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ABSTRACT

The advancement of photovoltaic (PV) energy into electricity etadquires efficient photovoltaic
power prediction systems. Furthermore the analysis of PV powerasting errors is essential for
optimal unit commitment and economic dispatch of power systemssigthficant PV power
penetrations. This study is focused on the forecasting of the povpert @fita photovoltaic system
located in Apulia - South East of Italy at different foreicmgsthorizons, using historical output
power data and performed by hybrid statistical models based on LaaesteSSupport Vector
Machines (LS-SVM) with Wavelet Decomposition (WD). Five fsting horizons, from 1 h up to
24 h, were considered. A detailed error analysis, by mean amtbistatistical distributions was
carried out to compare the performance with the traditionaliéigifNeural Network (ANN) and
LS-SVM without the WD. The decomposition of the RMSE into thredrdmutions (bias, standard
deviation bias and dispersion) and the estimation of the skewness &osiskatatistical metrics
provide a better understanding of the differences between predictionemstinement values. The
hybrid method based on LS-SVM and WD out-performs other methods in jbatynaf cases. It
is also evaluated the impact of the accuracy of the foragasiethod on the imbalance penalties.

The most accurate forecasts permit to reduce such permaltddlus maximize revenue.
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1. Introduction

Productivityforecasting has always been a key issue in power system openatpamtitular, with
the rise of deregulation and free competition of the electricepawdustry, loads and productivity
forecasting has become more important than ever before. Sirewatde energy power plants
were used, such as PV systems and wind farm, the productivitya$pries the national energy
system becomes difficult due to the high variability of tleeteicity production of this new system.
The present study is a part of the funded research projé‘th‘éfmework Programme Building
Energy Advanced Management Systems (BEAMS)”. The project antgevelop an advanced,
integrated management system for many buildings, in particuléindgrublic ones; this system has
to be able to control and improve the energy efficiency of infrasires in term of using public
lighting, ventilation, air conditioning, electric vehicles and ottygres of energy from renewable
sources. Furthermore, part of the BEAMS research program conhberstudy of the benefits of
installation of PV systems and the development of tools to immpiraize the distribution of
loads in the grid composed by the public facility services. The UniyarsiSalento is one of the
two pilot sites in which this project is being developed [1]. Thartsterm PV power prediction is
very important for the planning and management of electric systerthebatitical aspects have to
be considered. The forecasting accuracy depends also on tteemaanditions of installation site
and the randomness of solar source is the main limitation of phtatimveystem, which influences
the quality of the connected electrical system. The possitbliyredict the solar irradiation or PV
power (up to 24 h or even more) [2, 3, 4] and the development ofimeaptediction model [5]

help to optimize the integration of PV generator in thetategrids.
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The forecasting methods applied in the field of renewable energy celadsified into different
categories: the physical model, the conventional statistiodemthe spatial correlation model, and
the artificial intelligence [6, 7]. Some of these prediction el®cre more accurate at short-term

prediction while others are better in long-term prediction [6]

Electric load time series are usually nonlinear functions of exmge variables. To incorporate
non-linearity, Artificial Neural Networks (ANNSs) receivegteat attention in solving problems of

electricity price[8], electrical energy consumption [9] or prathity forecasting [10, 11, 12].

In [13, 14, 15] methods based on artificial neural networks wereeimggited for estimating the
energy provided by a PV generator in the next hours. In particular irfdabifferent methods
were compared: three of them are classical methods and thk tmetis based on an artificial
neural network developed by the R&D Group for Solar and Automatic Eaeripe University of

Jaen.

In the literature different methods based on artificial intefige techniques have been
implemented, including the Artificial Neural Network (ANN) bfulti-Layer Perceptrons (MLP)
[16], Radial Basis Function [17] and Recurrent Neural Networks §b8] Adaptive Neuro-Fuzzy

Inference Systems (ANFIS) [19].

Studies dealing with the applications of ANNs for PV and wind geiwgr forecasting can be found
in [20,21, 22]. In [23] ANNs have been applied for annual energy harvesiinglation of grid-

connected PV systems.

Fadare et al. [24, 25] applied ANN model to predict wind speed warif4] and to forecast solar

radiation in Nigeria [25].
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Artificial neural network models provide better short-term produgtiforecasts with respect to
standard linear Autoregressive Integrated Moving Average (ARIMAjels [18] and persistent

model [26].

De Giorgi et al. [27] compared ARMA models, which perforrmadir mapping between inputs and
outputs with Artificial Neural Network (ANNs) and Adaptive Newrozzy Inference Systems
(ANFIS), which perform a non-linear mapping, underlining thatJoag time horizon, ANNs
presents higher accuracy in wind power forecasting. This wasatdiomed in [28] for PV power

predictions.

In [29] Radial Basis Functions and Multilayer Perceptron ANNgsewmmpared to predict solar
radiation by estimating the clearness index. To forecast theyhglabal horizontal solar radiation,
a method, based on the combination of the k-means algorithidARdnonlinear autoregressive)
network, was proposed in [30]. In [31] a regression neural netwaskmyalemented to predict the

solar radiation on tilted surfaces.

In [32] the power forecasting of a PV system was performed byrEimaaral network, which was
based on solar radiation and weather forecasting data as inputs.dfoavevajor risk in the use of
ANN models is the possibility of excessive training data approxamat.e., over-fitting, which

usually increases the out-of-sample forecasting errors.

Recently, new methods for time series forecasting that asedbon Learning Machines were
developed, using Support Data Machines (SVMs) [33-34]. Severakstudderlined that SVMs
are more resistant to the over-fitting problem, by achieving bmyeralization performance in
solving forecasting problems of various time series. SVM can moaeiplex problems with
datasets given by several variables and a reduced training dataf8%] the SVM was used to
model the battery nonlinear dynamics. The feasibility of usinyi$¥ forecast electricity load

was discussed in [36]. An advantage in the use of SVM is thatless computational expensive
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than traditional ANN models based on back-propagation algorithms [[Btandes et al. [38]
compared favorably the performance of SVMs with the multilgyerceptron (MLP) neural

networks for the prediction of the wind speed in Madina citydbArabia.

In [39] the SVM was applied to estimate daily solar radiationgusunshine duration. In [40] an
estimation of the monthly solar radiation was obtained by SVM metthadsvere trained on air
temperature data. In [41] the impact of different predictioizbos was evaluated for photovoltaic
power forecasting methods, that were based on support vect@siegrand numerically predicted

weather variables.

In the literature various hybrid SVM methods were also develog2[d.[An adaptive two-stage
hybrid network with self-organized map (SOM) and support vector machifid)(&as developed

for short-term load forecasting in [43].

Beyond the hybridization of the SVM, in the recent literature aamaiof the standard SVM has
been introduced that is the Least Square Support Data Machir&@U$ which uses a simplified
linear model, simpler and computationally easier but with thee sasivantages of the ANNs and

SVMs models [44]. LS-SVM models were already applied for vaoder forecasting [45, 46, 47].

Regarding the hybrid methods, prediction forecast models that @@ tasvavelet decompositions
WD, could be used to improve the prediction performance of shortlbaminforecast, as shown in
[48, 49]. Least Square Support Vector Machine (LS-SVM) with WsivEransform were used in

[50] to predict day-ahead electricity prices.

The PV power time series generally include low and high frequestapenents. WD decomposes
the PV power time series into its components, which could be sesgatately as input in the
prediction model. In [51] a hybrid approach based on WD and ANNs and evalytialgorithm

was successfully proposed for accurate short-term load foregastpower systems.
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Forecasting the produced energy with high accuracy is a key issuicrogrid control, where the

photovoltaic (PV) energy sources are dominating the market.

The integration of energy sources into micro-grid operatior?\Agenerators or wind turbines,
needs the consideration of power generation uncertainty. Hiemagptimal operation of PVs and
wind turbines, the capacity of solar and wind generation neusbbsidered in the scheduling of the
micro-grids. The dependable capacity of PVs and wind turbiae isportant factor that is related

to the accuracy of photovoltaic and wind power forecast [52].

Finally forecast errors can have substantial economic conssegjahthey are large enough that

they cause a different commitment than would have been pexdonith an optimal forecast.

Furthermore, in the liberalized markets, e.g. in 1té®]] if there is a mismatch between the
injections of a photovoltaic power plant and the day-ahead marketrpth& energy injections out
of a tolerance band are charged of imbalance penaltieH&4{hese reasons, very important is the
analysis of the accuracy of the forecasting method by theai@ of several statistical metrics
and of the forecast errors distribution, e.g. the tails offtinecast error distribution have the
greatest economic impact and there is more uncertainty foréneasts.

Despite the importance of a deep analysis of the accurabg ébrecasting methods, several works
in the literature performed the evaluation of the differentciasdng methods by the estimation of
conventional metrics, as the root mean square error (RMSE) hiaa error (MBE), and mean
absolute error (MAE). In the present study PV power output fetiegpare performed by LS-SVM
with Wavelet Decomposition of the input data. Two different inptaskts are implemented. The
first one is based on the measured power output, the second ordsosi® module temperature,
the ambient temperature, and the irradiance on plain incindge tilt angle. The results in term of
accuracy are compared with those of ANN. The performance éwalus performed by a detailed

error analysis [55].
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In the literature few works focused on the comparison of Al hybrid LS-SVM forecasting

models for PV power based on the evaluation of several errocsiet

In the present work a deep study of the statistical errortiisish, a decomposition of the standard
deviation by amplitude and phase error and the evaluation of the skeamkkartosis statistical
metrics allow to better characterize the performance ofSUYBl and demonstrate that it
outperforms ANN methods. The results of the error analysis ®isp used to evaluated the impact

of the accuracy of the forecasting method on the imbalancétipsraand costs.

2. PV POWER AND INPUT DATA

The PV park is located in the campus of the University ofr&al in Monteroni di Lecce (LE),
Puglia (40° 19'32™16 N, 18° 5'52"™44 E) that is characterized byditdieanean climate. The PV
modules were installed on shelters used as car parking, as shéwgn 1. The nominal power of
PV system is 960kWP by two sub-fields that have the same dri(h0t) and different tilt of
modules (3° and 15°). Technical specifications of the PV modula aedail description of the two
subplants are reported in Table 1.

In order to monitor the main parameters of PV system, an atezhidata acquisition system is
implemented. A set of sensors is used to measure the saldiatiion and the PV module/ambient
temperature. Hence, the data are processed and colledieel BZADA System SIMATIC WInCC.
The data of PV power are collected every one minute, insteaddlar irradiance on the two
different tilt modules, the ambient temperature and the mddulperature are sampled every 10
minutes. These data are available on the ESAPRO privatsitegb6].

One of the most important steps in the development of forecastidglsns the selection of the
input variables that mostly affect the PV power.

The choice of the data, used in the input vector, influetheeadequacy of the forecasting methods.

A high number of input parameters, called forecasting factoekes the forecasting system
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complex, but the use of few input parameters entails an inetenjarecasting model. Therefore it
is important to find an adequate choice. In this paper thiegbien models implement the historical
data series of meteorological parameters as the input vector
The time series data were recorded from 05/03/2012 to 05/03/2013 &®erginutes (365
days/8760 hourly records), so the input data were calculateddbrh®ui as follows:
L 18
F.0) ==Y F() i=1,...8760 1)
6t:il.*i
where (i) is the average hourly value of each considered vagaateounting for the previous 60
minutes respect to the hourThe Table 2 summarizes input parameters of the PVrsysthich
were used as forecasting factors for the various predictionlsnatithe five horizons: +1 hour, +3
hours, +6 hours, +12 hours and +24 hours.
As discussed in [55], the use of the input vector given by the ioetdiata of measured PV power,
leads to decrease of the performance of the forecasting modéhe present work the impact of
the use of the weather parameters in the input vectobeifinalyzed for both ANN and LS-SVM
methods, therefore two different input vectors were choserdlmsthe following data:
¢ the average value of the PV powe(ilPat the i-hour
(IV1) Input Vector 1 X()=[R()] (2)
« the hourly average value of the PV power (kW), module tempergfi€), ambient
temperature (°C), irradiance on plain inclined attatigle of 3° and 15° (W/H

(IV2) Input Vector 2 x(i)=[ T(i); Ta(i); I5(1); 11s(i), Pm(i)] 3

To define the target, the sum of the average hourly powgrs &uring the forecast time horizon

was considered as:
i+l

P(i,1)= > P.(r) (4)

r=i+l

3. THE PERFORMANCE EVALUATION
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To evaluate the forecasting performance, the predicted PVrpaiges were compared with the
measured ones. For this aim, several statistical meiecs introduced that explained the average

deviations between forecasted and measured data.

3.1 Normalized error

The simplest error measure is the difference between prddand measured data, to evaluate the

degree of similarity between these. Therefore the statistietrics [55, 57, 58] were considered as

follows:
* Normalized error E()=PR, (i,I)—TN (i,I) (5.a)
1 M
« Normalized mean bias error (%) NMBE(l) = [V DZ E (I)j (100 (5.b)
i=1
1 M
+ Normalized mean absolute error (JMAE() :(M §:|Ei (I)|j (100 (5.c)
i=1
_ 1] 2
NRMSE (1) = | > (E; (1))’ 100
¢ Normalized root mean square error (%) M = (5.d)
where:

i = generic hour of the predicted data;
| = time horizon;

M = number of predicted data, equal to 1905;

: T(,l . . . .
Ty (I,I)= M( )_ , Where T(i,l) is the predicted power at hour i for the timoeizon I;
MaxZ, (P(i,1) )
- P(i,)) o N
Py (l,I): Y , where P(i,l) is the measured power used as target at fimutime
MaxZ, (P(i,1) )

horizon, defined as Eq.(4).

3.2 The amplitude and phase error



208 To understand if the prediction method under or over-estimaesPV power, the standard

209 deviation error SDE is decomposed as the sum of two elements [59]

210 DE(1) = \/Ml_l Di En-&0f (6.a)
211 SDE?= SDbia$ + DISF (6.b)

212

213 Where

214 Ei (1) is the mean normalized error;

215 SDyasand DISP are the amplitude and the phase errors.

216

217 The amplitude error is due to an overestimatiooraterestimation of the measured data. The phase
218 error is due to a timing shift of the predictedued with respect to the real data. The,S@nd

219 DISP are defined as:

220 « Standard deviation bias D) =07 (1) — (1) (6.c)
221 « Dispersion DISP(l) =20, (o, (N[1- Ry) (6.d)
222  where:

223 » or(l) = standard deviation of (i | );

224 » op(l) = standard deviation o (i,I);

225 e R, =the cross-correlation coefficient betwe'EJ(i,l) and P (i,I).

226 3.3 The statistical error distribution

227 To analyze the error distributions, two statistinatrics were introduced: the skewness (SKEW)
228 and the Kurtosis (KURT). The first parameter is @asure of the symmetry of the distribution, or
229 more precisely, the lack of symmetry. If the skesmes negative, the distribution is skewed left.

230 For positive values, the data set is skewed riljithe skewness is near zero, the distribution is



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

symmetric. The second one describes the magnituttee gpeak of the distribution and indicates if
the data are peaked or flat relative to a normstridution. Therefore, for high values of the
Kurtosis parameter, the distribution has a peak tiga mean and decreases rather rapidly with
heavy tails. Instead the distribution has a flantér near the mean rather than a sharp peak in
presence of low value of the Kurtosis parametees€hparameters are defined as follows:

_ o (E-E )
XEW=T —1')\EIM—2)%:( D J (72)

4. THE FORECASTING MODELS

This section describes the models that are implézdeim this study to forecast the PV power
output: the ANN and the LS-SVM. The second onegppliad in two configurations, with and
without the Wavelet decomposition of the input dataThe schemes of the different forecasting

approaches are shown in Fig. 2.

4.1 Artificial Neural Network

An artificial neural network is similar to the news system, through the synapses the electrical
impulses move to another neuron. The output sigaashe sum of the weighted input signals. A
particular function adjusts continuously the weggtat obtain the defined accuracy (the training) test
[60].

The Elmann network is one of the most popular AN#shaecture. It's a Feed-Forward neural
network, in which each layer sends the output toveer layer. Therefore there is an indirect
connection between output and input data. A reatigennection in the first layer allows the Elman

network to detect and generate time-varying pastefndifferent activation function allows to
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define the structure of the Elmann network. The emngplic tangent sigmoid transfer function
(‘tansig’) is used to hide the neurons in the ingnd hidden layer of the networks. The ‘purelin’
function activates the neuron in the output laiering the training of the neural network, the back
propagation algorithm is applied, so a gradientceies method establishes the weights. Initially
arbitrary weights are chosen and are adjustedeitetirning. In this iterative process, a datasiin

to the network and is propagated forward to deteentine output data. The differences between the
output data and the real data represent an erner.ldarning process continues until the network
responds with output data, when the Mean Squawe EI8E is less than a fixed value [61].

This algorithm updates networks weight and biasieslaccording to gradient descent momentum
and an adaptive learning rate, so the Gradientdmdq@raingdx’) with variable learning rate and
momentum weight/bias learning function (‘learngdraie utilized. Table 3 summarizes the main
Elman ANN settings. A preliminary data analysis vg@sformed to validate available input data.
The data were normalized in a range [-1, 1]. Th# @B the collection data are applied as training

data sets (8 months), so the residual (35%) ait aséest data (4 months).

4.2 Least Squares Support Vector Machine

ANN methods present the disadvantages of the teydéor over-fitting and the enormous

computational resources that are required for tianibhg. Lately, alternative methods were
investigated as Support Vector Machine [34] that &avell capacity of generalization performance.
A different form of SVM algorithm was proposed id4], called Least Square-Support Vector
Machines (LS-SVM), in which the LS-SVM that implemg an approach based on Structural Risk
Minimization, leads to more generalization and dsoiover-fitting. Therefore, LS-SVM is

computationally less expensive, since the trainieguires only the solution of a set of linear

equations.
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Given a training set of N data poi{ Yi: X}k , wherex, 0 R is the k-th input data ar Y« OR

is the k-th output data, the following regressiomdel can be constructed by us ¢(>&), nonlinear

function mapping of the input space to a higheratisional space:
Y, =wW@(x ) +b, k=1...N (8.a)

where w is the weight vector and b is the bias term
The above regression equation is transformed tadratic optimization problem with constraint; it

means to minimize a cost function J:
T N 2
mind,s(wé) =3wW'w+y3 3 & (8.b)
! k=1

with Sk is an artificial variabley is the regularization factor and subject to equalonstrains
VWi g(x)+b]=1-¢&,, k=1..,n (8.c)

In order to solve this optimization problem, Laggarfunction is defined as:
L(wb,&a) = 35 =D @ (VW #x) +51 -1+ &} (8.
k=1

with a, R is the Lagrangian multipliers,

Solving these equations results into:

ming= > a,Kwx)+b
k=1 (8.e)

Where ¥ is the approximated value of, and K(w, %) is called the kernel function, in the present

study the Radial Basis Function kernel RBF is uséate details are reported in [34]. The LS-SVM
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is tuned by searching the optimal regularizatidefnel parameters” as well as the model order,

using a 10-fold cross-validation (CV) procedure][44
4.3 Wavelet Decomposition Technique

Time series of solar irradiance and temperatura datlude information of daily, seasonal and
long-term behaviors; therefore, to improve the dasting model performance, it would be suitable
to use frequency contents of those signals fonitrgj instead of the signal values in itself. T th
purpose the forecasting models can be based onetaleezomposition of the input data.

Wavelet transforms (WT) are time-frequency represg@ms for continuous-time signals. A wavelet
is a mathematical function that allows to sepasagven function or time signal into different time
scale components. It is possible to assign a fregueange to each scale component. The wavelet
d(t), called mother wavelet of a signal(fvailable at the k-th time interval of n), hasaacalled

Discrete Wavelet Transform (DWT) defined by:

W(mn) = 2‘m’2§: (i —N*2m)/27)
i=1 (9)

The scaling and translation parameters are funstiminthe integer variablesn and n (a=2",
b=n2"), wherea determines the spread of the wavelet hrits central position. In the proposed
forecast method, a fast DWT algorithm developediajlat [48] and based on decomposition and
reconstruction low-pass and high-pass filters wagdu This algorithm allows to obtain
“approximations” and “details” from a given signahn approximation is a low-frequency
representation of the original signal, whereas tides the difference between two successive
approximations and depicts high-frequency companehthe signal.
In the present work the Daubechies type 4 withvBlkewas applied to the time series of input data.
The main idea of the algorithm is to use wavelehsform as a pre-processing tool to decompose

the original time series into various time scaldss allows the forecasting model, as LS-SVM and
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ANN, to learn about the characteristics of the algrat different time scales and to arrive at a
model capable of approximating the signal. Figh@ves the implemented algorithm, in which the
training and test signals were decomposed usingtheelet Transform and each decomposed
signal was used as single input vector for the L&asres Support Vector Machine. The final
forecast value is given by the sum of the outpfitsach forecast on the individual component of

the decomposed signal

5. RESULTS AND DISCUSSION

5.1 Analysis of the statistical metrics

This section illustrates the results for the ddfar prediction methods, described previously: the
ANN, the LS-SVM and the hybrid LS-SVM with the Wadetdecomposition of the input dataset.
For each forecast methodology, the input vector &vtl IV2 (Eq.2 and Eq.3) are used at several
forecast time horizons (1h, 3h, 6h, 12h, and 2Zahle 4 reports the acronyms that are used to
identify the various models with the different inpectors.

In Fig. 3 the measured PV power values of a weeth@fFebruary 2013, which presents high
PV power variability are compared with the predictalues of the Model |, 1l and Il based on the
inputs IV1 and IV2 at the time horizon equal to Tthe forecasted power is in quite good
agreement with the measured power. The results;hadaie obtained by all models based on the
input IV1, are consistent with the measured powerdrrespondence of the peaks; even if an over
estimation is observed when the power values argedo zero in the model I. It's also observed
that the predicted power time series present & shithe right. This behavior is less evident when
the input IV2 is used, especially at low PV powalues.

To deeply analyze and compare the differences legtvlee predicted and the measured power
time series, the normalized errgri€plotted at the time horizons of 6h and 12hslamwn in Fig. 4
and Fig. 5. The chosen week is characterized byepewident fluctuation that allows to underline

the impact of the power variations on the errors.
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In all cases, the time series of the normalizedrdailows the trend of the normalized measured
PV power, high prediction error values occur whies PV power drastically changes, with an over
estimation (positive values of normalized errorjewhhe PV power increases. A negative value of
E; is recorded if the PV power is close to zero. T8eSVM based on the Wavelet decomposition
of the input dataset (Model Ill) is less sensitteethe variation of the PV power and gives the
lowest prediction errors. Training this model witle input vector IV2 increases the prediction
accuracy.

To better evaluate the forecasting performancestdugstical metrics that are described in secson
are determined. Table 5 illustrates the mean dameach model, using the inputs IV1 and 1V2.
Focusing on the ANN, the NMAE increases in the ea@glO - 25,05% using the input vector V1
and 6,50 - 19,60% for the input IV2. In the PV pod@ecasting by LS-SVM model, the NMAE
values are in the range from 7,50 to 23,50% for &l 6,40 — 19,50% for IV2. Furthermore the
implementation of the Wavelet decomposition for ithyeut vectors improves the accuracy, in fact
the NMAE of the models 11l.1 and 11l.2 respectivelaries between 6,60 — 15,00% and 6,90 —
19,00%. As expected, the NMAE rises if the timeizmnr increases and the highest values are for
the models based on PV power time series (IV1pairicular for the ANN and LS-SVM without
the Wavelet Decomposition. The comparison betweklAR values in the cases of the models 1.2
and 1.2 shows that the performance of the two r®dge quite similar. However the best
forecasting performances can be obtained if thepBWer prediction model is trained on all the
available weather parameters (1V2). It is also entdhat the use of the Wavelet decomposition of
the input vectors reduces the error at long tintézbas, particularly for the input vector V1.

Additional metrics, as the normalized mean biasreand the normalized root mean square
error were determined for a more accurate errolysisa as summarized in the Table 5. In Eq.5.d
the errors are averaged after they are squarethesbBlRMSE assigns a different weight to the
errors. The NRMSE is not ever smaller than the NMAlgh difference between NMAE and

RMSE indicates that the predicted values are vprgagl from the measured data. As the NMAE,
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NRMSE also rises with the prediction length, assgrhe lower values in the LS-SVM model
with Wavelet decomposition (Model Ill). Focusing NIMBE, an under-estimation of the PV power
is observed for all the time horizons by implemegtihne model I.1 and II.1; instead the SVM with
the Wavelet Decomposition model based on IV1 garesver-estimation of the PV power.

To evaluate the fluctuations of the error arourartiean value, the standard deviation error SDE, as
defined in Eq.6.a, was calculated, it rises iftiee horizon increases, as shown in Table 6. Models
with the input IV2 present lower error variatiohsih the models that were trained on the input 1V1.
Low values of SDE were obtained for the modelthis confirms the best prediction performance
for this model.

Recent power forecasting systems typically take atcount systematic errors by estimating the
forecast bias (NMBE) and SR error and then applying statistical correctionesobs prior to
analysis. The bias can be subtracted and thg<$2n be adjusted by increasing or decreasing the
standard deviation of the prediction, contraryhi® phase error.

In the Table 6 the values of §Rand DISP, as defined in Eq.6.c and Eq.6.d, aceralsorted. The
results underline that all the models tend to wedtimate the PV power (negative values of;@D
and the amplitude error is higher at long time tszh period. Regarding the dispersion, DISP, the
models | and Il present the same phase errorgtf@renput vectors, instead its decrease is eviden
for the predictions of the model I11.2. In accordarto Eq.6.b, Fig. 6 reports the value of 3DE
SDyias and DISP that were obtained by training the models withitigit IV2. It is evident that the
main contribution at the standard deviation ersogiven by the phase error, especially for short
time horizon, with the lowest values for the modkl Increasing the prediction length, the
amplitude and phase error also increase, leadinigetdrighest values of SBEt 24h. The Shks
and DISP analysis is in accordance with Fig. 3jrtlestimation quantify the under or over
estimation of the predicted data, and the time shipredicted PV power time series. The statistica

distributions of the power prediction error werpaged in Fig. 7 and Fig. 8.
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In the forecasting methods that were trained omtingl (Fig. 7), the error distributions of the
models | and Il at short time prediction lengthg guite similar with the most values of the
normalized error Ei in the range [-20%, -10 %]tHé error distribution is narrow, the probability
that the errors assume low values is higher. Whereasing the time horizon, the histograms are
shifted on the left, this means that the normaleedr has a high probability to assume value & th
range [-40%, -20%]. The distributions are more #at24h. Instead for the model Il the error
distributions are quite different, especially f@h+and +12h horizons, the majority of the predittio
errors concentrate in the range [-10%, O].

The statistical distribution of the normalized esrfor all the models with input vector 1V2 (Fig). 8

is generally narrow with high probability of occeince in the range of low error values in particular
at very short prediction horizons. At 12 and 24hk tistributions don’t present high peaks, but
cover a wide range of the normalized error.

To characterize the forecast error distributiore gkewness and kurtosis statistics were also
calculated and reported in the Table 7 for eacHiptien horizon and forecasting method. It's noted
that the skewness increases for long time horizih positive value, but at 24 hours it has an
inversion of polarity. This means that the err@trilbution was generally positively skewed at short
time horizons and negatively skewed at long hoszdnstead concerning the Kurtosis values, as
might be expected, the short time ahead forecasts imuch higher kurtosis values than those made
at the day-ahead timescale. This would be expdoteal the reduction in uncertainty that occurs
between making a forecast in the day-ahead timadfrarersus a single hour ahead. The kurtosis
value is positive and decreases with the incredsbeohorizon, assuming negative value at 24
hours. The distribution is narrow with high peakueaat short time horizon, becomes flat at 24
hours. This is in accordance with Fig. 7 and Fig.8.

Comparing the different forecasting methods, ievédent that the forecasts based on LS-SVM

present highest kurtosis values from one hour-lupei one-day head.
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The probability that the normalized error is inigeg error range, focusing on the time horizons of
1h, 6h and 12h, is reported in Table 8, in which Biest performances are underlined. For each
model, the probability to make an error lower théfiis less than 45%, and best values, about 20%,
are obtained with the model Ill. Considering the, 3%% and 20% confidence intervals, at fixed
time horizon the models with the input IV2 preséim¢ best results. Therefore, in Fig. 9 the
probability error distribution is plotted for all adels using input vector IV2. Reducing the
confidence interval from 20% to 10%, the probapiffenerally decreases up to 30% at 24h. The
probability to make an error smaller than 5% isirange of 50-60% for short time period and it
decreases up to 15% at 24h. The analysis of theapility distributions underlines that the use of
the Wavelet decomposition permits an improvemerthépower predictions; in particular, at the
long time horizons, with highest probability, witkspect to other models, in the range of low error

values, while at short time horizons best preditiare given by model Il.
5.2 Impact of daily weather on prediction errors

The historical data of the solar irradiance aredus® input for the forecast models, however the
different weather conditions lead to variationsraddiance, hence an analysis has been performed
to investigate the effects of the weather fluctuadion the accuracy of the prediction method

Some significant days have been taken into accoumtrder to evaluate the accuracy forecast
methods under different weather comatiss. This investigation has been carried out censid the
ANN, LS-SVM and LS-SVM model with Wavelet decompasi based on V2 at two different
forecast time horizons (3h and 12h).

Therefore the extraterrestrial solar irradianggs@ntroduced and defined as follows [62]:
360
Go = Gsc (1+0.033 cosZ=) cos, (10)
where

Gsc is the solar constant (1367 Wim

n is the day of the year [63];
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0, is the zenith angle that is the complement ofsthlar altitude angles (6, =90 —os).
The extraterrestrial solar irradiance f@r the investigated site (Lat. 40°21' Log. 18Y14'shown in
Table 9. The zenith angle has been calculated demsg the solar altitude angle [64].

Hence to underline the effects of the weather d¢mndi, a comparison between the normalized
measured solar irradiancegs (i), on the PV module tilted 15° and the correspogd
extraterrestrial solar irradiancep (s has been performed. The solar irradiance valugs baen

normalized as follows:

| (I) - |15(i)
P MaxX (Gy(1) (11.a)

- G, (i)
Gonll)= Nav2d (~ iV
0 Max;Z; (G, (1)) (11.b)

The Fig. 10 showsd,n, Gon andthe corresponding differencey @valuated for some days at
different weather conditions during the period ofvl solar irradiance and highest weather
variability. The solar irradiance difference;®as a regular trend, which is quite similar to the
extraterrestrial solar irradiance, ®n the sunny days (November™2012, December 332012,
January 19 2013). Instead some sudden fluctuations of tharsiotadiance difference Gare
evident on the cloudy days (November®2@ecember ¥ 2012 and January $42013).
Furthermore the solar irradiance differencq €n be identified as a parameter to extract
information about several weather conditions sigrirom the measured solar irradiance.

For the previous analyzed days, the cross comelatoefficient Rp(%) has been reported in the
Table 10 for three sunny days (Novembef 2812, December 332012, January 192013) and
three cloudy days (Novembers2Mecember % 2012, January 142013). It's noted that the cross
correlation coefficient is higher on the sunny ddlyan cloudy days. The forecasted PV power
values, predicted by each method, are in good ageewith the measured values for the sunny
day, instead the predicted power values have lawelzdion with the measured data under cloudy

weather conditions. Furthermore, for long predictione, the hybrid LS-SVM with WD method
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outperforms other models, in particular at cloudysiwith Rp values between 47,33% - 66,88%
against 11,20% - 24,90% obtained with the ANN aBt3% - 28,29% with the LS-SVM.. The

Model Il seems to be less influenced by cloudy tveaconditions, giving the best performance.

5.3 Impact of forecasting accuracy on imbalance costs

A preliminary analysis has been carried out to @ai& the economic impact of the forecasting
accuracy of the three methods, focusing the armsalysithe PV dispatched energy in the electric
grids. According to the Italian energies policye throducers of renewable sources energy can
participate in electric market through a programnraghsactions. In the Day-Ahead Market the
amount of energy that can be injected into the @npgkction Schedule) is established for each hour
of the next day, so the producers declare the guaritenergy to insert into the network with a day
in advance. However, the unbalancing charges gedpvhen there is a difference between actual
and scheduled injected energy [65]. The aim ofpifesent analysis is to characterize three forecast
models in terms of penalties for imbalance eneaggpting the approach used in [54] to calculate
the penalties for imbalance. Hence, the actualggné) is remunerated at the producer with a
energy price g established on base of the Day-Ahead Market,i# in the range [-10%;10%)] of
the energy declared gFEin the injection schedule (Case A). Otherwise,efach hour i a penalty,C
is applied to the amount energy equal to the gapden the actual-Eand the schedulepEenergy.
Therefore, if & has been underestimated that means the schedrtgyas higher than the energy
actually injections into the electric griddithe producer must repay the missing energypaica
equal to G+C, (Case B). If & has been overestimated that means the actualyeingrgted into the
electric grid is higher than the schedule enefgy, durplus energy is remunerated at the producer
with a price equal to £C, (Case C).

Even if the energy price is influenced by the dedhahenergy [66], in this analysis, the energy

price Gz is assumed constant for each day and hour and egt@c€/kWh and Cis considerated
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equal to 50% of the energy price.@Gence, for each hour i and all possible casesgttonomic
flow is defined as follows:

A. F(i) = Cg * Er(i) when |Ep — E;| > 10%E;

B. F(i) = Cg * Er(i) + (Cz+C)) * (Er(0) —Ep(i))  whenEp > Ey

C. F(i) = Cz * Er()) + (Cz—C)) * (Ex (i) —Ep(i))  whenEp < Ep

Fig. 11.a shows the percent occurrence of therdiitecases A, B, C (expressed on the total

number M). It’'s evident that the probability, inrpent terms, to inject the energy in the network
within the admitted tolerance is quite low (10%5%d). The probability to inject less energy than
schedule (case A) is higher for the ANN and LS-Skfddels, equal to 45% against 19,6% for the
hybrid LS-SVM with WD. This entails greater coststlae producer because of the penalties for
imbalance energy. The probability to inject morergy than schedule (case C) is higher for the
model 111 (70,9%). It means that the LS-SVM with weéet decomposition models allows to obtain
the additional revenue, which corresponds to therggnthat was not considered in the day-ahead
schedule proposed by the producer.
Finally, the Fig. 11.b shows the total economimmes, as the sum of the incomes of the case A, B
and C for the three forecast models, normalized wlie maximum economic revenue that is
obtained from the remuneration of the injected @ctuinergy at the pricegcase A). It is evident
that the LS-SVM with WD model guarantees the higbesnomic income, equal to 72,6%, than
the ANN e LS-SVM models, approximately 53% for bdfo, the results demonstrate that the LS-
SVM with Wavelet Decomposition model has the lowexsinomics impact in terms of penality and
the highest additional income, derived from itsdamcy to underestimate the PV power. Hence it

allows to obtained the greatest revenue.

6. CONCLUSIONS

This study is focused on the implementations obvative short-term forecasting systems based on

Artificial Neural Networks (ANNSs), Least Square $opt Vector Machines (LS-SVMs) and
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hybridized LS-SVMs for photovoltaic power predictiof a site located in Apulia region — South
East of Italy.

A detailed comparison between the ANN model andSMB4 with and without the Wavelet
Decomposition of the input dataset was carried anglyzing the normalized mean error and the
statistical distribution, to identify the most acate forecasting method.

The evaluation of the performance of different tagting methods is performed by the
estimation of conventional metrics, as the rootmsguare error (RMSE), mean bias error (MBE),
and mean absolute error (MAE).

High prediction errors were obtained from all fasiting methods at long time horizons. Observing
the normalized error, the LS-SVM based models rémtter performance than the ANN model but
the hybrid LS-SVM based on the Wavelet Decompasitid the input data outperforms other

models particularly for long forecasting horizons.

In the present work a deep error analysis was pedd. A study of the statistical distributions
of the normalized error was performed. In most satfee probability that the normalized error take
values in the ranges [-1%; +1%] is basically lovier the artificial neural networks and the
probability to reach an error less than 20% is gahehigher in the hybrid LS-SVM with Wavelet
Transform. The decomposition of the root mean sgpharror into three contributions (bias,
standard deviation bias and dispersion) and thmasbn of the skewness, and kurtosis statistical
metrics provide a better understanding of the difiees between prediction and measurement. As
might be expected, the short time ahead forecasts imuch higher kurtosis values than those made
at the day-ahead timescale. This would be expdcbea the reduction in uncertainty that occurs
between making a forecast in the day-ahead tinmeefyaersus a single hour ahead.

The bias can be subtracted and the standard deviedin be adjusted by increasing or decreasing
the standard deviation of the prediction, conttarthe dispersion error. Therefore the reduction of
the dispersion error constitutes the challengdudher improvements; hence forecasting methods

with low dispersion error permit to reach a be#tecuracy. The analysis showed that the reduction
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in the dispersion is mainly due to the implementatf the Wavelet Decomposition rather than to
the choice of the LS-SVM or ANN.

The impact of the solar irradiance fluctuation ba torecasting accuracy is also discussed. The
use of Model Il (LS-SVM with WD) leads to an imm® of the accuracy, in particular in the
cloudy days, which means that the decompositiothefinput data permits better to take into
account the solar irradiance fluctuations. Hencthér work will implement the difference between
the measured solar irradiance and the correspormditigterrestrial solar irradiance, as an input of
the forecasting method.

Finally an analysis was performed to evaluate #afiies for unbalancing energy of three forecast
models, concluding that the LS-SVM with Wavelet Baposition Technique model also permits to
reach the greatest revenue with lower costs foalamcing penality with respect to the ANN and
the LS-SVM.
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Table 1 Technical specifications of the PV module and system

Module
Type Mono-crystalline silicon
Nominal power (P,,) 960 kW,
Maximum power voltage (Vpm) 3000V
Maximum power current (Im) 3A
Open circuit voltage (V) 250 V
Short circuit current (l) 12A
Weight 4710 m? [4892 m?]
Net [gross] module surface 1.57 m? [1.63 m?]
Subfield
PV1
Nominal power of PV system 353.3 kW,
Azimuth -10°
Tilt 3°
Total number of modules 1104
Net [gross] modules' surface 1733.3 m? [1799.5 m?]
PV2
Nominal power of PV system 606.7 kW,
Azimuth -10°
Tilt 15°
Total number of modules 1896

Net [gross] modules' surface 2976.7 m? [3090.5 m?]




Table 2 Measured data used as forecast factors

Symbol | Unit Description
P kw Instantaneous AC power
Tm °C Module Temperature
T, °C Ambient Temperature
I3 W/m? Irradiance on plane of module with tilt 3°
I35 W/m? | Irradiance on plain of module with tilt 15°




Table 3 EIman ANN settings

Input Vector 1 Input Vector 2

Training function

TRAINGDX
Gradient descent with momentum and adaptive learning rate

back-propagation

] ) LEARNGD
Adapt learning function ) . . . )
Gradient descent weight and bias learning function
MSE
Performance function
Mean Squared Error
Number layers 3
1h 21 16
3h 31 26
Neurons (layer 1) 6h 61 51
12h 121 101
24h 241 201
1h 11 8
3h 16 13
Neurons (layer 2) 6h 31 26
12h 61 51
24h 121 101
Neurons (layer 3) — output 1
o ) ) TANSIG
Activation function hidden layer ) ) ) ]
Hyperbolic tangent sigmoid transfer function
o ) PURELIN
Activation function output layer . )
Linear transfer function
500

Epochs




Table 4 Acronym used to indicate the combination forecast methods and input vectors

Model Description
1.1 Elman Back - Propagation ANN with input vector 1 (1V1)
1.2 Elman Back - Propagation ANN with input vector 2 (1V2)
1.1 Least Square — Support Data Machine (LS-SVM) with input vector 1 (IV1)
1.2 Least Square — Support Data Machine (LS-SVM) with input vector 2 (1V2)
1.1 | LS-SVM with Daubechies type 4 Wavelet Decomposition on 8 levels with input vector 1 (1V1)
1.2 | LS-SVM with Daubechies type 4 Wavelet Decomposition on 8 levels with input vector 2 (1V2)




Table 5 NMBE, NMAE and NRMSE values given by Model I, 11 and 111

Model | Model 11 Model 111
Horizon | Inputvector 1 Inputvector 2 Inputvector 1 Inputvector 2 Inputvector 1  Input vector 2

NMBE(%)

-3,50% 0,72% -1,33% 1,06% 0,12% -2,50%

3 -5,23% 1,44% -2,26% 1,48% 1,50% -3,79%

-8,44% -0,21% -4,59% 5,27% 3,85% 0,45%

12 -9,27% -1,25% -9,25% -1,20% 6,04% -1,41%

24 -3,42% -2,55% -3,43% -3,15% 1,16% 13,40%
NMAE(%)

9,40% 6,50% 7,53% 6,40% 6,57% 6,92%

3 15,11% 10,86% 13,62% 10,18% 10,77% 10,35%

20,18% 13,79% 18,22% 13,50% 13,53% 10,53%

12 21,12% 14,38% 21,11% 14,53% 15,04% 14,22%

24 25,05% 19,49% 23,52% 19,50% 18,91% 19,00%
NRMSE(%)

12,57% 10,91% 12,14% 11,12% 10,66% 9,60%

3 18,55% 15,61% 17,97% 15,79% 15,93% 14,09%

23,11% 18,89% 22,07% 21,24% 19,65% 15,28%

12 23,69% 18,80% 22,89% 19,73% 16,32% 18,76%

24 26,20% 23,99% 23,68% 24,07% 20,86% 22,76%




Table 6 Value of the amplitude and phase error

Model | Model 11 Model 111
Horizon | Inputvector 1 Inputvector 2 Inputvector 1 Inputvector 2 Inputvector 1  Input vector 2
SDE
1 0,12 0,11 0,12 0,11 0,11 0,09
3 0,18 0,16 0,18 0,16 0,16 0,14
6 0,22 0,19 0,21 0,21 0,19 0,15
12 0,22 0,19 0,21 0,20 0,20 0,19
24 0,23 0,24 0,23 0,24 0,21 0,20
SDpias
1 -0,023 -0,016 -0,018 -0,019 -0,026 -0,028
3 -0,060 -0,036 -0,058 -0,040 -0,065 -0,029
6 -0,107 -0,062 -0,106 -0,082 -0,114 -0,042
12 -0,182 -0,098 -0,182 -0,091 -0,136 -0,100
24 -0,201 -0,153 -0,201 -0,148 -0,146 -0,135
DISP
1 0,119 0,108 0,119 0,109 0,104 0,089
3 0,168 0,151 0,169 0,152 0,145 0,133
6 0,186 0,179 0,188 0,189 0,156 0,147
12 0,121 0,160 0,120 0,174 0,146 0,158
24 0,105 0,183 0,104 0,187 0,154 0,148




Table 7 Measures of Skewness and Kurtosis

Model | Model 11 Model 111

Horizon | Inputvector 1 Inputvector 2 Inputvector 1 Inputvector 2 Inputvector 1  Input vector 2
SKEW

1 0,674 0,710 0,301 0,528 0,274 0,634

3 1,029 0,769 1,012 0,580 0,564 0,266

6 1,423 1,130 1,430 1,283 0,919 0,669

12 1,457 1,373 1,457 1,182 0,911 1,406

24 -0,126 -0,071 -0,129 -0,078 -0,258 -0,319
KURT

1 2,827 4,581 2,616 5,053 2,509 2,299

3 1,433 1,648 1,442 2,744 0,868 1,070

6 1,595 1,625 1,619 2,395 0,584 2,166

12 1,387 1,967 1,388 2,129 0,639 2,060

24 -0,610 -0,396 -0,608 -0,371 0,315 -0,460




Table 8 Error distribution of forecast models at different prediction length (1h, 6h and 12h)

Model | Model 11 Model 111
Horizon | Inputvector 1 Inputvector 2 Inputvector 1 Inputvector 2 Inputvector 1  Input vector 2
[-1% - +1%]
1 2,48% 28,94% 44,65% 37,85% 35,53% 20,88%
6 1,32% 10,91% 1,11% 17,19% 22,25% 18,56%
12 2,11% 6,96% 1,95% 10,17% 10,60% 17,82%
[-5% - +5%]
16,39% 63,52% 56,83% 61,78% 60,04% 48,29%
5,90% 26,83% 5,27% 41,12% 36,69% 39,38%
12 8,12% 21,24% 8,12% 24,62% 28,26% 35,00%
[-10% - +10%]
1 71,64% 77,65% 69,53% 76,91% 74,17% 73,59%
6 11,65% 53,08% 11,81% 58,04% 51,98% 59,99%
12 16,76% 43,91% 16,71% 43,96% 46,39% 54,14%
[-20% - +20%]
1 87,08% 90,83% 87,66% 91,09% 90,77% 94,89%
6 66,63% 77,86% 70,16% 77,12% 74,17% 83,71%
12 36,85% 77,91% 36,85% 74,80% 73,43% 78,55%




Table 9 The extraterrestrial solar irradiance for the investigated site (Lat. 40°21" Log. 18°11")

onth

Hour

17 Jan

16 Feb

16 Mar

15 Apr

15 May

11 Jun

17 July

16 Aug

15 Sep

15 Oct

14 Nov

10 Dec

03:00
AM

04:00
AM

05:00
CET

06:00
AM

07:00
AM

08:00
AM

09:00
AM

10:00
AM

11:00
AM

12:00
AM

01:00
PM

02:00
PM

03:00
PM

04:00
PM

05:00
PM

06:00
PM

07:00
PM

08:00
PM

09:00
PM

180,63
392,78
551,76
645,47
672,50
641,08
533,64
370,26

156,77

58,89
311,08
534,47
706,27
811,77
850,22
813,96
709,96
539,14
324,70

76,67

254,67
493,66
734,25
899,35
1005,46
1038,78
1000,09
888,12
709,22
484,58

224,64

203,60
472,30
690,26
935,14
1097,42
1187,24
1210,02
1156,21
1032,31
848,85
618,66
362,37

83,94

99,98
366,20
624,12
805,55

1058,26
1205,18
1292,32
1308,08
1248,21
1125,66
943,61

722,26

474,89

205,85

153,98
414,75
667,29
840,06
1097,88
1239,93
1327,21
1343,19
1289,82
1176,17
997,09
783,83
543,75
290,76

36,51

100,47
353,80
619,91
808,31
1056,96
1213,20
1304,80
1330,29
1287,75
1177,70
1008,01
788,66
548,24
293,38

36,28

252,49
518,23
740,70
983,24
1142,86
1237,09
1261,46
1213,33
1097,39
922,34
700,14
440,84

176,59

129,95
401,06
635,92
860,81
1019,38
1104,36
1119,71
1065,18
931,49
746,59
508,72

246,41

256,85
501,30
706,06
840,95
917,09
926,80
854,50
714,37
517,21
279,57

12,96

99,49
326,28
516,39
651,82
728,98
730,46
664,42
531,51
343,99

108,93

206,47
398,22
537,89
620,58
627,43
576,16
449,09
277,31

58,50




Table 10 The cross correlation coefficient Rtp(%0)of prediction models at 3h and 12h forecast

time horizons

Model | Model 11 Model 111

Rip (%) +3h  Ryp(%) +12h | Ryp(%) +3h  Ryp(%) +12h | Rrp(%) +3h  Ryp(%) +12h

20 Nov | Cloudy day 57,18% 24,90% 62,18% 28,29% 74,89% 62,33%
14 Nov | Sunny day 83,81% 72,64% 86,91% 79,13% 92,86% 92,02%
2 Dic | Cloudy day 62,19% 17,62% 62,94% 22,72% 67,23% 66,88%
23 Dic | Sunny day 96,59% 86,00% 98,30% 87,23% 95,23% 92,84%
14 Jan | Cloudy day 63,65% 11,20% 72,10% 18,43% 85,80% 47,33%
19 Jan | Sunny day 98,36% 89,65% 97,55% 89,29% 95,70% 89,29%
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