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Abstract: Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, dur-
ing microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyropto-
sis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated mo-
lecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger py-
roptosis pathways in different cell types with different outcomes. Moreover, some pathogens have
evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM
and Shigella flexneri IpaH?7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria
gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with im-
portant differences between pathogenic and commensal species of the same family. These patho-
gens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N.
gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused
by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been exten-
sively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton
and cell—cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and
endothelial barriers have only been partly investigated. Another important point is the diverse con-
sequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes
and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by
Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and com-
mensal bacteria. Particular attention will also be paid to the experimental models adopted and the
main results obtained in the different models. Finally, strategies adopted by pathogens to modulate
these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants
in the treatment of infections.
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1. Introduction

Cell death can occur either accidentally as a consequence of excessive physical, me-
chanical or chemical injuries, or can be programmed through distinct cell suicide path-
ways, collectively termed regulated cell death (RCD). The latter includes (i) programmed
cell death, necessary for development or tissue turnover that does not rely on any exoge-
nous stimuli [1,2] and (ii) diverse forms of RCD that the cell activates depending on the
stimuli received. Among these, pyroptosis is a programmed pro-inflammatory cell death
mediated by members of the gasdermin family [3], first described in 1992 in macrophages
infected by Shigella flexneri [4]. Pyroptosis plays an essential role in the innate immune
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response, inhibiting the replication of pathogens in the intracellular environment and ac-
tivating immune cells to eradicate the infection [5,6].

To recognize pathogens, mammalian host cells use a broad array of pattern-recogni-
tion receptors (PRRs), which bind either conserved microbial molecules, collectively re-
ferred to as pathogen-associated molecular patterns (PAMPs), or host molecules known
as damage-associated molecular patterns (DAMPs), which are released from stressed or
damaged infected cells [7,8]. Among bacterial PAMPs, a vast array of structural molecules
can be listed including lipopolysaccharide/lipooligosaccharide (LPS/LOS), peptidoglycan,
lipoteichoic acid (LTA), lipoproteins and flagellin. DAMPs vary greatly depending on the
type of cell and tissue damaged. DAMPs from intracellular compartments include mole-
cules from: i. cytosol (heat-shock proteins, S100 proteins, cyclophilin A, F-actin, amyloid
beta, ATP, uric acid); nucleus (histones, HMGB1, HMGN], interleukin-1¢, interleukin-33,
SAP130, DNA, RNA); mitochondria (mtDNA, TFAM, formyl peptides, mROS); endoplas-
mic reticulum (calreticulin); granules (defensin, cathelicidins LL37, eosinophil-derived
neurotoxin, granulysin); plasma membrane (syndecans, glypicans) [9]. DAMPs from the
extracellular matrix include biglycan, decorin, versican, heparan sulfate, hyaluronan frag-
ments, tenascin C, fibronectin and fibrinogen [9]. While pathogen recognition outside the
host cell and in endosomal compartments is carried out by membrane-bound PRRs, such
as Toll-like receptors (TLRs) and C-type lectin receptors, pathogen recognition in the cy-
toplasm is executed by nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs) or Pyrin and HIN domain-containing (PYHIN) family proteins, RIG-1-like recep-
tors (RLRs), and several cytosolic nucleic acid sensors, which bind PAMPs or DAMPs
leading to the activation of pyroptosis [10,11].

Different pyroptosis cascades occur, culminating in the activation of gasdermins and
cell death. The classical pathway relies on inflammasomes, cytosolic protein complexes
consisting of (i) NLRs or PYHIN family proteins, (ii) the apoptosis-associated speck-like
protein containing a caspase recruitment domain (CARD) (ASC) adapter protein and (iii)
procaspase-1 [12,13]. The best-characterized inflammasome is NLRP3, and its activation
is a tightly controlled process that involves two steps: inflammasome priming (signal 1)
and inflammasome activation (signal 2). In inflammasome priming, nuclear activation of
factor-kB (NF-kB) leads to the transcription of genes encoding the inflammasome compo-
nents, pro-interleukin-1f3 (pro-IL-1p) and pro-interleukin-18 (pro-IL18) [14]. Furthermore,
the large tumor suppressor kinases 1 and 2 (LATS1/2) are recruited to the microtubule-
organizing centre (MTOC) and NLRP3 is palmitoylated at Cys958 (mouse Cys955) by the
palmitoyl transferase zZDHHC1 [15]. During the inflammasome activation, NLRP3 under-
goes a second palmitoylation by zDHHC1 [15] or zDHHC?7 [16] at Cys130 (mouse Cys126).
These palmitoylations are required for the trafficking of NLRP3 between mitochondria,
the trans-Golgi network (TGN), where it is assembled, and MTOC. Here, NLRP3 is phos-
phorylated by LATS1/2 at Ser265 (mouse Ser261) and interacts with NIMA-related kinase
7 (NEK?7) [15]. In macrophages, palmitoylation at Cys898 has been found to occur on
NLRP3 [17]. Inflammasome activation leads to self-cleavage of procaspase-1 which in turn
cleaves and activates gasdermin-D (GSDMD), pro-IL-13 and pro-IL18. In the non-canoni-
cal pathway, caspase-11 (caspase-4 and -5 in humans) acts as an intracellular receptor for
LPS/LOS of Gram-negative bacteria, directly binding lipid A portion of LPS leading to
caspase-11 oligomerization and activation [18]. Active caspase-11 in turn cleaves GSDMD
when a specific activation threshold is reached [19].

GSDMD has a C-terminal repressor domain (GSDMD-C) and an N-terminal pore-
forming domain (GSDMD-N). Inflammatory caspases cleave the interdomain loop releas-
ing GSDMD-N [19,20] which is palmitoylated at Cys192 by the palmitoyl acyltransferase
zDHHC7? [21] or at Cys191 by zDHHC5 and zDHHC9 [22]. These modifications allow
GSDMD-N translocation to the inner leaflet of the plasma membrane, where it interacts
with specific phosphoinositides or cardiolipin [20,23]. GSDMD-N is subsequently depal-
mitoylated by the acyl protein thioesterase APT2, which promotes its oligomerization [21].
Thus, plasma membrane pores of 10-14 nm inner diameters are formed [20] through
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which pro-inflammatory cytokines, such as IL-13 and IL-18 are released [24]. IL-1f3 in-
duces inflammation, vasodilatation and immune cell extravasation [25] while IL-18 stim-
ulates the production of interferon-y (IFN-y) by Thl, natural killer and cytotoxic T cells,
and promotes the local inflammatory response [26,27]. GSDMD cleavage and pal-
mitoylation are independent events and cleavage-deficient GSDMD was found still pal-
mitoylated upon inflammasome activation and was still able to cause pyroptosis, even if
less efficiently than palmitoylated GSDMD-N [22].

In addiction to the canonical and non-canonical inflammasome, the caspase-
3/gasdermin E (GSDME) and Caspase-8/GSDMD pathways have been described. In par-
ticular, tumor necrosis factor (TNF) triggers the activation of caspase-8 which cleaves
GSDMD and activates caspase-3. Caspase-3 acts on GSDME causing its cleavage [28].
Moreover, the activation of the caspase-3/GSDME pathway may result from the switch
from apoptosis to pyroptosis. Other members of the gasdermin family, such as the
GSDMA, GSDMB, GSDMC and GSDMA3 (whose genes are present in the mouse but ab-
sent in the human genome), have pore-forming and pyroptotic activity [29,30]. Further-
more, members of the granzyme family can cleave gasdermins. In particular, granzyme B
can directly cleave GSDME at the same site as caspase-3 [31] and granzyme A can directly
cleave GSDMB [32]. The pyroptosis pathways described here are schematized in Figure 1.
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Figure 1. Pyroptosis pathway cascades. The activation of the different pyroptosis pathways involves
distinct molecular players. In the canonical inflammasome pathway (purple path), Damage Associ-
ated Molecular Patterns (DAMPs) and/or Pathogen Associated Molecular Patterns (PAMPs) activate
the inflammasome and thereby caspase-1. The latter in turn activates the pore-forming protein
gasdermin-D (GSDMD) and the pro-interleukins pro-IL-1p and pro-IL-18 which are secreted
through the GSDMD pores. In the non-canonical pathway (orange path), the lipopolysaccharide
(LPS), exposed on the surface of cytosolic bacteria or Outer Membrane Vesicles (OMYVs), is sensed
by the caspase-11 which cleaves the GSDMD. Through the GSDMD pores, PAMPs and DAMPs are
released and activate the inflammasome. Activation of the pyroptosis may also be inflammasome-
independent. Indeed, the caspase-8, activated by the tumor necrosis factor-a (TNF-a), can cleave the
GSDMD (yellow path) and the caspase-3. The caspase-3, in turn, cleaves the GSDME (green path).
Caspase-3/GSDME interaction, moreover, can result from a switch from apoptosis to pyroptosis (red
path). The GSDME can also be activated by granzyme B, released by cytotoxic T lymphocytes (CTL)
and/or natural killer cells (NKC) (blue path). This Figure was created using Servier Medical Art,
(https://smart.servier.com/), provided by Servier, licensed under a Creative Commons Attribution
3.0 unported license. Servier Medical Art is a service to medicine provided by Les Laboratoires Ser-
vier, Suresnes, ile-de-France, France (https://servier.com/).

2. Pyroptosis Pathways Activation by Gram-Negative Bacteria and Outcomes in the
Host Cell

There is well-established evidence that pyroptosis is often useful in controlling infec-
tions. Indeed, the canonical pyroptosis pathway aims to limit the spread of intracellular
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bacteria by killing the host cell [5] and by trapping intracellular bacteria in the pore-in-
duced intracellular traps (PITs) [33]. Nevertheless, excessive pyroptosis activation brings
a level of inflammation that is detrimental to the host. It has been demonstrated to be
involved in lethal septic shock induced by LPS [34,35]. Consistently, inhibition of pyrop-
tosis via blocking GSDMD palmitoylation/depalmitoylation protected mice from LPS-in-
duced septic shock [21]. The importance of this inflammatory pathway in host-pathogen
interaction is inferred from the presence of some important pathogens, of virulence factors
that interfere directly or indirectly with pyroptosis (Table 1). Moreover, exposure to com-
mensals or pathogens belonging to the same family determines important differences in
the activation and outcomes of pyroptosis pathways. Below we summarize how pyropto-
sis pathways are activated during the infection by Gram-negative bacteria and how sev-
eral pathogenic bacteria exploit these pathways to accomplish their infectious cycle.

2.1. Neisseriaceae

Neisseria genus includes two important pathogens: Neisseria gonorrhoeae (the gono-
coccus) and Neisseria meningitidis (the meningococcus). N. gonorrhoeae is the causative
agent of gonorrhea, which manifests as urethritis, cervicitis and/or extragenital infections
(mainly pharynx, rectum and conjunctiva) [36]. The absence of a vaccine and the increas-
ing resistance to available antibiotics together with non-mutational and non-hereditary
forms of resistance make gonococcal infection an urgent threat [37—41]. N. meningitidis is
a transitory colonizer of the human nasopharynx, which is occasionally responsible for
the Invasive Meningococcal Disease (IMD) in some healthy carriers [42]. In fact, the me-
ningococcus can breach the mucosal barrier, reaching the bloodstream and causing me-
ningococcemia. Moreover, it can cross the blood-brain barrier (BBB) causing meningitidis
[43]. IMD is a life-threatening disease and survivors have long-term sequelae [44,45].
Other members of the genus are the commensals N. lactamica, N. mucosa, N. sicca, N. sub-
flava, N. cinerea, N. elongata and N. flavescens. These species colonize different human dis-
tricts without causing disease and there is evidence that some of these species may antag-
onise the pathogenic Neisseria species [46-50].

Like few other bacteria, N. gonorrhoeae releases peptidoglycan fragments in quantities
sufficient to cause inflammation and cytokine release. Tripeptide monomers are recog-
nized by the Nucleotide Binding Oligomerization Domain 1 (NOD1) receptor, which in-
duces NF-xB dependent production of TNF-a, IL-6, IL-8 and IL-1f in fallopian tube mu-
cosa and macrophages [51-53]. The lytic transglycosidases LtgA and LtgD remodel cell
wall and produce peptidoglycan monomers, which conversely suppress TNF-a and IL-1f3
by modulating the NOD2 and Toll-Like Receptor-2 (TLR2) signaling pathway in THP-1
macrophages [54]. N. meningitidis and non-pathogenic Neisseria spp. release fewer pepti-
doglycan fragments, and a smaller fraction of tripeptide monomers [55,56]. In THP-1 cells
extrinsic apoptosis is inhibited by the gonococcus [57] and NLRP3-driven pyroptosis is
induced [58]. Lack of caspase induction in these cells leads to activation of NLRP3 by ca-
thepsin B [59]. This mechanism plays a role in the activation of the canonical pyroptosis
pathway activation in THP-1 monocytes, since downregulation of cathepsin B downreg-
ulation reduces NLRP3 activation and IL-1§3 production by N. gonorrhoeae [58,59]. In the
U937 cell line and human monocyte-derived macrophages, the gonococcus inhibits both
intrinsic and extrinsic apoptosis [58], and in human macrophages both canonical and non-
canonical pathways are activated [60,61]. In monocyte-derived macrophages (MDMs) N.
gonorrhoeae induces caspase-1 activation, but exogenous ATP is required for IL-1f secre-
tion [62]. Pyroptosis in MDMSs was subsequently associated with intracellular bacteria and
it was prevented by the caspase-1 inhibitor Z-WEHD-FMK or the caspase-4 inhibitor Z-
YVAD-FMK but not by the caspase-3 inhibitor Z-DEVD-FMK. Furthermore, a mutant
strain with hypo-acylated (penta-acylated instead of hexa-acylated) lipid A portion of
LOS, known to induce decreased cytokine production in epithelial cells [63], failed to pre-
vent caspase-1 or caspase-4 activation in MDMs [60]. Pyroptotic cell death in macrophages
did not affect the viability of gonococci and it was demonstrated that pyroptosis induction
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requires viable bacteria [59]. Caspase-1 is required for the processing of pro-IL-1(3 but was
dispensable for cell death which instead was found to be dependent on NLRP3 and ca-
thepsin B [59]. In THP-1 cells secretion of IL-1f is also induced by N. cinerea and N. fla-
vescens but these commensal species are weak inductors compared to N. gonorrhoeae [58].

While the gonococcus induces cell death in macrophages, monocytes and B cells, in
neutrophils and epithelial cells the gonococcus inhibits this process. In epithelial cells,
gonococcal-dependent NF-«B activation provides protection against Receptor-interacting
serine/threonine-protein kinase 1 (RIPK1)-dependent necroptosis and inhibits apoptosis
[64]. However, with low bacterial loads, the gonococcus triggers the apoptosis by translo-
cation of PorB into the inner mitochondrial membrane and by activation of Rac-1 by Opa
proteins, which leads to activation of the proapoptotic proteins Bax and Bak [65,66]. All
Neisseria spp. express PorB porin, but the PorB amino acid sequence differs between the
species. Both PorB from N. gonorrhoeae and N. meningitidis translocate PorB to mitochon-
dria, with opposite results: gonococcus PorB induces apoptosis, whereas meningococcal
PorB inhibits this process [67,68]. Moreover, the translocation of PorB seems to be patho-
gen-specific since N. mucosa PorB does not colocalize with mitochondria [69]. Gonococcal
PorB has also been shown to induce a transient increase in calcium levels in cells, which
activates calpain [70], an enzyme with roles in both apoptosis and pyroptosis [71-74]. Cal-
pain has been reported to mediate cell disruption during pyroptosis through vimentin
filament cleavage and loss of intermediate filaments. Calpain-dependent cell rupture was
dispensable for IL-1f release but required for the release of mitochondria and bacteria
[71]. There is also evidence that N. gonorrhoeae induces an upregulation of NLRP3 protein
in the endometrial cell line hEECs, which is dramatically inhibited in TLR2- or TLR4-si-
lenced cells [75] while gonococci-infected human endocervical epithelial cells (End/E6E7)
undergo RIPK1-dependent necroptosis [60]. Asymptomatic or subclinical infections by N.
gonorrhoeae are much more common in females (50-80%) than in males (1-3%) [76-79]. It
has been proposed that progesterone plays a role in this clinical manifestation. Higher
serum progesterone levels correlate with asymptomatic gonorrhea and with low IL-1f3
levels in cervical secretion [80], and in a murine model progesterone was able to reduce
the levels of IL-1§3, IL-6 and TNF-a levels in vaginal secretion, neutrophil infiltration and
the number of polymorphonuclear neutrophils. Progesterone also decreases NLRP3 pro-
tein and IL-13 mRNA levels, and represses caspase-1 activity in genital tissue and THP-1
cell line [81].

In purified human primary monocytes challenged with N. meningitidis, apoptosis is
induced when bacterial concentration is low, whereas pyroptosis is activated when me-
ningococci are abundant. In contrast, the infections by Escherichia coli and Klebsiella pneu-
monieae induce pyroptosis regardless of the bacterial load [82]. This process is associated
with the loss of intracellular ATP in E. coli and K. pneumonieae infections. The meningococ-
cus, conversely, inhibits the glycolysis and the oxidative phosphorylation in infected cells,
but upregulates the hypoxia-inducible factor-la (HIF-1ax) transcription factor, preserving
the intracellular ATP levels [82]. Importantly, Webster and colleagues [82] observed pro-
inflammatory cytokines released by monocytes infected with N. meningitidis but not by
cells infected with E. coli or K. pneumonieae. N. lactamica also preserves the intracellular
host cell ATP levels, but cytokines release is different in cells infected with N. lactamica
compared to cells infected with N. meningitidis, with less release of IL-18 and more release
of the antiinflammatory IL-10 [82]. On the other hand, elevated levels of IL-10 have been
found in the plasma of patients with fulminant meningococcal sepsis patients 8-24 h after
the first symptoms [83]. IL-10 has been shown to prevent NLRP3 and RIPK2 upregulation
in N. meningitidis-infected human monocytes as well as IL-1[5 release, while IL-10-treated
monocytes upregulate caspase-5 when infected with the meningococcus. The inflam-
masome AIM2, which oligomerizes upon recognition of bacterial DNA, was upregulated
in infected monocytes, an effect enhanced by IL-10 treatment [84]. In co-culture experi-
ments, Tezera and colleagues demonstrated that N. lactamica abolished meningococcal-
induced inflammation through inhibition of NF-«B in the epithelial Detroit 565 cell line
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but not in meningeal cells. Modulation of NF-kB activity modulation is achieved by the
upregulation of Peroxisome proliferator-activated receptor-y (PPAR-y), which controls the
availability of NF-«B in the nucleus [85].

Neisserial LOS, which activates the non-canonical inflammasome, is an important
inductor of pyroptosis. It is phosphorylated in the lipid A portion and the degree of this
phosphorylation correlates with the inflammatory potential and severity of IMD [86]. N.
meningitidis lipid A is pyrophosphorylated and phosphoethanolaminylated while N. gon-
orrhoeae lipid A has a reduced phosphorylation and lower pro-inflammatory activity [87].
Among commensal Neisseria species, only N. lactamica and N. elongata possess a func-
tional LptA enzyme to transfer phosphoethanolamine to lipid A [88]. Meningococcal LOS
phosphorylation also impacts the expression of miR-146a, a microRNA that negatively
regulates NF-kB and inflammation [89]. The most highly inflammatory LOS is also the
greatest inducer of miR-146a [90]. Meningococcal strains with the most highly inflamma-
tory and phosphorylated lipid A were more restricted to the central nervous system of
patients and had reduced capacity to cause septicemia. Conversely, strains with less phos-
phorylated LOS are more capable of inducing systemic infections [86]. Guanylate binding
proteins (GBPs) are interferon-inducible GTPases involved in innate immunity response.
GBPs are required for non-canonical inflammasome recognition of intracellular bacteria
promoting LPS release and presentation to caspase-11/4 [91,92]. Recently, it has been re-
ported that GBP1 and GBP3, through their N-terminal domain, selectively kill Francisella
novicida and N. meningitidis but not other bacterial or mammalian cells. GBPs-mediated
disruption of bacteria exposes the intracellular content for inflammasome sensing. GBP1
was found to be active against both wild-type meningococcus and the IpxA-defective mu-
tant, which has no LOS [93]. Another factor that plays a role in Neisseria-induced pyrop-
tosis is hemagglutinin/hemolysin-related protein A (HrpA), the secreted portion of the
two-partner HrpA/HrpB secretion system [94]. HrpA acts as a manganese-dependent cell
lysin and mediates the bacterial escape from the internalization vacuole [95,96]. Through
this mechanism, the meningococcus reaches the cytosol and is recognized by inflam-
masomes. In addition, HrpA binds to the motor protein dynein, enabling the bacterium
to move along the microtubules. hrpA- and hrpB-defective meningococci were strongly
impaired in the activation of both canonical and non-canonical pyroptosis pathways in
vitro [94] and in vivo in a murine model of meningitis [97]. In HeLa cells, NSC34 motor
neuron-like cells and hBMEC brain endothelial cells the caspase-3/GSDME pathway and
the caspase-11 (caspase-4) were activated by meningococcus infection, with subsequent
activation of caspase-1[94]. In contrast, a prevalence of GSDMD-mediated pyroptosis was
observed in the brains of meningococcus-infected BALBc mice. Furthermore, in infection
with an hrpB-defective mutant, together with a reduction in the activation of pyroptosis
pathways, an increase in animal survival was observed compared to infection with wild-
type meningococci [97].

2.2. Enterobacteriaceae

The family of Enterobacteriaceae comprises ubiquitous Gram-negative bacteria with
33 genera to date. These include human pathogens, the most studied of which are Salmo-
nella and Shigella spp. [98], with S. flexneri being the first microorganism discovered to
induce pyroptosis [4].

S. flexneri is the causative agent of bacillary dysentery, an acute intestinal infection
that occurs following ingestion of contaminated food and water. Bacillary dysentery is
characterized by intestinal inflammation, abdominal pain, cramps, diarrhea and fever,
and accounts for more than 250 million cases worldwide each year [99]. S. flexneri crosses
the intestinal epithelial barrier through M cells and is then endocytosed by resident mac-
rophages and dendritic cells. After entering the cell, S. flexneri lyses the vacuole and
reaches the cell cytosol [100]. Several virulence factors of S. flexneri have been shown to
activate the pyroptosis or interfere with it. Shigella possesses a functional type III secretion
system (T3SS), and recognition of the TS33 inner rod protein Mxil by Naip2 activates the
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NLRC4 inflammasome and caspase-1, leading to secretion of IL-1f3 and IL-18 and pyrop-
tosis [5,101-103]. Shigella infection triggers the apoptotic signal of the Tumor protein p53
(TP53) in epithelial cells, but the bacterium can prevent the induction of apoptosis by
cleaving the calpain inhibitor calpastatin through the VirA factor. Sustained activation of
calpain instead leads to necrotic cell death. However, S. flexneri lacking the T3SS factor
OspC3 triggers caspase-4 dependent-pyroptosis in HaCaT keratinocyte and HT29 epithe-
lial-derived cell line [101,104]. OspC3, in particular, catalyzes a post-translational modifi-
cation, arginine ADP riboxanation, of caspase-4 Arg314 and caspase-11 Arg310. These
modifications block the autocatalytic cleavage of caspases and the recognition and activa-
tion of the GSDMD. Mice infected with S. flexneri AospC3 survived the infection, in con-
trast, wild-type or OspC3-complemented strains caused animal death [105]. S. flexneri fac-
tor IpaH?7.8, a member of the E3 Ubiquitin ligase-like family, targets GSDMB and GSDMD
for degradation in infected cells [106,107]. GSDMB is not activated by caspases, but
granzyme A released by cytotoxic T lymphocytes and natural killer cells activates it di-
rectly [32]. GSDMB accumulation is observed following Shigella infection when the 265
proteasome is blocked by MG132 treatment [107]. IpaH?7.8 mimics host E3 ubiquitin ligase,
binding and ubiquitinating GSDMB and GSDMD on multiple Lys residues. Interestingly,
IpaH?7.8 can target human GSDMD but not mouse GSDMD [106]. Another member of the
IpaH protein family, IpaH9.8, targets guanylate-binding proteins (GBPs) for degradation
[92,108,109].

Salmonella enterica serovar Typhimurium (herein referred to as S. typhimurium) is a
pathogen that can cause acute and chronic infections. Clinical manifestations vary from
asymptomatic carriage, gastroenteritis and systemic disease [110]. It possesses T35Ss en-
coded by Salmonella Pathogenicity Islands (SPI) SPI-1 and SPI-2 through which it secretes
virulence factors into the host cell [111,112]. Another important virulence factor for this
pathogen is the flagellum. Its subunit, flagellin, consists of conserved D0 and D1 domains
(N-terminal and C-terminal) and hypervariable D2 and D3 domains (central region) [113].
D1 domain binds to TLR5 while DO domain binds to Naip5/6 triggering the assembly and
activation of the NLRC4 inflammasome [113,114]. When S. typhimurium lacks the flagellin
genes fliB and fIjC, group 3 innate lymphoid cells (ILC3s) from C57BL/6-infected mice
failed to produce IL-22 [115], a cytokine proved to enhance Salmonella mucosal dissemi-
nation [116]. Conversely, this cytokine was produced when using wild-type Salmonella
and also mutated strains for T3SS SPI-1 and/or SP-2. Pyroptotic cell death was detected in
ILC3s of S. typhimurium-infected mice, regardless of IL-22 or Salmonella flagellin produc-
tion. This cell death was dependent on caspase-1 and GSDMD, since disulfiram (GSDMD
inhibitor) and Ac-YVAD-cmk (caspase-1 inhibitor) prevented it. Although flagellin was
essential for IL-22 production in ILC3s and dispensable for cell death, mice lacking
caspase-1 had more ILC3 cells with less cell death, more IL22-producing ILC3 cells and
higher mortality compared to wild-type-infected mice. Therefore, control of ILC3s pyrop-
tosis appears to play a role in S. typhimurium infection [115]. Consistent with these find-
ings, pyroptosis has been proven to be beneficial to the host in the early stages of Salmo-
nella infection preventing bacterial dissemination [117-119]. Caspase-1 deficient C57BL/6
mice die from Salmonella oral administration [120]. Caspase-8 and NLRC4 inflammasomes
also play a role in limiting Salmonella infection [118]. On the other hand, in systemic infec-
tion, pyroptosis has been shown to be harmful to mice. Caspase-1 or GSDMD deficiency
in the intraperitoneal infection model increased mice survival with attenuated secretion
of IL-1p, IL-6 and TNFa [121]. Besides flagella, the T35S needle and inner rod also activate
Niap/NLRC4 in mice and human macrophages [5,114,122-126]. In primary human mon-
ocytes, the NLRP3 inflammasome was found to be activated following exposure to S.
typhimurium or LPS. This activation was accompanied by the secretion of IL-13 and IL-1«
but without pyroptosis. Treatment with MCC950 blocked IL-1p and IL-1a secretion in S.
typhimurium-infected cells but only IL-1f3 secretion in cells exposed to LPS alone [127].
However, NLRC4 and NLRP3 inflammasomes are dispensable for pyroptosis activation
in human intestinal Caco-2 cells, as is NLRC4 in enteroids exposed to S. typhimurium
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infection. In human intestinal cells infected with Salmonella, CRISPR/Cas9 system, used to
disrupt CASP4, revealed that caspase-4 is essential to activate the inflammasome [128].
This activation leads to IL-18 secretion from Caco-2 and T84 cells and is SPI-1 dependent.
This difference could be explained by the different levels of expression of inflammasome
components by macrophages and epithelial cells, the latter having lower mRNA levels of
caspase-1, NLRP3, NLCR4 and Niap [128]. Salmonella plasmid virulence C protein (SpvC)
is a T3SS effector that plays a role in bacterial dissemination in mice [129,130]. It reduces
pyroptosis in the cecum of C57BL/6 mice and mouse J774A.1 macrophages [129-132]. spvC
mutants trigger the activation of the NLRP3 and NLRC4 inflammasomes in mouse cecum,
unlike wild-type S. typhimurium [129]. SpvC shares 63% amino acid identity with S. flexneri
OspF and has the same phosphothreonine lyase activity on MAPK [131,132]. This enzy-
matic activity is essential for SpvC to suppress pyroptosis [129]. SPI-1 effectors include
SopE, an activator of Rho GTPase, which has been linked to pyroptosis pathways. It in-
duces caspase-1 activation and IL-1{3 release in RAW264.7 murine macrophages as well as
inflammation in infected mice [133]. While SopE plays a critical role in this process, ca-
nonical inflammasome activation in these cells is not dependent on flagella [134]. Moreo-
ver, SopE contributes to the egress of Salmonella from the Salmonella-containing vacuole
(SVC) in macrophages [135]. Pyroptosis induction by SopE was found to be dependent on
its activity on Racl and Cdc42 [101,133]. In intestinal epithelial cells, another critical T3SS
effector, SopF, was found. Most C57BL/6 mice infected with Salmonella AsopF survived
infection with increased levels of IL-1f release and inflammation compared to mice in-
fected with wild-type Salmonella. Infections of Caco-2 cells and normal human colonic ep-
ithelial NCM460 cells revealed that SopF inhibits GSDMD-mediated and, especially, the
GSDME-mediated pyroptosis through the caspase-3/GSDME pathway, by inactivating
the caspase-8. In contrast, SopF promotes the necroptosis [136]. Salmonella regulates the
length of LPS O-antigen by FepE. Low expression of FepE, as in S. typhimurium, is associ-
ated with an increased capacity to trigger pyroptosis in macrophages [137]. S. paratyphi,
which express FepE [138], or S. typhimurium mutants overexpressing FepE are weaker in-
ductors of pyroptosis compared to wild-type S. typhimurium strain [137].

Polycystic ovary syndrome (PCOS) correlates with gut microbiome dysbiosis and in-
creased abundance of Enterobacteriaceae in the gut of patients [139]. In the mouse model of
PCOS, an increased abundance of Gram-negative bacteria (Desulfovibrio and Burkholderia),
an increase in circulating LPS and reduction in the abundance of Akkermansia were found
compared to the control group. Leakage of LPS into the circulation induces GSDMD-de-
pendent pyroptosis in macrophages, and this process may damage receptor complexes on
the plasma membrane, disturbing the epithelial integrity. Treatment of PCOS mice (in
which PCOS was induced by dehydroepiandrosterone) with disulfiram or metformin re-
duced pyroptosis in macrophages and increased gut levels of Akkermansia, which helps
reinforce the intestinal barrier and reduce LPS leakage [140].

2.3. Yersiniaceae

The genus Yersinia includes three human pathogens: Y. pestis, Y. pseudotuberculosis
and Y. enterocolitica. Y. pestis is the causative agent of the plague, which is present in stable
foci in America and Africa. The disease has five main forms: bubonic, septicemic, pneu-
monic, meningeal and pharyngeal plague [141,142]. Infections with Y. pseudotuberculosis
and Y. enterocolitica are widespread throughout the world, both causing gastroenteritis,
while Y. pseudotuberculosis can also cause mesenteric lymphadenitis [143,144]. These bac-
teria are characterized by a virulence plasmid coding for a T3SS through which they inject
into the host cell Yersinia outer proteins (Yops) [145]. Among these, many Yops are dedi-
cated to perturbing host cell death pathways. Replication of Y. pestis and Y. pseudotubercu-
losis in the host is initially silent with low inflammation and is subsequently accompanied
by cytokines production and tissue necrosis [146-150]. This disease course correlates with
apoptotic cell death of naive macrophages and, later in the infection, with pyrototic cell
death of activated macrophages [24]. Yop] in Y. pestis and Y. pseudotuberculosis (named
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YopP in Y. enterocolitica) leads to caspase-8-dependent macrophage cell death. It inhibits
the MAP kinase Transforming Growth Factor Beta-Activated kinase 1 (TAK1) by acetyla-
tion. When TAK1 is inhibited, TNF activation causes RIP1 to dissociate from complex I to
form complex Ila with FADD and procaspase-8 [151]. If caspase activity is blocked, RIP1
dissociates from complex Ila to form complex IIb with RIP3, which induces MLKL-de-
pendent necroptosis [152]. Naive macrophage apoptosis requires Yop] [24]. Inactivation
of caspase-8 and RIP3 or inactivation of RIP1 protects bone marrow-derived macrophages
(BMDMs) from Y. pseudotuberculosis-induced cell death but leads to the death of infected
animals [153]. The strong IL-1 response during Yersinia infection, which requires activa-
tion of the NLRP3 inflammasome, is crucial for the animal death [154]. Yersinia-induced
caspase-8 activation leads to pyroptosis in macrophages with both GSDMD and GSDME
activation. Cleavage of GSDMD and GSDME is abolished in Rip3-- Casp8-- macrophages,
whereas Casp3/7-- macrophages show inhibition of GSDME activation alone. However,
human macrophages behave differently. Indeed, when human peripheral blood mononu-
clear cell (PBMC)-derived macrophages, the U937 cell line and monocyte-derived macro-
phages are infected with Y. pseudotuberculosis, Yop]-dependent cell death is not observed.
The level of IL-13 secretion in these cells is comparable to that of macrophages exposed to
LPS. Pretreatment of PBMC-derived macrophages with the TAK1 inhibitor 5z7 induces
pyroptotic cell death with GSDME activation but the absence of GSDMD activity, suggest-
ing that in humans TAK1 inhibition can be overcome [155]. Caspase-8 and RIP1 activation
was also demonstrated in Y. enterocolitica-infected mouse bone marrow-derived dendritic
cells [156]. YopK is a virulence factor that has been shown to inhibit NLRP3 inflammasome
activation in vivo without affecting YopJ-induced cell death. Y. pseudotuberculosis express-
ing YopK but lacking Yop] does not induce T3SS-dependent inflammasome activation and
cell death in mouse BMDMs [157]. However, priming of macrophages with inflammatory
stimuli is sufficient to induce pyroptosis in macrophages infected with Yersinia Yop]J-defi-
cient bacteria [24]. In cells lacking NLRP3, ASC or NLRC4, caspase-1 is activated and IL-
1p and IL-18 are still secreted upon Yersinia infection, suggesting that other inflam-
masomes are involved [157,158]. Considering the interconnection between apoptosis, py-
roptosis and necroptosis, the concept of PANoptosis has recently emerged. In this cell
death, members of apoptosis, pyroptosis and necroptosis are simultaneously engaged in
the PANoptosome complex and the pathway cannot be blocked by the terminal effectors
of the individual pathways [159-161]. In Yersinia-infected macrophages, RIP1 is essential
in the induction of apoptosis and pyroptosis. Its ablation inhibits apoptosis and pyroptosis
but enhances necroptosis. RIP1 mediates the PANoptosome assembly. Compared with
wild-type BMDMs, Gsdmd’ BMDMSs, Casp3”- BMDMs, Casp7-- BMDMs, Mlkl’- BMDMs
Rip3--BMDMs and Casp1/11- BMDMs did not show impaired cell death when infected
with Y. pseudotuberculosis. Casp1/11"- BMDMs, however, had impaired IL-18 secretion
[162]. Conversely, cell death was found to be reduced in Rip3-- Casp8-BMDMs and espe-
cially in Rip3- Casp8-- Casp1/11-BMDMSs. The impact of RIP1 in Yersinia infection was in-
vestigated in fetal liver-derived macrophages (FLDMs) since RIP1 ablation is lethal to
mice and BMDMs cannot be generated. In Rip1”- mice, FLDMs exhibited spontaneous
MLKL activation and Yersinia infection led to reduced activation of caspase-1, GSDMD,
caspase-3, caspase-7 and caspase-8 compared to wild-type-infected FLDMs [162]. Re-
cently, it has been found that Y. pseudotuberculosis infection increases glycolysis and re-
duces intracellular glucose levels in BMDMs and this leads to the glucose- and energy-
responsive activation of AMPK, which in turn phosphorylates RIP1 during the caspase-8-
mediated pyroptosis [163]. The IFN-y inducible Z-DNA binding protein, ZBP1, has been
shown to play a role in the assembly of the RIPK1-TRIF-caspase-8 complex in response to
Yersinia infection [164].

Other Yop proteins are involved in pyroptosis pathways. YopE and YopT are Rho-
modifying enzymes, YopE is a GTPase-activating protein while YopT is a protease. RhoA
modifications are sensed by Pyrin inflammasome which activates caspase-1, leading to IL-
13 secretion and cell death [165]. YopE activates Pyrin by triggering its dephosphorylation
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at Ser205 [166], which appears to be a conserved mechanism since the Clostridium difficile
RhoA-inactivating enzyme TcdB acts in the same way on Pyrin [165]. In BMDMs YopE
and YopT can induce pyroptosis only in the absence of YopM, a virulence factor which
inhibits pyrin inflammasome [166]. This inflammasome is expressed mainly in immune
cells, such as macrophages, cytokine-activated monocytes and granulocytes but also in
serosal and synovial fibroblasts [167]. YopT similarly dephosphorylates Pyrin although
more slowly than YopE [166]. Thus, the appropriate mixture of Yop proteins delivered to
the host cell governs its fate.

2.4. Helicobacteriaceae

The Helicobacteriaceae family includes two genera: Wolinella and Helicobacter. The lat-
ter genus comprises 35 species among which Helicobacter pylori is the most studied [168].
H. pylori is found in almost 50% of the world’s population, it targets the stomach and it is
the main cause of different gastrointestinal diseases [169]. These include gastric and duo-
denal ulcers, mucosa-associated tissue lymphoma and gastric adenocarcinoma [170].
NLRP3 is the inflammasome most widely reported to be activated by H. pylori, both in
vitro [171-173] and in vivo [174-176]. NLRP3 inflammasome was found to be activated in
the stomach of H. pylori-infected mice with the Mucl mucin playing a protective role [174].
In human peripheral blood mononuclear cells (PBMCs), H. pylori induces NLRP3 inflam-
masome activation and IL-1f3 release [177]. The cytotoxin-associated gene pathogenicity
island (cagPAl) is critical in the ability of H. pylori to induce pyroptosis. This genomic
island encodes a type IV secretion system (T4SS) through which the bacterium injects,
among others, one of its major virulence factors, CagA [178]. A component of the T4SS
involved in CagA translocation and adherence to host cells is CagL [179]. Another im-
portant virulence factor is VacA, a pore-forming toxin secreted by the type V secretory
system (T5SS). In H. pylori-infected dendritic cells, TLR2 dependent-NLRP3 inflam-
masome activation and IL-1(3 secretion are reduced in the absence of cagPAI or CagL but
not in the absence of CagA or VacA [180]. In contrast, in the human gastric mucosal epi-
thelial cell line GES-1 and in the human gastric epithelial adenocarcinoma cell line AGS
CagA is sufficient to activate NLRP3 inflammasome via reactive oxygen species (ROS)
production. Inhibition of ROS production by N-acetyl-l-cysteine blocks NLRP3 inflam-
masome and pyroptosis [181]. Similarly, in THP-1 monocytes, H. pylori-induced pyropto-
sis depends on NLRP3 activation via ROS production [171]. Central to H. pylori infection
is the production of urease, which catalyzes the production of ammonia and carbonic acid
from urea, neutralizing gastric acidity. Urease protein is composed of six UreA subunits
and six UreB subunits with two coordinated nickel ions into each UreB [182]. UreB has
been found to play a role in pyroptosis. ureB-deficient mutants induce IL-1f3 transcription
in mouse bone marrow-derived dendritic cells (BMDCs) but fail to activate the NLRP3
inflammasome and secrete IL-1p. Similar to cagPAI [180], UreB-mediated activation of
NLRP3 is TLR2 dependent [183]. NLRP3 and GSDMD expression is increased in gastric
mucosal samples from H. pylori-infected subjects compared to the control group. Rabe-
prazole, a proton pump inhibitor used in the treatment of gastric ulcers, effectively re-
duced GSDMD cleavage and secretion of IL-13 and IL-18 in BGC823 cells [184]. Pyroptosis
in the gastric mucosa of H. pylori-infected subjects has been associated with the transition
from chronic gastritis to gastric cancer, which has been found to be promoted by CagA
[185]. The anthraquinone derivative emodin and the BCF-01 strain Weizmannia coagulans,
isolated from a healthy subject, showed protective effects against H. pylori through the
downregulation of bacterial virulence factors and the inhibition of pyroptosis [186,187].
In particular, the expression of CagA, VacA and CagL was reduced in emodin-treated H.
pylori compared to untreated bacteria. Furthermore, IL-13 and IL-18 secretion was shown
to be reduced in H. pylori-infected AGS cells when treated with emodin, as well as the
activation of caspase-1 and GSDMD, and the translocation of VacA [186]. H. pylori de-
creases the expression of tight junction proteins in C57BL/6 mice and the GES-1 cell line.
Mice or cells pretreated with W. coagulans BCF-01 showed normal tight junction
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expression levels when infected with H. pylori. Moreover, mice and RAW264.7 macro-
phages exposed to the same treatments showed a strong reduction in GSDMD and
caspase-1 activation, along with reduced IL-1B and IL-18 secretion compared to untreated
cells infected with H. pylori-infected ones [187]. Importantly, the authors of this study
found that BCF-01 was more effective in reducing the activation of the pyroptosis path-
ways than the triple antibiotic treatment (amoxicillin, clarithromycin and omeprazole)
used in H. pylori infection [187].

Table 1. Virulence factors that are involved in the activation or regulation of pyroptosis pathways.

Bacterium Virulence Factor Role in Pyroptosis Reference
. PG monomers NOD1-dependent IL-1(3 release [53,54,56]
Neisseria gonorrhoeae . L
PorB Calpain activation [70]
LOS Non-canonical pathway activa}tion, miR-146a expression [89,90]
L L induction
Neisseria meningitidis Vacuole escape and consequent exposure to inflam-
HrpA P a P [94,97]

masome sensing

Mxil NLRC4-dependent pyroptosis [103]
Inactivates caspase-4 and caspase-11 by ADP riboxana-

OspC3 104,105

Shigella flexneri °P tion [104,105]
IpaH7.8 Targets GSDMD and GSDMB for degradation [106,107]

IpaH9.8 Targets GBPs for degradation [109]
Flagellum NLRCH4 activation [114,115]
T3SS needle NLRC4 activation [114,123-126]
. SpvC Reduces NLRPB. and NLRC4. a.ctlvatlon via phosphothre- [129-132]
Salmonella enterica onine lyase activity on MAPK

SopE Induces caspase-1 activation dependent on its activity on [133-135]

Racl and Cdc42
SopF Inhibits GSDMD and caspase-3/GSDME pyroptosis [136]

Yersinia pestis

Yersinia pseudotuberculosis

Activation of caspase-8/GSDMD and caspase-3/GSDME
pyroptosis in mice

YopK, YopQ * Inhibits NLRP3 inflammasome [157]

Activate Pyrin inflammasome through its dephosphory-

Yop], YopP * [154]

Yersinia enterocolitica YopE and YopT . [165,166]
lation
YopM Inhibits Pyrin inflammasome [154]
Cagl. Impairs TLR2-dependent NLRP3 activation in dendritic [180]
cells
Helicobacter pylori CagA Activates NLRP3 mﬂargmaspme via ROS production in [181,185]
epithelial cells
UreB Impairs TLR2-dependent NLRP3 activation [183]

* Yop proteins names in Yersinia enterocolitica.

3. Epithelial and Endothelial Barriers Crossing: Can Pyroptosis Pathways
Help Bacteria?

Epithelial and endothelial barriers are the first line of defense against pathogens. On
the other hand, several pathogens have developed strategies to overcome or disrupt these
barriers to gain access and invade host tissues. Recent pieces of evidence reveal a crucial
role of inflammation caused by pyroptosis pathways in the integrity of these barriers. In
ulcerative colitis, gut microbiota dysbiosis can cause pyroptosis. Levels of pore-forming
GSDME-N have been correlated to tissue inflammation and intestinal barrier integrity in
patients. Low expression of zonula occludens-1 (ZO-1), E-cadherin, and occludin (OCLN)
was found in the mucosa of ulcerative colitis patients together with activation of caspase-
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3 and GSDME [188]. Recently, 4 octyl itaconate (4-Ol) has been demonstrated to inhibit
the caspase-3/GSDME pathway [189]. The use of butyrate-decorated liposomes carrying
4-OI (4-Ol/Blipo) in NCM460 cells, treated with TNF-a to trigger the activation of caspase-
3, reduced cell death, GSDME-N levels and re-established the levels of tight junction pro-
teins. Pyroptosis disruption of tight junction increases the epithelial permeability and aids
bacteria to cross the epithelial barrier. Consistently, dextran sulfate sodium (DSS)-induced
colitis mice have reduced GSDME-N levels in colonic epithelium and increased expression
of occludin and E-cadherin after treatment with 4-OI/Blipo [188]. In primary human gin-
gival epithelial cells (HGECs), sodium butyrate activates GSDME-mediated pyroptosis.
At the same time, it was observed a reduction in mRNA levels of gap junction genes [Con-
nexin 26 (Cx26), Cx43], adherence junction gene Cadherin-1 (CDH1), tight junction genes
[Junction Adhesion Molecule-1 (JAM-1), Claudin-1 (CLDN1) and CLDN4] and desmo-
some genes [Desmoglein-1 (DSG1) and Desmocollin-2 (DSC2)]. Immunostaining reveals
that E-cadherin and claudin-1 were disturbed by sodium butyrate [190]. Anaerobic Gram-
negative bacteria produce butyrate. The inflammation caused by these bacteria is associ-
ated with periodontitis and epithelial disruption is the first step of the pathology [190,191].
Pyroptosis activation in epithelia does not always favour bacterial crossing, but can also
contrast it. Although excessive activation of Niap/NLRC4 pyroptosis in intestinal epithe-
lial cells (IECs) contributes to the disruption of the gastrointestinal barrier, this pathway
protects mice against Salmonella infection [118,192]. S. typhimurium-infected IECs are ex-
truded from the intestinal epithelium. On the contrary, in the absence of Niap genes, the
extrusion is reduced, and it is accompanied by Salmonella invasion of the epithelium in
mice [117,118]. Extrusion was found to be independent of IL-18, IL-1x or IL-18 [117]. Be-
sides pyroptosis, the apoptosis pathway can also induce the extrusion of infected cells
[193,194] with some differences. Contraction of the epithelium aids the closure of epithe-
lial gaps during the extrusion of infected cells in small intestine organoids. This process
was found to be Niap/NLRC4-dependent and ion flux through GSDMD pores is a neces-
sary signal for contraction [192,195]. C57BL/6 mice exposed to LPS have reduced expres-
sion of ZO-1, claudin-1 and occludin proteins and activation of GSDMD-mediated pyrop-
tosis in the ileum and colon compared to the control group. Du and colleagues found that
pretreatment of mice with the carotenoid fucoxanthin ameliorates LPS toxicity with re-
duced pyroptosis and recovery of tight junction protein expression [196].

LPS also disrupts the BBB [197,198]. Evan blue extravasation measure and observa-
tion of ultrastructural changes revealed that LPS impairs BBB in C56BL/6 mice with ab-
normal tight junction appearance but not in Casp11- or Gsdmd-- deficient mice. Disruption
of BBB was found to be dependent on activation of non-canonical inflammasome and not
on TLR4 cytokines induction, although the LBP-CD14-TLR4 axis is necessary for LPS in-
ternalization. Moreover, GSDMD activation in the absence of LPS is sufficient to induce
BBB disruption [199]. Pyroptosis in endothelium was recently related to the expression of
Programmed Death Ligand 1 (PD-L1), which normally inhibits excessive T-cell activation
[200]. LPS treatment in human lung microvascular endothelial cells (HMVECs) reduces
the occludin and ZO-1 expression only in the presence of PD-L1. Moreover, overexpres-
sion of PD-L1 in these cells is sufficient to decrease tight junction protein expression and
to increase NLRP3 expression and activation of caspase-1. Pyroptotic death induced by
PD-L1 overexpression was found to be mitochondrial ROS production-dependent and in-
creases when PD-L1 overexpression is accompanied by LPS treatment [201]. Figure 2 sche-
matizes how pyroptosis pathways activated by bacteria can interfere with epithelial and
endothelial barriers.
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Figure 2. Pyroptosis activation effects on the epithelial and endothelial barrier. Gram-negative bac-
teria activate the caspase-3/GSDME pathway in epithelial cells. This activation can disrupt tight and
adherence junctions by interfering with occluding (OCLN), zonula occludens-1 (ZO-1) and E-cad-
herin, thus facilitating bacteria to cross the epithelium. Activation of NLRC4 inflammasome in epi-
thelial cells leads to gasdermin-D (GSDMD) activation and pore formation. It is not known if
GSDMD pores are formed on the apical or basolateral side or both the functional domains of the
epithelial cells. GSDMD-mediated ion flux leads to tissue contraction to extrude the infected cell. In
endothelial pyroptosis, caspase-11 activation by LPS interferes with tight junctions. Moreover, reac-
tive oxygen species (ROS) from mitochondria can induce Programmed Death Ligand-1 (PD-L1) ex-
pression and NLRP3 activation. This leads to a reduced expression of ZO-1 and OCLN. This Figure
was created using Servier Medical Art(https://smart.servier.com/), provided by Servier, licensed un-
der a Creative Commons Attribution 3.0 unported license. Servier Medical Art is a service to medi-
cine provided by Les Laboratoires Servier, Suresnes, fle-de-France, France (https://servier.com/).

4. Outer Membrane Vesicles (OMVs) as Carriers of Pathogen-Associated Molecular
Patterns (PAMPs) That Trigger Pyroptosis Pathways

Outer membrane vesicles (OMVs) are released from the outer membrane of Gram-
negative bacteria. OMVs are implicated in cell-cell communication, quorum sensing,
stress responses and pathogenesis [202]. OMVs contain various pathogen-associated mo-
lecular patterns (PAMPs), including LPS, which induces the TLR4 signaling pathway and
TLR4-dependent endocytosis [203]. LPS can also be internalized into the cell where it ac-
tivates the non-canonical inflammasome. Indeed, circulating LPS can bind to high mobil-
ity group box 1 (HMGB1) which promotes its internalization through the Receptor for
advanced glycation end products (RAGE) [204], expressed by various cell types, such as
endothelial cells, smooth muscle cells, mesangial cells, mononuclear phagocytes and cer-
tain neurons [205]. In contrast, OMVs are internalized through clathrin-mediated endocy-
tosis [206]. Recently, galectin-3 has been found to be implicated in internalization of LPS
and subsequent activation of non-canonical pyroptosis [207]. Galectin-3 is an amphoteric
polysaccharide-binding protein that can repeatedly cycle in and out of the cell. It is se-
creted by macrophages and binds, among other molecules, LPS [208]. Galectin-3 induces
internalization of circulating LPS through RAGE. Galectin-3 also appears to mediate OMV
internalization, but in a RAGE-independent manner since galectin-3 inhibition, but not
RAGE silencing, was able to alleviate OMV-triggered pyroptosis [207]. Once inside the
cell, LPS or OMVs require GBPs to activate non-canonical pyroptosis. Indeed, mouse
BMDMs lacking GBPs or caspase-11 were strongly impaired in caspase-1 activation and
secretion of IL-1f [209]. In E. coli infections, caspase-11 was predominantly activated by
OMVs [206] and subsequent cell death required the expression of GBP2, while GBP5 was
dispensable. In addition, mice lacking GBP2 exhibited higher survival rates when treated
with OMVs compared to wild-type mice [209].

S. typhimurium and Pseudomonas aeruginosa OMVs trigger activation of NLRC4 in-
flammasome and secretion of IL-1f3 in mouse BMDMs. Inflammasome activation is
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dependent on flagella as OMVs derived from flagellin-deficient mutants of Salmonella
could not activate NLRC4 and weakly activated the NLRP3 inflammasome [210]. In con-
trast, OMVs from the non-flagellated E. coli BL21 strain were found to strongly activate
the NLRP3 inflammasome and GSDMD in BMDMs. In C57BL/6 mice, however, IL-1{3 se-
cretion was dependent on both NLRC4 and NLRP3 inflammasomes [210]. Of note, GBP2
ablation was sufficient to prevent pyroptosis triggered by E. coli OMVs but not that trig-
gered by Salmonella OMVs [210]. In agreement with this finding, Deo and colleagues found
that E. coli OMVs triggered caspase-11-dependent cell death of BMDMs [211]. In contrast,
caspase-11 was dispensable for cell death induced by N. gonorrhoeae OMVs. The authors
of this study [211] found that the lipid A in Neisseria OMVs is modified by phosphoethan-
olamine which masks phosphates important for caspase-11 recognition [211]. Instead, N.
gonorrhoeae OMVs were found to activate BCL-2 antagonist killer (BAK)-dependent intrin-
sic apoptosis and, in turn, NLRP3 inflammasome and IL-1 secretion [211]. Meningococci
release abundant OMVs, which are important in the proinflammatory response in the
early stages of IMD [86]. N. meningitidis OMVs trigger IL-1f3 secretion in human neutro-
phils [212]. In addition, both N. gonorrhoeae and N. meningitidis OMVs contain a large
amount of PorB, which has been shown to be sufficient to induce apoptosis with N. gon-
orrhoeae OMVs [67].

E. coli OMVs have also been found to trigger disseminated intravascular coagulation
(DIC) in mice [213,214] via non-canonical inflammasome activation [214]. Calcium influx
through GSDMD pores activates the phospholipid scramblase transmembrane protein
16S (TMEM16F). This enzyme mediates the externalization of phosphatidylserine, which
binds and activates the tissue factor (TF) to initiate the coagulation cascade [215]. Mice
intraperitoneally injected with E. coli OMVs exhibited features of systemic coagulation ac-
tivation with increased serum levels of thrombin-antithrombin (TAT), plasminogen acti-
vator inhibitor type-1 (PAI-1) and D-dimer, and decreased fibrinogen plasma levels. De-
letion of caspase-11 or GSDMD in mice significantly attenuated the activation of the coag-
ulation cascade triggered by OMVs [214]. GSDMD and caspase-1 were activated in THP-
1 macrophages exposed to OMVs from the gastrointestinal resident bacterium Desulfovib-
rio fairfieldensis, resulting in the secretion of IL-1f3 along with several other cytokines.
Moreover, Caco-2 cells exposed to D. fairfieldensis OMVs showed reduced ZO-1 and oc-
cludin expression [216]. Porphyromonas gingivalis does not induce activation of pyroptotic
pathways, but its OMVs elicit pyroptotic cell death in murine and human macrophages
with caspase-1 activation and IL-1f3 secretion. This response was found to be dependent
on heat-labile components of OMVs, as heat inactivation of OMVs prevented pyroptosis
[217]. Figure 3 illustrates how OMYVs can be internalized by the host cell and the pyroptotic
pathways that OMVs can trigger.
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Figure 3. Outer membrane vesicles (OMVs) internalization and activated pyroptosis pathways.
OMVs are internalized into the host cell by clathrin-dependent endocytosis or by a novel mechanism
of internalization involving galectin-3. Once inside the cell, the OMVs are targeted by the guanylate
binding protein 2 (GBP2) which is needed for the caspase-11 activation. Moreover, OMVs can acti-
vate NLRC4 inflammasome through flagellin and/or NLRP3 inflammasome. In addition, the lipo-
polysaccharide (LPS), exposed on the surface of OMVs, can be extracted by the LPS binding protein
(LBP) and transferred to CD14 which releases the LPS to the TLR4-MD-2 complex. Activation of the
TLR4 leads to nuclear factor-kappa B (NF-«B) activation or inflammatory endocytosis, which acti-
vates interferon regulatory factor 3 (IRF3). This Figure was created using Servier Medical Art
(https://smart.servier.com/), provided by Servier, licensed under a Creative Commons Attribution
3.0 unported license. Servier Medical Art is a service to medicine provided by Les Laboratoires Ser-
vier, Suresnes, ile-de-France, France (https://servier.com/).

5. Pyroptosis Inhibitors for the Treatment of Infectious Diseases

Inhibition of several mediators of pyroptosis is attracting increasing interest in the
treatment of inflammatory diseases, and the safety and efficacy of some pyroptosis inhib-
itors are being evaluated in clinical trials. The pan-caspase irreversible inhibitor Emricasan
(IDN-6556) was tested in non-alcoholic steatohepatitis because of its preferential distribu-
tion in the liver (ClinicalTrial.gov [https://clinicaltrials.gov/, accessed on 13 September
2024] ID: NCT02077374; NCT02686762 and NCT03205345) but was discontinued in Phase
I clinical trial [218-220]. Emricasan was also tested for Staphylococcus aureus skin infections
in mice and demonstrated effectiveness in reducing the size of the lesions and the bacterial
load [221]. Pralnacasan (VX-740) and belnacasan (VX-765) inhibit caspase-1 activation.
Pralnacasan was tested for rheumatoid arthritis but showed high liver toxicity in mice at
high doses [218,222]. Instead, belnacasan entered clinical trials for the treatment of epi-
lepsy (ClinicalTrial.gov [https://clinicaltrials.gov/, accessed on 13/09/2024] ID:
NCT01501383 and NCT01048255) and psoriasis (ClinicalTrial.gov [https://clinicaltri-
als.gov/, accessed on 13/09/2024] ID: NCT00205465) [197] but further studies were stopped
due to liver toxicity in prolonged treatment [218]. Nevertheless, belnacasan could be of
interest for the treatment of sepsis. It was able to mitigate the depletion of immature tran-
sitional B cells and resting memory B cells in peripheral blood mononuclear cells (PBMCs)
from septic shock patients [223]. Additionally, belnacasan alleviated the BBB disruption
and cognitive dysfunction in a mouse model of sepsis [224]. Another caspase-1 inhibitor,
AC-YVAD-CMK, efficiently alleviated renal injury, with reduced accumulation of neutro-
phils and macrophages in the cecal ligation and puncture mouse sepsis model [225].
MCC950 is a potent inhibitor of NLRP3 activation that can also inactivate already acti-
vated inflammasomes. Treatment with MCC950 was found to alleviate colonic inflamma-
tion in Winnie mice, with reduced infiltration of neutrophils and reduced secretion of IL-
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1$3 and IL-18 [226]. The Winnie mouse is a model of spontaneous chronic colitis in which
bacterial dysbiosis has been shown to play a role in colonic inflammation [227,228]. A so-
dium-glucose cotransporter 2 (SGLT2) inhibitor exerted cardiovascular protection
through the modulation of the NLRP3 inflammasome [229]. SGLT2 inhibitors are cur-
rently undergoing a Phase 4 clinical trial for the treatment of PCOS (ClinicalTrial.gov
[https://clinicaltrials.gov/, accessed on 13/09/2024] ID: NCT05966792), another condition
in which the gut microbiota plays a critical role [230,231]. Another promising strategy is
to block the assembly or activation of GSDMD, although only a few inhibitors are cur-
rently available. One of the most studied GSDMD inhibitors is disulfiram, a drug currently
in use for alcohol addiction, which inhibits the aldehyde dehydrogenase, and is subse-
quently found to inhibit GSDMD pore formation and therefore the pyroptosis without
affecting the necroptosis [232]. It has entered different clinical trials for various conditions,
such as cocaine abuse (ClinicalTrial.gov [https://clinicaltrials.gov/, accessed on 14/09/2024]
ID: NCT00580827, NCT00218608, NCT00395850, NCT00000278, NCT00094289,
NCT00913484, NCT00729300, NCT00142844 and NCT00149630), HIV infection (Clinical-
Trial.gov ID: NCT00878306, NCT01944371, NCT01286259 and NCT00002065), breast can-
cer (ClinicalTrial.gov [https://clinicaltrials.gov/, accessed on 14/09/2024] 1ID:
NCT03323346), SARS-CoV-2 infection (ClinicalTrial.gov [https://clinicaltrials.gov/, ac-
cessed on 14/09/2024] ID: NCT04485130 and NCT04594343), prostate cancer (Clinical-
Trial.gov [https://clinicaltrials.gov/, accessed on 14/09/2024] ID: NCT01118741) and glio-
blastoma (ClinicalTrial.gov [https://clinicaltrials.gov/, accessed on 14/09/2024] ID:
NCT02678975, NCT01907165, NCT03034135 and NCT02715609). Disulfiram could be of
interest for sepsis. Treatment with a dosage within the approved clinical range increased
the survival of mice with LPS-induced sepsis [232]. Similarly, another GSDMD inhibitor,
necrosulfonamide, improved survival in a mouse model of sepsis [233]. Recently,
Granzyme A inhibition through 4-octyl itaconate was shown to inhibit GSDMB-mediated
pyroptosis and alleviate inflammation in a mouse model of colitis [234]. Pyroptosis inhib-
itors have not currently entered clinical practice for infectious diseases, and further studies
in animal models are needed to achieve this result. Nevertheless, the crucial role of py-
roptosis in the outcome of some bacterial infections and recent evidence in mouse models
suggest that these inhibitors could represent a valuable weapon for the treatment of in-
flammation associated with many infectious diseases.

6. Conclusions

Cells activate several processes in response to PAMPs and DAMPs. Among these pro-
cesses, pyroptosis plays a crucial role in bacterial infections. It plays a role in contrasting
bacterial replication and bacterial clearance. On the other hand, excessive pyroptosis acti-
vation is harmful to the host and helps bacteria in invasion by crossing the epithelial
and/or endothelial barrier. Important pathogens that cause diseases characterized by
strong inflammation activate diverse pyroptosis pathways with different outcomes in dif-
ferent tissues. Shedding light on the mechanisms underlying the activation of pyroptosis
pathways and the strategies adopted by bacteria to interfere with them is essential for the
development of new drugs useful in the treatment of infectious diseases.
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