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ABSTRACT 8 

The advancement of photovoltaic (PV) energy into electricity market requires efficient photovoltaic 9 

power prediction systems. Furthermore the analysis of PV power forecasting errors is essential for 10 

optimal unit commitment and economic dispatch of power systems with significant PV power 11 

penetrations. This study is focused on the forecasting of the power output of a photovoltaic system 12 

located in Apulia - South East of Italy at different forecasting horizons, using historical output 13 

power data and performed by hybrid statistical models based on Least Square Support Vector 14 

Machines (LS-SVM) with Wavelet Decomposition (WD). Five forecasting horizons, from 1 h up to 15 

24 h, were considered. A detailed error analysis, by mean error and statistical distributions was 16 

carried out to compare the performance with the traditional Artificial Neural Network (ANN) and 17 

LS-SVM without the WD. The decomposition of the RMSE into three contributions (bias, standard 18 

deviation bias and dispersion) and the estimation of the skewness and kurtosis statistical metrics 19 

provide a better understanding of the differences between prediction and measurement values. The 20 

hybrid method based on LS-SVM and WD out-performs other methods in the majority of cases. It 21 

is also evaluated the impact of the accuracy of the  forecasting method on the imbalance penalties. 22 

The most accurate forecasts permit to reduce such penalties and thus maximize revenue. 23 
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1. Introduction 29 

Productivity forecasting has always been a key issue in power system operation. In particular, with 30 

the rise of deregulation and free competition of the electric power industry, loads and productivity 31 

forecasting has become more important than ever before. Since renewable energy power plants 32 

were used, such as PV systems and wind farm, the productivity forecast for the national energy 33 

system becomes difficult due to the high variability of the electricity production of this new system. 34 

The present study is a part of the funded research project ‘‘7th Framework Programme Building 35 

Energy Advanced Management Systems (BEAMS)’’. The project aims to develop an advanced, 36 

integrated management system for many buildings, in particular for the public ones; this system has 37 

to be able to control and improve the energy efficiency of infrastructures in term of using public 38 

lighting, ventilation, air conditioning, electric vehicles and other types of energy from renewable 39 

sources. Furthermore, part of the BEAMS research program concerns the study of the benefits of 40 

installation of PV systems and the development of tools to improve/optimize the distribution of 41 

loads in the grid composed by the public facility services. The University of Salento is one of the 42 

two pilot sites in which this project is being developed [1]. The short term PV power prediction is 43 

very important for the planning and management of electric system, but the critical aspects have to 44 

be considered. The forecasting accuracy depends also on the weather conditions of installation site 45 

and the randomness of solar source is the main limitation of photovoltaic system, which influences 46 

the quality of the connected electrical system. The possibility to predict the solar irradiation or PV 47 

power (up to 24 h or even more) [2, 3, 4] and the development of real time prediction model [5] 48 

help to optimize the integration of PV generator in the electric grids. 49 



The forecasting methods applied in the field of renewable energy can be classified into different 50 

categories: the physical model, the conventional statistical model, the spatial correlation model, and 51 

the artificial intelligence [6, 7]. Some of these prediction models are more accurate at short-term 52 

prediction while others are better in long-term prediction [6]. 53 

Electric load time series are usually nonlinear functions of exogenous variables. To incorporate 54 

non-linearity, Artificial Neural Networks (ANNs) received great attention in solving problems of 55 

electricity price[8], electrical energy consumption [9] or productivity forecasting [10, 11, 12]. 56 

In [13, 14, 15] methods based on artificial neural networks were implemented for estimating the 57 

energy provided by a PV generator in the next hours. In particular in [15] four different methods 58 

were compared: three of them are classical methods and the fourth one is based on an artificial 59 

neural network developed by the R&D Group for Solar and Automatic Energy at the University of 60 

Jaen. 61 

In the literature different methods based on artificial intelligence techniques have been 62 

implemented, including the Artificial Neural Network (ANN) of Multi-Layer Perceptrons (MLP) 63 

[16], Radial Basis Function [17] and Recurrent Neural Networks [18] and Adaptive Neuro-Fuzzy 64 

Inference Systems (ANFIS) [19]. 65 

Studies dealing with the applications of ANNs for PV and wind generation forecasting can be found 66 

in [20,21, 22]. In [23] ANNs have been applied for annual energy harvesting calculation of grid-67 

connected PV systems. 68 

Fadare et al. [24, 25] applied ANN model to predict wind speed variation [24] and to forecast solar 69 

radiation in Nigeria [25].  70 



Artificial neural network models provide better short-term productivity forecasts with respect to 71 

standard linear Autoregressive Integrated Moving Average (ARIMA) models [18] and persistent 72 

model [26].  73 

De Giorgi et al. [27] compared ARMA models, which perform a linear mapping between inputs and 74 

outputs with Artificial Neural Network (ANNs) and Adaptive Neuro-Fuzzy Inference Systems 75 

(ANFIS), which perform a non-linear mapping, underlining that, at long time horizon, ANNs 76 

presents higher accuracy in wind power forecasting. This was also confirmed in [28] for PV power 77 

predictions.  78 

In [29] Radial Basis Functions and Multilayer Perceptron ANNs were compared to predict solar 79 

radiation by estimating the clearness index. To forecast the hourly global horizontal solar radiation, 80 

a method, based on the combination of the k-means algorithm and NAR (nonlinear autoregressive) 81 

network, was proposed in [30]. In [31] a regression neural network was implemented to predict the 82 

solar radiation on tilted surfaces. 83 

In [32] the power forecasting of a PV system was performed by Elman neural network, which was 84 

based on solar radiation and weather forecasting data as inputs. However, a major risk in the use of 85 

ANN models is the possibility of excessive training data approximation, i.e., over-fitting, which 86 

usually increases the out-of-sample forecasting errors. 87 

Recently, new methods for time series forecasting that are based on Learning Machines were 88 

developed, using Support Data Machines (SVMs) [33-34]. Several studies underlined that SVMs 89 

are more resistant to the over-fitting problem, by achieving high generalization performance in 90 

solving forecasting problems of various time series. SVM can model complex problems with 91 

datasets given by several variables and a reduced training dataset. In [35] the SVM was used to 92 

model the battery nonlinear dynamics. The feasibility of using SVMs to forecast electricity load 93 

was discussed in [36]. An advantage in the use of SVM is that it is less computational expensive 94 



than traditional ANN models based on back-propagation algorithms [37]. Mohandes et al. [38] 95 

compared favorably the performance of SVMs with the multilayer perceptron (MLP) neural 96 

networks for the prediction of the wind speed in Madina city, Saudi Arabia.  97 

In [39] the SVM was applied to estimate daily solar radiation using sunshine duration. In [40] an 98 

estimation of the monthly solar radiation was obtained by SVM methods that were trained on air 99 

temperature data.  In [41] the impact of different prediction horizons was evaluated for photovoltaic 100 

power forecasting methods, that were based on support vector regression and numerically predicted 101 

weather variables.  102 

In the literature various hybrid SVM methods were also developed [42] . An adaptive two-stage 103 

hybrid network with self-organized map (SOM) and support vector machine (SVM) was developed 104 

for short-term load forecasting in [43].  105 

Beyond the hybridization of the SVM, in the recent literature a variant of the standard SVM has 106 

been introduced that is the Least Square Support Data Machine (LS-SVM), which uses a simplified 107 

linear model, simpler and computationally easier but with the same advantages of the ANNs and 108 

SVMs models [44]. LS-SVM models were already applied for wind power forecasting [45, 46, 47]. 109 

Regarding the hybrid methods, prediction forecast models that are based on wavelet decompositions 110 

WD, could be used to improve the prediction performance of short-term load forecast, as shown in 111 

[48, 49]. Least Square Support Vector Machine (LS-SVM) with Wavelet Transform were used in 112 

[50] to predict day-ahead electricity prices. 113 

The PV power time series generally include low and high frequency components. WD decomposes 114 

the PV power time series into its components, which could be used separately as input in the 115 

prediction model. In [51] a hybrid approach based on WD and ANNs and evolutionary algorithm 116 

was successfully proposed for accurate short-term load forecasting of power systems. 117 



Forecasting the produced energy with high accuracy is a key issue in microgrid control, where the 118 

photovoltaic (PV) energy sources are dominating the market.  119 

The integration of energy sources into micro-grid operation, as PV generators or wind turbines, 120 

needs the consideration of power generation uncertainty. Hence, for optimal operation of PVs and 121 

wind turbines, the capacity of solar and wind generation must be considered in the scheduling of the 122 

micro-grids. The dependable capacity of PVs and wind turbine is an important factor that is related 123 

to the accuracy of photovoltaic and wind power forecast [52].  124 

Finally forecast errors can have substantial economic consequences, if they are large enough that 125 

they cause a different commitment than would have been performed with an optimal forecast.  126 

Furthermore, in the liberalized markets, e.g. in Italy [53], if there is a mismatch between the 127 

injections of a photovoltaic power plant and the day-ahead market power, the energy injections out 128 

of a tolerance band are charged of imbalance penalties [54]. For these reasons, very important is the 129 

analysis of the accuracy of the forecasting method by the evaluation of several statistical metrics 130 

and of the forecast errors distribution, e.g. the tails of the forecast error distribution have the 131 

greatest economic impact and  there is more uncertainty in the forecasts.  132 

Despite the importance of a deep analysis of the accuracy of the forecasting methods, several works 133 

in the literature performed the evaluation of the different forecasting methods by the estimation of 134 

conventional metrics, as the root mean square error (RMSE), mean bias  error (MBE), and mean 135 

absolute error (MAE). In the present study PV power output forecasting are performed by LS-SVM 136 

with Wavelet Decomposition of the input data. Two different input datasets are implemented. The 137 

first one is based on the measured power output, the second one uses also the module temperature, 138 

the ambient temperature, and the irradiance on plain inclined at the tilt angle. The results in term of 139 

accuracy are compared with those of ANN. The performance evaluation is performed by a detailed 140 

error analysis [55]. 141 



In the literature few works focused on the comparison of ANN and hybrid LS-SVM forecasting 142 

models for PV power based on the evaluation of several error metrics. 143 

 In the present work a deep study of the statistical error distribution, a decomposition of the standard 144 

deviation by amplitude and phase error and the evaluation of the skewness and kurtosis statistical 145 

metrics allow to better characterize the performance of LS-SVM and demonstrate that it 146 

outperforms ANN methods. The results of the error analysis were also used to evaluated the impact 147 

of the accuracy of the  forecasting method on the imbalance penalties and costs.  148 

2. PV POWER  AND INPUT DATA 149 

The PV park is located in the campus of the University of Salento, in Monteroni di Lecce (LE), 150 

Puglia (40° 19'32"'16 N, 18° 5'52"'44 E) that is characterized by a Mediterranean climate. The PV 151 

modules were installed on shelters used as car parking, as shown in Fig. 1. The nominal power of 152 

PV system is 960kWP by two sub-fields that have the same azimuth (10°) and different tilt of 153 

modules (3° and 15°). Technical specifications of the PV module and a detail description of the two 154 

subplants are reported in Table 1. 155 

In order to monitor the main parameters of PV system, an integrated data acquisition system is 156 

implemented. A set of sensors is used to measure the solar irradiation and the PV module/ambient 157 

temperature. Hence, the data are processed and collected by the SCADA System SIMATIC WinCC. 158 

The data of PV power are collected every one minute, instead the solar irradiance on the two 159 

different tilt modules, the ambient temperature and the module temperature are sampled every 10 160 

minutes. These data are available on the ESAPRO private web site [56].  161 

One of the most important steps in the development of forecasting models is the selection of the 162 

input variables that mostly affect the PV power. 163 

The choice of the data, used in the input vector, influences the adequacy of the forecasting methods. 164 

A high number of input parameters, called forecasting factors, makes the forecasting system 165 



complex, but the use of few input parameters entails an incomplete forecasting model. Therefore it 166 

is important to find an adequate choice. In this paper the prediction models implement the historical 167 

data series of meteorological parameters as the input vector.  168 

The time series data were recorded from 05/03/2012 to 05/03/2013 every 10 minutes (365 169 

days/8760 hourly records), so the input data were calculated for each hour i as follows: 170 
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where Fm(i) is the average hourly value of each considered variables, accounting for the previous 60 172 

minutes respect to the hour i. The Table 2 summarizes input parameters of the PV system, which 173 

were used as forecasting factors for the various prediction models at the five horizons: +1 hour, +3 174 

hours, +6 hours, +12 hours and  +24 hours. 175 

As discussed in [55], the use of the input vector given by the historical data of measured PV power, 176 

leads to decrease of the performance of the forecasting models. In the present work the impact of 177 

the use of the weather parameters in the input vector will be analyzed for both ANN and LS-SVM 178 

methods, therefore two different input vectors were chosen based on the following data: 179 

• the average value of the PV power Pm(i) at the i-hour 180 

(IV1) Input Vector 1 x(i)=[Pm(i)]       (2) 181 

• the hourly average value of the PV power (kW), module temperature (°C), ambient 182 

temperature (°C), irradiance on plain inclined at a tilt angle of 3° and 15° (W/m2) 183 

(IV2) Input Vector 2 x(i)=[ Tm(i); Ta(i); I3(i); I15(i), Pm(i)]     (3) 184 

To define the target, the sum of the average hourly powers Pm(r) during the forecast time horizon 185 

was considered as: 186 
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3. THE PERFORMANCE EVALUATION 188 



To evaluate the forecasting performance, the predicted PV power values were compared with the 189 

measured ones. For this aim, several statistical metrics were introduced that explained the average 190 

deviations between forecasted and measured data. 191 

3.1 Normalized error 192 

The simplest error measure is the difference between predicted and measured data, to evaluate the 193 

degree of similarity between these. Therefore the statistical metrics [55, 57, 58] were considered as 194 

follows:  195 
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where:  200 

i = generic hour of the predicted data; 201 

l = time horizon; 202 

M = number of predicted data, equal to 1905;  203 
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= , where P(i,l) is the measured power used as target at hour i for time 205 

horizon, defined as Eq.(4). 206 

3.2 The amplitude and phase error 207 



To understand if the prediction method under or over-estimates the PV power, the standard 208 

deviation error SDE is decomposed as the sum of two elements [59]: 209 
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SDE2 = SDbias2 + DISP2       (6.b) 211 

 212 

Where 213 

)(ˆ lEi  is the mean normalized error; 214 

SDbias and DISP are the amplitude and the phase errors.  215 

 216 

The amplitude error is due to an overestimation or underestimation of the measured data. The phase 217 

error is due to a timing shift of the predicted values with respect to the real data. The SDbias and 218 

DISP are defined as: 219 

• Standard deviation bias  )()()( lllSD PTbias σσ −=    (6.c) 220 

• Dispersion   ( )TPPT RlllDISP −= 1)()(2)( σσ    (6.d) 221 

where: 222 

• σT(l) = standard deviation of ( )liTN , ; 223 

• σP(l) = standard deviation of ( )liPN , ; 224 

• TPR  = the cross-correlation coefficient between ( )liTN ,  and ( )liPN , . 225 

3.3 The statistical error distribution 226 

To analyze the error distributions, two statistical metrics were introduced: the skewness (SKEW) 227 

and the Kurtosis (KURT). The first parameter is a measure of the symmetry of the distribution, or 228 

more precisely, the lack of symmetry. If the skewness is negative, the distribution is skewed left. 229 

For positive values, the data set is skewed right. If the skewness is near zero, the distribution is 230 



symmetric. The second one describes the magnitude of the peak of the distribution and indicates if 231 

the data are peaked or flat relative to a normal distribution. Therefore, for high values of the  232 

Kurtosis parameter, the distribution has a peak near the mean and decreases rather rapidly with 233 

heavy tails. Instead the distribution has a flat trend near the mean rather than a sharp peak in 234 

presence of low value of the Kurtosis parameter. These parameters are defined as follows: 235 
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4. THE FORECASTING MODELS 238 

This section describes the models that are implemented in this study to forecast the PV power 239 

output: the ANN and the LS-SVM. The second one is applied in two configurations, with and 240 

without the Wavelet decomposition of the input dataset. The schemes of the different forecasting 241 

approaches are shown in Fig. 2. 242 

4.1 Artificial Neural Network  243 

An artificial neural network is similar to the nervous system, through the synapses the electrical 244 

impulses move to another neuron. The output signals are the sum of the weighted input signals. A 245 

particular function adjusts continuously the weights to obtain the defined accuracy (the training test) 246 

[60]. 247 

The Elmann network is one of the most popular ANN architecture. It’s a Feed-Forward neural 248 

network, in which each layer sends the output to a lower layer. Therefore there is an indirect 249 

connection between output and input data. A recurrent connection in the first layer allows the Elman 250 

network to detect and generate time-varying patterns. A different activation function allows to 251 



define the structure of the Elmann network. The hyperbolic tangent sigmoid transfer function 252 

(‘tansig’) is used to hide the neurons in the input and hidden layer of the networks. The ‘purelin’ 253 

function activates the neuron in the output layer. During the training of the neural network, the back 254 

propagation algorithm is applied, so a gradient descent method establishes the weights. Initially 255 

arbitrary weights are chosen and are adjusted in the learning. In this iterative process, a data is input 256 

to the network and is propagated forward to determine the output data. The differences between the 257 

output data and the real data represent an error. The learning process continues until the network 258 

responds with output data, when the Mean Square Error MSE is less than a fixed value [61]. 259 

This algorithm updates networks weight and bias values according to gradient descent momentum 260 

and an adaptive learning rate, so the Gradient Descent (‘traingdx’) with variable learning rate and 261 

momentum weight/bias learning function (‘learngdm’) are utilized. Table 3 summarizes the main 262 

Elman ANN settings. A preliminary data analysis was performed to validate available input data. 263 

The data were normalized in a range [-1, 1]. The 65% of the collection data are applied as training 264 

data sets (8 months), so the residual (35%) are used as test data (4 months). 265 

4.2 Least Squares Support Vector Machine 266 

ANN methods present the disadvantages of the tendency for over-fitting and the enormous 267 

computational resources that are required for the training. Lately, alternative methods were 268 

investigated as Support Vector Machine [34] that has a well capacity of generalization performance. 269 

A different form of SVM algorithm was proposed in [44], called Least Square-Support Vector 270 

Machines (LS-SVM), in which the LS-SVM that implements an approach based on Structural Risk 271 

Minimization, leads to more generalization and avoids over-fitting. Therefore, LS-SVM is 272 

computationally less expensive, since the training requires only the solution of a set of linear 273 

equations. 274 



Given a training set of N data points 
N
kkk xy 1},{ =  , where n

k Rx ∈  is the k-th input data and Ryk ∈  275 

is the k-th output data, the following regression model can be constructed by using )( kxϕ , nonlinear 276 

function mapping of the input space to a higher dimensional space: 277 
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where w is the weight vector and b is the bias term.  279 

The above regression equation is transformed to a quadratic optimization problem with constraint; it 280 

means to minimize a cost function J: 281 
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with kξ  is an artificial variable,  γ is the regularization factor and subject to equality constrains 283 
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In order to solve this optimization problem, Lagrange function is defined as: 285 
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with Rk ∈α  is the Lagrangian multipliers,  287 

Solving these equations results into:  288 
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Where ŷ  is the approximated value of ky  and ),( kxwK  is called the kernel function, in the present 290 

study the Radial Basis Function kernel RBF is used. More details are reported in [34]. The LS-SVM 291 



is tuned by searching the optimal regularization " kernel parameters” as well as the model order, 292 

using a 10-fold cross-validation (CV) procedure [44]. 293 

4.3 Wavelet Decomposition Technique 294 

Time series of solar irradiance and temperature data include information of daily, seasonal and 295 

long-term behaviors; therefore, to improve the forecasting model performance, it would be suitable 296 

to use frequency contents of those signals for training, instead of the signal values in itself. To this 297 

purpose the forecasting models can be based on wavelet decomposition of the input data.  298 

Wavelet transforms (WT) are time-frequency representations for continuous-time signals. A wavelet 299 

is a mathematical function that allows to separate a given function or time signal into different time 300 

scale components. It is possible to assign a frequency range to each scale component. The wavelet 301 

Φ(t), called mother wavelet of a signal fk (available at the k-th time interval of n), has a so-called 302 

Discrete Wavelet Transform (DWT) defined by: 303 
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The scaling and translation parameters are functions of the integer variables m and n (a=2m, 305 

b=n·2m), where a determines the spread of the wavelet and b its central position. In the proposed 306 

forecast method, a fast DWT algorithm developed by Mallat [48] and based on decomposition and 307 

reconstruction low-pass and high-pass filters was used. This algorithm allows to obtain 308 

“approximations” and “details” from a given signal. An approximation is a low-frequency 309 

representation of the original signal, whereas a detail is the difference between two successive 310 

approximations and depicts high-frequency components of the signal.  311 

In the present work the Daubechies type 4 with 8 levels was applied to the time series of input data. 312 

The main idea of the algorithm is to use wavelet transform as a pre-processing tool to decompose 313 

the original time series into various time scales. This allows the forecasting model, as LS-SVM and 314 



ANN, to learn about the characteristics of the signals at different time scales and to arrive at a 315 

model capable of approximating the signal. Fig. 2 shows the implemented algorithm, in which the 316 

training and test signals were decomposed using the Wavelet Transform and each decomposed 317 

signal was used as single input vector for the Least Quares Support Vector Machine. The final 318 

forecast value is given by the sum of the outputs of each forecast on the individual component of 319 

the decomposed signal 320 

5. RESULTS AND DISCUSSION  321 

5.1 Analysis of the statistical metrics 322 

This section illustrates the results for the different prediction methods, described previously: the 323 

ANN, the LS-SVM and the hybrid LS-SVM with the Wavelet decomposition of the input dataset. 324 

For each forecast methodology, the input vector IV1 and IV2 (Eq.2 and Eq.3) are used at several 325 

forecast time horizons (1h, 3h, 6h, 12h, and 24h). Table 4 reports the acronyms that are used to 326 

identify the various models with the different input vectors. 327 

In Fig. 3 the measured PV power values of a week of the February 2013, which presents high 328 

PV power variability are compared with the predicted values of the Model I, II and III based on the 329 

inputs IV1 and IV2 at the time horizon equal to 1h. The forecasted power is in quite good 330 

agreement with the measured power. The results, which are obtained by all models based on the 331 

input IV1, are consistent with the measured power in correspondence of the peaks; even if an over 332 

estimation is observed when the power values are close to zero in the model I. It’s also observed 333 

that the predicted power time series present a shift on the right. This behavior is less evident when 334 

the input IV2 is used, especially at low PV power values.  335 

To deeply analyze and compare the differences between the predicted and the measured power 336 

time series, the normalized error Ei is plotted at the time horizons of 6h and 12h, as shown in Fig. 4 337 

and Fig. 5. The chosen week is characterized by power evident fluctuation that allows to underline 338 

the impact of the power variations on the errors. 339 



In all cases, the time series of the normalized error follows the trend of the normalized measured 340 

PV power, high prediction error values occur when the PV power drastically changes, with an over 341 

estimation (positive values of normalized error) when the PV power increases. A negative value of 342 

Ei is recorded if the PV power is close to zero. The LS-SVM based on the Wavelet decomposition 343 

of the input dataset (Model III) is less sensitive to the variation of the PV power and gives the 344 

lowest prediction errors. Training this model with the input vector IV2 increases the prediction 345 

accuracy. 346 

To better evaluate the forecasting performance, the statistical metrics that are described in section 3 347 

are determined. Table 5 illustrates the mean error for each model, using the inputs IV1 and IV2. 348 

Focusing on the ANN, the NMAE increases in the range 9,40 - 25,05% using the input vector IV1 349 

and 6,50 - 19,60% for the input IV2. In the PV power forecasting by LS-SVM model, the NMAE 350 

values are in the range from 7,50 to 23,50% for IV1 and 6,40 – 19,50% for IV2. Furthermore the 351 

implementation of the Wavelet decomposition for the input vectors improves the accuracy, in fact 352 

the NMAE of the models III.1 and III.2 respectively varies between 6,60 – 15,00% and 6,90 – 353 

19,00%. As expected, the NMAE rises if the time horizon increases and the highest values are for 354 

the models based on PV power time series (IV1), in particular for the ANN and LS-SVM without 355 

the Wavelet Decomposition. The comparison between NMAE values in the cases of the models I.2 356 

and II.2 shows that the performance of the two models are quite similar. However the best 357 

forecasting performances can be obtained if the PV power prediction model is trained on all the 358 

available weather parameters (IV2). It is also evident that the use of the Wavelet decomposition of 359 

the input vectors reduces the error at long time horizons, particularly for the input vector IV1. 360 

Additional metrics, as the normalized mean bias error and the normalized root mean square 361 

error were determined for a more accurate error analysis, as summarized in the Table 5. In Eq.5.d 362 

the errors are averaged after they are squared, so the NRMSE assigns a different weight to the 363 

errors. The NRMSE is not ever smaller than the NMAE. High difference between NMAE and 364 

RMSE indicates that the predicted values are very spread from the measured data. As the NMAE, 365 



NRMSE also rises with the prediction length, assuming the lower values in the LS-SVM model 366 

with Wavelet decomposition (Model III). Focusing on NMBE, an under-estimation of the PV power 367 

is observed for all the time horizons by implementing the model I.1 and II.1; instead the SVM with 368 

the Wavelet Decomposition model based on IV1 gives an over-estimation of the PV power. 369 

To evaluate the fluctuations of the error around the mean value, the standard deviation error SDE, as 370 

defined in Eq.6.a, was calculated, it rises if the time horizon increases, as shown in Table 6. Models 371 

with the input IV2 present lower error variations than the models that were trained on the input IV1. 372 

Low values of SDE were obtained for the model III, this confirms the best prediction performance 373 

for this model.  374 

Recent power forecasting systems typically take into account systematic errors by estimating the 375 

forecast bias (NMBE) and SDbias error and then applying statistical correction schemes prior to 376 

analysis. The bias can be subtracted and the SDbias can be adjusted by increasing or decreasing the 377 

standard deviation of the prediction, contrary to the phase error. 378 

In the Table 6 the values of SDbias and DISP, as defined in Eq.6.c and Eq.6.d, are also reported. The 379 

results underline that all the models tend to under-estimate the PV power (negative values of SDbias) 380 

and the amplitude error is higher at long time prediction period. Regarding the dispersion, DISP, the 381 

models I and II present the same phase errors for either input vectors, instead its decrease is evident 382 

for the predictions of the model III.2. In accordance to Eq.6.b, Fig. 6 reports the value of SDE2, 383 

SDbias
2 and DISP2 that were obtained by training the models with the input IV2. It is evident that the 384 

main contribution at the standard deviation error is given by the phase error, especially for short 385 

time horizon, with the lowest values for the model III. Increasing the prediction length, the 386 

amplitude and phase error also increase, leading to the highest values of SDE2 at 24h. The SDbias 387 

and DISP analysis is in accordance with Fig. 3, their estimation quantify the under or over 388 

estimation of the predicted data, and the time shift of predicted PV power time series. The statistical 389 

distributions of the power prediction error were reported in Fig. 7 and Fig. 8. 390 



In the forecasting methods that were trained on input IV1 (Fig. 7), the error distributions of the 391 

models I and II at short time prediction lengths are quite similar with the most values of the 392 

normalized error Ei in the range [-20%, -10 %]. If the error distribution is narrow, the probability 393 

that the errors assume low values is higher. When increasing the time horizon, the histograms are 394 

shifted on the left, this means that the normalized error has a high probability to assume value in the 395 

range [-40%, -20%]. The distributions are more flat at 24h. Instead for the model III the error 396 

distributions are quite different, especially for +6h and +12h horizons, the majority of the prediction 397 

errors concentrate in the range [-10%, 0]. 398 

The statistical distribution of the normalized errors for all the models with input vector IV2 (Fig. 8) 399 

is generally narrow with high probability of occurrence in the range of low error values in particular 400 

at very short prediction horizons. At 12 and 24 h the distributions don’t present high peaks, but 401 

cover a wide range of the normalized error.  402 

To characterize the forecast error distribution, the skewness and kurtosis statistics were also 403 

calculated and reported in the Table 7 for each prediction horizon and forecasting method. It’s noted 404 

that the skewness increases for long time horizon with positive value, but at 24 hours it has an 405 

inversion of polarity. This means that the error distribution was generally positively skewed at short 406 

time horizons and negatively skewed at long horizons. Instead concerning the Kurtosis values, as 407 

might be expected, the short time ahead forecasts have much higher kurtosis values than those made 408 

at the day-ahead timescale. This would be expected from the reduction in uncertainty that occurs 409 

between making a forecast in the day-ahead time frame, versus a single hour ahead. The kurtosis 410 

value is positive and decreases with the increase of the horizon, assuming negative value at 24 411 

hours. The distribution is narrow with high peak value at short time horizon, becomes flat at 24 412 

hours. This is in accordance with Fig. 7 and Fig.8. 413 

Comparing the different forecasting methods, it is evident that the forecasts based on LS-SVM 414 

present highest kurtosis values from one hour-head up to one-day head. 415 



The probability that the normalized error is in a given error range, focusing on the time horizons of 416 

1h, 6h and 12h, is reported in Table 8, in which the best performances are underlined. For each 417 

model, the probability to make an error lower than 1% is less than 45%, and best values, about 20%, 418 

are obtained with the model III. Considering the 5%, 10% and 20% confidence intervals, at fixed 419 

time horizon the models with the input IV2 present the best results. Therefore, in Fig. 9 the 420 

probability error distribution is plotted for all models using input vector IV2. Reducing the 421 

confidence interval from 20% to 10%, the probability generally decreases up to 30% at 24h. The 422 

probability to make an error smaller than 5% is in a range of 50-60% for short time period and it 423 

decreases up to 15% at 24h. The analysis of the probability distributions underlines that the use of 424 

the Wavelet decomposition permits an improvement in the power predictions; in particular, at the 425 

long time horizons, with highest probability, with respect to other models, in the range of low error 426 

values, while at short time horizons best predictions are given by model II. 427 

5.2 Impact of daily weather on prediction errors 428 

The historical data of the solar irradiance are used as input for the forecast models, however the 429 

different weather conditions lead to variations of irradiance, hence an analysis has been performed 430 

to investigate the effects of the weather fluctuations on the accuracy of the prediction method. 431 

Some significant days have been taken into account in order to evaluate the accuracy forecast 432 

methods under different weather conditions. This investigation has been carried out considering the 433 

ANN, LS-SVM and LS-SVM model with Wavelet decomposition based on IV2 at two different 434 

forecast time horizons (3h and 12h). 435 

Therefore the extraterrestrial solar irradiance G0 is introduced and defined as follows [62]: 436 

G� � G�� �1 � 0.033	 cos ������� � cos θ�	      (10) 437 

where  438 

Gsc is the solar constant (1367 W/m2); 439 

n is the day of the year [63]; 440 



θz is the zenith angle that is the complement of the solar altitude angle αs (θz =90 – αs). 441 

The extraterrestrial solar irradiance G0 for the investigated site (Lat. 40°21' Log. 18°11') is shown in 442 

Table 9. The zenith angle has been calculated considering the solar altitude angle [64]. 443 

Hence to underline the effects of the weather conditions, a comparison between the normalized 444 

measured solar irradiance, I15,N(i), on the PV module tilted 15° and the corresponding 445 

extraterrestrial solar irradiance G0,N has been performed. The solar irradiance values have been 446 

normalized as follows: 447 
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The Fig. 10 shows I15,N, G0,N and the corresponding difference Gd evaluated for some days at 450 

different weather conditions during the period of low solar irradiance and highest weather 451 

variability. The solar irradiance difference Gd has a regular trend, which is quite similar to the 452 

extraterrestrial solar irradiance G0 on the sunny days (November 14th 2012, December 23th 2012, 453 

January 19th 2013). Instead some sudden fluctuations of the solar irradiance difference Gd are 454 

evident on the cloudy days (November 20st, December 2nd 2012 and January 14th 2013). 455 

Furthermore the solar irradiance difference Gd can be identified as a parameter to extract 456 

information about several weather conditions starting from the measured solar irradiance. 457 

For the previous analyzed days, the cross correlation coefficient RTP(%) has been reported in the 458 

Table 10 for three sunny days (November 14th 2012, December 23th 2012, January 19th 2013) and 459 

three cloudy days (November 20st, December 2nd 2012, January 14th 2013). It’s noted that the cross 460 

correlation coefficient is higher on the sunny days than cloudy days. The forecasted PV power 461 

values, predicted by each method, are in good agreement with the measured values for the sunny 462 

day, instead the predicted power values have low correlation with the measured data under cloudy 463 

weather conditions. Furthermore, for long prediction time, the hybrid LS-SVM with WD method 464 



outperforms other models, in particular at cloudy days with RTP values between 47,33% - 66,88% 465 

against 11,20% - 24,90% obtained with the ANN and 18,43% - 28,29% with the LS-SVM.. The 466 

Model III seems to be less influenced by cloudy weather conditions, giving the best performance.  467 

5.3 Impact of forecasting accuracy on imbalance costs 468 

A preliminary analysis has been carried out to evaluate the economic impact of the forecasting 469 

accuracy of the three methods, focusing the analysis on the PV dispatched energy in the electric 470 

grids. According to the Italian energies policy, the producers of renewable sources energy can 471 

participate in electric market through a programmed transactions. In the Day-Ahead Market the 472 

amount of energy that can be injected into the grid (Injection Schedule) is established for each hour 473 

of the next day, so the producers declare the quantity of energy to insert into the network with a day 474 

in advance. However, the unbalancing charges are applied when there is a difference between actual 475 

and scheduled injected energy [65]. The aim of the present analysis is to characterize three forecast 476 

models in terms of penalties for imbalance energy, adopting the approach used in [54] to calculate 477 

the penalties for imbalance. Hence, the actual energy (ET) is remunerated at the producer with a 478 

energy price CE, established on base of the Day-Ahead Market, if it is in the range [-10%;10%] of 479 

the energy declared (EP) in the injection schedule (Case A). Otherwise, for each hour i a penalty CI 480 

is applied to the amount energy equal to the gap between the actual ET and the schedule EP energy. 481 

Therefore, if ET has been underestimated that means the schedule energy is higher than the energy 482 

actually injections into the electric grid (EP), the producer must repay the missing energy at a price 483 

equal to CE+CI (Case B). If ET has been overestimated that means the actual energy injected into the 484 

electric grid is higher than the schedule energy, the surplus energy is remunerated at the producer 485 

with a price equal to CE-CI (Case C).  486 

Even if the energy price is influenced by the demand of energy [66], in this analysis, the energy 487 

price CE is assumed constant for each day and hour and equal to 10c€/kWh and CI is considerated 488 



equal to 50% of the energy price CE. Hence, for each hour i and all possible cases, the economic 489 

flow is defined as follows: 490 

A. ���� � �� ∗ �����																																																																	when	|�% &	��| ' 10%�%	 491 

B. ���� � �� ∗ ����� �	�����)� ∗ ������ & �%����								when	�% ' �� 492 

C. ���� � �� ∗ ����� �	���&�)� ∗ ������ & �%����								when	�% * �� 493 

Fig. 11.a shows the percent occurrence of the different cases A, B, C (expressed on the total 494 

number M). It’s evident that the probability, in percent terms, to inject the energy in the network 495 

within the admitted tolerance is quite low (10% - 15%). The probability to inject less energy than 496 

schedule (case A) is higher for the ANN and LS-SVM models, equal to 45% against 19,6% for the 497 

hybrid LS-SVM with WD. This entails greater costs at the producer because of the penalties for 498 

imbalance energy. The probability to inject more energy than schedule (case C) is higher for the 499 

model III (70,9%). It means that the LS-SVM with wavelet decomposition models allows to obtain 500 

the additional revenue, which corresponds to the energy that was not considered in the day-ahead 501 

schedule proposed by the producer.  502 

Finally, the Fig. 11.b shows the total economic incomes, as the sum of the incomes of the case A, B 503 

and C for the three forecast models, normalized with the maximum economic revenue that is 504 

obtained from the remuneration of the injected actual energy at the price CE (case A). It is evident 505 

that the LS-SVM with WD model guarantees the higher economic income, equal to 72,6%,  than 506 

the ANN e LS-SVM models, approximately 53% for both. So, the results demonstrate that the LS-507 

SVM with Wavelet Decomposition model has the lowest economics impact in terms of penality and 508 

the highest additional income, derived from its tendency to underestimate the PV power. Hence it 509 

allows to obtained the greatest revenue. 510 

6. CONCLUSIONS  511 

This study is focused on the implementations of innovative short-term forecasting systems based on 512 

Artificial Neural Networks (ANNs), Least Square Support Vector Machines (LS-SVMs) and 513 



hybridized LS-SVMs for photovoltaic power prediction of a site located in Apulia region – South 514 

East of Italy. 515 

A detailed comparison between the ANN model and LS-SVM with and without the Wavelet 516 

Decomposition of the input dataset was carried out, analyzing the normalized mean error and the 517 

statistical distribution, to identify the most accurate forecasting method. 518 

The evaluation of the performance of different forecasting methods is performed by the 519 

estimation of conventional metrics, as the root mean square error (RMSE), mean bias error (MBE), 520 

and mean absolute error (MAE).  521 

High prediction errors were obtained from all forecasting methods at long time horizons. Observing 522 

the normalized error, the LS-SVM based models reach better performance than the ANN model but 523 

the hybrid LS-SVM based on the Wavelet Decomposition of the input data outperforms other 524 

models particularly for long forecasting horizons.  525 

In the present work a deep error analysis was performed. A study of the statistical distributions 526 

of the normalized error was performed. In most cases, the probability that the normalized error take 527 

values in the ranges [-1%; +1%] is basically lower for the artificial neural networks and the 528 

probability to reach an error less than 20% is generally higher in the hybrid LS-SVM with Wavelet 529 

Transform. The decomposition of the root mean squared error into three contributions (bias, 530 

standard deviation bias and dispersion) and the estimation of the skewness, and kurtosis statistical 531 

metrics provide a better understanding of the differences between prediction and measurement. As 532 

might be expected, the short time ahead forecasts have much higher kurtosis values than those made 533 

at the day-ahead timescale. This would be expected from the reduction in uncertainty that occurs 534 

between making a forecast in the day-ahead time frame, versus a single hour ahead. 535 

The bias can be subtracted and the standard deviation can be adjusted by increasing or decreasing 536 

the standard deviation of the prediction, contrary to the dispersion error. Therefore the reduction of 537 

the dispersion error constitutes the challenge for further improvements; hence forecasting methods 538 

with low dispersion error permit to reach a better accuracy. The analysis showed that the reduction 539 



in the dispersion is mainly due to the implementation of the Wavelet Decomposition rather than to 540 

the choice of the LS-SVM or ANN. 541 

The impact of the solar irradiance fluctuation on the forecasting accuracy is also discussed. The 542 

use of Model III (LS-SVM with WD) leads to an improve of the accuracy, in particular in the 543 

cloudy days, which means that the decomposition of the input data permits better to take into 544 

account the solar irradiance fluctuations. Hence further work will implement the difference between 545 

the measured solar irradiance and the corresponding extraterrestrial solar irradiance, as an input of 546 

the forecasting method. 547 

Finally an analysis was performed to evaluate the penalties for unbalancing energy of three forecast 548 

models, concluding that the LS-SVM with Wavelet Decomposition Technique model also permits to 549 

reach the greatest revenue with lower costs for unbalancing penality with respect to the ANN and 550 

the LS-SVM. 551 

Funds 552 

This work is supported by the Project BEAMS, Project Number 285194, 7th Framework Program. 553 

Acknowledgments 554 

The authors would like to thank Elettrostudio Energia SpA and Esapro Advanced Energy Service 555 

for their kind availability and for the possibility to access data. 556 

Conflict of interest statement 557 

The paper and its corresponding work is completed by all the authors. No conflict of copyright is 558 

involved. 559 

 560 



REFERENCES 

[1] Congedo PM, Malvoni M, Mele M, De Giorgi MG. Performance measurements of 

monocrystalline silicon PV modules in South-eastern Italy. Energy Conversion and 

Management 2013; 68:1-10. 

[2] De Giorgi MG, Congedo PM, Malvoni M, Tarantino M. Short-term power forecasting by 

statistical methods for photovoltaic plants in south Italy. In: 4th IMEKO TC19 Symposium on 

Environmental Instrumentation and Measurements: Protection Environment, Climate Changes 

and Pollution Control, June 3-4, Lecce, Italy, 2013. p 171-175. 

[3] Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan A. An adaptive model for predicting of 

global, direct and diffuse hourly solar irradiance. Energy Conversion and Management 2010; 

51:771-782. 

[4] Mellit A, Pavan AM. A 24-h forecast of solar irradiance using artificial neural network: 

Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar 

Energy 2010; 84:807-821. 

[5] Su Y, Chan LC, Li Y, Tsui KL. Real-time prediction models for output power and efficiency 

of grid-connected solar photovoltaic systems. Applied Energy 2012; 93:319-326. 

[6] Lei M, Shiyan L, Chuanwen J, Hongling L, Yang Z. A review on the forecasting of wind 

speed and generated power. Renewable & Sustainable Energy Reviews 2009; 13(4): 915-920. 

[7] More A, Deo MC. Forecasting wind with neural networks. Marine Structures 2003; 16(1): 35-

49. 

[8] Gareta R, Romeo LM, Gil A. Forecasting of electricity prices with neural networks. Energy 

Conversion and Management 2006; 47 (13-14): 1770-1778. 

[9] Ardakani FJ, Ardehali MM. Novel effects of demand side management data on accuracy of 

electrical energy consumption modeling and long-term forecasting. Energy Conversion and 

Management 2014; 78: 745-752. 



[10] Nagi J, Yap KS, Tiong SK, Ahmend SK. Electrical Power Load Forecasting using Hybrid 

Self-Organizing Maps and Support Data Machine. In: Proc. of the 2nd International Power 

Engineering and Optimization Conference (PEOCO), June 4-5, Shah Alam, Malaysia, 2008, 

pp. 51–56. 

[11] De Giorgi MG, Ficarella A, Russo MG. Short-term wind forecasting using artificial neural 

networks (ANNs). In: Second International Conference on Energy and Sustainability, June 

23-25, Bologna, Italy, 2009. 

[12] Velo R, López P, Maseda F. Wind speed estimation using multilayer perceptron. Energy 

Conversion and Management 2014; 81: 1-9. 

[13] Almonacid F, Rus C, Hontoria L, Fuentes M, Nofuentes G. Characterisation of Si-crystalline 

PV modules by artificial neural networks. Renewable Energy 2009; 34: 941-949. 

[14] Almonacid F, Rus C, Pérez-Higueras P, Hontoria L. Estimation of the energy of a PV 

generator using artificial neural network. Renewable Energy 2009; 34: 2743-2750. 

[15] Almonacid F, Rus C, Pérez-Higueras P, Hontoria L. Calculation of the energy provided by a 

PV generator. Comparative study: Conventional methods vs. Artificial neural networks. 

Energy 2011; 36: 375-384. 

[16] Alexiadis M. Short-term forecasting of wind speed and related electrical power. Solar 

Energy 1998; 63 (1): 61-68; 

[17] Li G, Shi J. On comparing three artificial neural networks for wind speed forecasting 

Applied Energy 2010; 87 (7): 2313-2320. 

[18] Cao Q, Ewing B, Thompson M. Forecasting wind speed with recurrent neural networks 

European Journal of Operational Research 2012; 221 (1): 148-154. 

[19] Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind 

speed time series. Renewable Energy 2000; 21 (1): 23-35. 



[20] Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. A review on the young 

history of the wind power short-term prediction. Renewable Sustain Energy Reviews 2008; 

12 (6): 1725-1744. 

[21] Pourmousavi Kani SA, Ardehali SA. Very short-term wind speed prediction: A new artificial 

neural network-Markov chain model. Energy Conversion and Management 2011: 52: 738-

745. 

[22] Bonanno F, Capizzi G, Graditi G, Napoli C, Tina GM. A radial basis function neural network 

based approach for the electrical characteristics estimation of a photovoltaic module. 

Applied Energy 2012; 97: 956-961. 

[23] Rus-Casas C, Aguilar J, Rodrigo P, Almonacid F, Pérez-Higueras P. Classification of 

methods for annual energy harvesting calculations of photovoltaic generators. Energy 

Conversion and Management 2014; 78: 527-536. 

[24] Fadare DA. The application of artificial neural networks to mapping of wind speed profile 

for energy application in Nigeria. Applied Energy 2010; 87 (3): 934–942. 

[25] Fadare DA. Modelling of solar energy potential in Nigeria using an artificial neural network 

model. Applied Energy 2009; 86: 1410-1422. 

[26] Kariniotakis GN, Stavrakakis GS, Nogaret EF. Wind power forecasting using advanced 

neural networks models. IEEE Trans Energy Conversion 1996; 11 (4): 762-767. 

[27] De Giorgi MG, Ficarella A, Tarantino M. Error analysis of short term wind power prediction 

models. Applied Energy 2011; 88:1298-1311. 

[28] Yona A, Senjyu T, Funabashi T. Application of Recurrent Neural Network to Short-Term-

Ahead Generating Power Forecasting for Photovoltaic System. In: Power Engineering 

Society General Meeting, 24-28 June, Tampa, FL, 2007. pp. 1-6. 

[29] Dorvlo ASS, Jervase JA, Lawati AA. Solar radiation estimation using artificial neural 

networks, Applied Energy 2002; 71:307-319. 



[30] Benmouiza K, Cheknane A, Forecasting hourly global solar radiation using hybrid k-means 

and nonlinear autoregressive neural network models, Energy Conversion and Management 

2013; 75: 561-569. 

[31] Ali N. Celik, Muneer T, Neural network based method for conversion of solar radiation data, 

Energy Conversion and Management 2013; 67: 117-124. 

[32] Chupong C, Plangklang B. Forecasting power output of PV grid connected system in 

Thailand without using solar radiation measurement. Energy Procedia 2011; 9:230-237. 

[33] Vapnik VN. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995, 

ISBN 978-0-387-98780-4. 

[34] Vapnik VN, Statistical Learning Theory (Adaptive and Learning Systems for Signal 

Processing, Communications and Control Series), Wiley, New York, 1998. 

[35] Junping W, Quanshi C, Binggang C, Support vector machine based battery model for 

electric vehicles, Energy Conversion and Management 2006, 47:858-864. 

[36] Pai PF, Hong WC. Support vector machines with simulated annealing algorithms in 

electricity load forecasting. Energy Conversion and Management 2005; 46:2669-2688. 

[37] Sreelakshmi K, Kumar PR. Performance evaluation of short term wind speed prediction 

techniques, IJCSNS International Journal of Computer Science and Network Security, 

August 2008, Vol 8, pp 162-9. 

[38] Mohandes M, Halawani T, Rehman S, Hussain A. Support vector machines for wind speed 

prediction. Renewable Energy 2004; 29:939-47. 

[39] Chen JL, Li SL, Wu SJ. Assessing the potential of support vector machine for estimating 

daily solar radiation using sunshine duration. Energy Conversion and Management 2013; 

75:311-318. 

[40] Chen J, H, Wu W, Xie D. Estimation of monthly solar radiation from measured temperature 

using support vector machines e a case study. Renewable Energy 2011; 36:413-20. 



[41] S. Fonseca JG, Oozeki T, Takashima T, Koshimizu G, Uchida Y, Ogimoto K. Photovoltaic 

power production forecasts with support vector regression: A study on the forecast horizon. 

In: 37th IEEE Photovoltaic Specialists Conference, 19-24 June 2011, pp.2579-2583. 

[42] Fan S, Chen L, Lee WL, Machine learning based switching model for electricity load 

forecasting, Energy Conversion and Management 2008, 49: 1331-1344. 

[43] Fan S; Chen L. Short-term load forecasting based on an adaptive hybrid method. In: IEEE 

Trans. Power Syst., vol. 21, no. 1, pp. 392–401, Feb. 2006. 

[44] Suykens JAK, Van Gestel T, Debrebanter J. Least Squares Support Vector Machines. 

Singapore: World Scientific Publishing Co., 2002.  

[45] Huang CY, Chiang BY, Chang SY, Tzeng GH, Tseng CC. Predicting of the Short Term Wind 

Speed by Using a Real Valued Genetic Algorithm Based Least Squared Support Data 

Machine. Intelligent Decision Technologies Smart Innovation, Systems and Technologies, 

Vol. 10, 2011, pp 567-575. 

[46] Zhou J, Shi J, Li G. Fine tuning support vector machines for short-term wind speed 

forecasting. Energy Conversion and Management 2011; 52:1990-1998. 

[47] De Giorgi MG, Campilongo S, Ficarella A, Congedo PM. Comparison Between Wind Power 

Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector 

Machine (LS-SVM) and Artificial Neural Network (ANN). Energies 2014; 7(8): 5251-5272. 

[48] Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. 

In: IEEE Transactions on pattern analysis and machine intelligence, Jul 1989, vol.11, no.7, 

pp.674-693. 

[49] De Giorgi MG, Ficarella A, Tarantino M. Assessment of the benefits of numerical weather 

predictions in wind power forecasting based on statistical methods. Energy 2011; 36:3968-

3978. 



[50] Shayeghi H, Ghasem, A. Day-ahead electricity prices forecasting by a modified CGSA 

technique and hybrid WT in LSSVM based scheme. Energy Conversion and  Management 

2013; 74: 482-491. 

[51] Amjady N, Keynia F. Short-term load forecasting of power systems by combination of 

wavelet transform and neuro-evolutionary algorithm. Energy 2009; 34:46-57. 

[52] Motevasel M, Seifi AR. Expert energy management of a micro-grid considering wind energy 

uncertainty Energy Conversion and Management 2014; 83: 58-72. 

[53] Italian Authority for the Electricity Gas and Water, Resolution 522/14/R/eel. Disposizioni in 

materia di dispacciamento delle fonti rinnovabili non programmabili a seguito della sentenza 

del Consiglio di Stato. 2014. Sezione Sesta-9 giugno 2014, n. 2936 

[54] Delfanti M, Falabretti D, Merlo M. Energy storage for PV power plant dispatching. 

Renewable Energy 2015; 80: 61-72. 

[55] De Giorgi MG, Congedo PM, Malvoni M. Photovoltaic power forecasting using statistical 

methods: impact of weather data. IET Science, Measurement and Technology, pp 1–8, doi: 

10.1049/iet-smt.2013.0135. 

[56] http://supervisione.espe.it/fotovoltaicoWeb/index.htm. 

[57] Madsen H, Pinson P, Kariniotakis G, Nielsen HA, Nielsen TS. Standardizing the 

performance evaluation of short-term wind power prediction models. Wind Energy 2005; 

29:475-89. 

[58] Carlos FM, Kleissl C, Kleissl J, Marquez R. Solar Energy Forecasting and Resource 

Assessment. Elsevier 2013 ISBN: 9780123971777. 

[59] Lange M. On the Uncertainty of Wind Power Predictions - Analysis of the Forecast 

Accuracy and Statistical Distribution of Errors. Journal of Solar Energy Engineering 2005; 

127(2): 177-184.  

[60] Chiang YM, Chang LC, Chang FJ. Comparison of static-feedforward and dynamic-feedback 

neural networks for rainfall–runoff modeling. Journal of Hydrology 2004; 290: 297–311. 



[61] Hecht-Nielsen R. Theory of the back-propagation neural network, IEEE IJCNN, 1989 Vol.1 

pp 593 – 605. 

[62] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Fourth Edition (2013) 

DOI: 10.1002/9781118671603. 

[63] Table 1.6.1 of [62]. 

[64] http://www.solaritaly.enea.it/StrDiagrammiSolari/X12Mesi1.php 

[65] https://www.mercatoelettrico.org/en/tools/Glossario.aspx  

[66] He YX, Liu YY, Xia T, Zhou B. Estimation of demand response to energy price signals in 

energy consumption behaviour in Beijing, China. Energy Conversion and Management 

2014; 80. 429 -435. 

 



LIST OF TABLE 

Table 1 Technical specifications of the PV module and system 

Table 2 Measured data used as forecast factors 

Table 3 Elman ANN settings 

Table 4 Acronym used to indicate the combination forecast methods and input vectors 

Table 5 NMBE, NMAE and NRMSE values given by Model I, II and III 

Table 6 Value of the amplitude and phase error 

Table 7 Measures of Skewness and Kurtosis 

Table 8 Error distribution of forecast models at different prediction length (1h, 6h and 12h) 

Table 9 The extraterrestrial solar irradiance for the investigated site (Lat. 40°21' Log. 18°11') 

Table 10 The cross correlation coefficient RTP(%)of prediction models at 3h and 12h forecast time 

horizons 

  

Table(s)



Table 1 Technical specifications of the PV module and system 

Module  

Type Mono-crystalline silicon 

Nominal power (Pn) 960 kWp 

Maximum power voltage (Vpm) 3000 V 

Maximum power current (Ipm) 3 A 

Open circuit voltage (Voc) 250 V 

Short circuit current (Isc) 12 A 

Weight 4710 m
2
 [4892 m

2
] 

Net [gross] module surface 1.57 m
2
 [1.63 m

2
] 

Subfield  

PV1  

Nominal power of PV system 353.3 kWp 

Azimuth -10° 

Tilt 3° 

Total number of modules 1104 

Net [gross] modules' surface 1733.3 m
2
 [1799.5 m

2
] 

PV2  

Nominal power of PV system 606.7 kWp 

Azimuth -10° 

Tilt 15° 

Total number of modules 1896 

Net [gross] modules' surface 2976.7 m
2
 [3090.5 m

2 
]

 

  



Table 2 Measured data used as forecast factors 

Symbol Unit  Description 

P kW Instantaneous AC power 

Tm °C Module Temperature 

Ta °C Ambient Temperature 

I3 W/m
2
 Irradiance on plane of module with tilt 3° 

I15 W/m
2
 Irradiance on plain of module with tilt 15° 

  



Table 3 Elman ANN settings 

 Input Vector 1 Input Vector 2 

Training function 

TRAINGDX 

Gradient descent with momentum and adaptive learning rate 

back-propagation 

Adapt learning function 
LEARNGD 

Gradient descent weight and bias learning function 

Performance function 
MSE 

Mean Squared Error 

Number layers 3 

Neurons (layer 1) 

1h 

3h 

6h 

12h 

24h 

21 

31 

61 

121 

241 

16 

26 

51 

101 

201 

Neurons (layer 2) 

1h 

3h 

6h 

12h 

24h 

11 

16 

31 

61 

121 

8 

13 

26 

51 

101 

Neurons (layer 3) – output 1 

Activation function hidden layer 
TANSIG 

Hyperbolic tangent sigmoid transfer function 

Activation function output layer 
PURELIN 

Linear transfer function 

Epochs 500 

  



Table 4 Acronym used to indicate the combination forecast methods and input vectors 

Model Description 

I.1 Elman Back - Propagation ANN with input vector 1 (IV1) 

I.2 Elman Back - Propagation ANN with input vector 2 (IV2) 

II.1 Least Square – Support Data Machine (LS-SVM) with input vector 1 (IV1) 

II.2 Least Square – Support Data Machine (LS-SVM) with input vector 2 (IV2) 

III.1 LS-SVM with Daubechies type 4 Wavelet Decomposition on 8 levels with input vector 1 (IV1) 

III.2 LS-SVM with Daubechies type 4 Wavelet Decomposition on 8 levels with input vector 2 (IV2) 

  



Table 5 NMBE, NMAE and NRMSE values given by Model I, II and III  

 
Model I Model II Model III 

Horizon Input vector 1 Input vector 2 Input vector 1 Input vector 2 Input vector 1 Input vector 2 

 
NMBE(%) 

1 -3,50% 0,72% -1,33% 1,06% 0,12% -2,50% 

3 -5,23% 1,44% -2,26% 1,48% 1,50% -3,79% 

6 -8,44% -0,21% -4,59% 5,27% 3,85% 0,45% 

12 -9,27% -1,25% -9,25% -1,20% 6,04% -1,41% 

24 -3,42% -2,55% -3,43% -3,15% 1,16% 13,40% 

 
NMAE(%) 

1 9,40% 6,50% 7,53% 6,40% 6,57% 6,92% 

3 15,11% 10,86% 13,62% 10,18% 10,77% 10,35% 

6 20,18% 13,79% 18,22% 13,50% 13,53% 10,53% 

12 21,12% 14,38% 21,11% 14,53% 15,04% 14,22% 

24 25,05% 19,49% 23,52% 19,50% 18,91% 19,00% 

 
NRMSE(%) 

1 12,57% 10,91% 12,14% 11,12% 10,66% 9,60% 

3 18,55% 15,61% 17,97% 15,79% 15,93% 14,09% 

6 23,11% 18,89% 22,07% 21,24% 19,65% 15,28% 

12 23,69% 18,80% 22,89% 19,73% 16,32% 18,76% 

24 26,20% 23,99% 23,68% 24,07% 20,86% 22,76% 

  



Table 6 Value of the amplitude and phase error 

 
Model I Model II Model III 

Horizon Input vector 1 Input vector 2 Input vector 1 Input vector 2 Input vector 1 Input vector 2 

 
SDE 

1 0,12 0,11 0,12 0,11 0,11 0,09 

3 0,18 0,16 0,18 0,16 0,16 0,14 

6 0,22 0,19 0,21 0,21 0,19 0,15 

12 0,22 0,19 0,21 0,20 0,20 0,19 

24 0,23 0,24 0,23 0,24 0,21 0,20 

 
SDbias 

1 -0,023 -0,016 -0,018 -0,019 -0,026 -0,028 

3 -0,060 -0,036 -0,058 -0,040 -0,065 -0,029 

6 -0,107 -0,062 -0,106 -0,082 -0,114 -0,042 

12 -0,182 -0,098 -0,182 -0,091 -0,136 -0,100 

24 -0,201 -0,153 -0,201 -0,148 -0,146 -0,135 

 
DISP 

1 0,119 0,108 0,119 0,109 0,104 0,089 

3 0,168 0,151 0,169 0,152 0,145 0,133 

6 0,186 0,179 0,188 0,189 0,156 0,147 

12 0,121 0,160 0,120 0,174 0,146 0,158 

24 0,105 0,183 0,104 0,187 0,154 0,148 

  



Table 7 Measures of Skewness and Kurtosis 

 
Model I Model II Model III 

Horizon Input vector 1 Input vector 2 Input vector 1 Input vector 2 Input vector 1 Input vector 2 

 
SKEW 

1 0,674 0,710 0,301 0,528 0,274 0,634 

3 1,029 0,769 1,012 0,580 0,564 0,266 

6 1,423 1,130 1,430 1,283 0,919 0,669 

12 1,457 1,373 1,457 1,182 0,911 1,406 

24 -0,126 -0,071 -0,129 -0,078 -0,258 -0,319 

 
KURT 

1 2,827 4,581 2,616 5,053 2,509 2,299 

3 1,433 1,648 1,442 2,744 0,868 1,070 

6 1,595 1,625 1,619 2,395 0,584 2,166 

12 1,387 1,967 1,388 2,129 0,639 2,060 

24 -0,610 -0,396 -0,608 -0,371 0,315 -0,460 

  



Table 8 Error distribution of forecast models at different prediction length (1h, 6h and 12h) 

 
Model I Model II Model III 

Horizon Input vector 1 Input vector 2 Input vector 1 Input vector 2 Input vector 1 Input vector 2 

 
[-1% - +1%] 

1 2,48% 28,94% 44,65% 37,85% 35,53% 20,88% 

6 1,32% 10,91% 1,11% 17,19% 22,25% 18,56% 

12 2,11% 6,96% 1,95% 10,17% 10,60% 17,82% 

 
[-5% - +5%] 

1 16,39% 63,52% 56,83% 61,78% 60,04% 48,29% 

6 5,90% 26,83% 5,27% 41,12% 36,69% 39,38% 

12 8,12% 21,24% 8,12% 24,62% 28,26% 35,00% 

 
[-10% - +10%] 

1 71,64% 77,65% 69,53% 76,91% 74,17% 73,59% 

6 11,65% 53,08% 11,81% 58,04% 51,98% 59,99% 

12 16,76% 43,91% 16,71% 43,96% 46,39% 54,14% 

 
[-20% - +20%] 

1 87,08% 90,83% 87,66% 91,09% 90,77% 94,89% 

6 66,63% 77,86% 70,16% 77,12% 74,17% 83,71% 

12 36,85% 77,91% 36,85% 74,80% 73,43% 78,55% 

 

  



Table 9 The extraterrestrial solar irradiance for the investigated site (Lat. 40°21' Log. 18°11') 

Month 

 

Hour 

17 Jan 16 Feb 16 Mar 15 Apr 15 May 11 Jun 17 July 16 Aug 15 Sep 15 Oct 14 Nov 10 Dec 

03:00 

AM 

            

04:00 

AM 

            

05:00 

CET 

    99,98 153,98 100,47      

06:00 

AM 

   203,60 366,20 414,75 353,80 252,49 129,95    

07:00 

AM 

 58,89 254,67 472,30 624,12 667,29 619,91 518,23 401,06 256,85 99,49  

08:00 

AM 

180,63 311,08 493,66 690,26 805,55 840,06 808,31 740,70 635,92 501,30 326,28 206,47 

09:00 

AM 

392,78 534,47 734,25 935,14 1058,26 1097,88 1056,96 983,24 860,81 706,06 516,39 398,22 

10:00 

AM 

551,76 706,27 899,35 1097,42 1205,18 1239,93 1213,20 1142,86 1019,38 840,95 651,82 537,89 

11:00 

AM 

645,47 811,77 1005,46 1187,24 1292,32 1327,21 1304,80 1237,09 1104,36 917,09 728,98 620,58 

12:00 

AM 

672,50 850,22 1038,78 1210,02 1308,08 1343,19 1330,29 1261,46 1119,71 926,80 730,46 627,43 

01:00 

PM 

641,08 813,96 1000,09 1156,21 1248,21 1289,82 1287,75 1213,33 1065,18 854,50 664,42 576,16 

02:00 

PM 

533,64 709,96 888,12 1032,31 1125,66 1176,17 1177,70 1097,39 931,49 714,37 531,51 449,09 

03:00 

PM 

370,26 539,14 709,22 848,85 943,61 997,09 1008,01 922,34 746,59 517,21 343,99 277,31 

04:00 

PM 

156,77 324,70 484,58 618,66 722,26 783,83 788,66 700,14 508,72 279,57 108,93 58,50 

05:00 

PM 

 76,67 224,64 362,37 474,89 543,75 548,24 440,84 246,41 12,96   

06:00 

PM 

   83,94 205,85 290,76 293,38 176,59     

07:00 

PM 

     36,51 36,28      

08:00 

PM 

            

09:00 

PM 

            

 

  



Table 10 The cross correlation coefficient RTP(%)of prediction models at 3h and 12h forecast 

time horizons 

 Model I Model II Model III 

RTP (%) +3h RTP(%) +12h RTP(%) +3h RTP(%) +12h RTP(%) +3h RTP(%) +12h 

20 Nov Cloudy day 57,18% 24,90% 62,18% 28,29% 74,89% 62,33% 

14 Nov Sunny day 83,81% 72,64% 86,91% 79,13% 92,86% 92,02% 

2 Dic Cloudy day 62,19% 17,62% 62,94% 22,72% 67,23% 66,88% 

23 Dic Sunny day 96,59% 86,00% 98,30% 87,23% 95,23% 92,84% 

14 Jan Cloudy day 63,65% 11,20% 72,10% 18,43% 85,80% 47,33% 

19 Jan Sunny day 98,36% 89,65% 97,55% 89,29% 95,70% 89,29% 
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