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Abstract: This paper addresses a systematic method for odometry calibration of a differential-drive
mobile robot moving on arbitrary paths in the presence of slippage and an algorithm encoding it which
is well fit for online applications. It exploits the redundancy of sensors commonly available on ground
mobile robots, such as encoders, gyroscopes, and IMU, to promptly detect slippage phenomena during
the calibration process and effectively address their impact on odometry. The proposed technique
has been validated through exhaustive numerical simulations and compared with other available
odometry calibration methods. The simulation results confirm that the proposed methodology
mitigates the impact of poor calibration, conducted without considering possible slipping phenomena,
on reaching a target position, reducing the error by up to a maximum of 35 times. This restores the
robot’s performance to a calibration condition close to that of a slip-free scenario, confirming the
effectiveness of the approach and its robustness against slippage phenomena.

Keywords: calibration and identification; kinematics; wheeled robots

1. Introduction

The analysis and development of control systems for autonomous vehicles has been
a continuously active area of research. One of the key challenges for mobile devices lies
in their capability to achieve a high level of autonomy. Accurate guidance, navigation,
and control are of paramount importance for achieving autonomy. They basically rely on the
performance of the robot’s localization system. Indeed, localization plays a fundamental
role in the navigation of mobile ground robots, allowing them to learn their position
and orientation in the environment [1]. It is crucial for various applications, including
autonomous exploration, path planning, and object manipulation.

To achieve accurate localization, sensor fusion techniques are commonly employed
to integrate data from different sources and sensors. Among these techniques, odometry
stands out; it is a widely adopted method of estimating the motion and position of a
vehicle by combining data from the vehicle’s odometer (which relies on wheel revolutions),
and kinematic models.

However, odometry has inherent limitations. It assumes that wheel revolutions
directly correspond to linear displacement, neglecting factors such as wheel slippage,
terrain variations, and mechanical imperfections. Consequently, odometry can accumulate
errors over time. Such errors can be categorized into systematic and non-systematic
errors [2]. Systematic errors arise due to biases in the robot’s kinematic model, wheel size
discrepancies, or misalignment between the sensors and the robot’s body. Non-systematic
errors, on the other hand, are unpredictable and can occur during the robot’s operation,
such as slippage on low-friction surfaces. Both types of errors contribute to the overall
inaccuracy of odometry and hinder the robot’s precise localization.

Odometry calibration aims at identifying and correcting the kinematic parameters of
the robot’s motion model to improve localization accuracy. By accurately calibrating the
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odometry system, systematic errors can be minimized, resulting in more reliable estimates
of the robot’s position and orientation. Nevertheless, during the odometry calibration
procedure, non-systematic errors, such as slippage, can introduce additional uncertainties
and errors. Slippage occurs when the wheels lose traction with the ground surface, leading
to inconsistent wheel revolutions and inaccurate odometry measurements. Addressing and
reducing these non-systematic errors, including slippage, is crucial for achieving a reliable
and accurate localization system.

1.1. Odometry Calibration Literature Review

Over the years, numerous studies have focused on odometry calibration techniques.
Recently, a review article [3] has been published on this topic, presenting a comparative
survey of the existing techniques. The literature can be roughly categorized into three
approaches [4]:

(i) Offline One-Time Calibration (Before Use).
(ii) Online Calibration, separate from Localization.
(iii) Online Calibration Integrated into Robot Localization Algorithm.

Here, we briefly discuss the features of each approach.

1.1.1. Offline One-Time Calibration before Use

Papers falling into this area propose an offline calibration process that is performed
once before deploying the robot, and typically involves predefined test paths or maneuvers
to collect data for calibration. The work in [5] introduced the pioneer method for odometry
calibration, which served as the basis for subsequent studies. This method, for the first
time, enabled the calibration of differential robot parameters by combining rotations and
translations in a square path. The authors of [6] further demonstrated that the path size
influences the calibrated odometry accuracy, and proposed a 2 × 2 m square path for
calibration. Since then, various approaches have emerged in the quest to identify the
optimal calibration path. Researchers have explored different path designs and lengths
to enhance the accuracy of calibrated odometry. These investigations have led to the
introduction of alternative calibration methods and paths, such as the rotational motion-
focused approach [7], the distance-based approach utilizing three points [8], and the
bidirectional circular path test (BCPT) [9], as an alternative to square paths, aiming to
reduce the probability of slippage and minimize effort during the calibration process.
Ivanjko et al. [10] introduced a simplified calibration path consisting of straight-line motions
and 180-degree rotations, offering a more straightforward approach with reduced space
requirements. All of these methodologies, as exemplified in [11], have demonstrated
remarkable effectiveness. It is worth noting, however, that these calibration paths often
necessitate substantial space, leading to interruptions in the robot’s regular usage. Moreover,
conducting calibration tests in diverse environmental conditions, including various surfaces
or terrains, poses significant challenges due to the extensive spatial requirements and
difficulties in replicating real-world scenarios. These challenges highlight the need for
calibration methods that can provide accurate results with minimal disruption to the robot’s
regular activities.

1.1.2. Online Calibration Separate from Localization

To overcome the limitations of previous methods, researchers have developed Online
Calibration methodologies that enable the calibration of robot kinematic parameters during
normal usage. In [12] odometry calibration is formulated as a linear problem, utilizing
multiple calibration runs with different trajectories to compute an unbiased estimator.
In [13] a terminal iterative learning control (TILC) algorithm is employed, requiring only
one calibration run but relying on the chosen trajectory for odometry accuracy. However,
it is important to consider that these methods encounter challenges in the absence of
continuous position measurements along the entire trajectory. They are susceptible to
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uncontrolled slippage phenomena, which can impact the calibration process. To enhance
robustness against slippage, a significant number of calibration paths are often necessary.

1.1.3. Online Calibration Integrated into Robot Localization Algorithm

Another set of approaches integrates online calibration directly into the robot’s local-
ization fusion algorithm. These methods continuously update the calibration parameters
based on real-time sensor measurements and fusion algorithms, improving the localization
accuracy during robot operation. Ref. [14] presented a method that simultaneously cali-
brates odometry and extrinsic sensor parameters by leveraging the robot’s relative motion
throughout the entire trajectory. The work in [4] employed absolute localization systems
and utilized the robot’s position over the entire trajectory, resulting in a more complex
calibration procedure. Additionally, several Kalman Filter-based methods have been pro-
posed for odometry calibration, as for example [15–17] developed approaches that utilize
Kalman filters and incorporate laser, DGPS, and inertial/magnetometer data, respectively.
However, these approaches often require additional hardware, such as positioning systems
for indoor environments like motion capture systems, and rarely provide direct position
measurements as those offered by GPS systems for outdoor environments.

1.2. Paper Contribution and Organization

Motivated by the above considerations, in this work we present a novel online cal-
ibration method with enhanced robustness against slippage phenomena which is built
on arbitrary paths commonly executed by robots during their operations. The proposed
approach relies on an active slippage compensation during odometry calibration, built on a
slippage detection system, which disconnects data collection from encoders for odometry
calibration while slippering, and in turn triggers an IMU-based motion reconstruction
algorithm to estimate and correct position data during slipping periods for odometry
calibration. The basic idea is to maintain the original approach of [12], which is applied
to an indoor differential robot, utilizing only proprioceptive sensor data, and eliminating
the acquisition from signals affected by slippage when the traditional kinematic model
becomes invalid. As long as slipping is detected, motion reconstruction is based on the only
correct data available, namely IMU data. It is worth remarking that IMU-based short-time
motion reconstruction is recently very active for the wide emerging applications (apart
robotics), e.g., medicine, sports, rockfalls, snow avalanches and other risky environments
where motion detection can be exploited for incipient disaster prediction [18,19]. The aim of
the proposed methodology is to provide an online calibration algorithm that detects early
slippage and effectively addresses its impact by utilizing gyroscopes and IMU, without the
need for direct position measurements that may not always be available. A peculiar feature
of the proposed algorithm is that it does not require a prescribed reference trajectory so
that it can be run periodically to check eventual time variations of the kinematic matrix.

The rest of this paper is organized as follows. Section 2 theoretically formalizes the
addressed problem. Section 3 presents our novel online calibration method with enhanced
robustness against slippage phenomena. Exhaustive numerical simulations are reported in
Section 4 to evaluate and validate its performance in different scenarios. Finally, concluding
remarks are summarized in Section 5.

2. Problem Modeling and Formulation
2.1. Problem Modeling

Consider a differential-drive mobile robot as illustrated in Figure 1. It has two fixed
wheels with a common axis of rotation and a caster wheel with the function of keeping
the robot statically balanced. The two fixed wheels are controlled through their angular
velocities, while the caster wheel is passive. Consider an inertial fixed reference frame Ixy
(see Figure 1) and a body-fixed reference frame Bbxby centered in the midpoint of the line

joining the two wheel centers, having the bx-axis aligned with the frontal direction of the
robot body, and the by-axis along its left lateral direction.
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Figure 1. Differential-drive mobile robot.

The motion of the differential drive mobile robot in I is described by a set of equations as:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(1)

where (x, y) are the coordinates of the midpoint of the two wheel centers, θ is the orientation
of the fixed wheels, (hence, of the vehicle body), and v and ω represents, respectively,
the driving and steering velocity of the vehicle. Under the assumption of pure rolling, these
quantities can be expressed as a function of the wheel angular velocities:{

v = rRωR+rLωL
2

ω = rRωR−rLωL
b

(2)

where ωR and ωL are the speed of the right and left wheel, respectively, rR and rL are the
radii of the right and left wheel and b is the distance of their centers. Equation (2) can be
rewritten in compact form as: [

v
ω

]
= C

[
ωR
ωL

]
(3)

where C ∈ R2×2 is given by:

C =

[ rR
2

rL
2rR

b
rL
b

]
(4)

Denote by qk = (xk, yk, θk) the configuration of the robot, by (vk, ωk) the set of inputs at the
sampling time tk through Equation (2). The odometric localization of the vehicle is typically
implemented by forward integration of the kinematic model in (1). Using the second-order
Runge–Kutta integration method leads to [20]:

xk+1 = xk + ∆tvk cos(θk + ∆tωk/2)
yk+1 = yk + ∆tvk sin(θk + ∆tωk/2)
θk+1 = θk + ∆tωk

(5)

being ∆t the sampling period. The set of velocities (vk, ωk) is computed from the measure-
ments of the wheel angular velocities (ωR,k, ωL,k) at tk using Equation (3).
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2.2. Problem Formulation

The above kinematic model, and in particular Equation (3), is valid only under the
pure rolling condition, which cannot be assumed for granted in low friction or unknown
environments. Considering such a realistic scenario, the goal of this paper is to propose an
algorithm exploiting other sensors usually onboard on a ground mobile robot, and perform
active online odometric calibration with corrected data whenever slippage condition is
detected. More precisely, in this paper we assume that the robot is equipped with an
IMU sensor which provides data on linear accelerations (on three axes in space), angular
velocities and attitude.

In the following, we analyze calibration techniques for the estimation of kinematic
parameters contained in the matrix C.

3. Online Calibration in Presence of Slippage

Inspired by the Least-Squares calibration approach [12] briefly summarized in
Appendix A, we propose a methodology that takes into consideration slippage phenomena
that may occur during the calibration process, making the analysis in [12] no longer valid.
As in [12], we consider the following assumptions:

A1. The path is divided into N steps.
A2. Each step is completed in a fixed time ∆t.
A3. We have a constant ωR, ωL in each steps.
A4. The initial and final poses are known from measurements (for instance, by using

exteroceptive sensors at the start and the end of the considered trajectory).

As for example, consider an arbitrary path where slippage phenomena occur during
some steps (see Figure 2). Without loss of generality, we assume that the slippage area,
which is part of the main path, has a length of m steps, with m < N where N is the number
of steps of the total path length (see A1). In the following, we use the superscript ‘ns’ to
indicate instances without slippage, and the superscript ‘s’ to indicate segments consisting
of multiple steps of time ∆t where there happens some slippage in that area.

Figure 2. Example of trajectory with slippage and timeline.

In order to exploit the methodology expressed in [12] in the presence of slippage,
Equation (5) can be rewritten as follows:
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
xk+1 = xk + ∆ xk

yk+1 = yk + ∆ yk

θk+1 = θk + ∆xk

(6)

where increments are defined as

∆xk =

{
∆xk

ns = ∆xk
odo in absence of slippage,

∆xk
s = ∆xk

imu otherwise.

∆yk =

{
∆yk

ns = ∆yk
odo in absence of slippage,

∆yk
s = ∆yk

imu otherwise.

∆θk =

{
∆θk

ns = ∆θk
odo in absence of slippage,

∆θk
s = ∆θk

imu otherwise.

and they can be computed either through ordinary odometry inference, whenever slippage
is absent, or, in the presence of slippage, exploiting different other sensors (as described in
the following of this Section).

3.1. Slippage Detection

Slippage can cause inconsistent measurements between the instantaneous displace-
ment obtained from odometry and the actual displacement value. Slippage is primarily
caused by lateral and longitudinal forces resulting from the vehicle’s motion, and low
coefficient of friction. Though we can attempt to reduce these forces, slipping is inevitable
when there is an unexpected change in the static coefficient of friction. There are several
methodologies to detect slipping, such as comparing the kinematic model with pure rolling
to another one that includes slipping.

Assuming to have access to an inertial measurement unit (IMU) mounted on board
the vehicle, and assuming that the reference system of the IMU is aligned with the robot,
an acceleration measurement bak can be acquired from the system. In case of lateral slipping,
the analysis of the acceleration bak = [bax,k,b ay,k]

⊤ obtained from the IMU can reveal a
non-zero value inconsistent with the differential model:

bay,k − [0 1 0] bRkg = 0 (7)

being bRk ∈ SO(3) the rotation matrix for the coordinates’ transformation from the
reference frame I to the body-fixed reference frame B obtained from angular velocity
measurements, and g the gravity vector in I [18].

On the other hand, the presence of frontal slipping, which may occur due to braking
or acceleration, can be verified by checking the consistency between the differential model
and the data from inertial accelerations: It could be verified whether there is consistency
between the data of inertial acceleration in the presence of frontal slipping, which may
occur due to braking or acceleration:

c2,1(ωR,k − ωR,k−1) + c2,2(ωL,k − ωL,k−1)−b ax,k∆t = 0 (8)

The violation of one of these conditions denotes the presence of slippage in the
considered sub-track.

Remark 1. It should be noted that zero equality in the Equations (7) and (8) is only theoretical.
From a practical point of view, a certain tolerance should be considered regarding the measurement
error, namely:

|baIMU
y,k − [0 1 0] bRIMU

k g| ≤ ϵIMU
L (9)
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and
|c2,1(ωR,k − ωR,k−1) + c2,2(ωL,k − ωL,k−1)−b aIMU

x,k ∆t| ≤ ϵIMU
F (10)

where ϵIMU
L , ϵIMU

F are suitable thresholds that can be set based on the IMU data sheet, combining
the in-run bias stability and noise, as explained in detail in [21]. Such parameters are indeed a
criterion for the selection of an IMU mostly adequate for the proposed algorithm (which is expected
to last an amount of time of the order of a minute). Finally, to avoid false alarms caused by noise,
violation of conditions (9) and (10) is checked for few steps instead of only one.

3.2. Slippage Estimation

Whenever a slippage condition is detected, the algorithm triggers an IMU-based
motion reconstruction procedure to exploit the only correct data available and estimate the
induced spatial displacements to further data correction. To this end, in this Section, we
derive a procedure for the motion reconstruction based on IMU data only which has been
recently developed in [18,19], and we briefly describe in the following. The inertial Unit
provides the vehicle acceleration measurement bak imu expressed in the body-fixed reference
frame B, while, conversely, modern gyroscopes are able to provide absolute orientation
with accuracy of the order of 0.1 degrees, allowing direct measurement of the angle θ in I ,
and consequently to quickly identify the value of ∆θ. For sake of clarity, we assume that
slipping occurs in a single area consisting of m segments, namely:

∆xs = ∑k+m
i=k+1 ∆xi

s = ∑k+m
i=k+1 ∆xi

imu

∆ys = ∑k+m
i=k+1 ∆yi

s = ∑k+m
i=k+1 ∆yi

imu

∆θs = ∑k+m
i=k+1 ∆θi

s = ∑k+m
i=k+1 ∆θi

gyro
. (11)

We denote θk and vk resp. the orientation and forward velocity of the robot at the beginning
of each slip segment. Since during slipping, there is no friction between the robot wheels
and the ground, to reconstruct the motion in these m segments, we adopt a uniformly
accelerated model based on IMU data and we recur to the approach of [18]:

vi = Rk

[bvk
0

]
+

i

∑
h=k+1

∆t(Rh
bah − g), i = k + 1, . . . , k + m (12)

[
∆xs

∆ys

]
=

[
1 0 0
0 1 0

]( k+m

∑
i=k+1

∆tvi +
∆2

t (Ri
bai − g)
2

)
(13)

being R ∈ SO(3) the rotation matrix for the coordinates’ transformation from the body-
fixed reference frame B to the reference frame I obtained from angular velocity measure-
ments [18] , bvk the vehicle’s velocity in the body-fixed reference frame B obtained from
encoders measurements, bah the vehicle’s acceleration measurement in body reference
frame B obtained from IMU, and g the gravity vector in I [18].

Equations (11)–(13) together with Equation (17), allow for a proper exploitation of
the heterogeneous data gathered from the sensors, together with the kinematics of the
robot, to have an accurate estimation of robot localization through Equations (22) and (23)
notwithstanding the possible presence of slippage.

Remark 2. Also, in this case, Equations (12) and (13) are computed using data RIMU
h , baIMU

h
obtained through IMU acquisition. Combining Equations (12) and (13) with a sensor output model
as Equation (1) of vi [21] allow also for easy computation of the maximum estimation error of vi,
∆xs and ∆ys starting from the IMU measurement of Rh, bah.

3.3. Slippage-Compensated Odometric Parameters Estimation

Consider now the overall displacement, from time 0 to N ·∆t along the path. Under the
pure rolling condition, it is expressed by Equation (A1) in Appendix A. Taking into account
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the possible presence of slippage, Equation (A1) can be reorganized introducing one term
that encloses the possible presence of slippage:

θN − θ0 = ∆t c21

k

∑
i=0

ωRi + ∆t c22

k

∑
i=0

ωLi + ∆θs +
N−1

∑
k+m+1

ωRi + ∆t c22

N−1

∑
k+m+1

ωLi (14)

xN − x0 = ∆tc11

k

∑
i=1

ωRi cos(θi + ∆tωi/2) + ∆tc12

k

∑
i=1

ωLi cos(θi + ∆tωi/2) + ∆xs+

+∆tc11

N−1

∑
i=k+m+1

ωRi cos(θi + ∆tωi/2) + ∆tc12

N−1

∑
i=k+m+1

ωLi cos(θi + ∆tωi/2)

(15)

yN − y0 = ∆tc11

k

∑
i=1

ωRi sin(θi + ∆tωi/2) + ∆tc12

k

∑
i=1

ωLi sin(θi + ∆tωi/2) + ∆ys+

+∆tc11

N−1

∑
i=k+m+1

ωRi sin(θi + ∆tωi/2) + ∆tc12

N−1

∑
i=k+m+1

ωLi sin(θi + ∆tωi/2)

(16)

It is worth noticing that the displacements ∆xs , ∆ys , ∆θs in Equations (14)–(16), do
not depend on the unknown odometric parameters, but they can be considered known
quantities under the assumptions of measurements from different sensors onboard. This
allows us to adapt the original Least-Squares approach by keeping the information of all
the non-corrupted sections, and by correcting the final position through the increments
measured in the slippage sections only.

In order to exploit the above logic line, we introduce the following notation:
θ
′
= θN − ∆θs − θ0

x
′
= xN − ∆xs − x0

y
′
= yN − ∆ys − y0

(17)

the following equations hold, which resemble the proposed no-slippage approach:

θ
′
= Φ

′
θ

[
c21
c22

]
(18)

[
x
′

y
′

]
= Φ

′
xy

[
c11
c12

]
(19)

where the regressors Φ
′
xy and Φ

′
θ can be easily deduced from Equations (14)–(16).

The procedure is then repeated for multiple experiments collecting data from P suitable
trajectories, measurement data are stacked, and the new regressor is obtained (similarly to
the original approach that led to Equations (A6) and (A7)):

x′1
y′1
...

x′P
y′P

 = Φ′
xy

[
c11
c12

]
(20)

θ′1
...

θ′P

 = Φ′
θ

[
c21
c22

]
(21)
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Finally, through a suitable number of random trajectories, it is possible to estimate the
parameters cij:

[
ĉ11
ĉ12

]
=

(
Φ′⊤

xyΦ′
xy

)−1
Φ′⊤

xy


x′1
y′1
...

x′P
y′P

 (22)

[
ĉ21
ĉ22

]
=

(
Φ′⊤

θ Φ′
θ

)−1
Φ′⊤

θ

θ′1
...

θ′P

 (23)

An overview of the whole calibration procedure described in this section is shown in
the flowchart in Figure 3.

Figure 3. Overview of the calibration procedure that derives slippage-compensated odometric
parameters estimation.

Remark 3. If IMU data sheets are available, Equations (17), (22) and (23) can be equipped with
the maximum error induced by the IMU measurements. Indeed, following the direction of Remark 2,
setting θ

′
= θ

′IMU
+ δθ where θ

′IMU
is computed using the measured values and δθ is the estimation

error (whose bound can be computed as suggested in Remark 2), using (23) it is possible to find the
maximum estimation error of ĉ21 and ĉ22 caused by the IMU measurements. Similar considerations
hold for x

′
and y

′
as well, making it possible, using (22), to find the maximum estimation error of

ĉ11 and ĉ12 caused by the IMU measurements .
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4. Numerical Simulations

The proposed methodology is validated through MATLAB simulations, providing
important insights for the next experimental phase. Indeed, the final objective of this
numerical simulation campaign is to assess the performance of the proposed approach in a
controlled environment where the ground truth is exactly known.

We are interested in testing the online calibration method on ‘arbitrary’ paths that
could be executed during standard operating activities of a mobile robot. To this aim,
a two-dimensional grid including obstacles is considered, and a set of P free paths from
an initial to a target position are simulated. We assume, without loss of generality, that
the robot is equipped with a path planner to autonomously build these paths; the most
common planners typically used in robotic applications are the rapidly exploring random
tree (RRT) planner and the Probabilistic Road map (PRM) planner.

In order to test the proposed method, an arbitrary slippage is introduced by modifying
the nominal absolute velocities of the robot proportionally to an arbitrary value α. Figure 4
shows one example of the P trajectories. The slip-free trajectory is depicted in blue, while
the trajectory affected by the presence of slippage is depicted in red. In particular, the red
path is obtained by arbitrarily modifying the nominal absolute velocities ẋ (increased by
a factor α = 2) and ẏ (reduced by a factor α = −0.2). The resulting velocities generate
frontal and lateral accelerations inconsistent with the odometric model as described in
Section 3.1. This allows a direct comparison between the ideal case in the absence of
slippage (denoted by ‘ns’ in the following) and the two case studies where: (i) slippage is
present but unidentified (denoted by ‘suc’), and (ii) slippage is present, properly estimated
and managed with the proposed methodology (denoted by ‘sc’).

Figure 4. Example of trajectory with slippage, the slip-free trajectory is depicted in blue, while the
trajectory affected by the presence of slippage is depicted in red.

The presence of slippage is simulated for an interval Ts, after that the robot proceeds
in both simulated scenarios with the same nominal speed control signal, reaching two final
target positions translated by a quantity ∆x, ∆y.

In order to ensure comparability of the trajectories, it is assumed that both trajectories
reach their final target position and that the starting point and the two endpoints are not
subject to any measurement error.

To perform a realistic test of the algorithm, nominal inputs and sensor measurements
are perturbed by introducing a zero mean white Gaussian noise to the signals, as described
in the following. The acquisition of the θ signal is simulated with a signal-to-noise ratio of
30 dB. The estimation of the slippage ∆s

x, ∆s
y from IMU and gyro measurements is simulated
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with a signal-to-noise ratio of 30 dB. The acquisition of the wheels’ angular velocity ωR and
ωL signals from encoders is simulated with a signal-to-noise ratio of 50 dB. The simulation
is undertaken assuming a sampling period T = 0.1 [s] and the matrix C containing the
odometric parameters is equal to:

C =

[
0.0750 m 0.0750 m

0.0833 −0.0833

]
. (24)

In the three scenarios (ideal ‘ns’, presence of slippage but unidentified ‘suc’, and pres-
ence of slippage properly estimated and managed ‘sc’), we compare the results obtained
in the presence of noise measurements, or in its absence, considering the two different
planners commonly used in robotic applications, i.e., the PRM planner and the RRT-Dubins
planner (namely, the RRT planner where each path is made of Dubins curves with maxi-
mum turning radius equal to 0.5 m).

Table 1 shows the estimations of the odometric parameters Ĉ and the corresponding
estimation error C̃ = C − Ĉ obtained in the absence of measurement noise considering
P = 12 trajectories generated by the RRT-Dubins planner.

Table 1. Odometric parameter estimation ĉij in absence and presence of slippage for Ts = 10 s
considering P = 12 noise-free trajectories generated using the RRT-Dubins planner.

Scenario Ĉ C̃

ns
[

0.0757 m 0.0742 m
0.0833 −0.0833

] [
7.5 × 10−4 −7.0 × 10−4

3.3 × 10−5 −3.3 × 10−5

]
suc

[
0.1216 m 0.0225 m

0.0833 −0.0833

] [
4.6 × 10−2 −5.2 × 10−2

3.3 × 10−5 −3.3 × 10−5

]
sc

[
0.0751 m 0.0746 m

0.0833 −0.0833

] [
1.7 × 10−4 −3.1 × 10−4

7.3 × 10−5 −7.1 × 10−5

]

As expected, in the presence of slippage, proper detection of slippage occurrences and
proper management of the measurements acquired during such steps using the proposed
method allows for estimating the odometric parameters with higher precision than the
conventional approach that does not take into account (by construction) any possible
occurrence of slippage.

The effectiveness of the proposed methodology is also clear in the presence of noisy
measurements. Figures 5 and 6 report an example of the noisy angular measurements
acquired during a simulated trajectory, and Figure 7 displays the relative displacements.

Table 2 shows the estimated values of the odometric parameters Ĉ and the correspond-
ing estimation error C̃, obtained in the presence of measurement noise considering P = 12
trajectories generated by the RRT-Dubins planner in the three different scenarios: ideal
with noisy measurements (denoted as ‘ns-noisy’), presence of slippage but unidentified
with noisy measurements (denoted as ‘suc-noisy’), and the presence of slippage properly
estimated and managed with noisy measurements (‘sc-noisy’).
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Figure 6. Example of ω noisy measurements acquired during a trajectory.
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Table 2. Odometric parameter estimation ĉij in the absence and presence of slippage for Ts = 10 s
considering P = 12 noisy trajectories generated using the RRT-Dubins planner.

Scenario Ĉ C̃

ns − noisy
[

0.0753 m 0.0756 m
0.0833 −0.0833

] [
3.7 × 10−4 −6.0 × 10−4

7.8 × 10−5 −7.7 × 10−5

]
suc − noisy

[
0.1325 m 0.0130 m

0.0833 −0.0833

] [
5.7 × 10−2 −6.1 × 10−2

7.8 × 10−5 −7.7 × 10−5

]
sc − noisy

[
0.0763 m 0.0740 m

0.0833 −0.0833

] [
1.3 × 10−3 −9.8 × 10−4

4.8 × 10−5 −5.3 × 10−5

]

Tables 3 and 4 show the results of analogous simulations (both in the absence and
presence of measurement noise for the different scenarios), when a PRM planner is adopted.

Table 3. Odometric parameter estimation ĉij in the absence and presence of slippage for Ts = 10 s
considering P = 12 noise-free trajectories generated by the PRM motion planner.

Scenario Ĉ C̃

ns
[

0.0753 m 0.0745 m
0.0833 −0.0833

] [
3.8 × 10−4 −4.5 × 10−4

3.3 × 10−5 −3.3 × 10−5

]
suc

[
0.1335 m 0.0161 m

0.0833 −0.0833

] [
5.8 × 10−2 −5.8 × 10−2

3.3 × 10−5 −3.3 × 10−5

]
sc

[
0.0753 m 0.0745 m

0.0833 −0.0833

] [
3.7 × 10−4 −4.8 × 10−4

2.3 × 10−5 −2.8 × 10−5

]

Table 4. Odometric parameter estimation ĉij in the absence and presence of slippage for Ts = 10 s
considering P = 12 noisy trajectories generated by the PRM motion planner.

Scenario Ĉ C̃

ns − noisy
[

0.0740 m 0.0767 m
0.0833 −0.0833

] [
9.0 × 10−4 −1.7 × 10−3

4.6 × 10−5 −2.8 × 10−5

]
suc − noisy

[
0.1322 m 0.0183 m

0.0833 −0.0833

] [
5.7 × 10−2 −5.6 × 10−2

4.6 × 10−5 −2.8 × 10−5

]
sc − noisy

[
0.0800 m 0.0710 m

0.0833 −0.0833

] [
5.0 × 10−3 −3.9 × 10−3

−4.4 × 10−5 4.9 × 10−5

]

Figures 8 and 9 report an example of possible trajectories, both in the presence and
absence of slippage, generated by the RRT-Dubins motion planner and the corresponding
vehicle’s orientation during the motion. Next, Figures 10 and 11 report an example of
possible trajectories, in the presence and absence of slippage, generated by the PRM motion
planner and the corresponding vehicle’s orientation during the motion.

Analyzing the results obtained in the different scenarios with the two motion planners,
we can infer that if the number of analyzed paths increases, the use of different motion
planners has a reduced impact on the estimation. However, when paths are characterized
by significant variations in the orientation θ, a little improvement in estimation can be
observed. The results of these trials show how the use of curved trajectories, such as those
generated by the RRT-Dubins motion planner, allows for slightly better calibration results.
For this reason, in the following, we proceeded with the simulation campaign considering
only the RRT-Dubins motion planner.
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Figure 8. Example of path generated by the RRT-Dubins motion planner.
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Figure 9. Vehicle’s orientation θ during the trajectory in Figure 8 generated by the RRT-Dubins
motion planner.

To conclude the analysis, we investigated the impact of the methodology in the
presence of slippage for an interval Ts of varying entities. In particular, in order to assess
the resilience of the two methodologies in the absence and presence of slippage and noise
measurement, we estimated the matrix C assuming different values for Ts = 10, 6, and 4 s.
The results are reported in Table 5. Analyzing the proposed methodology as Ts varies, it is
observed that an increase in the slip time has the effect of a deterioration of the estimation.
Nevertheless, even in the presence of considerable slippage and noisy signals, the proposed
methodology allows obtaining an estimation of matrix Csc close to the real one, and thus
performances similar to the estimation in the scenario without slipping Cns.
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Figure 10. Example of path generated by the PRM motion planner.

0 10 20 30 40 50 60 70 80

time [s]

1

1.5

2

2.5

3

3.5

[r
a

d
]

Theta Along Track

k
 Noisy Signal

k
 Real Signal

Figure 11. Vehicle’s orientation θ during the trajectory in Figure 10 generated by the PRM motion planner.

As a final remark, it is worth highlighting that exhaustive numerical experiments
revealed a significant detrimental effect on the calibration accuracy when the measurement
noise on the orientation θ, which is related to the gyroscope signals, increases, and the
same holds considering the slippage ∆s

x, ∆s
y, which is related to the measurements obtained

through both gyroscope and IMU. On the other hand, the impact is minimal when the
measurement noise increases on a single wheel velocity.
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Table 5. Odometric parameter estimation ĉij in the absence and presence of slippage for a varying time
interval Ts considering P = 12 arbitrary trajectories generated by the RRT-Dubins motion planner.

XXXXXXXXXXScenario
Ts Ts = 10 s Ts = 6 s Ts = 4 s

Ĉns

[
0.0757 m 0.0742 m

0.0833 −0.0833

] [
0.0755 m 0.0744 m

0.0833 −0.0833

] [
0.0754 m 0.0756 m

0.0833 −0.0833

]
Ĉsuc

[
0.1216 m 0.0225 m

0.0833 −0.0833

] [
0.1158 m 0.03180 m

0.0833 −0.0833

] [
0.0978 m 0.0481 m

0.0833 −0.0833

]
Ĉsc

[
0.0751 m 0.0746 m

0.0833 −0.0833

] [
0.0755 m 0.0744 m

0.0833 −0.0833

] [
0.0755 m 0.0745 m

0.0833 −0.0833

]
Ĉns−noisy

[
0.0753 m 0.0756 m

0.0833 −0.0833

] [
0.0777 m 0.0725 m

0.0833 −0.0833

] [
0.0792 m 0.0711 m

0.0833 −0.0833

]
Ĉsuc−noisy

[
0.1325 m 0.1301 m

0.0833 −0.0833

] [
0.1178 m 0.0301 m

0.0833 −0.0833

] [
0.1021 m 0.0440 m

0.0833 −0.0833

]
Ĉsc−noisy

[
0.0763 m 0.0740 m

0.0833 −0.0833

] [
0.0735 m 0.0765 m

0.0833 −0.0833

] [
0.0763 m 0.0741 m

0.0833 −0.0833

]

To evaluate the algorithm’s robustness in challenging conditions, including uneven
terrain, electrical noise, and the presence of bumps or irregularities, we conducted tests
involving the introduction of non-Gaussian noise to the Inertial Measurement Unit (IMU)
signal. The ‘Heavy-tailed’ type noise was applied to the IMU using the Matlab command
‘makedist’ with parameters (‘LocationScale’, mu = 0, sigma = 1, nu = 3) and a noise
amplitude of 0.1. as showed in Figure 12 Additionally, we performed tests by introducing
‘Unknown But Bounded’ noise to the IMU signal. In this assessment, the Matlab function
‘rand’ with a maximum percentage amplitude of 0.1 was utilized to introduce the specified
noise type. These evaluations, conducted over a sliding time of Ts = 6 on the 12 paths
previously examined, demonstrated the algorithm’s sustained effectiveness, even in the
presence of random peaks, as outlined in the following Table 6.

Figure 12. Example of Vehicle’s orientation θ during a trajectory in the presence of ‘heavy-tailed’
noise.
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Table 6. Odometric parameter estimation ĉij with Non-Gaussian noise for Ts = 6 s considering
P = 12.

Scenario “Heavy-Tailed” Noise “UBB” Noise

Ĉsuc−noisy

[
0.1005 m 0.0477 m

0.0833 −0.0833

] [
0.1038 m 0.0459 m

0.0833 −0.0833

]
Ĉsc−noisy

[
0.0784 m 0.0731 m

0.0835 −0.0835

] [
0.07331 m 0.0775 m

0.0832 −0.0832

]

Validation

Once we estimate the odometric parameters Ĉ, it becomes possible to assess the impact
of each estimation on the robot localization’s performance. Hence, a numerical validation
is undertaken to evaluate the calibration accuracy. The simulation is based on a set of
12 arbitrary paths generated by applying a sequence of control signals (u, ω) to the vehicle,
ensuring a condition free from slippage and noise. After averaging the previously estimated
odometric parameters Ĉ, the velocity commands are converted into specific ωR and ωL
values for each case. Finally, exploiting the kinematic model in Equation (A1), the motion
of the vehicle is characterized by the real matrix C in Equation (24).

In order to quantify the impact of the estimation on an arbitrary path, the specific path
computed through the actual C in Equation (24) is employed as reference nominal path.
The behavior of the robots, starting from a prescribed initial position and moving according
to the wheel velocity control signals induced by the different estimation Ĉ, is evaluated
using the following metrics:

- the average distance error over paths PE,

PE =
1

P · N

P

∑
p=1

N

∑
i=1

||[x̂i,p − xi,p, ŷi,p − yi,p]
⊤||, (25)

- the average final distance error PEn,

PEn =
1
P

P

∑
p=1

||[x̂N,p − xN,p, ŷN,p − yN,p]
⊤||, (26)

- the average orientation error over the paths OE,

OE =
1

P · N

P

∑
p=1

N

∑
i=1

|θ̂i,p − θi,p|, (27)

- and the average final orientation error OEn,

OEn =
1
P

P

∑
p=1

|θ̂N,p − θN,p|, (28)

being n the total number of samples over the paths. The results obtained are presented in
Table 7.

The simulation results reveal that as the estimation of matrix C deteriorates, position-
ing errors progressively increase with higher Ts values, ultimately causing positioning
errors exceeding one meter when uncompensated slipping occurs. However, numeri-
cal experiments also demonstrate that the proposed methodology greatly reduces both
positioning and orientation errors, even in the case of noisy sensors. The effect of the
proposed methodology is also highlighted in Figure 13, where it is possible to compare
the positioning and orientation errors, over 12 trajectories, between the Ĉsuc−noisy scenario
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and the Ĉsc−noisy scenario. While there is a slight increase in orientation error, a substantial
reduction in positioning error is observed, reaching a decrease of an order of magnitude
as presented in Table 8. This confirms the effectiveness of the proposed approach when
slippage phenomena occur during the online calibration procedure.

Table 7. Position and orientation error, in [m] and [rad], respectively, in the absence and presence
of slippage for a varying time interval Ts considering P = 12 arbitrary trajectories generated by the
RRT-Dubins motion planner.

Scenario Metric Ts = 10 s Ts = 6 s Ts = 4 s

Ĉns

PE [m] 0.0118 0.0083 0.0080
PEn [m] 0.0116 0.0088 0.0101
OE [rad] 2.57 × 10−14 7.47 × 10−14 1.05 × 10−13

OEn [rad] 3.22 × 10−14 1.09 × 10−13 1.60 × 10−13

Ĉsuc

PE [m] 1.3226 0.8039 0.8432
PEn [m] 1.7727 0.9941 1.1743
OE [rad] 2.96 × 10−14 7.66 × 10−14 1.08 × 10−13

OEn [rad] 3.67 × 10−14 1.10 × 10−13 1.68 × 10−13

Ĉsc

PE [m] 0.0371 0.0597 0.0468
PEn [m] 0.0675 0.1083 0.08108
OE [rad] 7.97 × 10−4 0.0029 0.0016
OEn [rad] 0.0013 0.0050 0.0023

Ĉns−noisy

PE [m] 0.1247 0.0590 0.0751
PEn [m] 0.2057 0.0657 0.0941
OE [rad] 9.26 × 10−4 5.08 × 10−4 9.66 × 10−4

OEn [rad] 0.0012 7.50 × 10−4 0.0017

Ĉsuc−noisy

PE [m] 1.2951 0.7967 0.8396
PEn [m] 1.5737 0.9616 1.1451
OE [rad] 9.10 × 10−4 5.05 × 10−4 9.90 × 10−4

OEn [rad] 0.0012 7.45 × 10−4 0.0018

Ĉsc−noisy

PE [m] 0.0562 0,0507 0.0777
PEn [m] 0.1051 0.0977 0.1133
OE [rad] 0.0017 0.0025 6.67 × 10−4

OEn [rad] 0.0028 0.0046 0.0012

Table 8. Enhanced robot positioning achieved through algorithm implementation, utilizing the data
from Table 7.

Scenario Metric Ts = 10 s Ts = 6 s Ts = 4 s

Ĉsuc vs. Ĉsc
PEsuc/PEsc 35.64 13.46 18.01

PEnsuc/PEnsc 26.26 9.18 14.48

Ĉsuc−noisy vs. Ĉsc−noisy
PEsuc−noisy/PEsc−noisy 23.04 15.71 10.80

PEnsuc−noisy/PEnsc−noisy 14.97 9.84 10.11
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Figure 13. Example absolute position and orientation error over P = 12 paths.

5. Conclusions

This paper proposes an algorithm for online odometry calibration for differential-
drive mobile robots subject to slipping. Different from the existing methods, the proposed
approach explicitly takes into consideration the presence of slippage during the calibration
process, and it mitigates its effect on the estimation of the odometric parameters. Moreover,
the approach is designed with reference to an ‘arbitrary’ path, that could be executed
during standard operating activities of a mobile robot and hence does not require specific
or complex calibration paths. The rationale behind the proposed approach is to exploit
measurements from common on-board sensors such as gyroscopes and IMUs to detect and
estimate the presence of slippage, and properly address its impact on the odometry cali-
bration. Exhaustive numerical experiments in several scenarios have been undertaken to
evaluate the performance of the approach. The algorithm has been evaluated in simulation
to have a clear and complete vision of its functioning, based on complete access to all the
information (e.g., the slipping time, the exact value of displacements, and the actual values
of the odometry matrix). However, a further investigation based on experimental testing
is essential to definitely assess its usefulness in practice. Numerical results confirm the
effectiveness of the proposed method and its accuracy in the estimation of the odometric
parameters, even in the case of noisy sensors and in the presence of considerable slippage.
Further research on this topic includes the experimental stage to determine the advantages
and drawbacks of its use in real applications, as well as its integration with other fault
detection and compensation algorithms currently under investigation, to achieve an overall
higher resilience and endurance. Further research directions include the extension of the
approach to the kinematic models of various robotic vehicles, such as tricycle, omnidirec-
tional, and Ackerman. The possibility of using sensors other than the IMU for slippage
estimation may also be investigated.
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Appendix A. Least-Squares Online Calibration

Matrix C in Equation (4) is computed using the estimated values r̂R, r̂L, and b̂ of
the odometric parameters. However, this leads to an identification problem that aims to
minimize the error given by the mismatch between the actual and estimated parameters in
C. Here we describe the original approach for this estimation problem proposed in [12].

Most algorithms for vehicle odometry focus on each parameter rR, rL, and b separately.
However, these parameters are nonlinearly combined in the expression of C, leading to a
nonlinear identification problem. To address this, the work in [12] proposes identifying
the four elements cji of C instead of the three odometric parameters. While the result is
numerically equivalent to estimating the individual odometry parameters for implementing
calibrated odometry, this approach leads to a linear identification problem. However,
by treating the four elements of C as independent, we ignore their mutual relationship,
even though the unknowns are only three. Let us rewrite the equations in (5) so as to
exploit linearity in the four parameters cji, and iterate it from the first up to the final N-th
time sample of a generic trajectory, the result is:

xN − x0 = ∆tc11 ∑N−1
i=0 ωRi cos(θi + ∆tωi/2) + ∆tc12 ∑N−1

i=0 ωLi cos(θi + ∆tωi/2)
yN − y0 = ∆tc11 ∑N−1

i=0 ωRi sin(θi + ∆tωi/2) + ∆tc12 ∑N−1
i=0 ωLi sin(θi + ∆tωi/2)

θN − θ0 = ∆tc21 ∑N−1
i=0 ωRi + ∆tc22 ∑N−1

i=0 ωLi

(A1)

The initial and final poses are assumed to be available from measurements (as for
example by using exteroceptive sensors at the start and the end of the considered trajectory).

By defining the regressors:

Φxy =

∆t

[
∑N−1

i=0 ωRi cos(θi + ∆tωi/2) ∑N−1
i=0 ωLi cos(θi + ∆tωi/2)

∑N−1
i=0 ωRi sin(θi + ∆tωi/2) ∑N−1

i=0 ωLi sin(θi + ∆tωi/2)

]
,

(A2)

Φθ = ∆t

[
N−1

∑
i=0

ωRi

N−1

∑
i=0

ωLi

]
, (A3)

Equation (A1) can be rewritten in compact form as:[
xN − x0
yN − y0

]
= Φxy

[
c11
c12

]
(A4)

θN − θ0 = Φθ

[
c21
c22

]
(A5)
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As usual in batch least squares estimation, it is important to collect sufficient data from
multiple experiments. By assuming the execution of P suitable trajectories and stacking the
results, one obtains: 

xN,1 − x0,1
yN,1 − y0,1

...
xN,P − x0,P
yN,P − y0,P

 =

Φxy,1
...

Φxy,P

[c11
c12

]
= Φxy

[
c11
c12

]
(A6)

 θN,1 − θ0,1
...

θN,P − θ0,P

 =

Φθ,1
...

Φθ,P

[c21
c22

]
= Φθ

[
c21
c22

]
(A7)

Through a suitable number of random trajectories, it is possible to estimate in a least
squares sense the parameters cij:

[
ĉ11
ĉ12

]
=

(
Φ

⊤
xyΦxy

)−1
Φ

⊤
xy


xN,1 − x0,1
yN,1 − y0,1

...
xN,P − x0,P
yN,P − y0,P

 (A8)

[
ĉ21
ĉ22

]
=

(
Φ

⊤
θ Φθ

)−1
Φ

⊤
θ

 θN,1 − θ0,1
...

θN,P − θ0,P

 (A9)

The C matrix estimated in this way may not satisfy the physical constraint of
c11/c12 = −c21/c22. It is worth noting that it may be feasible to incorporate this constraint
into the estimation process after obtaining ĉ11 and ĉ12 [12].
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10. Ivanjko, E.; Komšić, I.; Petrović, I. Simple off-line Odometry Calibration of Differential Drive Mobile Robots. In Proceedings of
the 16th International Workshop on Robotics in Alpe-Adria-Danube Region—RAAD 2007, Ljubljana, Slovenia, 7–9 June 2007.

http://doi.org/10.1109/70.544770
http://dx.doi.org/10.1109/ICARSC49921.2020.9096154
http://dx.doi.org/10.1109/ICCW.2017.7962795
http://dx.doi.org/10.1007/s12206-011-0334-y
http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215315
http://dx.doi.org/10.1109/CCECE.2008.4564665
http://dx.doi.org/10.1109/SICE.2006.315554


Robotics 2024, 13, 7 22 of 22

11. Jung, C.; Chung, W. Calibration of Kinematic Parameters for Two Wheel Differential Mobile Robots by Using Experimental
Heading Errors. Int. J. Adv. Robot. Syst. 2011, 8, 68. [CrossRef]

12. Antonelli, G.; Chiaverini, S.; Fusco, G. A calibration method for odometry of mobile robots based on the least-squares technique:
Theory and experimental validation. IEEE Trans. Robot. 2005, 21, 994–1004. [CrossRef]

13. Mondal, S.; Yun, Y.; Chung, W.K. Terminal iterative learning control for calibrating systematic odometry errors in mobile robots.
In Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, QC, Canada,
6–9 July 2010; pp. 311–316. [CrossRef]

14. Censi, A.; Franchi, A.; Marchionni, L.; Oriolo, G. Simultaneous Calibration of Odometry and Sensor Parameters for Mobile
Robots. IEEE Trans. Robot. 2013, 29, 475–492. [CrossRef]

15. Martinelli, A.; Tomatis, N.; Tapus, A.; Siegwart, R. Simultaneous localization and odometry calibration for mobile robot. In
Proceedings of the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1499–1504. [CrossRef]

16. Caltabiano, D.; Muscato, G.; Russo, F. Localization and self-calibration of a robot for volcano exploration. In Proceedings of the
IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 1, pp. 586–591.
[CrossRef]

17. Cantelli, L.; Ligama, S.; Muscato, G.; Spina, D. Auto-Calibration Methods of Kinematic Parameters and Magnetometer Offset for
the Localization of a Tracked Mobile Robot. Robotics 2016, 5, 23. [CrossRef]

18. Neurauter, R.; Gerstmayr, J. A novel motion-reconstruction method for inertial sensors with constraints. Multibody Syst. Dyn.
2022, 2, 181–209. [CrossRef] [PubMed]

19. Neurauter, R.; Hergel, P.; Gerstmayr, J. Evaluation of inertial measurement units for short time motion tracking. In Proceedings of
the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online,
17–19 August 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; Volume 85468, p. V009T09A045.

20. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: London, UK, 2009. [CrossRef]
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