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1 | INTRODUCTION

The operators on topological vector spaces of continuous functions have been extensively studied for the last several
decades. On any space of functions with some structure, there are two natural types of operators, that are the multiplication
operator and the composition operator.

Composition and multiplication operators have been studied on weighted spaces of (vector-valued) continuous func-
tions on a locally compact Hausdorff topological space X in various directions. We refer the reader to the survey paper
[20]. See also the book [19]. The main question in this study is to characterize when such operators are well-defined
and continuous.

Recently, some authors have considered the problem to characterize the well-posedness and the continuity of compo-
sition operators in the setting of (PLB)-spaces or (LF)-spaces of smooth functions on R", like the space @);(R") of the
slowly increasing smooth functions and the space O-(R™N) of the very slowly increasing smooth functions, see [2, 10].
While, in [8] it has been characterized when continuous multiplication operators on a weighted inductive limit of Banach
spaces of continuous functions are power bounded, mean ergodic or uniformly mean ergodic. Moreover, in [17] the sec-
ond author has analyzed the action of the multiplication (diagonal) operators between weighted sequence (LF)-spaces,
studying general properties like boundedness, compactness, and dynamics.
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Motivated by these recent results, we study in this paper the composition operators on weighted function (LF)-spaces
and on weighted function (PLB)-spaces. Our first aim is to characterize when the composition operator is well-defined
and continuous. We also determine conditions which correspond to various basic properties of the composition operator,
like boundedness, compactness and weak compactness in the sense of [18, p. 98]. To this end, we first study the continuity,
boundedness, and (weak) compactness of the linear operators between (LF)-spaces and between (PLB)-spaces. This leads
us to consider the problem of factorization of continuous linear operators acting on (LF)-spaces and on (PLB)-spaces. In
the case of inductive limits, the factorization through the steps of a continuous linear operator is well-known and due
to Grothendieck. For projective limits, unlike the case of operators between Fréchet spaces, it is not known if continu-
ous linear operators between (PLB)-spaces factorize through the steps. So, we show that also for the (PLB)-spaces, the
factorization is still valid.

The paper is organized as follows. In Section 2, we collect the necessary definitions and give the characterization of
the continuity, boundedness, (weak) compactness for linear operator between (LF)-spaces and between (PLB)-spaces.
In Section 3, we first introduce the weighted function (LF)-spaces VC(X) and V,C(X) and the weighted function (PLB)-
spaces AC(X) and A, C(X). Thereafter, we recall some known results about their topological properties, like completeness
and regularity. Then, we characterize the continuity, boundedness, (weak) compactness for composition operators C,,
acting on pairs of weighted (LF)-spaces (VC(X), WC(X)) (V,C(X), WyC(X)), resp.), and on pairs of weighted (PLB)-
spaces (AyC(X), ApyC(X)) ((Ag»C(X), AgwC(X)), resp.) in terms of the weights ¥, W and the function ¢. Finally, in
Section 4, we present some applications.

2 | DEFINITIONS AND GENERAL RESULTS ON (LF)- AND (PLB)-SPACES

Let E and F be two locally convex Hausdorff spaces (briefly, IcHs for locally convex Haudorff space). We denote by L(E, F)
the space of all continuous linear operators from E into F. In particular, L (E, F) (L, (E, F), resp.) denotes L(E, F) endowed
with the strong operator topology 7, (L(E, F) endowed with the topology 7, of the uniform convergence on bounded
subsets of E, resp.). In case F = E, we simply write L(E), L (E) and L (E).

Let T be a linear operator from E into F. The operator T is called bounded if T maps some 0-neighborhood of E into
a bounded subset of F, while it is called compact (weakly compact, resp.) if T maps some 0-neighborhood of E into a
relatively compact (relatively weakly compact, resp.) subset of F. We observe that if T is a bounded or (weakly) compact
operator from E into F, then it is necessarily continuous, thatis, T € L(E, F).

In the following, we collect some results on operators acting between (LF)-spaces or (PLB)-spaces. We first consider the
case of (LF)-spaces. To do this, we recall some necessary definitions and properties.

A IcHs E is called an (LF)-space if there exists a sequence {E, },cn of Fréchet spaces with E,, & E,,; continuously
such that E = U,cnE,, and the topology of E coincides with the finest locally convex topology for which each inclusion
E,, & Eis continuous. In such a case, we simply write E = ind ,,cn E,,. The sequence {E, },,cy is called a defining inductive
spectrum for E. In this paper, we point out that (LF)-spaces are Hausdorff by definition. The space E = ind , <y E,, is called
an (LB)-space if E,, is a Banach space for all n € N. An (LF)-space E = ind ,,cy Ej, is called regular if every bounded set
B in E is contained and bounded in E,, for some n € N. Every complete (LF)-space is always regular. Next, we introduce
other useful regularity conditions.

Let E = ind , E,, be an (LF)-space and 7 denote the locally convex topology of E. The (LF)-space E is said to satisfy
the condition (M) ((M,), resp.) of Retakh if there exists an increasing sequence {U,,},¢cn of subsets of E such that U,, is an
absolutely convex 0-neighborhood of E,, for all n € N for which

VneN3Im>nVu>m: 7,and 7, induce the same topology on U,,,

(VvneNIm>nVu>m: U(E#,El/l) and o(E,,, E},) induce the same topology on U,,, resp.)

where 7,, denotes the locally convex topology of E,, for all n € N. An (LF)-space satisfying condition (M) ((M,), resp.) is
called acyclic (weakly acyclic, resp.). Every acyclic (LF)-space is weakly acyclic and also complete (see [22, Corollary 6.5]).

An (LF)-space E = ind ,, E,, is called compactly retractive (weakly compactly retractive, resp.) if every compact (weakly
compact, resp.) set K in E is contained and compact (weakly compact, resp.) in E,, for some n € N. An (LF)-space E =
ind ,,en E, is called boundedly retractive if every bounded set B in E is contained in some step E,, and the topologies of
E and E,, coincide on B, while E is called sequentially retractive (weakly sequentially retractive, resp.) if every convergent
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sequence (weakly convergent sequence, resp.) in E is contained in some step E,, and converges (weakly converges, resp.)
there. We observe that, in view of Grothendieck’s factorization theorem [12, p. 147], these conditions do not depend on the
defining inductive spectrum of E.

Some of these notions are related to each other, as it is shown in the following theorem due to Wengenroth [22].

Theorem 1 [22, Theorem 6.4]. For an (LF)-space E = ind ,, E,,, the following conditions are equivalent:

(1D E satisfies condition (M);
(2) E is boundedly retractive;
(3) E is compactly retractive;
(4) E is sequentially retractive.

Every weakly compactly retractive (LF)-space is clearly weakly sequentially retractive and hence, regular by [13,
Theorem 1]. The converse is also valid when the (LF)-space satisfies the condition (M) according to the following result.

Theorem 2 [13, Theorem 2]. Let E = ind ,cn E,, be an (LF)-space satisfying the condition (M). Then, the following
conditions are equivalent:

(1) E is regular;
(2) E is weakly compactly retractive;
(3) E is weakly sequentially retractive.

According to Theorems 1 and 2, every sequentially retractive (LF)-space is also weakly sequentially retractive.

The characterization of the continuity of operators between (LF)-spaces is well-known and due to Grothendieck. The
characterization of boundedness as well as the compactness of operators acting between (LF)-spaces has been given in
[17] as follows (see also [7, Proposition 5], where the (LB)-case is considered). We include also the weakly compact case.
The proof is analogous to that of the compactness and is left to the reader.

Proposition 1 [17, Proposition 2.3]. Let E = ind , E,, and F = ind , F,, be two (LF)-spaces. Let T . E — F be a linear
operator. Then, the following assertions hold true:

(1) Assume that F is regular. Then, the operator T is bounded if, and only if, there exists n € N such that for all m € N we
have that T(E,,) C F,, and the restriction T : E,, — F, is bounded;

(2) Assume that F satisfies the condition (M). Then, the operator T is compact if, and only if, there exists n € N such that for
all m € Nwe have that T(E,,,) C F,, and the restriction T : E,, — F,, is compact;

(3) Assume that F is weakly compactly retractive. Then, the operator T is weakly compact if, and only if, there exists n € N
such that for all m € N we have that T(E,,) C F, and the restriction T : E,, — F,, is weakly compact.

AlcHsE is called a (PLB)-space if there exists a sequence {E,, },,cn of (LB)-spaces with E,,; & E,, continuously such that
E = n,enE;, and the topology of E is the coarsest locally convex topology for which each inclusion E < E,, is continuous.
In such a case, we simply write E = proj , . E,. Clearly, a (PLB)-space E = proj . E,, is complete whenever E,, is a
complete (LB)-space for an infinite number of indices n.

Unlike the case of operators between Fréchet spaces, in general continuous linear operators between (PLB)-spaces do
not factorize through the steps. Under suitable condition on the (PLB)-spaces, the factorization is still valid. Indeed, along
the lines of [11, Lemma 4], we get the following result:

Proposition 2. Let E = proj . E, be a (PLB)-space such that the continuous inclusion E < E, has dense range for all
n € N. Let F = proj, o, Fx be a (PLB)-space such that Fy. is a complete (LB)-space for allk € N.IfT : E — F is a continuous
linear operator, then for all k € N there exists n € N such that the operator T admits a unique continuous extension TZ from
E, into Fy.

Proof. Let 7 denote the topology of E and for all n € N, let 7,, denote the topology of E,. We claim that for all k € N
there exists n € N such that the operator T : (E,t,) — Fj is continuous. To prove the claim, we proceed by arguing
by contradiction.
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Suppose that there exists k € N such that for all n € N the operator T : (E, 7,) — F} is not continuous. Accordingly, for
all n € N there exists a 0-neighborhood U, in Fy such that the operator T : (E,7,) — (Fy, py,) is not continuous, where
the range is the space equipped with the gauge functional py, as a seminorm. Since Fy, is an (LB)-space, there exists a
0-neighborhood U in Fy such that U is absorbed by U,, for all n € N (see [14, Proposition 2.7.9]). Now, the continuity
of the operator T : (E,7) — F) implies that there exists a 0-neighborhood V in (E, t) such that T(V)) C U. Since E is the
projective limit of the (LB)-spaces E,,, there exist some n, € N and a continuous seminorm p on E,, suchthatV, :={x €
E @ p(x) <1} C V. This yields that the operator T' : (E, 7, ) — (Fy, py) is continuous. On the other hand, the fact that U
is absorbed by U, implies that the inclusion (Fy, py) < (Fy, pUno) is continuous. Accordingly, T : (E, 7,,) = (Fi, pUno)
is necessarily continuous. But this is a contradiction.

According to what was proved above, for all k € N there exists n € N such that the operator T : (E, t,,) — F} is con-
tinuous. Since E is a dense subspace of E,, and F}, is complete, the operator T : (E, 7,) — F) admits a unique continuous
extension T, from E,, into Fy. O

Remark 3.

(1) Due to the definition of the projective limit topology, the condition of Proposition 2 is clearly also sufficient.
(2) The proof of Proposition 2 ensures that for all k € N there exists n € N such the operator T : (E,7,) — F) is
continuous also in the case, where E = proj , ., E,, is a (PLB)-space with no dense inclusion in E,, for any n € N.

Also for operators between (PLB)-spaces, we can give the characterization of the boundedness and of the (weak)
compactness as follows.

Proposition 3. Let E = proj . E, be a (PLB)-space such that the inclusion E < E,, has dense range for all n € N. Let
F = proj o Fi be a (PLB)-space such that Fy. is a complete (LB)-space for allk € N. A linear operatorT : E — F is bounded
((weakly) compact, resp.) if, and only if, there exists n € N such that for all k € N the operator T admits a unique linear
extension T} : E, — Fj which is bounded ((weakly) compact, resp.).

Proof. The condition is clearly sufficient. So, we suppose that T : E — F is bounded ((weakly) compact, resp.), thereby
implying that T € L(E, F) necessarily. Accordingly, there exists a 0-neighborhood V of E such that T(V) is a bounded
(relatively (weakly) compact, resp.) set in F. Since E is the projective limit of the (LB)-spaces E,;, there exist n, € N and a
0-neighborhood U of E,, such that EN U C V. Consequently, T(E n U) is a bounded (relatively (weakly) compact, resp.)
set in F and hence, T(E N U) is a bounded (relatively (weakly) compact, resp.) set in F, for all k € N. This implies that
the operator T : (E, 7, ) — F) is bounded ((weakly) compact, resp.) for all k € N and hence, continuous. Since E is a
dense subspace of E,, and each Fy is a complete (LB)-space, for all k € N the operator T' : (E, 7, ) — F) admits a unique
extension TZO : E,, — Fj which is clearly bounded ((weakly) compact, resp.). O

Remark 4.

(1) We observe that Proposition 3 covers also the case that each E,, is a Banach space (hence, E is a Fréchet space) or each
Fy is a Banach space (hence, F is a Fréchet space).

(2) The proof of Proposition 3 ensures that there exists ny € N such that the operator T : (E, 7, ) — F) is bounded

((weakly) compact, resp.) for all k € N also in the case that E = proj , . E,, is a (PLB)-space with no dense inclusion
inE, forany n € N.

3 | COMPOSITION OPERATORS BETWEEN WEIGHTED (LF)- AND (PLB)-SPACES OF
CONTINUOUS FUNCTIONS

3.1 | Weighted (LF)- and (PLB)-spaces of continuous functions

Throughout this paper, X will be denote a locally compact (Hausdorff) topological space.
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ForallneN,letV, = (vn,k)keN be a sequence of (strictly) positive continuous functions, called weights, on X. We
denote by V the sequence (V,), o, and we assume that these two conditions are satisfied:

1) vyr(x) SV (x) foralln, k € Nand x € X;
(2) Vp(x) 2 Vyyx(x) foralln,k € Nand x € X.

The sequence V = (V) is said to be a system of weights. In the following, for all k € N we set V¥ = (v, )nen-

Denote by C(X) the space of all K-valued continuous functions on X, where K = C or [ = R. We recall that a function
g € C(X) is said to vanish at infinity if for every € > 0 there exists a compact subset K of X such that |g(x)| < ¢ for all
x € X \ K. Given a single weight v on X, we can define:

CoX) :={f € CX) : lIflly := llvflleo < o0},

Cy,,(X) :={f € C(X) : v|f]| vanishes at infinity}.

The space (C,(X), || - |l,) is a Banach space and (C, (X), | - |l,) is a closed subspace of C,,(X). Furthermore, if we endow
the space C(X) with the compact open topology, then the inclusion C,(X) & C(X) is continuous for every weight v on X.

Indeed, for a fixed weight v on X and a compact subset K of X, we have that max,cg | f(x)] = max,cg %x)v(xﬂ f)] <

ckllfll, for all f € C,(X), where cg := maxX,cg ﬁ < oo being % € C(X).

Given a system V of weights on X and n € N, due to condition (1) both the sequences {C,,,, (X)}ken and {C(y,, ), (X)}ken
of Banach spaces form a projective spectrum. Hence, for all n € N the following weighted spaces of continuous functions,
defined by

CVu(x) i={f €CCO : IIfl,,, = lvnefll,, <oo Yk ENY,
C(V)o(X) 1= {f € C(X) : v, |f| vanishes at infinity Vk € N},

are Fréchet spaces with respect to the lc-topology generated by the sequence (]| - ”Un,k)kEN of norms. We observe that
C(V,)o(X) is a dense subset of C(Un,k)O(X )forall n,k € N.

According to condition (2), CV,(X) (C(V,)o(X), resp.), is continuously included in CV,, . 1(X) (C(V,.41)o(X), resp.) for
all n € N. So, we can define the following weighted (LF)-spaces of continuous functions

VC(X) 1= ind CV,(X) and WC(X) :=ind C(V,)o(X).

Obviously, VC(X) and V,C(X) are continuously included in C(X) for every system of weights V on X.

In [4], Bierstedt and Bonet characterized the regularity of the (LF)-spaces VC(X) and V,C(X) in terms of the system V
of weights. In order to state such results, we recall some necessary definitions.

Let Y = (vy x)nken be a system of weights on X. The system V of weights is said to satisfy the condition (WQ) (or is of

type (WQ)) if
VneNIu, meNVk, NENIKEN, S>0:Vx €X v, (x) < S, ,(x) + vy x(x)).
The system V of weights is said to satisfy the condition (Q) (or is of type (Q)) if
VhneNIu, meNVE,NEN,R>03IK N, S>0:Vx €X v, (x) < %vn#(x) + Svy g ().
The characterization of the regularity of the (LF)-spaces VC(X) and V,C(X) is contained in the following result.

Theorem 5. Let X be a locally compact Hausdorff topological space and V be a system of weights on X. Then, the following
assertions hold true:

(1D ([4, Proposition 4 and Theorem 7]) VC(X) is regular if, and only if, V satisfies condition (WQ) if, and only if, VC(X) is
complete;
(2) ([4, Theorem 3]) V,C(X) is regular if, and only if, V satisfies condition (Q) if, and only if, V,C(X) is complete.
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We recall also that Bierstedt and Bonet in [4, Theorem 3] characterized when the (LF)-spaces VC(X) and V,C(X) satisfy
the condition (M).

Theorem 6. Let X be a locally compact Hausdorff topological space and V be a system of weights on X. Then, the following
assertions are equivalent:

(D) YC(X) satisfies condition (M);
(2) VyC(X) satisfies condition (M);
(3) V satisfies condition (Q).

We refer the reader to [3, 4] for more details.

Given asystem V of weightson X and k € N, due to condition (2) both the sequences{C,, , (X)},en and {C(y,, ), (X)}nen
of Banach spaces form an inductive spectrum. Hence, for all k € N we can define the following weighted (LB)-spaces of
continuous functions:

ACX) := ir%ld CUn,k(X) and (Ap)CX) := iI}1d C(Un,k)()(X)'

By [5], the space A4, C(X) is always a complete, hence, a regular (LB)-space for all k € N. The (LB)-space (A )oC(X) need
not be regular. The regularity is ensured by a stronger condition on the system V of weights. In order to see this, we recall
the following.

Given a sequence of decreasing weights V = {v, },,en On X, we say that V is regularly decreasing if, given n € N, there
exists m > n so that, for every £ > 0 and every k > m there exists § = d(k,¢) > 0 such that vi(x) > dv,(x) whenever
U, (%) > €v,(x). In other words, V is regularly decreasing if, and only if, given n € N, there exists m > n such that, on
each subset of X on which the quotient Z—’" is bounded away from zero, also all quotients z—k k > m, are bounded away

n n

from zero.

By [5, Corollary 2.7], for any k € N, the (LB)-space .4, C(X) satisfies condition (M) if, and only if, it is (strongly) bound-
edly retractive if, and only if, the sequence V* = (U”-k)neN is regularly decreasing. While, by [5, Theorem 2.6], for any
k € N, the (LB)-space (A )oC(X) is regular if, and only if, it is complete if, and only if, it satisfies condition (M) if, and
only if, it is (strongly) boundedly retractive, and this is in turn equivalent to the fact that the sequence V* = (Un,k) s
regularly decreasing.

Due to condition (1), both the sequences {4, C(X)}ren and {(Ay)oC(X)}ken of (LB)-spaces form a projective spectrum.
Hence, we can define the following weighted (PLB)-spaces of continuous functions:

i
neN

ACX) :=proj A,C(X) and A C(X) :=proj(Ai)yCX).
k k

Obviously, AC(X) and .AyC(X) are continuously included in C(X) for every system V of weights. We also observe that
AoC(X) is a dense subset of (A} )yC(X) for all k € N. We refer the reader to [1] for more details.

3.2 | Composition operators

Let E and F be two IcHs of K-valued functions defined on X. Let ¢ be a function from X into X. If fop € F forall f € E,
then we can consider the composition operator C, : E — F, f  f o¢. The operator Cy, is clearly linear. In case that
C, € L(E, F), the function ¢ is said to be a symbol for the pair (E, F). If E = F, we say simply that ¢ is a symbol for E.

In the following, we denote by C(X,X) the space of all continuous functions ¢ : X — X, by Cp(X) the space of all
[K-valued bounded continuous functions on X and Cy(X) the space of all K-valued bounded continuous functions on X
vanishing at infinity. The spaces Cp(X) and C((X) are Banach space with respect to the supremum norm || - ||, on X. We
point out that every ¢ € C(X,X) is a symbol for the space C(X), endowed with the compact open topology.

In this section, we study the composition operator C, acting between the (LF)- and (PLB)-spaces introduced in Sec-
tion 3.1. The first aim is to establish what continuous functions ¢ : X — X are symbols for the pairs (VC(X), WC(X))
and (AyC(X), AyC(X)). In order to do this, we study the composition operators C,, between weighted Banach spaces of
continuous functions. So, we recall that a continuous map ¢ : X — X is called proper if the preimage of every compact
set K in X is also a compact set in X.
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Proposition 4. Let v, w be two weights on X and ¢ € C(X,X). Then the following assertions hold true:

(1) The composition operator Cy, : Cy(X) = Cyy(X), f = f oo, is well-defined (and so continuous) if, and only if, % IS
Cp(X);

(2) If ¢ is a proper map, then the composition operator Cy, : Cy (X) = Cy (X), [+ foe, is well-defined (and so
continuous) if, and only if, % € Cp(X).

Proof.

) 1f % € Cp(X), the operator C, : C,(X) — C,(X) is clearly well-defined and continuous.
Conversely, suppose that C, : C,(X) — C,(X) is well-defined. Since the function % belongs to C,(X), it follows
that C,, <l> ——— C,,(X) and hence, 2 e Cp(X).
v vog vog
Q) 1t % € Cp(X), to show that C, is well-defined it suffices to establish that (vf) o ¢ vanishes at infinity for any f €
Cp,(X). Indeed, if (vff) o ¢ vanishes at infinity for f € C,, (X)and C := || ﬁ |l then for a fixed € > 0 there exists a
compact set K in X such that |(vf)(e(x))| < g for every x € X \ K. Hence, for every x € X \ K we get

_wx)

[wG(f o @)(x)| = wop))

——|(f)p())| < C— =

This means that w(f o ¢) vanishes at infinity, that is, C,(f) € Cy, (X).

Now, to prove the claim observe that for fixed f € C, (X) and € > 0, there exists a compact set K in X such that
[v(x)f(x)| < ¢ for every x € X \ K. Since ¢ is proper, the preimage of K, that is, H := ¢~!(K), is a compact set in X
such that |(vf)(p(x))| < € for every x € X \ H, being p(x) ¢ K. This shows that the condition is satisfied.

Conversely, suppose that C,, : C,, (X) — C,,(X) is well-defined and hence, continuous by the Closed Graph The-
orem [16, Section 35, p. 57]. Accordingly, there exists C > 0 such that [|Co,(f)l, < ClIf|l, for all f € C, (X). Now, for

afixed x € X, let f, € C(X)such that 0 < f,(y) < $ for all y € X, supp f is a compact set in X and f,(¢(x)) =

L Then
(Lo g)(x)
9 010 < IC, (Nl < Clll, <€
(voqo)(x)— x\@ = o\J xllw = xllv = %-
Since x € X is arbitrary, it follows that the function ﬁ € Cp(X). O

Remark 7. Let v, w be two weights on X and ¢ € C(X,X). Let T : C(X) —» C(X) be the operator defined by T(f) :=
L(fogo) for f € C(X). Then, T € L(Cp(X)) if, and only if, ﬁ € Cp(X). Indeed, it suffices to observe that T =

M, 0C, oM, and then apply Proposition 4(1), being M1 1 C(X) » Cp(X), f %f, My, : Cp(X) » Cp(X), f » wf,

resp.) an isometric surjective operator.
Suppose that ¢ is a proper map. So, by arguing as above and due to Proposition 4(2), we obtain that T € £L(C(X)) if, and
only if, ﬁ € Cp(X), being again M1 : C,,(X) = Co(X), f %f, My, @ Cypy(X) = Cop(X), f = wf, resp.) an isometric

surjective operator.
Now, we can characterize the symbols ¢ for the pairs of (LF)-spaces (VC(X), WC(X)) and (V,C(X), WyC(X)).
Theorem 8. Let V, W be two systems of weights on X and ¢ € C(X,X). Then, the following properties are equivalent:

D) C,(VC(X)) C WC(X);
(1) C, @ VC(X) = WC(X) is continuous;
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(2) Forallm € N, there exists n € N such that for all k € N there exists | € N for which

wn,k(x)

SUp ————— < 0.
xex U 1(p(x))

¢y

Furthermore, if ¢ is a proper map, the previous assertions are equivalent to:

(3) C,(VpC(X)) € W C(X);
(3) Cy : VyC(X) = WyC(X) is continuous.

Proof. Clearly, (1) implies (1) ((3’) implies (3), resp.) and (1) implies (1") ((3) implies (3’), resp.) by the Closed Graph theorem
[16, Section 35, p. 57]. Indeed, consider a net (f;); C VC(X) convergent to f in VC(X) such that (C,(f;)); converges to g
in WC(X). Since the inclusion VC(X) < C(X) is continuous, the net (f;); converges to f in C(X), thereby implying that
(C,(f1)); converges to f o in C(X) because C, € L(C(X)). The same argument yields that (C,(f;)); converges to g in
C(X). So, it follows that g = f o ¢ and hence, g = C,,(f). This proves that the graph of C, is closed. The proof of (3) implies
(3’) follows by arguing in a similar way.

We prove that (1°) is equivalent to (2).

(I’)&(2). The composition operator C,, : VC(X) — WC(X) is continuous if, and only if, for all m € N the composi-
tion operator C, : CV,,(X) - WC(X) is continuous. From Grothendieck’s factorization theorem [12, p.147], C,, is then
continuous if, and only if, for all m € N there exists n € Nsuch thatC,, : CV,,(X) — CW,(X) is continuous. But the com-
position operator C, between the Fréchet spaces CV,,(X) and CW,(X) is continuous if, and only if, for all k € N there
exist ] € N and C > 0 such that

ICo (Nl < Cllf Ly, VS € CViu(X). ®)

If CV,,(X) is dense in Cvm,z(X ) for all I € N, then it follows that the operator C, admits a unique continuous linear
extension (C(P)f{ from Copy (X) into Cups (X). Since C,, € L(C(X)) and the spaces CUM)I(X ) and Cupy (X) are continuously
included in C(X), necessarily (C¢,)f( = C,, thatis, Cy, : Cop X) - Cu, i (X) is continuous. Due to Proposition 4(1), this is
equivalent to require that the function v:z% belongs to C,(X). This means that the condition (1) is satisfied.

If CV,,(X) is not dense in Cvm,z(X ) for all I € N, to get the result we argue as follows. For a fixed x € X, let f, € C(X)
such that 0 < f,(y) < vmt(y) for all y € X, supp f is a compact set in X and f,(¢(x)) = (Um—lx) Then, f, € CV,,(X)

10o@)
because f, has compact support. Moreover, || f«l, , = 1. So, by Equation (2) it follows that

wn,k(x)

oo™ Wy k() (@) < NCoy(f M, < Cllfxlly,, <C-

Since x € X is arbitrary, it follows that Dnk_ g Cp(X), that is, the condition (1) is satisfied.
Umio@®

Conversely, if the condition (1) is satisfied, then Proposition 4(1) ensures that C, € E(CUM‘I(X ), Cu, (X)) and hence,
(2) is satisfied. This implies that C, € L(CV,(X), CW (X)) C L(CV,,(X), WC(X)) and hence, C, € L(VC(X), WC(X))
as m € N is arbitrary.

The proof of (3)<(2) is analogous and so it is omitted. We only observe that, in such a case, each Fréchet space
C(V,)o(X) is dense in C(Um,l)O(X ) for all I € N and so we can apply directly Proposition 4(2). O

The characterization of the symbols for the pairs of (PLB)-spaces (A, C(X), AyyC(X)) and (A pC(X), AgwC(X)) is
given in the following result.

Theorem 9. Let V, W be two systems of weights on X and ¢ € C(X,X). Then, the following properties are equivalent:

(D Cy @ ApC(X) = ApwC(X) is continuous;
(2) Forall k € N there exists | € N such that for all m € N there exists n € N for which

wn,k(x)

sup —m4mMmm@ < .
2ok D i(9()

®3)
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If, in addition, V satisfies condition (Q), the assertion (1) is equivalent to
(1) ColApC(X)) C ApCX).

Furthermore, if ¢ is a proper map and the sequence W = (Wp i )nen is regularly decreasing for all k € N, the assertions (1)
and (2) are equivalent to:

(3) Cy @ AgyC(X) = AgwC(X) is continuous.
If, in addition, V satisfies condition (W Q), the assertion (3) is equivalent to
(3) Cy(ApyC(X)) C ApwC(X).

Proof. Arguing as done in the proof of Theorem 8, (1) and (1’) ((3) and (3’), resp.) are equivalent by the Closed Graph
theorem [16, §35, pp.57-58]. Indeed, under the assumption that V satisfies condition (Q) ((WQ), resp.), the space A, C(X)
is ultrabornological (see [1, Theorems 3.5] and [22, Theorem 3.3.4] (A C(X) is ultrabornological by [1, Theorem 3.7],
resp.) and Ay C(X) (A wC(X), resp.) is a webbed space. So, we can apply the Closed Graph theorem.

We prove that (1) is equivalent to (2).

(1)=(2). By Remark 3(2), the composition operator C, : AyC(X) — AyyC(X) is continuous if, and only if, forall k € N
there exists | € N such that the operator C,, : (AyC(X), ;) = Ay wC(X) is continuous, where 7; denotes the Ic-topology
of the (LB)-space .A;,C(X). In the case the inclusion 4,,C(X) < A;,,C(X) has dense range for all | € N, recalling that
each A yC(X) is a complete (LB)-space, the composition operator C,, : AyC(X) — Ay C(X) is then continuous if,
and only if, for all k € N there exists | € N such that the operator C, : A;»C(X) — Ay yC(X) is continuous. But the
composition operator Cy, : A;»C(X) = A C(X) is continuous if, and only if, for all m € N the composition opera-
torCy, : Cy, | (X) = Ay wC(X) is continuous, as A; ,C(X) is an (LB)-space. Since A ,yC(X) is also an (LB)-space, from
Grothendieck’s factorization theorem [12, p. 147], C,, is continuous if, and only if, for all m € N there exists n € N such that
Co : Cvm,l(X ) —> Cupi (X) is continuous. By Proposition 4(1), this is equivalent to require that the condition (3) is satisfied.

If AyC(X) is not a dense subspace of A;,C(X) for all | € N, to get the result we argue as follows.

Forafixedm € N, letB :={f, € C(X) : Vy €X 0 < f,(») < ﬁ Fo(@(x) = m

is clearly a subset of .A,,C(X), as the support of each f is compact. Moreover, B is contained in C,,  (X) and bounded
there. Indeed, for every x € X we have

supp f, compact}. Then, B

”fx“vml = Slél)l? VDI = 1.
y

Accordingly, B is a bounded subset of (AyC(X), 7;). The continuity of C,, from (AyC(X), 7;) into Ay yC(X) implies that
C,(B) is also a bounded subset of A ,yC(X) and hence, there exist n € Nand C > 0 such that

”C(p(fx)”wn,k <C, VxelX.

Therefore, it follows that

kD) OG0 S 1Co ), SC, VX EX
Wpro@)) — AP IR T 2 5 ’
that is, % € Cp(X). Conversely, if the condition (3) is satisfied, then Proposition 4(1) implies that the operator C,, €
m,l ©
LZ(CUm’l X)), Cu, (X)) and hence, the thesis follows.

The proof of (3)<(2) is analogous and so it is omitted. We only observe that under the assumption on each Wk, the
(LB)-spaces (A y)oC(X) are complete and that .4, ,C(X) is dense in each (LB)-space (A ,)yC(X). So, we can apply
directly Propositions 2 and 4(2). O

A similar characterization holds for the boundedness of composition operators between the pairs of (LF)-
spaces (VC(X), WC(X)) and (V,C(X), W,C(X)) and also for the pairs of (PLB)-spaces (A, C(X), A}yC(X)) and
(ApyC(X), AgwC(X)).
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For the (LF)-spaces VC(X) and V,C(X), the following holds.

Theorem 10. Let V, W be two systems of weights on X and ¢ € C(X,X). Assume that WC(X) (W,C(X), resp.) is regular.
Then, C, : VC(X) — WC(X) is bounded if, and only if, there exists n € N such that for allm € N there exists | € N such that
forallk e N

wn,k(x) <
2ok Opi(p() ~ 5

)

Furthermore, if ¢ is a proper map, then the previous assertions are equivalent to C,, : VyC(X) — Wy C(X) is bounded.

Proof. By Proposition 1(1), C, : VC(X) — WC(X) is bounded if, and only if, there exists n € N such that for all m € N
the restriction Cy, : CV,(X) —» CW,(X) is bounded. Using Proposition 3 (see also Remark 4), this holds if, and only if,
there exists [ € N such that for all k € N the operator Cy, : (CV,,(X), 7)) = Cy,, (X) is continuous, where 7,,, | denotes
the lc-topology of C,, ,(X), and hence, there exists C > 0 such that

1Co (Nl < Cllflluye VS € CViu(X). ©)

In view of Equation (5), we can argue as in the proof of Theorem 8 to conclude that this is equivalent to require that
Equation (4) is satisfied.

A similar argument shows that the same characterization holds for the boundedness of C, : V,C(X) — W,C(X).
We only observe that each Fréchet space C(V,,)o(X) is dense in C(vm,z>o(X) for all I € N. So, we can apply directly
Proposition 4(2). |

A similar characterization is valid for the (PLB)-case.

Theorem 11. Let V, W be two systems of weights on X and ¢ € C(X,X). Then, Cy : AyC(X) = AyC(X) is bounded if,
and only if, there exists | € N such that for all k € N there exists n € N such that forallm € N

Wy k(x)
P < . ©)
xex Um,l(qo(x))
Furthermore, if ¢ is a proper map and the sequence W* = (W, k)nen is regularly decreasing for all k € N, then the previous
assertions are equivalent to Cy, @ A yC(X) = AgwC(X) is bounded.

Proof. By Proposition 3 (see Remark 4(2)), the operator C,, : Ay C(X) — Ay C(X) is bounded if, and only if, there exists
I € N such that for all k € N the operator C,, : (AyC(X),7;) = Ay wC(X) is bounded, where 7; denotes the lc-topology
of the (LB)-space .A; ,,C(X). In the case the inclusion A, C(X) < A; C(X) has dense range for all I € N, being each (LB)-
space Ay yC(X) complete, the composition operator C, : AyC(X) — AyyC(X) is then bounded if, and only if, there
exists I € N such that for all k € N the operator C, : A;yC(X) = Ay yC(X) is bounded. So, by Proposition 1(1), this
holds if, and only if, there exists n € N such that for all m € N the restriction C,, : Cvm,z(X ) —> Cu, i (X) is bounded, that
is, continuous. Now, by Proposition 4(1), this is equivalent to require that Equation (6) is satisfied.

If the inclusion A, C(X) < A;»C(X) has no dense range for all | € N, to get the result we argue as follows.

Fix k € N. The fact that C;, : (AyC(X),1;) = Ay wC(X) is bounded implies that there exists a 0-neighborhood U in
A yC(X) such that Co,(U N Ay C(X)) is a bounded set in A ,yC(X). Since Ay yC(X) is a regular (LB)-space, there exists
n € N such that C,(U N Ay C(X)) is contained in Cu, (X) and bounded there. Now, for a fixed m € N, let B :={f, €

1
C(X):VyeXo0< < , - ’
(X) 1y €X0< £.0) < =, folp() = —

each f, has compact support. Moreover, B is contained in Cvm!l(X ) and bounded there (see the proof of Theorem 9).
Accordingly, B is a bounded subset of (A, C(X), 7;). Hence, there exists 4 > 0 such that B C A(U N A, C(X)), thereby
implying that C,(B) is also a bounded subset of Cu, (X). So, there exists n € N and C > 0 such that

supp f, compact}. Then, B is clearly a subset of .A,C(X) because

ICo(f M, SC, Vx €X.
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As in the proof of Theorem 9, it follows that Onk e Cp(X), that is, the condition (6) is satisfied. Conversely, if the

U1 ©
condition (6) is satisfied, then Proposition 4(1) ’ilmi)lies that the operator C, € L(C,, (X),C, ,(X)) and hence, the
thesis follows.

A similar argument shows that the same characterization holds for the boundedness of C;, : Ay C(X) = AgwC(X).
We only observe that under the assumption on each W, the (LB)-spaces (A w)oC(X) are complete and that A, ,C(X)

is dense in each (A )y C(X). So, we can apply directly Proposition 4(2). O

Um,l Wy k

To describe the (weak) compactness of the composition operators, we recall some results on (weak) compactness of
weighted composition operators acting on the Banach spaces C,(X) and Cy(X). To state such results, if u € Cp(X) and
e>0,weset N(u) :={x €X : u(x) #0tand N(u,e) = {x € X : |u(x)| > €}. Clearly, N(u) = UgsoN(u, €).

We first recall a result due to Singh and Summers [21] which characterizes the (weak) compactness of weighted com-
position operators acting on the Banach space C,(X) with X a completely regular Hausdorff topological space (see [15] in
case X is a compact Hausdorff space).

Lemma 1 [21, Corollary 2.2]. Let X be a completely regular Hausdorff topological space. Let ¢ € C(X,X) and u € C,(X).
Then, the following properties are equivalent:

(D uCy is compact on Cp(X);
(2) uCy is weakly compact on Cy(X);
(3) ¢(N(u,¢)) is finite for every ¢ > 0.

Regarding weighted composition operators acting on the Banach space C((X), with X a locally compact Hausdorff topo-
logical space, we recall the following characterization of the (weak) compactness due to Chan [9] (see also [19, Corollary
2.5]).

Lemma 2 [9, Theorem 2.1]. Let X be a locally compact Hausdorff topological space. Let ¢ € C(X,X) be a proper map and
u € Cy(X). Then, the following properties are equivalent:

(D uCy is compact on Cy(X);
(2) uCy is weakly compact on Cy(X);
3) (D u € Cy(X) and (ii) ¢ is locally constant on N(u).

Remark 12. Condition (3)(ii) in Lemma 2 is equivalent to condition that ¢(K) is finite for every compact subset K of N(u).
When X is compact, such condition is equivalent to condition (3) in Lemma 1.

Now, we can determine when a composition operator between the pairs of (LF)-spaces (VC(X), WC(X)) and
VyC(X), WyC(X)) is (weakly) compact.

Theorem 13. Let V, W be two systems of weights on X and ¢ € C(X,X). Assume that CV,,(X) is a dense subset of Cvm,z(X )
Joralll,m € N and that WC(X) satisfies condition (M). Then, C, : VC(X) — WC(X) is compact if, and only if, there exists
n € N such that for all m € N there exists | € N such that for all k € N the set

{p(x) : W k(x) = V(X)) } (7

is finite for every € > 0.

Proof. By Proposition 1(2), the operator C,, : VC(X) — WC(X) is compact if, and only if, there exists n € N such that for
all m € N the restriction C, : CV,,,(X) —» CW,(X) is compact. Using Proposition 3, this holds if, and only if, there exists
| € Nsuch thatforallk € N the operator C, has a unique compact linear extension (Cg,)f{ fromC,, (X)into Cu,, (X).Since
C, € L(C(X)) and the spaces Cop (X) and Cu, i (X) are continuously included in C(X), necessarily (Ccp)f( = Cy.S0,Cy,
Co,, X) - Cu, i (X)is compact. But, by Remark 7, the composition operator between the weighted Banach spaces Co,, X)
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and Cy, , (X)is compactif, and only if, the operator T : C,(X) — C(X) defined by T(f) 1= wy (UL o go) (f op)iscom-

1

pact. Observe that such an operator T is in the form uCy, with u := Dk g Cp(X)and ¢ := ¢. Hence, due to Lemma 1,
Umio@

this is equivalent to require that $(N(u, ¢)) is finite for every ¢ > 0, that is, that the set in Equation (7) is finite for every

£>0. Ol

Arguing in a similar way as done in the proof of the theorem above and due to Lemma 2, one shows the following result.

Theorem 14. Let V, W be two systems of weights on X and ¢ € C(X,X) be a proper map. Assume that W,C(X) satisfies
condition (M). Then, C,, : VC(X) — W,C(X) is compact if, and only if; there exists n € N such that for allm € N there exists

I € N such that for all k € N the function nk

Umio@

€ Cy(X) and g is locally constant on X.

In the case of the (PLB)-spaces, the following holds true.

Theorem 15. Let V, W be two systems of weights on X and ¢ € C(X,X). Assume that A,,C(X) is a dense subset of A; ,C(X)
foralll € N and that W* = (Wy, jnen is regularly decreasing for all k € N. Then, C, : AyC(X) — AyC(X) is compact if,
and only if, there exists | € N such that for all k € N there exists n € N such that for all m € N the set

{p(x) : wpk(x) = V(X)) } ®

is finite for every € > 0.

Proof. By Proposition 3, the operator C,, : AyC(X) — Ay C(X) is compact if, and only if, there exists [ € N such that
for all k € N the operator C,, has a unique compact linear extension (Cgo)f{ from A;C(X) into A yC(X). Since C, €
L(C(X)) and the spaces A; ,C(X) and A, )»C(X) are continuously included in C(X)), it follows that (Cq,)f( = Cyp.S0,Cy, :
A;»C(X) - Ay wC(X)is compact. Using Proposition 1(2) (observe that each (LB)-space Ay, C(X) satisfies condition (M)
as Wk is regularly decreasing by assumption), this holds if, and only if, there exists n € N such that for all m € N we have
that C¢(Cvm,l X)) c Cupi (X) and the restriction C,, : Cop X) - Cupy (X) is compact. Taking Remark 7 into account, we
can apply Lemma 1 to conclude that this fact is equivalent to require that the set in Equation (8) is finite for everye > 0. []

The same arguments used in the proof of Theorem 15, combined with Lemma 2, lead us to characterize the compactness
of the composition operators acting between the (PLB)-spaces A ,,C(X) and A y»C(X).

Theorem 16. Let V, W be two systems of weights on X and ¢ € C(X,X) be a proper map. Assume that Wk = (Wp i )nen is
regularly decreasing for allk € N. Then, C, : AjyC(X) — AgwC(X) is compact if; and only if; there exists | € N such that
forall k € N there exists n € N such that for all m € N the function w”'kqo € Cy(X) and ¢ is locally finite on X.

Um,1 ©

Using Propositions 1 and 3, Lemmas 1 and 2, and taking Theorem 2 and the comments thereafter into account, we get
the characterization of the weak compactness, by arguing as done in the proof of Theorems 13 and 15.

Theorem 17. Let V, W be two systems of weights on X and ¢ € C(X,X). Assume that CV,,(X) is a dense subset of C,Jm’l(X )
Jor all I,m € N and that WC(X) (W, C(X), resp.) satisfies condition (M). Then, C, : VC(X) — WC(X) is compact if, and
only if, it is weakly compact.

Furthermore, if ¢ is a proper map, then also C, @ VyC(X) — WyC(X) is compact if, and only if; it is weakly compact.

Analogously for the (PLB)-spaces.

Theorem 18. Let V, W be two systems of weights on X and ¢ € C(X, X). Assume that Wk = (Wp i )nen is regularly decreasing
forallk € N. If Ay C(X) is a dense subset of A,y C(X) foralll €N, then C,, : AyC(X) = AyC(X) is compact if, and only
if, it is weakly compact.

Furthermore, if  is a proper map, then also C,, : A, C(X) — A ywC(X) is compact if; and only if; it is weakly compact.
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4 | EXAMPLES
4.1 | Weighted (LF)-spaces and (PLB)-spaces of continuous functions

In order to construct concrete examples, we consider the following setting as in [4, Section 5]. Let X be a locally compact
Hausdorff topological space, let v,w : X — R be continuous functions such that 0 < v(x) < 1and 1 < w(x) forall x € X.
Let (r,)nen and (o )ren be strictly increasing sequences of positive numbers such that r, — r and p, — p, withr,p > 0
orr,p = +oo. Forall n,k € N, we set

Up(x) 1= v(x)rw(x)Pk, Vxe X, 9)

and V := (Ui )nken- We recall that if p = co, then V satisfies condition (Q) (see [4, Section 5, Example 3]) and hence,
both the (LF)-spaces VC(X) and V,C(X) satisfy condition (M). On the other hand, if % vanishes at infinity in X, then
VC(X) = V,C(X) holds algebraically and topologically (see [4, Section 5, Proposition 1 and Example 4]) and V satisfies
condition (M) if, and only if, it satisfies condition (WQ) (see [4, Section 5, Lemma 2]). The condition % vanishes at infinity
in X also implies that AC(X) = A(C(X) algebraically and topologically, as it is easy to show. Furthermore, if v vanishes

at infinity in X, then for all k € N the sequence V¥ = (Unk)nen is regularly decreasing, as the function ——= Lk — (p)ne1~"n
Unk

vanishes at infinity in X for every n € N (see [5]).
Due to the results of Section 3, we can state the following facts.

Theorem 19. Let V = (Uy, 1)y ken With v, i defined as in Equation (9) and let ¢ : X — X be a continuous functions. Then,
the following assertions hold true:

(D Cy, : VC(X) = VC(X) is continuous if, and only if, for all m € N there exists n € N such that for all k € N there exists
I € N for which

v(x) nw(x)Pk

xex (p(0)) mw(e(x))P

Moreover, if ¢ is a proper map, then the previous condition is equivalent to C,, : VyC(X) — V,C(X) is continuous;

(2) Suppose that p = co and % vanishes at infinity in X. Then, C, : VC(X) — VC(X) is bounded if, and only if, C,
VoC(X) — VyC(X) is bounded if, and only if, there exists n € N such that for all m € N there exists | € N such that
forallk e N

v(x) mw(x)Pk

xex V(@(x))mw(e(x))e!

>

(3) Suppose that p = co and — vanishes at infinity in X. If ¢ is a proper map, then Cp 1 VC(X) = VC(X) is compact if, and
only if, Cy, : VyC(X) — VOC(X ) is compact if, and only if, there exists n € N such that for all m € N there exists | € N
such thatfor all k € N the set {p(x) : v, (x) > €vy, (p(x))} is finite for every € > 0.

Theorem 20. Let V = (U, )y ken With vy, i defined as in Equation (9) and let ¢ : X — X be a continuous functions. If ~
’ ’ ’ w
vanishes at infinity in X, then the following assertions hold true:

(D Cy 1 AC(X) — AC(X) is continuous if, and only if, C, © AyC(X) — A(C(X) is continuous if, and only if, forallk € N
there exists | € N such that for all m € N there exists n € N for which

v(x) rw(x)Pk

xex V(@(x))mw(p(x))P!
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(2) Cp 1 AC(X) = AC(X) is bounded if, and only if, C,, : A C(X) — A¢C(X) is bounded if, and only if, there exists | € N
such that for all k € N there exists n € N such that forallm € N
V() mw(x)Pk

xex (@(x)) mw(p(x))P!

>

(3) Suppose that ¢ is a proper map and that v vanishes at infinity in X. Then, C, : AC(X) - AC(X) is compact if, and only
if, Cp  AGCX) = A C(X) is compact if, and only if, there exists | € N such that for all k € N there exists n € N such
that for all m € N the set {p(x) : v, x(x) > €V, 1 (@(x))} is finite for every € > 0.

4.2 | Sequence (LF)-spaces

Let Y = (V) en be a system of weights on N, where V,, = (v, x)ken- Then, CUn,k(N) =¢*(v, ) and C(Un,k)O(N) =¢o(Up k)
forany n, k € Nand hence, the Fréchet spaces CV,,(N) and C(V,,)o(N) coincide with the echelon spaces A.,(V,,) and 1o(V,),
respectively. Setting [ (V) :=ind , 1,(V,,) and [,(V) := ind , 15(V,,), we have that VC(N) = [, (V) and V,C(N) = [,(V).

Set w = KV and given a function ¢ : N = N, that is, an N-valued sequence ¢ = (¢;)ieny C N, We can define the
composition operator Cy, @ @ — w by (x;)ien = (X, )ien-

Due to the results of Section 3, we can characterize the continuity, the boundedness and the (weak) compactness of
the composition operator acting between the pairs of sequence (LF)-spaces (1,(V), [,(W)), for p = 0, co. To do this, we
observe the following facts.

Remark 21.

(1) Letp : N — N be a function. Then, ¢ is proper if, and only if, lim;_, ., ¢; = o0, as it is easy to show.
(2) Let ¢ : N —» N be a proper map and v, w be two weights on N. Then, the set {¢; : w(i) > ev(¢;)} is finite for every
€ > 0if, and only if,

w@) _

im =0.
i—oo U(@;)

w(i)
U(_f/’i)

Indeed, the sequence < ) does not converge to 0 if, and only if, there exists ¢ > 0 such that for all i € N there
ieN

exists j > i such that % > ¢. Since ¢ is a proper map, this necessarily implies that the set {go it w(j) > ev(p j)}
v (Oj
contains infinite elements.

(3) Let w be aweight on N. Then, every function ¢ : N — N is locally constant on N(w) = N, being N endowed with the
discrete topology.

Theorem 22. Let V, W be two system of weights on N and ¢ : N — N be a function. Then, the following assertions hold
true:

(D Cy & 1(V) = 1o(W) is continuous if, and only if, for all m € N there exists n € N such that for all k € N there exists
I € N for which

wn,k(i)
ieN Um,l(§0i)

< 00.

Moreover, if ¢ is a proper map, then the previous condition is equivalent to Cy, : 1o(V) — lo(W) is continuous;
(2) Assume that 1,(W) (ly(W), resp.) is regular. Then, Cy, : 1o(V) — l(W) is bounded if, and only if;, there exists n € N
such that for allm € N there exists | € N such that forallk € N

sup wn,k(i)
ieN Um,1(®;)

< 0.

Furthermore, if ¢ is a proper map, then the previous condition is equivalent to C,, : lo(V) — l,(W) is bounded;
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(3) Assume that A.,(V,) is a dense subset of € ., (vy, ;) for all I, m € N and that 1 ,(W) (I,(W), resp.) satisfies condition (M).
Then, Cy, @ 1o(V) = 1o(W) is (weakly) compact if, and only if, there exists n € N such that for all m € N there exists
I € N such that for all k € N the set

{(Pi . wn,k(i) 2> Evm,l(@i)}

is finite for every ¢ > 0.
Furthermore, if ¢ is a proper map, then the previous condition is equivalent to Cy, : 1o(V) — lo(W) is (weakly) compact.

We refer the reader to [17] for analogous results on diagonal (multiplication) operators acting on the sequence (LF)-space
l,(V),with1 < p < coorp=0.

4.3 | Sequence (PLB)-spaces

Let Y = (V,))en be a system of weights on N, where V,, = (v, ;)xen. Then, the (LB)-spaces A, C(N) and (A )oC(N) coin-
cide with the co-echelon spaces a,,(V*) :=ind , €% (v, ) and ao(V¥) :=ind , co(v, ), respectively. Setting a,,(V) :=
proj . a,(V¥) and ag(V) := proj, ag(V*), we have that AC(N) = a,(V) and A,C(N) = ay(V).

In [6, Corollary 2.8], it has been shown that the co-echelon spaces a., (V) is always a complete (LB)-space. On the
other hand, by [6, Theorem 3.4], a,,(V¥) satisfies condition (M) if, and only if, the sequence V* = (Un.i)nen is regularly
decreasing. While, in [6, Theorem 3.7] it is proved that the co-echelon space a,(V¥) is regular if, and only if, it is complete
if, and only if, it satisfies condition (M) if, and only if, the sequence V* = (v, )nen is regularly decreasing.

Taking Remark 21 and the results in Section 3 into account, we can characterize the continuity, the boundedness and
the (weak) compactness of the composition operator acting between the pair of sequence (PLB)-spaces (a,(V), a,(W)),
p =0,o00.

Theorem 23. Let V, W be two system of weights on N and ¢ : N — N be a function. Then, the following assertions hold
true:

(D Cy & ax(V) = ag(W) is continuous if, and only if; for all k € N there exists | € N such that for all m € N there exists
n € N for which

wn,k(i)
ieN Um 1(®;)

< 00.

Moreover, if ¢ is a proper map and the sequence W* = (Wy g nen is regularly decreasing for all k € N, then the previous
condition is equivalent to Cy, : ao(V) — ao(W) is continuous;

(2) Cy : ae(V) = as(W) is bounded if, and only if; there exists | € N such that for all k € N there exists n € N such that
forallm e N

wn,k(i)
ieN U 1(®;)

< 0.

Moreover, if ¢ is a proper map and the sequence W* = (Wi nen is regularly decreasing for all k € N, then the previous
condition is equivalent to Cy, @ ay(V) — ao(W) is bounded;

(3) Assume that a, (V) is a dense subset of a,, (V') foralll € N and that the sequence W = (W )nen is regularly decreasing
Jor all k € N. Then, the operator C, : a,,(V) — a,,(W) is (weakly) compact if, and only if; there exists | € N such that
forall k € N there exists n € N such that for all m € N the set

{9+ wy (D) > evy (@)}

is finite for every € > 0.
Moreover, if ¢ is a proper map, then the previous condition is equivalent to C,, : ao(V) — ao(W) is (weakly) compact.
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