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1. Introduction

An irreducible Lorentzian symmetric space has necessarily constant sectional
curvature. For this reason, in pseudo-Riemannian settings, the weaker notion of
indecomposability has been considered. A pseudo-Riemannian manifold (M, g)
is said to be indecomposable if the holonomy group at each point p ∈ M sta-
bilizes only non-trivial subspaces V ⊂ TpM which are degenerate (that is,
such that the restriction of the metric gp on V × V is degenerate). Indecom-
posable symmetric Lorentzian manifolds of non-constant sectional curvature
are known as Cahen-Wallach spaces. Since their introduction in [6], Cahen-
Wallach spaces have been extensively studied in literature (see for example
[1]–[3], [7], [8], [17], [23], [24], [25] and references therein).

The aim of this paper is to study some natural hypersurfaces in Cahen-
Wallach spacetimes, namely, totally geodesic and parallel hypersurfaces. Ob-
serve that differently from the Riemannian case, a submanifold of a pseudo-
Riemannian manifold can be degenerate. However, throughout this work, we
shall always consider nondegenerate submanifolds and hypersurfaces.
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A submanifold M of a pseudo-Riemannian manifold is totally geodesic
if its second fundamental form h vanishes. Consequently, the geodesics of a
totally geodesic submanifold are also geodesics of the ambient space. More
in general, a submanifold is said to be parallel if h is covariantly constant.
The parallelism of the second fundamental form may be seen as the extrinsic
analogue of local symmetry. Indeed, parallel hypersurfaces of a locally sym-
metric ambient space are again locally symmetric. Thus, it is a natural and
interesting problem to investigate totally geodesic and parallel hypersurfaces
of a given pseudo-Riemannian manifold, in order to improve our knowledge
and understanding of its geometric properties.

Parallel surfaces of three-dimensional manifolds, both Riemannian and
Lorentzian, have been extensively studied. Some examples may be found in
[11]– [15], [21], [22]. In particular, the classification of parallel surfaces in three-
dimensional Cahen-Wallach spaces was obtained in [14]. It is clear that the dif-
ficulty of classifying and describing totally geodesic and parallel hypersurfaces
increases with the dimension of the given ambient space. On the other hand,
the case of a four-dimensional ambient space is particularly relevant, because
of the possible physical interpretation of some Lorentzian four-manifolds as
solutions to Einstein’s field equations. Some results concerning the study of
totally geodesic and parallel hypersurfaces in some four-dimensional pseudo-
Riemannian ambient spaces may be found in [9]– [11], [16], [19], [20].

We shall investigate and describe totally geodesic and parallel hypersur-
faces in Cahen-Wallach spacetimes, also emphasizing the description of such
hypersurfaces as three-dimensional Brinkmann manifolds. Moreover, we deter-
mine minimal and CMC examples in the parallel case. The paper is organized
in the following way. In Sect. 2 we report the description of the Levi-Civita
connection and curvature of Cahen-Wallach spacetimes and some basic in-
formation on totally geodesic hypersurfaces and their generalizations and on
Brinkmann manifolds. In Sect. 3 we consider hypersurfaces of Cahen-Wallach
spacetimes and provide the complete classification and explicit description of
totally geodesic hypersurfaces of these spaces. Parallel hypersurfaces are inves-
tigated in Sect. 4, obtaining a complete description of such hypersurfaces for
the general Cahen-Wallach spacetimes and of further examples in the special
case of an ε-space.

2. Preliminaries

2.1. On Totally Geodesic and Parallel Hypersurfaces

Let M be a hypersurface immersed into a (n + 1)-dimensional pseudo-
Riemannian manifold M̄ with the isometric immersion F : M → M̄ and ξ
a unit normal vector field on M with g(ξ, ξ) = ε ∈ {−1, 1}. Let ∇M and ∇
denote the Levi-Civita connections of M and M̄ respectively. For any tangent
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vector fields X,Y to M , the formula of Gauss gives

∇XY = ∇M
X Y + h(X,Y )ξ, (2.1)

where h is called the second fundamental form of the immersion.
We recall that M is a totally geodesic hypersurface if h = 0. This is

equivalent to requiring that every geodesic of M is also a geodesic of the
ambient space M̄ .

Moreover, considering the covariant derivative ∇Mh, defined by

(∇Mh)(X,Y,Z) = X(h(Y,Z)) − h(∇M
X Y,Z) − h(Y,∇M

X Z),

for all vector fields X,Y,Z tangent to M , the hypersurface is said to be parallel
(or having a parallel second fundamental form) if

∇Mh = 0.

Equivalently, the parallelism of M can be expressed by ∇MS = 0, where
S(X) = −∇Xξ denotes the Weingarten (or shape) operator of M . For a par-
allel hypersurface, all the extrinsic invariants derived from h are covariantly
constant. Clearly, totally geodesic hypersurfaces are parallel.

Throughout the paper, we will follow the sign convention R(X,Y ) =
[∇X ,∇Y ] − ∇[X,Y ] for the curvature. Denoting by RM and R the Riemann-
Christoffel curvature tensors of M and M̄ respectively, we can express the
equations of Gauss and Codazzi, given respectively by

g(R(X,Y )Z,W )=g(RM (X,Y )Z,W )+ε (h(X,Z)h(Y,W )−h(X,W )h(Y,Z)) ,
(2.2)

g(R(X,Y )Z, ξ) = ε
(
(∇Mh)(X,Y,Z) − (∇Mh)(Y,X,Z)

)
, (2.3)

where X, Y , Z and W are tangent to M .
Then, the second fundamental form h of the hypersurface is said to be

Codazzi if ∇Mh is totally symmetric. By equation (2.3), it is easy to see
that this is equivalent to requiring that R(X,Y )ξ = 0 for all vector fields
X,Y tangent to M . Obviously, parallel hypersurfaces have a Codazzi second
fundamental form.

Some other well known and relevant generalizations of totally geodesic
hypersurfaces are minimal and CMC hypersurfaces. The mean curvature of a
hypersurface M is given by

1
n

trgM
h =

1
n

∑
gij

Mhij ,

where gM is the pullback on M of the metric of the ambient space and gij
M

are the components of (gM )−1 with respect to a given basis of vector fields
tangent to M . The hypersurface is said to be minimal (respectively, of constant
mean curvature, or CMC) if trgM

h = 0 (respectively, trgM
h = κ for some real

constant κ). Clearly, any totally geodesic hypersuface is minimal and every
minimal hypersurface is CMC.
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2.2. On Cahen-Wallach Spacetimes

Explicitly, an arbitrary four-dimensional Cahen-Wallach symmetric space is
described as R

4 equipped with the Lorentzian metric

g =
(
k3x

2
3 + k4x

2
4

)
dx2

1 + 2dx1dx2 + dx2
3 + dx2

4, (2.4)

where k3, k4 �= 0 are some real constants [6], [8]. In the special case where k3 =
k4 = k, these spaces are also known as ε-spaces; they are locally conformally
flat and admit a large group of isometries [25]. We shall denote by {∂

i
=

∂
∂xi

} the basis of coordinate vector fields. By (2.4), a Cahen-Wallach metric is
completely determined by

g(∂1, ∂1) = k3x
2
3 + k4x

2
4, g(∂1, ∂2) = g(∂3, ∂3) = g(∂4, ∂4) = 1.

Using the Koszul formula, the Levi-Civita connection ∇ of g is explicitly
described by

∇∂1∂3 = k3x3∂2, ∇∂1∂4 = k4x4∂2, ∇∂1∂1 = −k3x3∂3 − k4x4∂4.

(2.5)

Starting from (2.5) and taking into account the symmetries of the curva-
ture tensor, a direct calculation yields that with respect to the basis {∂i} of
coordinate vector fields, the curvature of a Cahen-Wallach metric is completely
determined by the following non-vanishing components

R(∂1, ∂3)∂1 = −k3∂3, R(∂1, ∂3)∂3 = k3∂2,
R(∂1, ∂4)∂1 = −k4∂4, R(∂1, ∂4)∂4 = k4∂1.

2.3. On Brinkmann Manifolds

Just like in the Riemannian case, a Lorentzian manifold admitting a non-null
parallel vector field splits locally as a metric product. However, a different
situation can occur in Lorentzian settings, where a null (lightlike) vector field
can exist. A Brinkmann manifold is a Lorentzian manifold (M, g) admitting a
parallel null vector field U , that is, such that g(U,U) = ∇U = 0. Brinkmann
manifolds have been extensively studied, both for their physical relevance and
because they illustrate several geometric phenomena which do not have any
Riemannian counterpart.

Cahen-Wallach symmetric spaces are examples of Brinkmann manifolds.
In fact, from equations (2.4) and (2.5) it follows at once that ∂2 is a parallel
null vector field on any Cahen-Wallach space.

A Brinkmann manifold is a special kind of Walker manifold. A Walker
manifold is a pseudo-Riemannian manifold which admits a non-trivial distri-
bution D which is parallel (if X ∈ D then ∇X ∈ D) and null (the metric
restricted to D vanishes identically). In dimension three, a Walker manifold
admits local coordinates (t, x, y), with respect to which the Lorentzian metric
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tensor of M is expressed as follows:

g̃ =

⎛

⎝
0 0 1
0 ε 0
1 0 f(t, x, y)

⎞

⎠ , (2.6)

where ε = ±1, for some smooth function f(t, x, y) [4], [18]. If ∂t is a parallel
null vector field and so, (M, g) is a Brinkmann manifold, then f = f(x, y) and
conversely.

The study of the geometry of three-dimensional Walker manifolds started
with the pioneering paper [18] and continued in several different directions.
In particular, parallel surfaces of three-dimensional Walker manifolds were
completely classified in [14]. We may refer to [5] for an extensive survey on
Walker manifolds.

As proved in [18], with respect to the above set of coordinates, three-
dimensional locally symmetric Brinkmann manifolds are completely charac-
terized by having a defining function f of the form

f(x, y) = αx2 + xβ(y) + γ(y) (2.7)

where α is a real constant and β, γ are arbitrary functions. In particular, if
α = 0, then the Brinkmann metric is flat [18].

3. Totally Geodesic Hypersurfaces of Cahen-Wallach
Spacetimes

Let F : M → (M̄, g) denote the immersion of a hypersurface M into a Cahen-
Wallach spacetime and ξ the unit normal vector field to the hypersurface.
We look for some necessary algebraic conditions on the components of ξ with
respect to the frame {∂1, ∂2, ∂3, ∂4} on M̄ , in order for M to have a Codazzi
second fundamental form. We prove the following.

Theorem 3.1. Let F : M → M̄ be a hypersurface with a Codazzi second
fundamental form and ξ the unit normal vector field, with g(ξ, ξ) = ε ∈
{−1, 1}. Consider the coordinate vector fields {∂i} on M̄ introduced above.
Then, g(ξ, ∂2) = 0 and M is a timelike hypersurface. Moreover, some of the
following holds:
(I) Every point of M admits an open neighbourhood in M , on which either

ξ = b∂2 + ∂3 or ξ = b∂2 + ∂4;
(II) M is an ε-space, that is, k3 = k4 = k.

Proof. Consider ξ = a∂1+b∂2+c∂3 +d∂4, for some functions a, b, c, d : U → R

such that g(ξ, ξ) = ε = ±1 �= 0. Then, the following vector fields are tangent
to the hypersurface:

X1 = a∂1 − ρ∂2, X2 = c∂1 − ρ∂3, X3 = d∂1 − ρ∂4,

X4 = c∂2 − a∂3, X5 = d∂2 − a∂4, X6 = d∂3 − c∂4,
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where we put ρ = a
(
k3x

2
3 + k4x

2
4

)
+ b. If h is Codazzi, then equation (2.3)

yields that R(Xi,Xj)ξ = 0 for every i, j ∈ {1, . . . , 6}. In particular, we have

0 = R(X1,X4)ξ = −a2k3X4,

which gives necessarily a = 0. Therefore, g(ξ, ξ) = c2 + d2 and so, M is
necessarily timelike and c and d cannot both vanish. Moreover, from

0 = R(X2,X6)ξ = cd(k3 − k4)X4 (3.1)

we deduce that we have to consider separately two cases, depending on whether
k3 = k4. If k3 = k4, then M̄ is an ε-space and we get case (II) of the statement.

Assume now that k3 �= k4. Then, by (3.1), either c = 0 or d = 0 at any
point of M . On the other hand, c and d cannot vanish at the same point.
Hence, each point p ∈ M either admits a neighbourhood where c �= 0 = d (and
so, ||ξ||2 = c2 + d2 = 1 yields c = ±1) or it admits a neighbourhood where
c = 0 �= d (whence, d = ±1).

As the maps Λ3 : (x1, x2, x3, x4) �→ (x1, x2,−x3, x4) and Λ4 :
(x1, x2, x3, x4) �→ (x1, x2, x3,−x4) are isometries of the ambient space M̄ , we
can fix ξ = b∂2 + ∂3 and ξ = b∂2 + ∂4 without loss of generality. �

Remark 3.2. We explicitly observe that in the proof above, when referring to
the isometric immersion F , coordinates xi stand for xi ◦ F . Throughout the
paper we shall use this simplified notation but always taking into account their
precise meaning.

We shall now proceed with the classification of totally geodesic hyper-
surfaces in the different cases listed in Theorem 3.1. Suppose that M is a
hypersurface with a Codazzi second fundamental form.

Case (I): ξ = b∂2 + ∂3 (or ξ = b∂2 + ∂4).
If ξ = b∂2 + ∂3, for some smooth function b on M , the vector fields

Y1 = ∂2, Y2 = ∂1 − b∂3, Y3 = ∂4 (3.2)

span the tangent space to M at every point.
A direct calculation, using (3.2) and (2.5), gives

∇Y1Y1 = 0, ∇Y2Y1 = 0, ∇Y3Y1 = 0,

∇Y1Y2 = −Y1(b)ξ + bY1(b)Y1, ∇Y3Y2 = −Y3(b)ξ + (k4x4 + bY3(b))Y1,

∇Y2Y2 = −(Y2(b) + k3x3)ξ + b(Y2(b) − k3x3)Y1 − k4x4Y3,

∇Y1Y3 = 0, ∇Y2Y3 = +k4x4Y1, ∇Y3Y3 = 0.

Then, since h(Y1, Y2) = h(Y2, Y1) and h(Y2, Y3) = h(Y3, Y2), we obtain

Y1(b) = Y3(b) = 0 (3.3)

and so, using the Gauss formula (2.1), we get that the Levi-Civita connec-
tion on M is completely determined by the following possibly non-vanishing
components:

∇M
Y2

Y2 = b(Y2(b) − k3x3)Y1 − k4x4Y3, ∇M
Y2

Y3 = ∇M
Y3

Y2 = k4x4Y1. (3.4)
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Moreover, the only possibly non-vanishing component of the second funda-
mental form h with respect to {Y1, Y2, Y3} is given by

h(Y2, Y2) = −Y2(b) − k3x3. (3.5)

In particular, M is totally geodesic if and only if

Y2(b) = −k3x3. (3.6)

It is easy to check that [Yi, Yj ] = 0 for all indices i, j. So, the vector fields

Y1 = ∂t, Y2 = ∂y, Y3 = ∂x (3.7)

may be taken as coordinate vector fields on M . Since Y1(b) = Y3(b) = 0 we
then get that b = b(y) and condition (3.6) can be rewritten in the form

b′(y) = −k3x3. (3.8)

Denote now by F : M → M̄, (t, x, y) �→ (F1(t, x, y), . . . , F4(t, x, y)) the
immersion of the hypersurface in the local coordinates introduced above. By
(3.2) and (3.7), we obtain

(∂tF1, ∂tF2, ∂tF3, ∂tF4) = (0, 1, 0, 0),

(∂xF1, ∂xF2, ∂xF3, ∂xF4) = (0, 0, 0, 1),

(∂yF1, ∂yF2, ∂yF3, ∂yF4) = (1, 0,−b, 0).

(3.9)

From (3.9) we find that F3 = F3(y) satisfies ∂yF3 = −b(y). Then, by (3.8) we
get F ′′

3 (y) = k3F3. Integrating we obtain F3(y) = φ(y), where

φ(y) =

{
A cosh(

√
k3 y) + B sinh(

√
k3 y) if k3 > 0,

A cos(
√−k3 y) + B sin(

√−k3 y) if k3 < 0,
(3.10)

for some real constants A and B. Therefore, as b(y) = −∂yF3 = −φ′(y), we
find

b(y) =

{−A
√

k3 sinh(
√

k3 y) − B
√

k3 cosh(
√

k3 y) if k3 > 0,

−A
√−k3 sin(

√−k3 y) + B
√−k3 cos(

√−k3 y) if k3 < 0.

Moreover, again by integration of (3.9), we get

F1 = y + c1, F2 = t + c2, F4 = x + c4,

for some real constants c1, c2 and c4. After a reparametrization, we obtain the
immersion

F (t, x, y) = (y, t, φ(y), x). (3.11)

The case where ξ = b∂2 + ∂4 can be treated exactly in the same way. It
leads to the following explicit expression of the immersion:

F (t, x, y) = (y, t, x, ψ(y)), (3.12)
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where

ψ(y) =

{
A cosh(

√
k4 y) + B sinh(

√
k4 y) if k4 > 0,

A cos(
√−k4 y) + B sin(

√−k4 y) if k4 < 0,
(3.13)

for some real constants A,B and b(y) = −ψ′(y). Observe that for an ε-space,
φ(y) = ψ(y).

Remark 3.3. A hypersurface M as described in (3.11) is determined with re-
spect to coordinates (x1, x2, x3, x4) of the ambient space by equation x3 =
φ(x1). Hence, it is an open part of the cylindrical hypersurface spanned by the
curve of equation x3 = φ(x1) in the (x1, x3)–plane. Correspondingly, a hyper-
surface M as described in (3.12) is an open part of the cylindrical hypersurface
of equation x4 = ψ(x1).

Finally, we observe that in the special case where b = g(ξ, ∂1) = 0, we
easily conclude that φ = 0 (respectively, ψ = 0), so that the totally geodesic
hypersurface is an open part of the hyperplane x3 = 0 (respectively, x4 = 0).

We shall now treat the case (II) in Theorem 3.1. As we shall see, the
totally geodesic solutions are again of the forms we determined in case (I). We
shall make use of the following well-known general result.

Lemma 3.4. Let � : M → R denote an arbitrary continuous function. Then,

Ω = Ω1 ∪ Ω2

= {p ∈ M : � �= 0 in a neighbourhood of p}
∪{p ∈ M : � = 0 in a neighbourhood of p}

is a dense open subset of M .

Case (II): a= 0 and k3=k4=k. In this case, ξ = b∂2 + c∂3 + d∂4, where
b, c, d are smooth functions on M . As ||ξ||2 = c2+d2 = 1, there exists a smooth
function θ on M such that c = cos θ and d = sin θ.

Applying Lemma 3.4 to � = b, we have that there exists a dense open
subset Ω of M , such that each point p ∈ Ω either admits a neighbourhood
where b = 0 or a neighbourhood where b �= 0 at any point. Thus, we consider
separately the following cases.

Case (II.a): a=b= 0 and k3=k4=k. In this case, ξ = cos θ∂3 + sin θ∂4

and the vector fields

Y1 = ∂1, Y2 = ∂2, Y3 = sin θ∂3 − cos θ∂4 (3.14)
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span the tangent space to M at every point. A direct calculation, using (3.14)
and (2.5), gives

∇Y1Y1 = −k(x3 cos θ + x4 sin θ)ξ − k(x3 sin θ − x4 cos θ)Y3, ∇Y2Y1 = 0,

∇Y3Y1 = k(x3 sin θ − x4 cos θ)Y2, ∇Y1Y2 = 0,

∇Y2Y2 = 0, ∇Y3Y2 = 0,

∇Y1Y3 = Y1(θ)ξ + k(x3 sin θ − x4 cos θ)Y2, ∇Y2Y3 = Y2(θ)ξ,

∇Y3Y3 = Y3(θ)ξ.

Then, since h(Y1, Y3) = h(Y3, Y1) and h(Y2, Y3) = h(Y3, Y2), we get

Y1(θ) = Y2(θ) = 0

and so, applying the Gauss formula (2.1), we find that the Levi-Civita connec-
tion on M is completely determined by the following possibly non-vanishing
components:

∇M
Y1

Y1 = −k(x3 sin θ − x4 cos θ)Y3,

∇M
Y1

Y3 = ∇M
Y3

Y1 = k(x3 sin θ − x4 cos θ)Y2.
(3.15)

Moreover, the second fundamental form is determined by

h(Y1, Y1) = −k(x3 cos θ + x4 sin θ), h(Y3, Y3) = Y3(θ). (3.16)

By (3.16), M is totally geodesic if and only if

x3 cos θ + x4 sin θ = 0, Y3(θ) = 0. (3.17)

In this case, as Yi(θ) = 0 for all indices i = 1, 2, 3, we have that θ is a real
constant. Observe that the map

Λ : M̄ → M̄,

(x1, x2, x3, x4) �→ (x1, x2, cos θx3 + sin θx4,− sin θx3 + cos θx4)
(3.18)

is an isometry of the ambient ε-space M̄ , for every real constant θ. Therefore,
as the unit normal vector field to M is given by ξ = cos θ∂3 + sin θ∂4, without
loss of generality it suffices to consider the case where θ = 0 and so, ξ = ∂3

(equivalently, we can set θ = π
2 and get ξ = ∂4).

Hence, this case corresponds to the special solution we found in Case (I)
when b = g(ξ, ∂1) = 0 (see Remark 3.3). Correspondingly, the totally geodesic
condition written in (3.17), namely, x3 cos θ + x4 sin θ = 0, applying the above
isometry reads x3 = 0 (equivalently, x4 = 0).

Case (II.b): a= 0 �=b and k3=k4=k. We now have ξ = b∂2 + cos θ∂3 +
sin θ∂4 and the vector fields

Y1 = ∂2, Y2 = cos θ∂1 − b∂3, Y3 = sin θ∂1 − b∂4 (3.19)

span the tangent space to M at every point.
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Using (2.5), (3.19) and the formula h(Yi, Yj) = −g(∇Yi
ξ, Yj), a long but

straightforward computation yields

h(Y1, Y1) = h(Y2, Y1) = h(Y3, Y1) = 0,
h(Y1, Y2) = Y1(cos θ)b − cos θY1(b),
h(Y2, Y2) = Y2(cos θ)b − cos θY2(b) − k cos2 θ(x3 cos θ + x4 sin θ),
h(Y3, Y2) = Y3(cos θ)b − cos θY3(b) − k cos θ sin θ(x3 cos θ + x4 sin θ),
h(Y1, Y3) = Y1(sin θ)b − sin θY1(b),
h(Y2, Y3) = Y2(sin θ)b − sin θY2(b) − k cos θ sin θ(x3 cos θ + x4 sin θ),
h(Y3, Y3) = Y3(sin θ)b − sin θY3(b) − k sin2 θ(x3 cos θ + x4 sin θ).

(3.20)

Next, from h(Y1, Y2) = h(Y2, Y1) and h(Y1, Y3) = h(Y3, Y1) we get

Y1(θ) = 0, Y1(b) = 0.

We now set H = x3 cos θ + x4 sin θ and assume that M is totally geodesic.
Then, from (3.20) we have

− sin θY2(θ)b − cos θY2(b) = kH cos2 θ, (3.21)

cos θY3(θ)b − sin θY3(b) = kH sin2 θ, (3.22)

cos θY2(θ)b − sin θY2(b) = kH cos θ sin θ, (3.23)

− sin θY3(θ)b − cos θY3(b) = kH cos θ sin θ, (3.24)

We multiply equation (3.21) by − sin θ and (3.23) by cos θ and we sum them,
obtaining Y2(θ)b = 0, that is, Y2(θ) = 0, as b �= 0. In the same way, from (3.22)
and (3.24) we get Y3(θ) = 0. So, θ is constant.

As we already observed in Case (II.a), since θ is a real constant, the map
Λ described in (3.18) is an isometry of the ambient ε-space M̄ . Consequently,
without loss of generality, it suffices to consider the case where θ = 0 and so,
ξ = b∂2 + ∂3 (or, equivalently, θ = π

2 , whence, ξ = b∂2 + ∂4). Thus, we obtain
again the totally geodesic hypersurfaces described in Case (I).

The above calculations and conclusions are summarized in the follow-
ing complete classification of totally geodesic hypersurfaces of Cahen-Wallach
spacetimes.

Theorem 3.5. Let M denote a totally geodesic hypersurface of a Cahen-Wallach
spacetime M̄ . If M̄ is not an ε-space, then one of the following holds:
(a) M is an open part of the cylindrical hypersurface of equation x3 = φ(x1),

where φ is given by (3.10).
(b) M is an open part of the cylindrical hypersurface of equation x4 = ψ(x1),

where ψ is given by (3.13).
Hyperplanes x3 = 0 and x4 = 0 occur as special solutions of case (a) and

(b) respectively.
If M̄ is an ε-space, then there exists an open dense subset Ω of M , such that
any point p ∈ Ω admits a neighbourhood as described in one of above cases (a)
and (b).
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Remark 3.6. If M̄ is an ε-space, then φ = ψ. Moreover, interchanging x3 and
x4 is an isometry. Therefore, the two cases listed in Theorem 3.5 are congruent
in an ε-space.

Before proceeding with the investigation of parallel hypersurfaces of
Cahen-Wallach spaces, we shall emphasize some relevant geometric proper-
ties which hold for hypersurfaces with a Codazzi second fundamental form.
We prove the following.

Theorem 3.7. Any hypersurface F : M → M̄ with a Codazzi second fundamen-
tal form in a Cahen-Wallach spacetime is a Brinkmann manifold. Moreover,
if M̄ is not an ε-space, then M is minimal.

Proof. From the description of the Levi-Civita connection of a Cahen-Wallach
spacetime given in (2.5), we see at once that ∂2 is a parallel vector field. On
the other hand, Theorem 3.1 yields that ∂2 is tangent to M . Therefore, all
hypersurfaces with a Codazzi second fundamental form admit a parallel null
vector field, namely, the projection on M of the coordinate vector field ∂2 of
the ambient space. So, they are Brinkmann manifolds.

Next, suppose now that M̄ is not an ε-space, so that we are in Case (I)
of Theorem 3.1. Consider the case where the unit normal vector field is given
by ξ = b∂2 + ∂3 (the same argument holds when ξ = b∂2 + ∂4).

Denoted by gM the metric induced on M by the Cahen-Wallach metric g
described by (2.4), from equations (3.2) we easily find that g−1

M (Y2, Y2) = 0. On
the other hand, by (3.5), h(Y2, Y2) is the only possibly nonvanishing component
of h with respect to {Yi}. Therefore, we have

trgM
h =

1
3
g−1

M (Y2, Y2)h(Y2, Y2) = 0,

so that all such hypersurfaces with Codazzi second fundamental form are min-

imal. We may observe that the same arguments and the conclusion about
minimality hold in the class of ε-spaces, provided one assumes that either
g(ξ, ∂3) or g(ξ, ∂4) is a constant. �

4. Parallel Hypersurfaces in Cahen-Wallach Spacetimes

Clearly, totally geodesic hypersurfaces are also parallel. In this section we
investigate proper parallel hypersurfaces, that is, the ones which are parallel
but not totally geodesic. We start with the following.

Theorem 4.1. Let F : M → M̄ be a proper parallel hypersurface of a Cahen-
Wallach spacetime. If M̄ is not an ε-space, then there exist local coordinates
(t, x, y) on M such that up to isometries, the immersion is one of the following:

(a) F (t, x, y) = (y, t, φ(y) + C, x),
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where φ is given by (3.10) and C �= 0 is a real constant. So, M is an open part
of the cylindrical hypersurface of equation x3 = φ(x1) + C.

(b) F (t, x, y) = (y, t, x, ψ(y) + C),

where ψ is given by (3.13) and C �= 0 is a real constant. So, M is an open
part of the cylindrical hypersurface of equation x4 = ψ(x1) + C.

Proof. A parallel hypersurface M has a Codazzi second fundamental form. As
M̄ is not an ε-space, from Case (I) of Theorem 3.1 we have that the normal
unit vector field of M is given by either ξ = b∂2 + ∂3 or ξ = b∂2 + ∂4. Suppose
first that ξ = b∂2 +∂3. Then, equations (3.2), (3.4), (3.5) and (3.7) of Case (I)
of the previous Section hold. In particular, the second fundamental form is
completely determined by

h(Y2, Y2) = −(Y2(b) + k3x3).

Taking into account (3.4) and (3.5), we have that ∇Mh = 0 if and only if
Yi(h(Y2, Y2)) = 0 for all indices i = 1, 2, 3. But equation (3.3) yields

Y1(h(Y2, Y2)) = −Y1(Y2(b)) = −Y2(Y1(b)) = 0

and, by the same argument, Y3(h(Y2, Y2)) = 0. On the other hand,

Y2(h(Y2, Y2)) = −(Y2(Y2(b)) − k3b).

Thus, requiring M to be parallel is equivalent to Y2(Y2(b)) = k3b, that is, with
respect to the local coordinates (t, x, y) introduced in (3.7), b′′(y) = k3b.

By integration, we then have

b(y) =

{
P cosh(

√
k3 y) + Q sinh(

√
k3 y) if k3 > 0

P cos(
√−k3 y) + Q sin(

√−k3 y) if k3 < 0

for some real constants P,Q.
Denote now by F : M → M̄, (t, x, y) �→ (F1(t, x, y), . . . , F4(t, x, y))

the immersion of the hypersurface in the local coordinates introduced above.
By (3.2) and (3.7) we obtain

(∂tF1, ∂tF2, ∂tF3, ∂tF4) = (0, 1, 0, 0),

(∂xF1, ∂xF2, ∂xF3, ∂xF4) = (0, 0, 0, 1),

(∂yF1, ∂yF2, ∂yF3, ∂yF4) = (1, 0,−b, 0).

(4.1)

Integrating (4.1) we find

F1 = y + c1, F2 = t + c2, F4 = x + c4,

and

F3(y) =

⎧
⎪⎪⎨

⎪⎪⎩

− P√
k3

sinh(
√

k3 y) − Q√
k3

cosh(
√

k3 y) + C if k3 > 0,

− P√−k3
sin(

√−k3 y) +
Q√−k3

cos(
√−k3 y) + C if k3 < 0,
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for some real constants c1, c2, c4 and C. Observe that setting (P,Q) = (−√
k3B,

−√
k3A) (respectively, (P,Q) = (−√

k3B,
√

k3A)) in the first (respectively, sec-
ond) of the above cases, by (3.10) we conclude that F3(y) = φ(y) + C. After a
reparametrization, we then get the immersion

F (t, x, y) = (y, t, φ(y) + C, x).

By Theorem 3.5, this immersion is totally geodesic if and only if C = 0.
The case ξ = b∂2 + ∂4 can be treated exactly in the same way, leading to

case (b) in the statement. �

Remark 4.2. When g(ξ, ∂1) = 0, as φ = ψ = 0, from Theorem 4.1 we get
as special cases of proper parallel hypersurfaces the hyperplanes of equation
x3 = C and x4 = C, where C(�= 0, because of Remark 3.3) is a real constant.

Remark 4.3. We already know from Theorem 3.7 that parallel hypersurfaces
M , as described in Theorem 4.1, are Brinkmann manifolds and minimal. More-
over, being parallel hypersurfaces in a locally symmetric space, they must be
locally symmetric.

In fact, with respect to local coordinates (t, x, y), using (2.4), (3.2) and
(3.7), a straightforward calculation yields that the metric gM takes exactly the
form (2.6), with

f(x, y) =

{
k4x

2 +
[
k3φ(y)2 + 2k3Cφ(y) + C2 + (φ′(y))2

]
in case (a),

k3x
2 +

[
k4ψ(y)2 + 2k4Cψ(y) + C2 + (ψ′(y))2

]
in case (b),

so that they are locally symmetric Brinkmann manifolds.

Parallel hypersurfaces described in the above Theorem 4.1 also exist in
ε-spaces, but in this case they do not provide a full classification as for general
Cahen-Wallach spacetimes. As it may be seen in the previous Section, equa-
tions are remarkably more complicated for hypersurfaces of an ε-space. The
following result provides the full classification of proper parallel hypersurfaces
in ε-spaces under the assumption that b = g(ξ, ∂1) = 0.

Theorem 4.4. Let F : M → M̄ be a proper parallel hypersurface of a four-
dimensional ε-space. Assume that the normal unit vector field ξ of M satisfies
g(ξ, ∂1) = 0. If F is not included in one of the cases listed in the above The-
orem 4.1, then there exist local coordinates (t, x, y) on M , such that up to
isometries, the immersion is given by

F (t, x, y) =
(

y, t,
1
λ

cos(λx + μ),
1
λ

sin(λx + μ)
)

,

for some real constants λ �= 0 and μ. So, M is the cylindrical hypersurface of
equation x2

3 + x2
4 = 1

λ2 .

Proof. As g(ξ, ∂1) = 0, the unit vector field normal to M is given by ξ =
cos θ∂3 + sin θ∂4 and the vector fields Yi described in (3.14) span the tangent
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space to M at every point. Moreover, equations (3.15) and (3.16) of Case (II.a)
hold. A direct calculation then yields that M is parallel if and only if

0 = ∇M
Y3

h(Y1, Y1) = k(x3 sin θ − x4 cos θ)Y3(θ),

0 = ∇M
Y3

h(Y3, Y3) = Y3(Y3(θ)).
(4.2)

Since [Yi, Yj ] = 0 for all indices i, j, the vector fields

Y1 = ∂y, Y2 = ∂t, Y3 = ∂x (4.3)

may be taken as coordinate vector fields on M . By (3.16), Y1(θ) = Y2(θ) =
0 and so, the function θ only depends on x. Moreover, by (4.2), θ′′(x) =
Y3(Y3(θ)) = 0, so that θ′(x) = Y3(θ) is constant everywhere. Depending on
whether θ′(x) = 0, we have the following cases.

Case (1): θ′(x) = 0.
Then, θ is a real constant. By the isometry Λ of an ε-space described in

(3.18), without loss of generality we reduce to the case where ξ = ∂3 (equiva-
lently, ξ = ∂4). So, we obtain the special cases of proper parallel hypersurfaces
listed in Theorem 4.1, which we already described in Remark 4.2.

Case (2): θ′(x) = λ �= 0.
Integrating, we then have

θ(x) = λx + μ

for some real constants λ �= 0 and μ. Moreover, from (4.2) we deduce

x3 sin θ = x4 cos θ. (4.4)

Denote now by F : M → M̄, (t, x, y) �→ (F1(t, x, y), . . . , F4(t, x, y)) the
immersion of the hypersurface in the local coordinates introduced above. By
(3.14) and (4.3), we obtain

(∂tF1, ∂tF2, ∂tF3, ∂tF4) = (0, 1, 0, 0),

(∂xF1, ∂xF2, ∂xF3, ∂xF4) = (0, 0, sin θ,− cos θ),

(∂yF1, ∂yF2, ∂yF3, ∂yF4) = (1, 0, 0, 0).

By integration we find

F1 = y + c1, F2 = t + c2, F3 = −cos(λx + μ)
λ

+ c3,

F4 = − sin(λx + μ)
λ

+ c4,

for some real constants ci, i = 1, .., 4. Finally, since equation (4.4) must be
satisfied, we get

c3 sin(λx + μ) = c4 cos(λx + μ),
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for all values of x and so, c3 = c4 = 0. Applying isometries of the ambient
space, we obtain the following parametrization:

F (t, x, y) =
(

y, t,
cos(λx + μ)

λ
,
sin(λx + μ)

λ

)
,

which is never totally geodesic. �

With regard to geometric properties, we have the following.

Proposition 4.5. Proper parallel hypersurfaces M of an ε-space M̄ , as described
in Theorem 4.4, are flat and CMC.

Proof. Let M denote a proper parallel hypersurface of an ε-space as described
in Theorem 4.4. With respect to local coordinates (t, x, y), by equations (2.4),
(3.14) and (4.3) we find that the metric gM takes the form (2.6), where

f(x, y) =
k

λ2
. (4.5)

Comparing (4.5) with (2.7) we conclude that gM is a locally symmetric
Brinkmann metric, coherently with the fact that M is a parallel hypersur-
face in a locally symmetric space. In particular, (M, gM ) is flat [18] (the same
conclusion also follows calculating directly the curvature from (3.15), since
now we have x3 sin θ − x4 cos θ = 0).

Since gM is of the form (2.6) (with f given by (4.5)), a straightforward
calculation yields that

g−1
M (∂x, ∂x) = 1, g−1

M (∂y, ∂y) = 0.

On the other hand, from (3.16) and (4.3) we have that h is completely deter-
mined by h(∂y, ∂y) and h(∂x, ∂x) = θ′(x). So, we have

1
3
trgM

h =
1
3
g−1

M (∂x, ∂x)h(∂x, ∂x) =
1
3
θ′(x) =

1
3
λ,

whence we conclude that these proper parallel hypersurfaces are CMC. �
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