators of first and third order. Let us describe such classes more in detail.

First order local homogeneous operators (1.12) have already been described in the
Introduction. We will need their nonlocal generalization (1.19). Such operators were
introduced and studied by Ferapontov (see [27]). We will always assume that the leading
coefficient is a non-degenerate matrix: det(gij) 6= 0 (we set (gij) = (gij)−1). It is well known
that the Hamiltonian property is equivalent to the following conditions: the symmetry of
gij , the fact that Γjik = −gipΓpjk are the Christoffel symbols of gij (interpreted as a pseudo-
Riemannian metric), and the identities:

gikwjαk = gjkwiαk, (2.1a)
∇kwiαj = ∇jwiαk, (2.1b)

[wα, wβ ] = 0, (2.1c)

Rijkl = cαβ
(
wiαkw

j
βl − w

j
αkw

i
βl

)
. (2.1d)
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Here, ∇ is the Levi-Civita connection of gij , Rijkl = gisRjskl (we follow the sign conventions
of [21]), the bracket [wα, wβ ] is the usual commutator of the matrices wα = wiαk and
wβ = wiβk. If the operator is local, then the conditions reduce to those of the local
operators (1.17).

Third-order homogeneous Hamiltonian operators are much more complicated in gen-
eral. However, in the canonical form (1.13) (again, we will assume that the leading coeffi-
cient is non-degenerate, det(hij) 6= 0, and we set hij = (hij)−1) the Hamiltonian property
of A2 implies that cijk being given by

cskm = 1
3(hsm,k − hsk,m), (2.2)

where cijk = hiqhjpc
pq
k , so that the leading coefficient determines the operator [33]. The

Jacobi property further implies that [33]

hmk,s + hks,m + hms,k = 0, (2.3)
cmsk,l = −hpqcpmlcqsk. (2.4)

The equation (2.3) is equivalent to the fact that hij is the Monge form, or Monge metric,
of a quadratic line complex, a distinguished family of projective varieties. The projective
properties of third-order HHOs will be discussed in section 6.

It is important to remark that hij turn out to be second degree polynomials with respect
to the field variables, under the further algebraic constraints (2.3). A complete classification
of operators in the form (1.13) is given in [33, 34] for a number of components n ≤ 4.
The classification uses the projective invariance of third-order homogeneous operators with
respect to reciprocal transformations of the form (1.27).

We need a way to find Hamiltonian operators for WDVV systems. This is provided
by the theory of differential coverings [43]. In our particular case, it is known [63] (but see
also [66]) that a necessary condition for A1 (both in the local and non-local case) to be the
Hamiltonian operator of a quasilinear system of first-order PDEs (1.9) is:

gikV j
k = gjkV i

k , ∇iV j
k = ∇jV i

k , (2.5)

where V i
k = ∂V i/∂uk and ∇j is the Levi-Civita connection of gij . In the case of third-order

operators it was recently found [35] that the compatibility conditions between a third-order
Hamiltonian operators and a quasilinear system of first-order conservation laws (1.9) are:

himV
m
j = hjmV

m
i , (2.6a)

cmklV
m
i + cmikV

m
l + cmliV

m
k = 0, (2.6b)

hksV
k
ij = csmjV

m
i + csmiV

m
j . (2.6c)

It is interesting to observe that the conditions (2.5) might be relatively difficult to solve
for the metric gij , while the system of compatibility conditions for hij , being expressed
in lower indices, is indeed a linear algebraic system with respect to the coefficients of the
second degree polynomials hij , which is easy to solve.
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3 WDVV equations as systems of conservation laws

As we have seen in the Introduction, the WDVV equations (1.4) in the unknown function
f = f(t2, . . . , tN ) (1.5) are presented as a system of conservation laws (1.9) by introducing
new dependent variables. The general algorithm for the transformation was first given
in [50] in the case N = 3 and then generalized for arbitrary values of N in [31], the details
are exposed below.

Algorithm.

1. Choose one distinguished independent variable ti, i > 1 (for example t2), and all
third-order derivatives of f that contain at least one instance of t2; call them u1 =
ft2t2t2, u2 = ft2t2t3, . . . , un = ft2tN tN . These are new dependent variables, and
n = N(N − 1)/2.

2. Choose another independent variable tj 6= t2, j > 1 (for example t3), and, for any
ui, find uit3 as the t2-derivative of an expression V i:

uit3 = V i(u)t2 . (3.1)

There are two possibilities:

(a) either V i(u) is one of the coordinates uk, with k 6= i;

(b) V i is a third-order derivative of f which is not one of the uk. In this case, V i

must be expressed by means of one of the equations of the WDVV system. This
is always possible due to the structure of the WDVV system.

There are equations in the WDVV system which depend on variables that are not t2
or t3 derivatives; such equations shall be discarded in the above construction. However,
changing the two distinguished independent variables, and using other equations in the
WDVV system, one obtains N − 2 distinct commuting systems of conservation laws with
the same structure as above.

In general, first-order WDVV-systems for a fixed (but arbitrary) N and a fixed choice
of η are provided by the Algorithm as N − 2 commuting two-dimensional quasilinear first-
order systems of PDEs with n = N(N − 2)/2 components [31].

Definition 1. We say that a quasilinear first-order system of conservation laws (3.1) where
(ui) are third-order derivatives of f and the equations are compatibility conditions for a
WDVV system to be a first-order WDVV system.

The purpose of this paper is to show that first-order WDVV systems admit a third-
order HHO in canonical form (1.13) and a compatible first-order local or non-local operator
of the type (1.18) for low dimension N .

In particular, in the case N = 3 we will be able to prove that all first-order WDVV
systems, i.e. for any choice of matrix η, admit a bi-Hamiltonian pair as stated above. To
this aim, the strategy is:
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1. prove that the invariance group of the WDVV equations do not affect the ‘form’ of
a bi-Hamiltonian pair as above;

2. prove that there is a bi-Hamiltonian pair as above for each canonical form of the
WDVV equations, i.e., the canonical form of the matrix ηij .

The invariance group of the WDVV equations with the quasihomogeneity constraint
is the group of linear transformations that preserve the direction of ∂/∂t1:

t̃α = Pαβ t
β +Qα, det(Pαβ ) 6= 0, Pα1 = δα1 (3.2)

ref. [25]. We have the transformation rules

∂

∂tα
= P βα

∂

∂t̃β
, dt̃α = Pαβ dt

β , (3.3)

which imply that the equation (1.4) is transformed into the same equation with respect to
the new coordinates (t̃α) (of course, one should change coordinates in F and ηij).

Theorem 2. Let N = 3, and suppose that a WDVV system in first-order form uit =
(V i(u))x is bi-Hamiltonian with respect to a pair of compatible Hamiltonian operators A1,
A2, where A1 is a nonlocal first-order HHO (1.18) and A2 is a local third-order HHO (1.13).

Then, the coordinate change (3.2) does not change the form of the bi-Hamiltonian pair
A1, A2.

Proof. The matrix P = (Pαβ ) of the change of coordinates can be factorized as

P = T1 · T2, where (3.4)

P =

1 P 1
2 P 1

3
0 P 2

2 P 2
3

0 P 3
2 P 3

3

 , T1 =

1 0 0
0 P 2

2 P 2
3

0 P 3
4 P 3

3

 , T2 =

1 P 1
2 P 1

3
0 1 0
0 0 1

 . (3.5)

The matrix T1 can be further factorized as

T1 = R1 · E ·R2, where (3.6)

R1 =

1 0 0
0 α β

0 0 1

 , E =

1 0 0
0 0 1
0 1 0

 , R2 =

1 0 0
0 γ δ
0 0 1

 . (3.7)

when P 3
2 6= 0 (when it is zero no factorization is needed).

Let us now choose t = t3 and x = t2. When N = 3 there is only one WDVV equation,
from which the above Algorithm yields the following system:

u1
t = u2

x,

u2
t = u3

x,

u3
t = φ(u)x,

(3.8)

where φ is a rational function of the field variables.
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The transformation T2 does not change third-order derivatives of f , hence it does not
affect the system (3.8).

The transformation R1 (equivalently, R2) has the effect of a reciprocal transformation
that preserves the coordinate t, namely

dx̃ = P 2
2 dx+ P 2

3 dt = αdx+ βdt, dt̃ = dt. (3.9)

Such transformations are proved to preserve the canonical form of a third-order HHO [33]
and the locality (or the non-local form) of a first-order HHO [32, 54]. At the same time, the
third-order derivatives u1 = fxxx, u2 = fxxt, u3 = fxtt undergo the affine transformation:

u1 = α3ũ1,

u2 = α2βũ1 + α2ũ2,

u3 = αβ2ũ1 + 2αβũ2 + αũ3,

(3.10)

where ũ1 = fx̃x̃x̃, ũ2 = fx̃x̃t̃, ũ3 = fx̃t̃t̃. Again, that does not modify the structure of the
bi-Hamiltonian pair.

The transformation E is just an exchange of the independent variables. It preserves
both the canonical form of the third-order HHO [35] and the locality (or the non-local
form) of the first-order HHO. This completes the proof.

Remark 3. In the case N = 3 after a change of coordinates of the type R1 we obtain a new
WDVV equation. Hence, we can construct a new quasilinear first-order WDVV system:

ūit̄ = (V̄ i(ū))x̄ (3.11)

using the above Algorithm. However, it can be proved that in general there does not exist
an affine transformation that brings the new system into the system ũi

t̄
= (Ṽ i(ũ))x̃. Later,

the relation between the two systems will be clarified.

Remark 4. In the case N = 3 the transformation E brings the system (3.8) into the
system

ũ1
t̃ = φ(ũ)x̃, ũ2

t̃ = ũ1
x̃ , ũ3

t̃ = ũ2
x̃; (3.12)

interchanging ũ1 and ũ3 bring the system in the same form as (3.8).

The case N = 4 cannot be treated in the above way. Indeed, the invariance transfor-
mation mix the independent variables, and the commuting systems are transformed in a
more complicated way. However, we will be able to show that third-order HHO are present
for first-order WDVV systems in canonical forms of WDVV equations when N = 4 and
N = 5.
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4 Bi-Hamiltonian formalism for WDVV equations, N = 3

Having Theorem 2 at hand, we can investigate N = 3 WDVV systems and look for bi-
Hamiltonian pairs in their representation as quasilinear systems of first-order PDEs. If
we prove that if the WDVV system obtained by each canonical form of the matrix ηij is
endowed with a bi-Hamiltonian pair of the type that we discussed in the Introduction, then
this will be true for an arbitrary matrix ηij .

We will also discuss bi-Hamiltonian pairs for the canonical forms in [51] and for one
significant example which comes from centroaffine geometry [28].

While we will look for third-order operators in the canonical form (1.13), we shall
explain the reason for choosing the ansatz (1.18) for the first-order operators.

Indeed, computational experiments show that Dubrovin’s canonical form η(2) does not
admit a local first-order HHO. Then, the form (1.18) is the only possibility in the class
of Ferapontov operators: the vectors that multiply ∂−1

x must be (generalized) commuting
symmetries of the quasilinear systems of PDEs in view of the Hamiltonian property of
A1 [27] (see (2.1)). Now, first-order WDVV systems are non-diagonalizable, as we will
discuss in section 6, and non-diagonalizable systems with a low number of components have
only two such symmetries,1 namely ϕ1 = uix∂/∂u

i and ϕ2 = (V i)x∂/∂ui, which correspond
to t and x translational symmetries. This means that the Hamiltonian property for an
operator A1 of the form (1.18) is equivalent to the conditions (2.1a), (2.1b) and

Rijkl = α
(
V i
kV

j
l − V

i
l V

j
k

)
+ β

(
V i
kδ

j
l − V

j
k δ

i
l − V i

l δ
j
k + V j

l δ
i
k

)
+ γ(δikδ

j
l − δ

i
lδ
j
k)

(4.1)

(obviously, the above two symmetries commute). So, finding operators (1.18) amounts at
finding the metric gij and the three constants α, β, γ.

To this end, we recall a theorem in [11] that states that, for non-diagonalizable
hydrodynamic-type systems in n = 3 unknown functions, the metric of a first-order Hamil-
tonian operator for the system shall be proportional to a contraction of the square of the
Haantjes tensor:

gij = f Hα
iβH

β
jα, f = f(u). (4.2)

See [11, eq. 2.2 and 2.4] for a coordinate expression of the Nijenhuis and the Haantjes
tensors.

Summarizing, in the case n = 3 there are one unknown function and three unknown
constants to be determined in order to find a first-order operator. We will use the above
equations in order to determine, by computer algebra, the first-order operator A1 for first-
order WDVV systems.

4.1 B.A. Dubrovin’s normal forms of η

We start with a result that follows from known calculations.
1There is only experimental evidence of this fact for n = 3, 4, 5 (E.V. Ferapontov, private communica-

tion).
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Theorem 5. Each first-order WDVV system in the orbit of η(1) under the action of the
transformations (3.2) is endowed by a compatible pair of local homogeneous Hamiltonian
operators A1 as in (1.12) and A2 as in (1.13).

Proof. The existence of a bi-Hamiltonian pair as in the statement was proved in [29] (see
also the Introduction). The fact that the bi-Hamiltonian pair propagates to each element
of the orbit is a direct consequence of Theorem 2.

A completely new result holds for Dubrovin’s second canonical form (1.15). We stress
that we could obtain this result only for recent developments in the calculations of Schouten
brackets for weakly nonlocal operators [13, 14].

Theorem 6. Each first-order WDVV system in the orbit of η(2) under the action of the
transformations (3.2) is endowed by a compatible pair of homogeneous Hamiltonian oper-
ators A1, a nonlocal operator as in (1.18), and A2 as in (1.13).

Proof. If η11 6= 0, then we have the canonical form

η =

µ 0 1
0 1 0
1 0 0

 (4.3)

with µ 6= 0, to which it corresponds the equation

µftttfxxt − fttt + (fxxt)2 − fxxxfxtt − µ(fxtt)2 = 0. (4.4)

The Algorithm yields the quasilinear first-order system

at = bx,

bt = cx,

ct =
(
ac− b2 + µc2

µb− 1

)
x

,

(4.5)

where we used the notation a = fxxx, b = fxxt, c = fxtt for the sake of simplicity. We will
adopt the same notation throughout the rest of the section.

The above system admits a third-order HHO A2 which is completely determined by
the metric

hij =

 b(µb− 2) (a+ µc)(1− µb) (µb− 1)2

(a+ µc)(1− µb) µ(a+ µc)2 + 1 µ(a+ µc)(1− µb)
(µb− 1)2 µ(a+ µc)(1− µb) µ(µb− 1)2

 , (4.6)

and has the following form:

A2 =

−µ∂
3
x 0 ∂3

x

0 ∂3
x ∂2

x
a+µc
µb−1∂x

∂3
x ∂x

a+µc
µb−1∂

2
x

1
2(∂2

xK∂x + ∂xK∂
2
x)

 , (4.7)
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where
K = (a+ µc)2 + b(2− µb)

(µb− 1)2 . (4.8)

We stress that the operator lies in the projective class g(3), according to the classification
in [33, 34]. Systems that possess a third-order Hamiltonian operator have a non-local
Hamiltonian that is specified in [35].

Using the results from [11] (see the beginning of the section) we find that the sys-
tem (4.5) has the first-order operator of Ferapontov type A1 defined by the metric

gij =

b
2µ2 − a2µ− 2bµ− 3 a− abµ+ bcµ2 − cµ 2b− b2µ+ c2µ2

a− abµ+ bcµ2 − cµ 2b− b2µ+ c2µ2 c(acµ2−2b2µ2+4bµ+c2µ3−3)
bµ−1

2b− b2µ+ c2µ2 c(acµ2−2b2µ2+4bµ+c2µ3−3)
bµ−1

δ
(bµ−1)2

 , (4.9)

where

δ = a2c2µ2 − 2ab2cµ2 + 4abcµ+ 2ac3µ3 − 4ac+ b4µ2 − 4b3µ− 3b2c2µ3

+ 4b2 + 6bc2µ2 + c4µ4 − 5c2µ

and the values of constants from (1.18) are α = −µ2, β = 0, γ = µ.
Using the results from [15] and the module developed in [14] of the software package

CDE we are able to prove the compatibility of A1 and A2: the Schouten bracket [A1, A2]
vanish.

The fact that the bi-Hamiltonian pair propagates to each element of the orbit is a
direct consequence of Theorem 2.

4.2 O.I. Mokhov and N.A. Pavlenko’s normal forms of η

In a recent paper [51] Mokhov and Pavlenko classified the WDVV equations (1.4), without
the requirement of quasihomogeneity of the solutions (item 3 in the Introduction), under
transformations of the type T1 (3.4). They came to the following four canonical forms:

η1 =

0 0 1
0 λ 0
1 0 µ

 , λ2 = 1; η3 =

1 0 1
0 0 1
1 1 0

 ; (4.10)

η2 =

1 0 1
0 λ 0
1 0 µ

 , λ2 = 1; η4 =

1 0 0
0 λ 0
0 0 µ

 , λ2 = 1, µ2 = 1. (4.11)

According to Theorems 5 and 6, the above examples can be rewritten as bi-Hamiltonian
first-order WDVV systems. Let us provide the first-order and third-order HHOs in all the
above cases.

The case η1. In this case in [51] it is provided a first-order local HHO A1
1. We look for

a third-order one. The WDVV equations in first-order form are of the type (3.8), where
the function φ is defined by

φ = b2 − ac− λµb+ µ2. (4.12)
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It is easy to show that the equations (2.6) have the unique solution hij

hij =

−2b+ λµ a 1
a 1 0
1 0 0

 . (4.13)

which is of type g(5) (as (1.8)) according to the classification in [33]. We will omit the
corresponding operator A1

2, as it can be easily reconstructed.
The Schouten bracket [A1

1, A
1
2] turns out to be zero and thus the above operators are

compatible; the computation has been performed by means of the Reduce package CDE,
see [47, 67].

The case η2. For η2 we have the function φ(a, b, c):

φ(a, b, c) = b2 − ac− λc2 − µb2 + µac− µλb+ µ2

1− λb , (4.14)

for an arbitrary real constant µ.
In this case, the WDVV system in first-order form has a third-order HHO which is

completely determined by the metric of type g(3) [33, 34]:

hij =


µ− b(2λ− b) (λ−b)(µa−λc−a)

µ−1
−(λ−b)2λ
µ−1

(λ−b)(µa−λc−a)
µ−1

(µ−1)2(λ+a2)−2(µ−1)λac+c2

(µ−1)2
−(µa−λc−a)(λ−b)λ

(µ−1)2

−(λ−b)2λ
µ−1

−(µa−λc−a)(λ−b)λ
(µ−1)2

(λ−b)2

(µ−1)2

 , (4.15)

Note that µ 6= 1, as det η2 6= 0.
The WDVV system in first-order form also admits a non-local Hamiltonian operator of

Ferapontov type A2
1 that is compatible with A2

2. We present the special case where µ = 2,
as the general case has an expression that is too big to be shown here. We have

gij =


2bλ− a2λ− b2 − 5 a− abλ− bc+ cλ 2b− b2λ− c2 − 2λ
a− abλ− bc+ cλ 2b− b2λ− c2 − 2λ c(acλ−2b2λ+4b−c2−λ)

b−λ
2b− b2λ− c2 − 2λ c(acλ−2b2λ+4b−c2−λ)

b−λ
δ

(b−λ)2 ,

 (4.16)

where

δ = λ(b2(4b− 3c2)− 2ac(2b− c2) + 8b− c2)− (4b− c2)(2b− c2)− 4− (ac− b2)2

and the value of the constants in the non-local part is α = 1, β = 0, γ = λ.

The case η3. In this case we have

φ(a, b, c) = b2 − ac+ bc− 2b+ 1
a

. (4.17)

There exists a unique third-order HHO A3
2, it is generated by the following metric of type

g(4) [33, 34]:

hij =

(1− b− c)(b+ c− 3) a(b+ c− 2) + 1 a(b+ c− 2)
a(b+ c− 2) + 1 −a2 −a2

a(b+ c− 2) −a2 −a2

 . (4.18)
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We also have an operator A3
1 of Ferapontov type (1.18). It is determined by the metric

gij =

 −a2 − 2ab 2a− ab− ac− b2 4b− b2 − 2bc− 3
2a− ab− ac− b2 4b− b2 − 2bc− 3 4ac−ac2−b3−b2c+2b2−b

a

4b− b2 − 2bc− 3 4ac−ac2−b3−b2c+2b2−b
a

δ
a

 , (4.19)

where δ = ac2 − 4ac − 2b2c + 4b2 − 2bc2 + 8bc − 8b − 2c + 4. The nonlocal part of the
operator is determined by α = 0, β = 1, γ = 1.

Furthermore, the Schouten bracket vanishes: [A3
1, A

3
2] = 0.

The case η4. In this case the function φ(a, b, c)

φ(a, b, c) = µb2 − µac+ λc2 − 1
λb

. (4.20)

There exists a third-order HHO which is in the class g(3) [33, 34]. It is determined by the
metric

hij =

 b2 + µ bµ(λc− µa) −µλb2

bµ(λc− µa) λ+ a2 − λc(2µa− λc) λb(µa− λc)
−µλb2 λb(µa− λc)) b2

 . (4.21)

Below we provide the metric gij that defines A4
1:

gij = λ

µ


−a2µ− b2λ− 4µλ −b(aµ+ cλ) −b2µ− c2λ− 1
−b(aµ+ cλ) −b2µ− c2λ− 1 c(acµ−2b2µ−c2λ+1)

b

−b2µ− c2λ− 1 c(acµ−2b2µ−c2λ+1)
b

δ
b2

 , (4.22)

where δ = 2ab2cλ− a2c2λ+ 2ac3µ− 2acµλ− b4λ− 3b2c2µ− 2b2µλ− c4λ+ 2c2− λ and the
values of constants in (1.18) are α = µ, β = 0, γ = λ. Also in this case [A4

1, A
4
2] = 0 for any

λ, µ = ±1.

4.3 An example: equation of flat centroaffine metrics

There is another significant example provided in [24] in the case N = 3:

η =

1 0 0
0 0 1
0 1 0

 . (4.23)

This particular example has an interesting geometric interpretation as the equation of flat
centroaffine metrics for surfaces in R3 [28]. The WDVV equation takes the form

fxxxfyyy − fxxyfxyy = 1, (4.24)

and the system in first-order form reads:

at = bx,

bt = cx,

ct =
(
bc+ 1
a

)
x
.

(4.25)
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The above system admits a third-order HHO of type g(4) which is again completely deter-
mined by a metric hij :

hij =

 c2 −1 −ac
−1 0 0
−ac 0 a2

 . (4.26)

and has the form:

A2 =

 0 −∂3
x 0

−∂3
x 0 −∂2

x
c
a∂x

0 −∂x ca∂
2
x

1
2(∂2

x
1
a2∂x + ∂x

1
a2∂

2
x)

 . (4.27)

For this case we also have a first-order nonlocal operator A1 which is determined by
metric gij :

gij =

 2ab ac+ b2 2bc+ 3
ac+ b2 2bc+ 3 ac2+b2c+b

a

2bc+ 3 ac2+b2c+b
a

2c(bc+1)
a

 , (4.28)

and its tail vector α = γ = 0, β = −1. The operator is compatible with A2: [A1, A2] = 0.
This turns the equation of flat centroaffine metrics, in the form of a first-order quasilinear
system of PDEs (4.25), into a bi-Hamiltonian system.

Example 3 in [34] is just another form of (4.24), after transforming η(2) into the
identity matrix (µ = 1). Also this case is bi-Hamiltonian by means of the third-order HHO
in Example 3 and the first-order nonlocal operator presented in [14].

Remark 7. Ferapontov operators of type (1.18) can be transformed into local operators
by a reciprocal transformation if α = γ = 0 [32]. The fact that in the above case the
first-order operator is localizable does not contradict the fact that, according to [51], it is
not localizable by equivalence transformations of WDVV. Indeed, in [30] a transformation
between (1.7) and the above (4.24) which can also be read as a reciprocal transformation
between the first-order systems is provided. It should not be a difficult exercise to show that
such a transformation brings the local first-order HHO of (1.7) into the above non-local
first-order HHO.

4.4 Remarks on the generic case

A computation in the generic case is possible. In particular, if N = 3 a generic choice of
the matrix η leads to a first-order system of the form (3.8). We can prove (by computer)
that if η11 6= 0 the generic metric of the third-order operator is of type g(3), while if η11 = 0
it is of type g(4) (see [33]). Such computations show that, at least in the case N = 3, the
third-order operators exist independently, being the first-order system generated by the
algorithm or as a relation between the coordinates f involving the WDVV equation. This
fact suggests that a natural framework for characterizing the existence of a third-order
HHO might be that of [2], where all conserved densities of the first-order system (in our
case 5) are used to identify the system with a projective variety.

It is interesting to observe that our examples do not cover the whole range of Monge
metrics that are classified in [33], as the most generic types g(1) and g(2). However, strictly
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speaking an occurrence of a metric of the latter classes in first-order WDVV systems cannot
be excluded.

It is interesting to observe that, when N = 3, the first-order WDVV systems produced
by the Algorithm are always of the reducible type (3.10), according with the terminology
in [1]. In the same paper it is proved that linearly degenerate reduced systems are semi-
Hamiltonian. In our case we proved that such systems admit a third-order HHO, and hence
they are linearly degenerate (see [35] and section 6), but we prove that the systems are
bi-Hamiltonian (which, of course, imply semi-Hamiltonianity).

5 WDVV equations in higher dimensions

We still have no results of invariance of the bi-Hamiltonian structure for higher dimensions.
However, there are strong indications that third-order HHOs exist for both normal forms
η(1) and η(2) and all values of N , due to their existence for N = 4 and N = 5. In one case,
the third-order HHO is paired with a first-order local HHO and we have a bi-Hamiltonian
pair. We present the main results in this section.

We shall remark that at the moment there exists only one first-order operator for
N = 4 and η = η(1): it was found in [31]. For N = 4 and η = η(2) and N = 5 we cannot
exhibit any first-order operator (local or non-local) because the properties that we used in
the case N = 3 [11] do not hold in higher dimensions. It is however reasonable to conjecture
that we will continue to have first-order operators, local in the case η = η(1) and nonlocal
of type (1.18) in the case η = η(2), and that they will form bi-Hamiltonian pairs with the
corresponding (conjectural) third-order operators.

5.1 The case N = 4

In the case N = 4 for long time only a first-order local HHO was known [31] in the case
η(1) (1.14). A few years ago, a third-order HHO compatible with the known first-order
HHO was found by a complicated procedure [55], later simplified in [35] by means of
equations (2.6).

Here we will present a third-order HHO for Dubrovin’s normal form η(2). This partic-
ular form of η generates the following WDVV system (here (t, x, y, z) = (t1, t2, t3, t4)):

µfyyzfzzz + 2fyyzfxyz − fyyyfxzz − fxyyfyzz − µf2
yzz = 0,

fxxyfyzz − fxxzfyyz − µfzzzfxyz + fzzz + fxyyfxzz + µfxzzfyzz − f2
xyz = 0,

fxxyfyyz − fxxzfyyy + µfyyzfxzz − µfxyzfyzz + fyzz = 0,
fxxyfxzz − µfxxzfzzz − 2fxxzfxyz + fxxxfyzz + µf2

xzz = 0,
fxxzfxyy + µfxxzfyzz − fyyzfxxx − µfxzzfxyz + fxzz = 0,
fxxyfxyy + µfxxzfyyz − fxxxfyyy − µf2

xyz + 2fxyz = 0.

(5.1)

The above overdetermined system of non-linear PDEs can be rewritten in the form of two
commuting hydrodynamic-type system using the identifications a = fxxx, b = fxxy, c =
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fxxz, d = fxyy, e = fxyz, f = fxzz. One of the systems is:

ay = bx, by = dx, cy = ex,

dy =
(
bcdfµ2 − bce2µ2 − c2deµ2 + ae3µ2 + b2cdµ−

δ

+ −badeµ+ 2bceµ+ c2dµ− 3ae2µ+ bad+ cfµ+ 2ae
δ

)
x

,

ey =
(
−c2feµ2 + af2eµ2 + bafeµ+ c3dµ−

δ

+ −cadfµ− cae
2µ+ c2fµ− af2µ− baf + 2cae

δ

)
x

,

fy =
(
−c2e2µ2 + afe2µ2 + bc2dµ− cadeµ+ 2c2eµ− 2afeµ+ cad+ af

δ

)
x

,

(5.2)

where δ = −c3µ2 + cafµ2 + bcaµ − a2eµ + a2. As an example, the right-hand side of the
fourth equation comes from the compatibility condition dy = (fyyy)x and the expression of
fyyy in terms of a, . . . , f through the system (5.1).

The above quasilinear system of first-order PDEs admits a unique third-order HHO
determined by the following Monge metric hij through the equations (2.6) (only entries
with i < j are shown):

h11 = d2 h12 = e2µ− 2e
h13 = 2d(−eµ+ 1) h14 = −ad+ ceµ− c
h15 = µ(b/µ− be+ cd− efµ+ f) h16 = e2µ2 − 2eµ+ 1
h22 = 2c(eµ− 1) h23 = −beµ+ b− cdµ− efµ2 + fµ

h24 = c2µ h25 = −aeµ+ a− bcµ− cfµ2

h26 = 2cµ(eµ− 1) h33 = 2µ(bd+ dfµ+ e2µ/2− e+ 1/µ)
h34 = aeµ− a− bcµ− cfµ2 h35 = µ(ad+ b2 + 2bfµ− ceµ+ c+ f2µ2)
h36 = µ(b− beµ− cdµ− efµ2 + fµ) h44 = a2

h45 = −2acµ h46 = c2µ2

h55 = µ(2ab+ 2afµ+ c2µ) h56 = µ(−aeµ+ a− bcµ− cfµ2)
h66 = 2cµ2(eµ− 1)

Remark 8. We have 2 commuting quasilinear first-order systems of PDEs for each choice
of η, and it is not automatically true that if one of them is bi-Hamiltonian the other will be
bi-Hamiltonian with respect to the same operators. However, this is true in the case η(1)

and N = 4 [55]. More generally, it is known [63, 64] that if a diagonalizable quasilinear
first-order system of PDEs is Hamiltonian with respect to a first-order HHO, then other
commuting diagonalizable systems will be Hamiltonian with respect to the same operator.
Even if this statement carries on to our non-diagonalizable first-order WDVV systems
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(see section 6), at the moment we can only conjecture that this extends to the compatible
third-order operators.

5.2 The case N = 5

This case is completely open: no Hamiltonian formulation was known until now. We have
been able to find one new third-order Hamiltonian operator for the normal form η(1) (1.14).
The first-order WDVV systems are 10-component systems; one of them (found using t2
and t3 in the Algorithm) admits one third-order HHO (up to a constant factor) that is
defined by the following Monge metric hij (only nonzero entries with i < j are shown):

h11 = −u7 h12 = −2u6u7

h13 = (u6)2 + 2u9 h14 = −2u7

h15 = −(u6)2 h16 = u2u7 − u3u6 + u5u6 + u8

h17 = u1u7 + u2u6 + u4 h18 = −2u6

h19 = −u3 h110 = −1
h22 = 2u3u7 − 2u5u7 − (u6)2 + 2u9 h23 = −u2u7 − u3u6 + u5u6 + u8

h24 = −2u6 h25 = u2u7 + u3u6 − u5u6 + u8

h26 = u1u7 + u2u6 + (u3 − u5)2 + u4 h27 = u1u6 − u2u3 + u2u5

h28 = u3 − 2u5 h29 = −u2

h33 = 2u2u6 + 2u4 h34 = −u3

h35 = −2u2u6 h36 = −u1u6 − u2u3 + u2u5

h37 = (u2)2 h38 = −2u2

h39 = −u1 h44 = −2
h46 = u2 h47 = u1

h55 = 2u2u6 h56 = u1u6 + u2u3 − u2u5

h57 = −(u2)2 h58 = u2

h66 = 2u1u3 − 2u1u5 − (u2)2 h67 = −2u1u2

h68 = u1 h77 = −(u1)2

For the second normal form η(2) we were able to find a third order operator as well,
with the simplifying assumption µ = 1 (again, we used t2 and t3 in the Algorithm). Indeed,
the computation is too hard for the servers that we can use if we allow µ to be a generic
non-zero constant. The operator is defined by the following Monge metric hij (again, we
present only non-zero entries with i ≤ j):

h1 1 = (u7)2 h1 2 = 2u7u6

h1 3 =−(u6)2+(u9)2−2u9 h1 4 =−(2u9−2)u7

h1 5 = (u6)2 h1 6 =−u2u7+u3u6−u5u6+u8u9−u8

h1 7 =−u1u7−u2u6+u4u9−u4 h1 8 =−(2u9−2)u6
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h1 9 =−u10u9−u3u9+u4u7+u6u8+u10+u3 h1 10 = (u9)2−2u9+1
h2 2 =−2u3u7+2u5u7+(u6)2+(u9)2−2u9 h2 3 = u2u7+u3u6−u5u6+u8u9−u8

h24 =−2u6u9−2u7u8+2u6 h2 5 =−u2u7−u3u6+u5u6+u8u9−u8

h2 6 =−u1u7−u2u6−(u3)2+2u3u5+ h2 7 =−u1u6+u2u3−u2u5+u4u8

+u4u9−(u5)2+(u8)2−u4

h2 8 = u9(u3+u10−2u5)+u4u7−u6u8 h2 9 = u8(u5−u10−2u3)−u2u9+u4u6+u2

+u10−u3+2u5

h2 10 = (2u9−2)u8 h3 3 =−2u2u6+2u4u9−2u4

h3 4 =−u10u9−u3u9−u4u7+u6u8+u10+u3 h3 5 = 2u6u2

h3 6 = u1u6+u2u3−u2u5+u4u8 h3 7 =−(u2)2+(u4)2

h3 8 =−2u2u9−2u4u6+2u2 h3 9 =−u1u9−u10u4+u2u8−u3u4+u1

h3 10 = (2u9−2)u4 h4 4 = 2u10u7+2u3u7+(u6)2+(u9)2−2u9+2
h4 5 =−2u8u6 h4 6 =−u10u8+u2u9−2u3u8−u4u6+u5u8−u2

h4 7 = u1u9−u10u4+u2u8−u3u4−u1 h4 8 = 2u10u6+u2u7+u3u6+u5u6+u8u9−u8

h4 9 = u1u7+(u10)2+2u10u3+u2u6+ h4 10 =−u10u9−u3u9−u4u7−u6u8+u10+u3

+(u3)2−u4u9−(u8)2+u4

h5 5 =−2u2u6+(u8)2 h5 6 =−u1u6−u2u3+u2u5+u4u8

h5 7 = (u2)2 h5 8 =−u10u8+u2u9+u4u6−u5u8−u2

h5 9 =−2u8u2 h5 10 = (u8)2

h6 6 =−2u1u3+2u1u5+(u2)2+(u4)2 h6 7 = 2u2u1

h6 8 = u1u9−u10u4−u2u8+u3u4−2u4u5−u1 h6 9 =−2u1u8−2u2u4

h6 10 = 2u8u4 h7 7 = (u2)2

h7 8 =−2u4u2 h7 9 =−2u4u1

h7 10 = (u4)2 h8 8 = (u10)2+2u10u5+2u2u6−2u4u9+(u5)2+2u4

h8 9 = u1u6+2u10u2+u2u3+u2u5+u4u8 h8 10 =−u10u8−u2u9−u4u6−u5u8+u2

h9 9 = 2u1u10+2u1u3+(u2)2+(u4)2 h9 10 =−u1u9−u10u4−u2u8−u3u4+u1

h10 10 = 2u4u9+(u8)2−2u4

6 Conclusions: projective geometry of WDVV systems

The results that we achieved so far have very interesting implications in terms of projective
geometry that we will discuss in this section (see also the Introduction).

In a recent paper [35] it was proved that any hydrodynamic-type system that has a
third-order homogeneous Hamiltonian operator has a rich geometric structure. The results
transfer to first-order WDVV systems. Indeed, in the case N = 3 we have:

1. There exists a quadratic line complex of lines in the projective space P3 associated with
the first-order WDVV system. The construction is a straightforward generalization
of what we have written in the Introduction.
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2. The first-order WDVV system defines a linear line congruence in the projective space
P4. This is a 3-parameter family of lines in the projective space P4. Again, this is
shown in the Introduction.

3. The first-order WDVV system is linearly degenerate and belongs to the Temple class.

4. The first-order WDVV system is non-diagonalizable.

5. The first-order WDVV system admits a Hamiltonian and a momentum with respect
to the third-order HHO; their expressions are local after a potential substitution
bix = ui and are given by explicit formulae [35].

6. The first-order WDVV systems are equivalent to the system (1.8) using a projective
reciprocal transformation of the type (1.26).

Let N = 4, 5. Then, the above properties (with the exception of equivalence) hold
for the first-order WDVV systems that we considered in section 5 for the normal forms
η(1), η(2).

Several considerations can be made in view of future research.

Conjecture: every WDVV system is associated with a quadratic line complex
and a linear line congruence. This is just a rephrasing of the conjecture that every
first-order WDVV system admits a local third-order HHO. However, the Conjecture put
in this way suggests that WDVV equations have a projective-geometric interpretation that
is yet to be uncovered. The generalization to the Oriented Associativity equations for F -
manifolds is an active research topic (see e.g. [6]) and quadratic line complexes occur also
in that case [56] (see also [53]). A future role of such objects besides the bi-Hamiltonian
structure that they provide is foreseeable.

Projective equivalence of WDVV systems. The last statement in the above list
implies that, in the case N = 3, if our WDVV systems admit a third-order homogeneous
operator they should in principle be all equivalent. In practice, it is extremely difficult
to solve the equations for the unknown transformation. An explicit transformation be-
tween the WDVV equations (1.7) and (4.24) in [31] shows the computational difficulties.
It is preferable to recompute the operators for any specific presentation of the WDVV
system. Note that the transformation (1.26) is not an invariance transformation of WDVV
equations. In principle, the equivalence does no longer hold in higher dimensions.

First-order operators and projective geometry. First-order local or non-local HHOs
do not have a projective-geometric interpretation yet. However, we expect that those
that are compatible with third-order HHOs will have a projective-geometric role. It is an
interesting remark the fact that the metric of the first-order operators that we found have
rational coefficients (in upper indices!) and the denominator is always the square root of
the determinant of the Monge metric. Such a determinant is a perfect square, and its zero
locus is the Kümmer surface of the underlying quadratic line complex, see [33, 34].
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Projective geometry in the original WDVV setting. The projective-geometric
structures that we found so far might be transported in the ‘initial’ setting of WDVV.
A theoretical framework for the Hamiltonian formalism for general PDEs has already been
developed in [44]. In that framework, variational bivectors for the WDVV equation in the
non-evolutionary form (1.7) have been found (although with an explicit dependence on the
independent variables) [45]. An understanding of the role of quadratic line complexes and
line congruences in the initial formulation might shed new light on the relationship between
WDVV equations and projective-geometric invariants.
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